# Load the model and processorfromtransformersimportWav2Vec2Processor,Wav2Vec2ForCTCimportnumpyasnpimporttorchmodel=Wav2Vec2ForCTC.from_pretrained(r'yongjian/wav2vec2-large-a')# Note: PyTorch Modelprocessor=Wav2Vec2Processor.from_pretrained(r'yongjian/wav2vec2-large-a')# Load inputnp_wav=np.random.normal(size=(16000)).clip(-1,1)# change it to your sample# Inferencesample_rate=processor.feature_extractor.sampling_ratewithtorch.no_grad():model_inputs=processor(np_wav,sampling_rate=sample_rate,return_tensors="pt",padding=True)logits=model(model_inputs.input_values,attention_mask=model_inputs.attention_mask).logits# use .cuda() for GPU accelerationpred_ids=torch.argmax(logits,dim=-1).cpu()pred_text=processor.batch_decode(pred_ids)print('Transcription:',pred_text)