add files
This commit is contained in:
parent
9d3e38f053
commit
c1c837b30e
|
@ -0,0 +1,46 @@
|
|||
---
|
||||
tags:
|
||||
- image-classification
|
||||
library_name: generic
|
||||
---
|
||||
|
||||
## Example
|
||||
|
||||
The model is by no means a state-of-the-art model, but nevertheless
|
||||
produces reasonable image captioning results. It was mainly fine-tuned
|
||||
as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework.
|
||||
|
||||
The model can be used as follows:
|
||||
|
||||
```python
|
||||
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
|
||||
|
||||
loc = "ydshieh/vit-gpt2-coco-en"
|
||||
|
||||
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
||||
tokenizer = AutoTokenizer.from_pretrained(loc)
|
||||
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
|
||||
|
||||
# We will verify our results on an image of cute cats
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
with Image.open(requests.get(url, stream=True).raw) as img:
|
||||
pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values
|
||||
|
||||
def generate_step(pixel_values):
|
||||
|
||||
output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences
|
||||
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||
preds = [pred.strip() for pred in preds]
|
||||
|
||||
return preds
|
||||
|
||||
preds = generate_step(pixel_values)
|
||||
print(preds)
|
||||
|
||||
# should produce
|
||||
# ['a cat laying on top of a couch next to another cat']
|
||||
|
||||
```
|
|
@ -0,0 +1,169 @@
|
|||
{
|
||||
"architectures": [
|
||||
"VisionEncoderDecoderModel"
|
||||
],
|
||||
"bos_token_id": 50256,
|
||||
"decoder": {
|
||||
"_name_or_path": "",
|
||||
"activation_function": "gelu_new",
|
||||
"add_cross_attention": true,
|
||||
"architectures": [
|
||||
"GPT2LMHeadModel"
|
||||
],
|
||||
"attn_pdrop": 0.1,
|
||||
"bad_words_ids": null,
|
||||
"bos_token_id": 50256,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"decoder_start_token_id": 50256,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"early_stopping": false,
|
||||
"embd_pdrop": 0.1,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": 50256,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"initializer_range": 0.02,
|
||||
"is_decoder": true,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"layer_norm_epsilon": 1e-05,
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"min_length": 0,
|
||||
"model_type": "gpt2",
|
||||
"n_ctx": 1024,
|
||||
"n_embd": 768,
|
||||
"n_head": 12,
|
||||
"n_inner": null,
|
||||
"n_layer": 12,
|
||||
"n_positions": 1024,
|
||||
"no_repeat_ngram_size": 0,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": 50256,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"pruned_heads": {},
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"resid_pdrop": 0.1,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"scale_attn_weights": true,
|
||||
"sep_token_id": null,
|
||||
"summary_activation": null,
|
||||
"summary_first_dropout": 0.1,
|
||||
"summary_proj_to_labels": true,
|
||||
"summary_type": "cls_index",
|
||||
"summary_use_proj": true,
|
||||
"task_specific_params": {
|
||||
"text-generation": {
|
||||
"do_sample": true,
|
||||
"max_length": 50
|
||||
}
|
||||
},
|
||||
"temperature": 1.0,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": null,
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.11.0.dev0",
|
||||
"use_bfloat16": false,
|
||||
"use_cache": true,
|
||||
"vocab_size": 50257
|
||||
},
|
||||
"decoder_start_token_id": 50256,
|
||||
"encoder": {
|
||||
"_name_or_path": "",
|
||||
"add_cross_attention": false,
|
||||
"architectures": [
|
||||
"ViTModel"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.0,
|
||||
"bad_words_ids": null,
|
||||
"bos_token_id": null,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"decoder_start_token_id": null,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"early_stopping": false,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": null,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.0,
|
||||
"hidden_size": 768,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"image_size": 224,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"is_decoder": false,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"layer_norm_eps": 1e-12,
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"min_length": 0,
|
||||
"model_type": "vit",
|
||||
"no_repeat_ngram_size": 0,
|
||||
"num_attention_heads": 12,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 12,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": null,
|
||||
"patch_size": 16,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"pruned_heads": {},
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"sep_token_id": null,
|
||||
"task_specific_params": null,
|
||||
"temperature": 1.0,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": null,
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.11.0.dev0",
|
||||
"use_bfloat16": false
|
||||
},
|
||||
"eos_token_id": 50256,
|
||||
"is_encoder_decoder": true,
|
||||
"model_type": "vision-encoder-decoder",
|
||||
"pad_token_id": 50256,
|
||||
"transformers_version": null
|
||||
}
|
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,48 @@
|
|||
import os
|
||||
from typing import Dict, List, Any
|
||||
from PIL import Image
|
||||
import jax
|
||||
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
|
||||
|
||||
|
||||
class PreTrainedPipeline():
|
||||
|
||||
def __init__(self, path=""):
|
||||
|
||||
model_dir = os.path.join(path, "ckpt_epoch_3_step_6900")
|
||||
|
||||
self.model = FlaxVisionEncoderDecoderModel.from_pretrained(model_dir)
|
||||
self.feature_extractor = ViTFeatureExtractor.from_pretrained(model_dir)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
||||
|
||||
max_length = 16
|
||||
num_beams = 4
|
||||
self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
||||
|
||||
@jax.jit
|
||||
def _generate(pixel_values):
|
||||
|
||||
output_ids = self.model.generate(pixel_values, **self.gen_kwargs).sequences
|
||||
return output_ids
|
||||
|
||||
self.generate = _generate
|
||||
|
||||
# compile the model
|
||||
image_path = os.path.join(path, 'val_000000039769.jpg')
|
||||
image = Image.open(image_path)
|
||||
self(image)
|
||||
image.close()
|
||||
|
||||
def __call__(self, inputs: "Image.Image") -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
Return:
|
||||
"""
|
||||
|
||||
pixel_values = self.feature_extractor(images=inputs, return_tensors="np").pixel_values
|
||||
|
||||
output_ids = self.generate(pixel_values)
|
||||
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||
preds = [pred.strip() for pred in preds]
|
||||
|
||||
return preds
|
|
@ -0,0 +1,15 @@
|
|||
{
|
||||
"do_normalize": true,
|
||||
"do_resize": true,
|
||||
"image_mean": [
|
||||
0.5,
|
||||
0.5,
|
||||
0.5
|
||||
],
|
||||
"image_std": [
|
||||
0.5,
|
||||
0.5,
|
||||
0.5
|
||||
],
|
||||
"size": 224
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,4 @@
|
|||
Pillow
|
||||
jax[cpu]
|
||||
flax
|
||||
git+https://github.com/ydshieh/transformers.git@flax_vision_encoder_decoder
|
|
@ -0,0 +1 @@
|
|||
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>", "pad_token": "<|endoftext|>"}
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1 @@
|
|||
{"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "gpt2", "tokenizer_class": "GPT2Tokenizer"}
|
Binary file not shown.
After Width: | Height: | Size: 169 KiB |
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue