Compare commits
No commits in common. "5bebf1e9bb163535699a3c53fe47859fa088791c" and "45bde45ae65a91efd1c9d9b53dec010e3ccf3f8d" have entirely different histories.
5bebf1e9bb
...
45bde45ae6
78
README.md
78
README.md
|
@ -1,11 +1,7 @@
|
|||
---
|
||||
tags:
|
||||
- image-to-text
|
||||
widget:
|
||||
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
|
||||
example_title: Football Match
|
||||
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/dog-cat.jpg
|
||||
example_title: Dog & Cat
|
||||
- image-classification
|
||||
library_name: generic
|
||||
---
|
||||
|
||||
## Example
|
||||
|
@ -16,88 +12,34 @@ as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework.
|
|||
|
||||
The model can be used as follows:
|
||||
|
||||
**In PyTorch**
|
||||
```python
|
||||
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
|
||||
|
||||
|
||||
loc = "ydshieh/vit-gpt2-coco-en"
|
||||
|
||||
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
||||
tokenizer = AutoTokenizer.from_pretrained(loc)
|
||||
model = VisionEncoderDecoderModel.from_pretrained(loc)
|
||||
model.eval()
|
||||
|
||||
|
||||
def predict(image):
|
||||
|
||||
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
||||
|
||||
with torch.no_grad():
|
||||
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
||||
|
||||
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||
preds = [pred.strip() for pred in preds]
|
||||
|
||||
return preds
|
||||
|
||||
|
||||
# We will verify our results on an image of cute cats
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
with Image.open(requests.get(url, stream=True).raw) as image:
|
||||
preds = predict(image)
|
||||
|
||||
print(preds)
|
||||
# should produce
|
||||
# ['a cat laying on top of a couch next to another cat']
|
||||
|
||||
```
|
||||
|
||||
**In Flax**
|
||||
```python
|
||||
|
||||
import jax
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
|
||||
|
||||
|
||||
loc = "ydshieh/vit-gpt2-coco-en"
|
||||
|
||||
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
||||
tokenizer = AutoTokenizer.from_pretrained(loc)
|
||||
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
|
||||
|
||||
gen_kwargs = {"max_length": 16, "num_beams": 4}
|
||||
# We will verify our results on an image of cute cats
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
with Image.open(requests.get(url, stream=True).raw) as img:
|
||||
pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values
|
||||
|
||||
def generate_step(pixel_values):
|
||||
|
||||
# This takes sometime when compiling the first time, but the subsequent inference will be much faster
|
||||
@jax.jit
|
||||
def generate(pixel_values):
|
||||
output_ids = model.generate(pixel_values, **gen_kwargs).sequences
|
||||
return output_ids
|
||||
|
||||
|
||||
def predict(image):
|
||||
|
||||
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values
|
||||
output_ids = generate(pixel_values)
|
||||
output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences
|
||||
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||
preds = [pred.strip() for pred in preds]
|
||||
|
||||
return preds
|
||||
|
||||
|
||||
# We will verify our results on an image of cute cats
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
with Image.open(requests.get(url, stream=True).raw) as image:
|
||||
preds = predict(image)
|
||||
|
||||
preds = generate_step(pixel_values)
|
||||
print(preds)
|
||||
|
||||
# should produce
|
||||
# ['a cat laying on top of a couch next to another cat']
|
||||
|
||||
|
|
14
pipeline.py
14
pipeline.py
|
@ -20,7 +20,7 @@ class PreTrainedPipeline():
|
|||
max_length = 16
|
||||
num_beams = 4
|
||||
# self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
||||
self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "return_dict_in_generate": True, "output_scores": True}
|
||||
self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "return_dict_in_generate": True}
|
||||
|
||||
self.model.to("cpu")
|
||||
self.model.eval()
|
||||
|
@ -29,12 +29,8 @@ class PreTrainedPipeline():
|
|||
def _generate(pixel_values):
|
||||
|
||||
with torch.no_grad():
|
||||
|
||||
outputs = self.model.generate(pixel_values, **self.gen_kwargs)
|
||||
output_ids = outputs.sequences
|
||||
sequences_scores = outputs.sequences_scores
|
||||
|
||||
return output_ids, sequences_scores
|
||||
output_ids = self.model.generate(pixel_values, **self.gen_kwargs).sequences
|
||||
return output_ids
|
||||
|
||||
self.generate = _generate
|
||||
|
||||
|
@ -53,10 +49,10 @@ class PreTrainedPipeline():
|
|||
# pixel_values = self.feature_extractor(images=inputs, return_tensors="np").pixel_values
|
||||
pixel_values = self.feature_extractor(images=inputs, return_tensors="pt").pixel_values
|
||||
|
||||
output_ids, sequences_scores = self.generate(pixel_values)
|
||||
output_ids = self.generate(pixel_values)
|
||||
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||
preds = [pred.strip() for pred in preds]
|
||||
|
||||
preds = [{"label": preds[0], "score": float(sequences_scores[0])}]
|
||||
preds = [{"label": preds[0], "score": 1.0}]
|
||||
|
||||
return preds
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
{
|
||||
"do_normalize": true,
|
||||
"do_resize": true,
|
||||
"feature_extractor_type": "ViTFeatureExtractor",
|
||||
"image_mean": [
|
||||
0.5,
|
||||
0.5,
|
||||
|
|
BIN
tf_model.h5 (Stored with Git LFS)
BIN
tf_model.h5 (Stored with Git LFS)
Binary file not shown.
Loading…
Reference in New Issue