223 lines
7.0 KiB
Python
223 lines
7.0 KiB
Python
# -*- coding:utf-8 -*-
|
|
import os
|
|
import logging
|
|
import sys
|
|
import gradio as gr
|
|
import torch
|
|
from app_modules.utils import *
|
|
from app_modules.presets import *
|
|
from app_modules.overwrites import *
|
|
|
|
logging.basicConfig(
|
|
level=logging.DEBUG,
|
|
format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
|
|
)
|
|
|
|
base_model = "decapoda-research/llama-7b-hf"
|
|
adapter_model = "project-baize/baize-lora-7B"
|
|
tokenizer,model,device = load_tokenizer_and_model(base_model,adapter_model)
|
|
|
|
|
|
def predict(text,
|
|
chatbot,
|
|
history,
|
|
top_p,
|
|
temperature,
|
|
max_length_tokens,
|
|
max_context_length_tokens,):
|
|
if text=="":
|
|
return history,history,"Empty Context"
|
|
try:
|
|
model
|
|
except:
|
|
return [[text,"No Model Found"]],[],"No Model Found"
|
|
inputs = generate_prompt_with_history(text,history,tokenizer,max_length=max_context_length_tokens)
|
|
if inputs is False:
|
|
return [[x[0],convert_to_markdown(x[1])] for x in history]+[[text,"Sorry, the input is too long."]],history,"Generate Fail"
|
|
else:
|
|
prompt,inputs=inputs
|
|
begin_length = len(prompt)
|
|
|
|
input_ids = inputs["input_ids"].to(device)
|
|
|
|
with torch.no_grad():
|
|
for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p):
|
|
if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False:
|
|
if "[|Human|]" in x:
|
|
x = x[:x.index("[|Human|]")].strip()
|
|
if "[|AI|]" in x:
|
|
x = x[:x.index("[|AI|]")].strip()
|
|
x = x.strip(" ")
|
|
a, b= [[y[0],convert_to_markdown(y[1])] for y in history]+[[text, convert_to_markdown(x)]],history + [[text,x]]
|
|
yield a, b, "Generating……"
|
|
if shared_state.interrupted:
|
|
shared_state.recover()
|
|
try:
|
|
yield a, b, "Stop Success"
|
|
return
|
|
except:
|
|
pass
|
|
print(prompt)
|
|
print(x)
|
|
print("="*80)
|
|
try:
|
|
yield a,b,"Generate Success"
|
|
except:
|
|
pass
|
|
|
|
def retry(
|
|
text,
|
|
chatbot,
|
|
history,
|
|
top_p,
|
|
temperature,
|
|
max_length_tokens,
|
|
max_context_length_tokens,
|
|
):
|
|
logging.info("Retry……")
|
|
if len(history) == 0:
|
|
yield chatbot, history, f"Empty context"
|
|
return
|
|
chatbot.pop()
|
|
inputs = history.pop()[0]
|
|
for x in predict(inputs,chatbot,history,top_p,temperature,max_length_tokens,max_context_length_tokens):
|
|
yield x
|
|
|
|
|
|
gr.Chatbot.postprocess = postprocess
|
|
|
|
with open("assets/custom.css", "r", encoding="utf-8") as f:
|
|
customCSS = f.read()
|
|
|
|
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
history = gr.State([])
|
|
user_question = gr.State("")
|
|
with gr.Row():
|
|
gr.HTML(title)
|
|
status_display = gr.Markdown("Success", elem_id="status_display")
|
|
gr.Markdown(description_top)
|
|
with gr.Row(scale=1).style(equal_height=True):
|
|
with gr.Column(scale=5):
|
|
with gr.Row(scale=1):
|
|
chatbot = gr.Chatbot(elem_id="chuanhu_chatbot").style(height="100%")
|
|
with gr.Row(scale=1):
|
|
with gr.Column(scale=12):
|
|
user_input = gr.Textbox(
|
|
show_label=False, placeholder="Enter text"
|
|
).style(container=False)
|
|
with gr.Column(min_width=70, scale=1):
|
|
submitBtn = gr.Button("Send")
|
|
with gr.Column(min_width=70, scale=1):
|
|
cancelBtn = gr.Button("Stop")
|
|
|
|
with gr.Row(scale=1):
|
|
emptyBtn = gr.Button(
|
|
"🧹 New Conversation",
|
|
)
|
|
retryBtn = gr.Button("🔄 Regenerate")
|
|
delLastBtn = gr.Button("🗑️ Remove Last Turn")
|
|
with gr.Column():
|
|
with gr.Column(min_width=50, scale=1):
|
|
with gr.Tab(label="Parameter Setting"):
|
|
gr.Markdown("# Parameters")
|
|
top_p = gr.Slider(
|
|
minimum=-0,
|
|
maximum=1.0,
|
|
value=0.95,
|
|
step=0.05,
|
|
interactive=True,
|
|
label="Top-p",
|
|
)
|
|
temperature = gr.Slider(
|
|
minimum=-0,
|
|
maximum=2.0,
|
|
value=1,
|
|
step=0.1,
|
|
interactive=True,
|
|
label="Temperature",
|
|
)
|
|
max_length_tokens = gr.Slider(
|
|
minimum=0,
|
|
maximum=512,
|
|
value=512,
|
|
step=8,
|
|
interactive=True,
|
|
label="Max Generation Tokens",
|
|
)
|
|
max_context_length_tokens = gr.Slider(
|
|
minimum=0,
|
|
maximum=4096,
|
|
value=2048,
|
|
step=128,
|
|
interactive=True,
|
|
label="Max History Tokens",
|
|
)
|
|
gr.Markdown(description)
|
|
|
|
predict_args = dict(
|
|
fn=predict,
|
|
inputs=[
|
|
user_question,
|
|
chatbot,
|
|
history,
|
|
top_p,
|
|
temperature,
|
|
max_length_tokens,
|
|
max_context_length_tokens,
|
|
],
|
|
outputs=[chatbot, history, status_display],
|
|
show_progress=True,
|
|
)
|
|
retry_args = dict(
|
|
fn=retry,
|
|
inputs=[
|
|
user_input,
|
|
chatbot,
|
|
history,
|
|
top_p,
|
|
temperature,
|
|
max_length_tokens,
|
|
max_context_length_tokens,
|
|
],
|
|
outputs=[chatbot, history, status_display],
|
|
show_progress=True,
|
|
)
|
|
|
|
reset_args = dict(
|
|
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
|
|
)
|
|
|
|
# Chatbot
|
|
cancelBtn.click(cancel_outputing, [], [ status_display])
|
|
transfer_input_args = dict(
|
|
fn=transfer_input, inputs=[user_input], outputs=[user_question, user_input, submitBtn, cancelBtn], show_progress=True
|
|
)
|
|
|
|
user_input.submit(**transfer_input_args).then(**predict_args)
|
|
|
|
submitBtn.click(**transfer_input_args).then(**predict_args)
|
|
|
|
emptyBtn.click(
|
|
reset_state,
|
|
outputs=[chatbot, history, status_display],
|
|
show_progress=True,
|
|
)
|
|
emptyBtn.click(**reset_args)
|
|
|
|
retryBtn.click(**retry_args)
|
|
|
|
delLastBtn.click(
|
|
delete_last_conversation,
|
|
[chatbot, history],
|
|
[chatbot, history, status_display],
|
|
show_progress=True,
|
|
)
|
|
|
|
demo.title = "Baize"
|
|
|
|
if __name__ == "__main__":
|
|
reload_javascript()
|
|
demo.queue(concurrency_count=1).launch(
|
|
share=False, favicon_path="./assets/favicon.ico", inbrowser=True
|
|
)
|