`FinBERT` is a BERT model pre-trained on financial communication text. The purpose is to enhance financial NLP research and practice. It is trained on the following three financial communication corpus. The total corpora size is 4.9B tokens.
More technical details on `FinBERT`: [Click Link](https://github.com/yya518/FinBERT)
Please check out our working paper [`FinBERT—A Deep Learning Approach to Extracting Textual Information`](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3910214).
This released `finbert-tone` model is the `FinBERT` model fine-tuned on 10,000 manually annotated (positive, negative, neutral) sentences from analyst reports. This model achieves superior performance on financial tone analysis task. If you are simply interested in using `FinBERT` for financial tone analysis, give it a try.