diff --git a/README.md b/README.md index a57efee..e2ca3a8 100644 --- a/README.md +++ b/README.md @@ -32,11 +32,12 @@ You can use this model for conditional and un-conditional image captioning Click to expand ```python +import requests +from PIL import Image +from transformers import BlipProcessor, BlipForConditionalGeneration -from transformers import BlipProcessor, BlipForImageCaptioning - -processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") -model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base") +processor = BlipProcessor.from_pretrained("ybelkada/blip-image-captioning-base") +model = BlipForConditionalGeneration.from_pretrained("ybelkada/blip-image-captioning-base") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') @@ -46,13 +47,15 @@ text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt") out = model.generate(**inputs) -print(processor.decode(out[0], skip_special_tokens=True) +print(processor.decode(out[0], skip_special_tokens=True)) +# >>> a photography of a woman and her dog # unconditional image captioning inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) -print(processor.decode(out[0], skip_special_tokens=True) +print(processor.decode(out[0], skip_special_tokens=True)) +>>> a woman sitting on the beach with her dog ``` @@ -64,11 +67,12 @@ print(processor.decode(out[0], skip_special_tokens=True) Click to expand ```python - -from transformers import BlipProcessor, BlipForImageCaptioning +import requests +from PIL import Image +from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") -model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda") +model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base").to("cuda") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') @@ -78,13 +82,15 @@ text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt").to("cuda") out = model.generate(**inputs) -print(processor.decode(out[0], skip_special_tokens=True) +print(processor.decode(out[0], skip_special_tokens=True)) +# >>> a photography of a woman and her dog # unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cuda") out = model.generate(**inputs) -print(processor.decode(out[0], skip_special_tokens=True) +print(processor.decode(out[0], skip_special_tokens=True)) +>>> a woman sitting on the beach with her dog ``` @@ -95,7 +101,9 @@ print(processor.decode(out[0], skip_special_tokens=True) ```python import torch -from transformers import BlipProcessor, BlipForImageCaptioning +import requests +from PIL import Image +from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda") @@ -108,13 +116,15 @@ text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) -print(processor.decode(out[0], skip_special_tokens=True) +print(processor.decode(out[0], skip_special_tokens=True)) +# >>> a photography of a woman and her dog # unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) -print(processor.decode(out[0], skip_special_tokens=True) +print(processor.decode(out[0], skip_special_tokens=True)) +>>> a woman sitting on the beach with her dog ```