Adding an example of using pretrained model to predict emotion in local audio file (#1)
- Adding an example of using pretrained model to predict emotion in local audio file (f02201ba227deefa8868a872db7ca70556ae44ef) Co-authored-by: Marc Maxmeister <marcmaxmeister@users.noreply.huggingface.co>
This commit is contained in:
parent
7c15f7861b
commit
81e08bf464
54
README.md
54
README.md
|
@ -6,4 +6,56 @@ tags:
|
|||
- audio
|
||||
- HUBert
|
||||
---
|
||||
A place to hold the model for easier inference.
|
||||
|
||||
|
||||
Working example of using pretrained model to predict emotion in local audio file
|
||||
|
||||
```
|
||||
|
||||
def predict_emotion_hubert(audio_file):
|
||||
""" inspired by an example from https://github.com/m3hrdadfi/soxan """
|
||||
from audio_models import HubertForSpeechClassification
|
||||
from transformers import Wav2Vec2FeatureExtractor, AutoConfig
|
||||
import torch.nn.functional as F
|
||||
import torch
|
||||
import numpy as np
|
||||
from pydub import AudioSegment
|
||||
|
||||
model = HubertForSpeechClassification.from_pretrained("Rajaram1996/Hubert_emotion") # Downloading: 362M
|
||||
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
|
||||
sampling_rate=16000 # defined by the model; must convert mp3 to this rate.
|
||||
config = AutoConfig.from_pretrained("Rajaram1996/Hubert_emotion")
|
||||
|
||||
def speech_file_to_array(path, sampling_rate):
|
||||
# using torchaudio...
|
||||
# speech_array, _sampling_rate = torchaudio.load(path)
|
||||
# resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
|
||||
# speech = resampler(speech_array).squeeze().numpy()
|
||||
sound = AudioSegment.from_file(path)
|
||||
sound = sound.set_frame_rate(sampling_rate)
|
||||
sound_array = np.array(sound.get_array_of_samples())
|
||||
return sound_array
|
||||
|
||||
sound_array = speech_file_to_array(audio_file, sampling_rate)
|
||||
inputs = feature_extractor(sound_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
||||
inputs = {key: inputs[key].to("cpu").float() for key in inputs}
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
|
||||
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
||||
outputs = [{
|
||||
"emo": config.id2label[i],
|
||||
"score": round(score * 100, 1)}
|
||||
for i, score in enumerate(scores)
|
||||
]
|
||||
return [row for row in sorted(outputs, key=lambda x:x["score"], reverse=True) if row['score'] != '0.0%'][:2]
|
||||
```
|
||||
|
||||
```
|
||||
|
||||
result = predict_emotion_hubert("male-crying.mp3")
|
||||
>>> result
|
||||
[{'emo': 'male_sad', 'score': 91.0}, {'emo': 'male_fear', 'score': 4.8}]
|
||||
```
|
||||
|
||||
|
|
Loading…
Reference in New Issue