diff --git a/README.md b/README.md index d979dbd..ec41e42 100644 --- a/README.md +++ b/README.md @@ -6,4 +6,56 @@ tags: - audio - HUBert --- -A place to hold the model for easier inference. \ No newline at end of file + + +Working example of using pretrained model to predict emotion in local audio file + +``` + +def predict_emotion_hubert(audio_file): + """ inspired by an example from https://github.com/m3hrdadfi/soxan """ + from audio_models import HubertForSpeechClassification + from transformers import Wav2Vec2FeatureExtractor, AutoConfig + import torch.nn.functional as F + import torch + import numpy as np + from pydub import AudioSegment + + model = HubertForSpeechClassification.from_pretrained("Rajaram1996/Hubert_emotion") # Downloading: 362M + feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960") + sampling_rate=16000 # defined by the model; must convert mp3 to this rate. + config = AutoConfig.from_pretrained("Rajaram1996/Hubert_emotion") + + def speech_file_to_array(path, sampling_rate): + # using torchaudio... + # speech_array, _sampling_rate = torchaudio.load(path) + # resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate) + # speech = resampler(speech_array).squeeze().numpy() + sound = AudioSegment.from_file(path) + sound = sound.set_frame_rate(sampling_rate) + sound_array = np.array(sound.get_array_of_samples()) + return sound_array + + sound_array = speech_file_to_array(audio_file, sampling_rate) + inputs = feature_extractor(sound_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True) + inputs = {key: inputs[key].to("cpu").float() for key in inputs} + + with torch.no_grad(): + logits = model(**inputs).logits + + scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] + outputs = [{ + "emo": config.id2label[i], + "score": round(score * 100, 1)} + for i, score in enumerate(scores) + ] + return [row for row in sorted(outputs, key=lambda x:x["score"], reverse=True) if row['score'] != '0.0%'][:2] +``` + +``` + +result = predict_emotion_hubert("male-crying.mp3") +>>> result +[{'emo': 'male_sad', 'score': 91.0}, {'emo': 'male_fear', 'score': 4.8}] +``` +