diff --git a/README.md b/README.md
index a57efee..e2ca3a8 100644
--- a/README.md
+++ b/README.md
@@ -32,11 +32,12 @@ You can use this model for conditional and un-conditional image captioning
Click to expand
```python
+import requests
+from PIL import Image
+from transformers import BlipProcessor, BlipForConditionalGeneration
-from transformers import BlipProcessor, BlipForImageCaptioning
-
-processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
-model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base")
+processor = BlipProcessor.from_pretrained("ybelkada/blip-image-captioning-base")
+model = BlipForConditionalGeneration.from_pretrained("ybelkada/blip-image-captioning-base")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
@@ -46,13 +47,15 @@ text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt")
out = model.generate(**inputs)
-print(processor.decode(out[0], skip_special_tokens=True)
+print(processor.decode(out[0], skip_special_tokens=True))
+# >>> a photography of a woman and her dog
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt")
out = model.generate(**inputs)
-print(processor.decode(out[0], skip_special_tokens=True)
+print(processor.decode(out[0], skip_special_tokens=True))
+>>> a woman sitting on the beach with her dog
```
@@ -64,11 +67,12 @@ print(processor.decode(out[0], skip_special_tokens=True)
Click to expand
```python
-
-from transformers import BlipProcessor, BlipForImageCaptioning
+import requests
+from PIL import Image
+from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
-model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
+model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base").to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
@@ -78,13 +82,15 @@ text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
-print(processor.decode(out[0], skip_special_tokens=True)
+print(processor.decode(out[0], skip_special_tokens=True))
+# >>> a photography of a woman and her dog
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
-print(processor.decode(out[0], skip_special_tokens=True)
+print(processor.decode(out[0], skip_special_tokens=True))
+>>> a woman sitting on the beach with her dog
```
@@ -95,7 +101,9 @@ print(processor.decode(out[0], skip_special_tokens=True)
```python
import torch
-from transformers import BlipProcessor, BlipForImageCaptioning
+import requests
+from PIL import Image
+from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
@@ -108,13 +116,15 @@ text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
-print(processor.decode(out[0], skip_special_tokens=True)
+print(processor.decode(out[0], skip_special_tokens=True))
+# >>> a photography of a woman and her dog
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
-print(processor.decode(out[0], skip_special_tokens=True)
+print(processor.decode(out[0], skip_special_tokens=True))
+>>> a woman sitting on the beach with her dog
```