Compare commits
No commits in common. "5bebf1e9bb163535699a3c53fe47859fa088791c" and "45bde45ae65a91efd1c9d9b53dec010e3ccf3f8d" have entirely different histories.
5bebf1e9bb
...
45bde45ae6
90
README.md
90
README.md
|
@ -1,11 +1,7 @@
|
||||||
---
|
---
|
||||||
tags:
|
tags:
|
||||||
- image-to-text
|
- image-classification
|
||||||
widget:
|
library_name: generic
|
||||||
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
|
|
||||||
example_title: Football Match
|
|
||||||
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/dog-cat.jpg
|
|
||||||
example_title: Dog & Cat
|
|
||||||
---
|
---
|
||||||
|
|
||||||
## Example
|
## Example
|
||||||
|
@ -16,89 +12,35 @@ as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework.
|
||||||
|
|
||||||
The model can be used as follows:
|
The model can be used as follows:
|
||||||
|
|
||||||
**In PyTorch**
|
|
||||||
```python
|
```python
|
||||||
|
|
||||||
import torch
|
|
||||||
import requests
|
|
||||||
from PIL import Image
|
|
||||||
from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
|
|
||||||
|
|
||||||
|
|
||||||
loc = "ydshieh/vit-gpt2-coco-en"
|
|
||||||
|
|
||||||
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(loc)
|
|
||||||
model = VisionEncoderDecoderModel.from_pretrained(loc)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
def predict(image):
|
|
||||||
|
|
||||||
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
|
||||||
|
|
||||||
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
||||||
preds = [pred.strip() for pred in preds]
|
|
||||||
|
|
||||||
return preds
|
|
||||||
|
|
||||||
|
|
||||||
# We will verify our results on an image of cute cats
|
|
||||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
||||||
with Image.open(requests.get(url, stream=True).raw) as image:
|
|
||||||
preds = predict(image)
|
|
||||||
|
|
||||||
print(preds)
|
|
||||||
# should produce
|
|
||||||
# ['a cat laying on top of a couch next to another cat']
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
**In Flax**
|
|
||||||
```python
|
|
||||||
|
|
||||||
import jax
|
|
||||||
import requests
|
import requests
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
|
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
|
||||||
|
|
||||||
|
|
||||||
loc = "ydshieh/vit-gpt2-coco-en"
|
loc = "ydshieh/vit-gpt2-coco-en"
|
||||||
|
|
||||||
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(loc)
|
tokenizer = AutoTokenizer.from_pretrained(loc)
|
||||||
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
|
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
|
||||||
|
|
||||||
gen_kwargs = {"max_length": 16, "num_beams": 4}
|
|
||||||
|
|
||||||
|
|
||||||
# This takes sometime when compiling the first time, but the subsequent inference will be much faster
|
|
||||||
@jax.jit
|
|
||||||
def generate(pixel_values):
|
|
||||||
output_ids = model.generate(pixel_values, **gen_kwargs).sequences
|
|
||||||
return output_ids
|
|
||||||
|
|
||||||
|
|
||||||
def predict(image):
|
|
||||||
|
|
||||||
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values
|
|
||||||
output_ids = generate(pixel_values)
|
|
||||||
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
||||||
preds = [pred.strip() for pred in preds]
|
|
||||||
|
|
||||||
return preds
|
|
||||||
|
|
||||||
|
|
||||||
# We will verify our results on an image of cute cats
|
# We will verify our results on an image of cute cats
|
||||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||||
with Image.open(requests.get(url, stream=True).raw) as image:
|
with Image.open(requests.get(url, stream=True).raw) as img:
|
||||||
preds = predict(image)
|
pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values
|
||||||
|
|
||||||
|
def generate_step(pixel_values):
|
||||||
|
|
||||||
|
output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences
|
||||||
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||||
|
preds = [pred.strip() for pred in preds]
|
||||||
|
|
||||||
|
return preds
|
||||||
|
|
||||||
|
preds = generate_step(pixel_values)
|
||||||
print(preds)
|
print(preds)
|
||||||
|
|
||||||
# should produce
|
# should produce
|
||||||
# ['a cat laying on top of a couch next to another cat']
|
# ['a cat laying on top of a couch next to another cat']
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
14
pipeline.py
14
pipeline.py
|
@ -20,7 +20,7 @@ class PreTrainedPipeline():
|
||||||
max_length = 16
|
max_length = 16
|
||||||
num_beams = 4
|
num_beams = 4
|
||||||
# self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
# self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
||||||
self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "return_dict_in_generate": True, "output_scores": True}
|
self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "return_dict_in_generate": True}
|
||||||
|
|
||||||
self.model.to("cpu")
|
self.model.to("cpu")
|
||||||
self.model.eval()
|
self.model.eval()
|
||||||
|
@ -29,12 +29,8 @@ class PreTrainedPipeline():
|
||||||
def _generate(pixel_values):
|
def _generate(pixel_values):
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
output_ids = self.model.generate(pixel_values, **self.gen_kwargs).sequences
|
||||||
outputs = self.model.generate(pixel_values, **self.gen_kwargs)
|
return output_ids
|
||||||
output_ids = outputs.sequences
|
|
||||||
sequences_scores = outputs.sequences_scores
|
|
||||||
|
|
||||||
return output_ids, sequences_scores
|
|
||||||
|
|
||||||
self.generate = _generate
|
self.generate = _generate
|
||||||
|
|
||||||
|
@ -53,10 +49,10 @@ class PreTrainedPipeline():
|
||||||
# pixel_values = self.feature_extractor(images=inputs, return_tensors="np").pixel_values
|
# pixel_values = self.feature_extractor(images=inputs, return_tensors="np").pixel_values
|
||||||
pixel_values = self.feature_extractor(images=inputs, return_tensors="pt").pixel_values
|
pixel_values = self.feature_extractor(images=inputs, return_tensors="pt").pixel_values
|
||||||
|
|
||||||
output_ids, sequences_scores = self.generate(pixel_values)
|
output_ids = self.generate(pixel_values)
|
||||||
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||||
preds = [pred.strip() for pred in preds]
|
preds = [pred.strip() for pred in preds]
|
||||||
|
|
||||||
preds = [{"label": preds[0], "score": float(sequences_scores[0])}]
|
preds = [{"label": preds[0], "score": 1.0}]
|
||||||
|
|
||||||
return preds
|
return preds
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
{
|
{
|
||||||
"do_normalize": true,
|
"do_normalize": true,
|
||||||
"do_resize": true,
|
"do_resize": true,
|
||||||
"feature_extractor_type": "ViTFeatureExtractor",
|
|
||||||
"image_mean": [
|
"image_mean": [
|
||||||
0.5,
|
0.5,
|
||||||
0.5,
|
0.5,
|
||||||
|
|
BIN
tf_model.h5 (Stored with Git LFS)
BIN
tf_model.h5 (Stored with Git LFS)
Binary file not shown.
Loading…
Reference in New Issue