forked from whybeyoung/Gradio_YOLOv5_Det
Duplicate from Gradio-Blocks/Gradio_YOLOv5_Det
Co-authored-by: ZengYifu <Zengyf-CVer@users.noreply.huggingface.co>
This commit is contained in:
commit
a882a63b6d
|
@ -0,0 +1,27 @@
|
|||
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.model filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,51 @@
|
|||
# 图片格式
|
||||
*.jpg
|
||||
*.jpeg
|
||||
*.png
|
||||
*.svg
|
||||
*.gif
|
||||
|
||||
# 视频格式
|
||||
*.mp4
|
||||
*.avi
|
||||
.ipynb_checkpoints
|
||||
*/__pycache__
|
||||
|
||||
# 日志格式
|
||||
*.log
|
||||
*.datas
|
||||
*.txt
|
||||
|
||||
# 生成文件
|
||||
*.pdf
|
||||
*.xlsx
|
||||
*.csv
|
||||
|
||||
# 参数文件
|
||||
*.yaml
|
||||
*.json
|
||||
|
||||
# 压缩文件格式
|
||||
*.zip
|
||||
*.tar
|
||||
*.tar.gz
|
||||
*.rar
|
||||
|
||||
# 字体格式
|
||||
*.ttc
|
||||
*.ttf
|
||||
*.otf
|
||||
|
||||
# 模型文件
|
||||
*.pt
|
||||
*.db
|
||||
|
||||
/flagged
|
||||
/run
|
||||
!requirements.txt
|
||||
!cls_name/*
|
||||
!model_config/*
|
||||
!img_example/*
|
||||
!packages.txt
|
||||
|
||||
app copy.py
|
|
@ -0,0 +1,16 @@
|
|||
---
|
||||
title: Gradio_YOLOv5_Det
|
||||
emoji: 🚀
|
||||
colorFrom: red
|
||||
colorTo: red
|
||||
sdk: gradio
|
||||
sdk_version: 3.0.9
|
||||
app_file: app.py
|
||||
pinned: true
|
||||
license: gpl-3.0
|
||||
duplicated_from: Gradio-Blocks/Gradio_YOLOv5_Det
|
||||
---
|
||||
|
||||
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
||||
|
||||
🚀 Project homepage:https://gitee.com/CV_Lab/gradio_yolov5_det
|
|
@ -0,0 +1,2 @@
|
|||
__author__ = "曾逸夫(Zeng Yifu)"
|
||||
__email__ = "zyfiy1314@163.com"
|
|
@ -0,0 +1,682 @@
|
|||
# Gradio YOLOv5 Det v0.4
|
||||
# author: Zeng Yifu(曾逸夫)
|
||||
# creation time: 2022-05-28
|
||||
# email: zyfiy1314@163.com
|
||||
# project homepage: https://gitee.com/CV_Lab/gradio_yolov5_det
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import gc
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import gradio as gr
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
import yaml
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
from util.fonts_opt import is_fonts
|
||||
from util.pdf_opt import pdf_generate
|
||||
|
||||
ROOT_PATH = sys.path[0] # root directory
|
||||
|
||||
# model path
|
||||
model_path = "ultralytics/yolov5"
|
||||
|
||||
# Gradio YOLOv5 Det version
|
||||
GYD_VERSION = "Gradio YOLOv5 Det v0.4"
|
||||
|
||||
# model name temporary variable
|
||||
model_name_tmp = ""
|
||||
|
||||
# Device temporary variables
|
||||
device_tmp = ""
|
||||
|
||||
# File extension
|
||||
suffix_list = [".csv", ".yaml"]
|
||||
|
||||
# font size
|
||||
FONTSIZE = 25
|
||||
|
||||
# object style
|
||||
obj_style = ["Small Object", "Medium Object", "Large Object"]
|
||||
|
||||
|
||||
def parse_args(known=False):
|
||||
parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.4")
|
||||
parser.add_argument("--source", "-src", default="upload", type=str, help="input source")
|
||||
parser.add_argument("--source_video", "-src_v", default="webcam", type=str, help="video input source")
|
||||
parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool")
|
||||
parser.add_argument("--model_name", "-mn", default="yolov5s", type=str, help="model name")
|
||||
parser.add_argument(
|
||||
"--model_cfg",
|
||||
"-mc",
|
||||
default="./model_config/model_name_p5_p6_all.yaml",
|
||||
type=str,
|
||||
help="model config",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cls_name",
|
||||
"-cls",
|
||||
default="./cls_name/cls_name_en.yaml",
|
||||
type=str,
|
||||
help="cls name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--nms_conf",
|
||||
"-conf",
|
||||
default=0.5,
|
||||
type=float,
|
||||
help="model NMS confidence threshold",
|
||||
)
|
||||
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
"-dev",
|
||||
default="cpu",
|
||||
type=str,
|
||||
help="cuda or cpu",
|
||||
)
|
||||
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
|
||||
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
|
||||
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
|
||||
parser.add_argument(
|
||||
"--is_login",
|
||||
"-isl",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="is login",
|
||||
)
|
||||
parser.add_argument('--usr_pwd',
|
||||
"-up",
|
||||
nargs='+',
|
||||
type=str,
|
||||
default=["admin", "admin"],
|
||||
help="user & password for login")
|
||||
parser.add_argument(
|
||||
"--is_share",
|
||||
"-is",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="is login",
|
||||
)
|
||||
|
||||
args = parser.parse_known_args()[0] if known else parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
# yaml file parsing
|
||||
def yaml_parse(file_path):
|
||||
return yaml.safe_load(open(file_path, encoding="utf-8").read())
|
||||
|
||||
|
||||
# yaml csv file parsing
|
||||
def yaml_csv(file_path, file_tag):
|
||||
file_suffix = Path(file_path).suffix
|
||||
if file_suffix == suffix_list[0]:
|
||||
# model name
|
||||
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv version
|
||||
elif file_suffix == suffix_list[1]:
|
||||
# model name
|
||||
file_names = yaml_parse(file_path).get(file_tag) # yaml version
|
||||
else:
|
||||
print(f"{file_path} is not in the correct format! Program exits!")
|
||||
sys.exit()
|
||||
|
||||
return file_names
|
||||
|
||||
|
||||
# model loading
|
||||
def model_loading(model_name, device, opt=[]):
|
||||
|
||||
# 加载本地模型
|
||||
try:
|
||||
# load model
|
||||
model = torch.hub.load(model_path,
|
||||
model_name,
|
||||
force_reload=[True if "refresh_yolov5" in opt else False][0],
|
||||
device=device,
|
||||
_verbose=False)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
else:
|
||||
print(f"🚀 welcome to {GYD_VERSION},{model_name} loaded successfully!")
|
||||
|
||||
return model
|
||||
|
||||
|
||||
# check information
|
||||
def export_json(results, img_size):
|
||||
|
||||
return [[{
|
||||
"ID": i,
|
||||
"CLASS": int(result[i][5]),
|
||||
"CLASS_NAME": model_cls_name_cp[int(result[i][5])],
|
||||
"BOUNDING_BOX": {
|
||||
"XMIN": round(result[i][:4].tolist()[0], 6),
|
||||
"YMIN": round(result[i][:4].tolist()[1], 6),
|
||||
"XMAX": round(result[i][:4].tolist()[2], 6),
|
||||
"YMAX": round(result[i][:4].tolist()[3], 6),},
|
||||
"CONF": round(float(result[i][4]), 2),
|
||||
"FPS": round(1000 / float(results.t[1]), 2),
|
||||
"IMG_WIDTH": img_size[0],
|
||||
"IMG_HEIGHT": img_size[1],} for i in range(len(result))] for result in results.xyxyn]
|
||||
|
||||
|
||||
# frame conversion
|
||||
def pil_draw(img, countdown_msg, textFont, xyxy, font_size, opt, obj_cls_index, color_list):
|
||||
|
||||
img_pil = ImageDraw.Draw(img)
|
||||
|
||||
img_pil.rectangle(xyxy, fill=None, outline=color_list[obj_cls_index]) # bounding box
|
||||
|
||||
if "label" in opt:
|
||||
text_w, text_h = textFont.getsize(countdown_msg) # Label size
|
||||
|
||||
img_pil.rectangle(
|
||||
(xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h),
|
||||
fill=color_list[obj_cls_index],
|
||||
outline=color_list[obj_cls_index],
|
||||
) # label background
|
||||
|
||||
img_pil.multiline_text(
|
||||
(xyxy[0], xyxy[1]),
|
||||
countdown_msg,
|
||||
fill=(255, 255, 255),
|
||||
font=textFont,
|
||||
align="center",
|
||||
)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
# Label and bounding box color settings
|
||||
def color_set(cls_num):
|
||||
color_list = []
|
||||
for i in range(cls_num):
|
||||
color = tuple(np.random.choice(range(256), size=3))
|
||||
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
|
||||
color_list.append(color)
|
||||
|
||||
return color_list
|
||||
|
||||
|
||||
# YOLOv5 image detection function
|
||||
def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_cls, opt):
|
||||
|
||||
global model, model_name_tmp, device_tmp
|
||||
|
||||
# object size num
|
||||
s_obj, m_obj, l_obj = 0, 0, 0
|
||||
# object area list
|
||||
area_obj_all = []
|
||||
# cls num stat
|
||||
cls_det_stat = []
|
||||
|
||||
if model_name_tmp != model_name:
|
||||
# Model judgment to avoid repeated loading
|
||||
model_name_tmp = model_name
|
||||
print(f"Loading model {model_name_tmp}......")
|
||||
model = model_loading(model_name_tmp, device, opt)
|
||||
elif device_tmp != device:
|
||||
# Device judgment to avoid repeated loading
|
||||
device_tmp = device
|
||||
print(f"Loading model {model_name_tmp}......")
|
||||
model = model_loading(model_name_tmp, device, opt)
|
||||
else:
|
||||
print(f"Loading model {model_name_tmp}......")
|
||||
model = model_loading(model_name_tmp, device, opt)
|
||||
|
||||
# -------------Model tuning -------------
|
||||
model.conf = conf # NMS confidence threshold
|
||||
model.iou = iou # NMS IoU threshold
|
||||
model.max_det = int(max_num) # Maximum number of detection frames
|
||||
model.classes = model_cls # model classes
|
||||
|
||||
color_list = color_set(len(model_cls_name_cp)) # 设置颜色
|
||||
|
||||
img_size = img.size # frame size
|
||||
|
||||
results = model(img, size=infer_size) # detection
|
||||
|
||||
# ----------------目标裁剪----------------
|
||||
crops = results.crop(save=False)
|
||||
img_crops = []
|
||||
for i in range(len(crops)):
|
||||
img_crops.append(crops[i]["im"][..., ::-1])
|
||||
|
||||
# Data Frame
|
||||
dataframe = results.pandas().xyxy[0].round(2)
|
||||
|
||||
det_csv = "./Det_Report.csv"
|
||||
det_excel = "./Det_Report.xlsx"
|
||||
|
||||
if "csv" in opt:
|
||||
dataframe.to_csv(det_csv, index=False)
|
||||
else:
|
||||
det_csv = None
|
||||
|
||||
if "excel" in opt:
|
||||
dataframe.to_excel(det_excel, sheet_name='sheet1', index=False)
|
||||
else:
|
||||
det_excel = None
|
||||
|
||||
# ----------------Load fonts----------------
|
||||
yaml_index = cls_name.index(".yaml")
|
||||
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
|
||||
|
||||
if cls_name_lang == "zh":
|
||||
# Chinese
|
||||
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
|
||||
elif cls_name_lang in ["en", "ru", "es", "ar"]:
|
||||
# English, Russian, Spanish, Arabic
|
||||
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
|
||||
elif cls_name_lang == "ko":
|
||||
# Korean
|
||||
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
|
||||
|
||||
for result in results.xyxyn:
|
||||
for i in range(len(result)):
|
||||
id = int(i) # instance ID
|
||||
obj_cls_index = int(result[i][5]) # category index
|
||||
obj_cls = model_cls_name_cp[obj_cls_index] # category
|
||||
cls_det_stat.append(obj_cls)
|
||||
|
||||
# ------------ border coordinates ------------
|
||||
x0 = float(result[i][:4].tolist()[0])
|
||||
y0 = float(result[i][:4].tolist()[1])
|
||||
x1 = float(result[i][:4].tolist()[2])
|
||||
y1 = float(result[i][:4].tolist()[3])
|
||||
|
||||
# ------------ Actual coordinates of the border ------------
|
||||
x0 = int(img_size[0] * x0)
|
||||
y0 = int(img_size[1] * y0)
|
||||
x1 = int(img_size[0] * x1)
|
||||
y1 = int(img_size[1] * y1)
|
||||
|
||||
conf = float(result[i][4]) # confidence
|
||||
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
|
||||
|
||||
det_img = pil_draw(
|
||||
img,
|
||||
f"{id}-{obj_cls}:{conf:.2f}",
|
||||
textFont,
|
||||
[x0, y0, x1, y1],
|
||||
FONTSIZE,
|
||||
opt,
|
||||
obj_cls_index,
|
||||
color_list,
|
||||
)
|
||||
|
||||
# ----------add object size----------
|
||||
w_obj = x1 - x0
|
||||
h_obj = y1 - y0
|
||||
area_obj = w_obj * h_obj
|
||||
area_obj_all.append(area_obj)
|
||||
|
||||
# ------------JSON generate------------
|
||||
det_json = export_json(results, img.size)[0] # Detection information
|
||||
det_json_format = json.dumps(det_json, sort_keys=False, indent=4, separators=(",", ":"),
|
||||
ensure_ascii=False) # JSON formatting
|
||||
|
||||
if "json" not in opt:
|
||||
det_json = None
|
||||
|
||||
# -------PDF generate-------
|
||||
report = "./Det_Report.pdf"
|
||||
if "pdf" in opt:
|
||||
pdf_generate(f"{det_json_format}", report, GYD_VERSION)
|
||||
else:
|
||||
report = None
|
||||
|
||||
# --------------object size compute--------------
|
||||
for i in range(len(area_obj_all)):
|
||||
if (0 < area_obj_all[i] <= 32 ** 2):
|
||||
s_obj = s_obj + 1
|
||||
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2):
|
||||
m_obj = m_obj + 1
|
||||
elif (area_obj_all[i] > 96 ** 2):
|
||||
l_obj = l_obj + 1
|
||||
|
||||
sml_obj_total = s_obj + m_obj + l_obj
|
||||
|
||||
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)}
|
||||
|
||||
# ------------cls stat------------
|
||||
clsRatio_dict = {}
|
||||
clsDet_dict = Counter(cls_det_stat)
|
||||
clsDet_dict_sum = sum(clsDet_dict.values())
|
||||
|
||||
for k, v in clsDet_dict.items():
|
||||
clsRatio_dict[k] = v / clsDet_dict_sum
|
||||
|
||||
return det_img, img_crops, objSize_dict, clsRatio_dict, dataframe, det_json, report, det_csv, det_excel
|
||||
|
||||
|
||||
# YOLOv5 video detection function
|
||||
def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, model_cls, opt):
|
||||
|
||||
global model, model_name_tmp, device_tmp
|
||||
|
||||
os.system("""
|
||||
if [ -e './output.mp4' ]; then
|
||||
rm ./output.mp4
|
||||
fi
|
||||
""")
|
||||
|
||||
if model_name_tmp != model_name:
|
||||
# Model judgment to avoid repeated loading
|
||||
model_name_tmp = model_name
|
||||
print(f"Loading model {model_name_tmp}......")
|
||||
model = model_loading(model_name_tmp, device, opt)
|
||||
elif device_tmp != device:
|
||||
# Device judgment to avoid repeated loading
|
||||
device_tmp = device
|
||||
print(f"Loading model {model_name_tmp}......")
|
||||
model = model_loading(model_name_tmp, device, opt)
|
||||
else:
|
||||
print(f"Loading model {model_name_tmp}......")
|
||||
model = model_loading(model_name_tmp, device, opt)
|
||||
|
||||
# -------------Model tuning -------------
|
||||
model.conf = conf # NMS confidence threshold
|
||||
model.iou = iou # NMS IOU threshold
|
||||
model.max_det = int(max_num) # Maximum number of detection frames
|
||||
model.classes = model_cls # model classes
|
||||
|
||||
color_list = color_set(len(model_cls_name_cp)) # 设置颜色
|
||||
|
||||
# ----------------Load fonts----------------
|
||||
yaml_index = cls_name.index(".yaml")
|
||||
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
|
||||
|
||||
if cls_name_lang == "zh":
|
||||
# Chinese
|
||||
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
|
||||
elif cls_name_lang in ["en", "ru", "es", "ar"]:
|
||||
# English, Russian, Spanish, Arabic
|
||||
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
|
||||
elif cls_name_lang == "ko":
|
||||
# Korean
|
||||
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
|
||||
|
||||
# video->frame
|
||||
gc.collect()
|
||||
output_video_path = "./output.avi"
|
||||
cap = cv2.VideoCapture(video)
|
||||
fourcc = cv2.VideoWriter_fourcc(*"I420") # encoder
|
||||
|
||||
out = cv2.VideoWriter(output_video_path, fourcc, 30.0, (int(cap.get(3)), int(cap.get(4))))
|
||||
while cap.isOpened():
|
||||
ret, frame = cap.read()
|
||||
# Determine empty frame
|
||||
if not ret:
|
||||
break
|
||||
|
||||
results = model(frame, size=infer_size) # detection
|
||||
h, w, _ = frame.shape # frame size
|
||||
img_size = (w, h) # frame size
|
||||
|
||||
for result in results.xyxyn:
|
||||
for i in range(len(result)):
|
||||
id = int(i) # instance ID
|
||||
obj_cls_index = int(result[i][5]) # category index
|
||||
obj_cls = model_cls_name_cp[obj_cls_index] # category
|
||||
|
||||
# ------------ border coordinates ------------
|
||||
x0 = float(result[i][:4].tolist()[0])
|
||||
y0 = float(result[i][:4].tolist()[1])
|
||||
x1 = float(result[i][:4].tolist()[2])
|
||||
y1 = float(result[i][:4].tolist()[3])
|
||||
|
||||
# ------------ Actual coordinates of the border ------------
|
||||
x0 = int(img_size[0] * x0)
|
||||
y0 = int(img_size[1] * y0)
|
||||
x1 = int(img_size[0] * x1)
|
||||
y1 = int(img_size[1] * y1)
|
||||
|
||||
conf = float(result[i][4]) # confidence
|
||||
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
|
||||
|
||||
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
||||
frame = pil_draw(
|
||||
frame,
|
||||
f"{id}-{obj_cls}:{conf:.2f}",
|
||||
textFont,
|
||||
[x0, y0, x1, y1],
|
||||
FONTSIZE,
|
||||
opt,
|
||||
obj_cls_index,
|
||||
color_list,
|
||||
)
|
||||
|
||||
frame = cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR)
|
||||
|
||||
# frame->video
|
||||
out.write(frame)
|
||||
out.release()
|
||||
cap.release()
|
||||
# cv2.destroyAllWindows()
|
||||
|
||||
return output_video_path
|
||||
|
||||
|
||||
def main(args):
|
||||
gr.close_all()
|
||||
|
||||
global model, model_cls_name_cp, cls_name
|
||||
|
||||
source = args.source
|
||||
source_video = args.source_video
|
||||
img_tool = args.img_tool
|
||||
nms_conf = args.nms_conf
|
||||
nms_iou = args.nms_iou
|
||||
model_name = args.model_name
|
||||
model_cfg = args.model_cfg
|
||||
cls_name = args.cls_name
|
||||
device = args.device
|
||||
inference_size = args.inference_size
|
||||
max_detnum = args.max_detnum
|
||||
slider_step = args.slider_step
|
||||
is_login = args.is_login
|
||||
usr_pwd = args.usr_pwd
|
||||
is_share = args.is_share
|
||||
|
||||
is_fonts(f"{ROOT_PATH}/fonts") # Check font files
|
||||
|
||||
# model loading
|
||||
model = model_loading(model_name, device)
|
||||
|
||||
model_names = yaml_csv(model_cfg, "model_names") # model names
|
||||
model_cls_name = yaml_csv(cls_name, "model_cls_name") # class name
|
||||
|
||||
model_cls_name_cp = model_cls_name.copy() # class name
|
||||
|
||||
# ------------------- Input Components -------------------
|
||||
inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="original image")
|
||||
inputs_device01 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="device")
|
||||
inputs_model01 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="model")
|
||||
inputs_size01 = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="inference size")
|
||||
input_conf01 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="confidence threshold")
|
||||
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
||||
inputs_maxnum01 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
||||
inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
||||
inputs_opt01 = gr.CheckboxGroup(choices=["refresh_yolov5", "label", "pdf", "json", "csv", "excel"],
|
||||
value=["label", "pdf"],
|
||||
type="value",
|
||||
label="operate")
|
||||
|
||||
# ------------------- Input Components -------------------
|
||||
inputs_video = gr.Video(format="mp4", source=source_video, label="original video") # webcam
|
||||
inputs_device02 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="device")
|
||||
inputs_model02 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="model")
|
||||
inputs_size02 = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="inference size")
|
||||
input_conf02 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="confidence threshold")
|
||||
inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
||||
inputs_maxnum02 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
||||
inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
||||
inputs_opt02 = gr.CheckboxGroup(choices=["refresh_yolov5", "label"], value=["label"], type="value", label="operate")
|
||||
|
||||
# Input parameters
|
||||
inputs_img_list = [
|
||||
inputs_img, # input image
|
||||
inputs_device01, # device
|
||||
inputs_model01, # model
|
||||
inputs_size01, # inference size
|
||||
input_conf01, # confidence threshold
|
||||
inputs_iou01, # IoU threshold
|
||||
inputs_maxnum01, # maximum number of detections
|
||||
inputs_clsName01, # category
|
||||
inputs_opt01, # detect operations
|
||||
]
|
||||
|
||||
inputs_video_list = [
|
||||
inputs_video, # input image
|
||||
inputs_device02, # device
|
||||
inputs_model02, # model
|
||||
inputs_size02, # inference size
|
||||
input_conf02, # confidence threshold
|
||||
inputs_iou02, # IoU threshold
|
||||
inputs_maxnum02, # maximum number of detections
|
||||
inputs_clsName02, # category
|
||||
inputs_opt02, # detect operation
|
||||
]
|
||||
|
||||
# -------------------output component-------------------
|
||||
outputs_img = gr.Image(type="pil", label="Detection image")
|
||||
outputs_crops = gr.Gallery(label="Object crop")
|
||||
outputs_df = gr.Dataframe(max_rows=5,
|
||||
overflow_row_behaviour="paginate",
|
||||
type="pandas",
|
||||
label="List of detection information")
|
||||
outputs_objSize = gr.Label(label="Object size ratio statistics")
|
||||
outputs_clsSize = gr.Label(label="Category detection proportion statistics")
|
||||
outputs_json = gr.JSON(label="Detection information")
|
||||
outputs_pdf = gr.File(label="pdf detection report")
|
||||
outputs_csv = gr.File(label="csv detection report")
|
||||
outputs_excel = gr.File(label="xlsx detection report")
|
||||
|
||||
# -------------------output component-------------------
|
||||
outputs_video = gr.Video(format='mp4', label="Detection video")
|
||||
|
||||
# output parameters
|
||||
outputs_img_list = [
|
||||
outputs_img, outputs_crops, outputs_objSize, outputs_clsSize, outputs_df, outputs_json, outputs_pdf,
|
||||
outputs_csv, outputs_excel]
|
||||
outputs_video_list = [outputs_video]
|
||||
|
||||
# title
|
||||
title = "Gradio YOLOv5 Det v0.4"
|
||||
|
||||
# describe
|
||||
description = "Author: 曾逸夫(Zeng Yifu), Project Address: https://gitee.com/CV_Lab/gradio_yolov5_det, Github: https://github.com/Zengyf-CVer, thanks to [Gradio](https://github.com/gradio-app/gradio) & [YOLOv5](https://github.com/ultralytics/yolov5)"
|
||||
# article="https://gitee.com/CV_Lab/gradio_yolov5_det"
|
||||
|
||||
# example image
|
||||
examples = [
|
||||
[
|
||||
"./img_example/bus.jpg",
|
||||
"cpu",
|
||||
"yolov5s",
|
||||
640,
|
||||
0.6,
|
||||
0.5,
|
||||
10,
|
||||
["person", "bus"],
|
||||
["label", "pdf"],],
|
||||
[
|
||||
"./img_example/giraffe.jpg",
|
||||
"cpu",
|
||||
"yolov5l",
|
||||
320,
|
||||
0.5,
|
||||
0.45,
|
||||
12,
|
||||
["giraffe"],
|
||||
["label", "pdf"],],
|
||||
[
|
||||
"./img_example/zidane.jpg",
|
||||
"cpu",
|
||||
"yolov5m",
|
||||
640,
|
||||
0.6,
|
||||
0.5,
|
||||
15,
|
||||
["person", "tie"],
|
||||
["pdf", "json"],],
|
||||
[
|
||||
"./img_example/Millenial-at-work.jpg",
|
||||
"cpu",
|
||||
"yolov5s6",
|
||||
1280,
|
||||
0.5,
|
||||
0.5,
|
||||
20,
|
||||
["person", "chair", "cup", "laptop"],
|
||||
["label", "pdf"],],]
|
||||
|
||||
# interface
|
||||
gyd_img = gr.Interface(
|
||||
fn=yolo_det_img,
|
||||
inputs=inputs_img_list,
|
||||
outputs=outputs_img_list,
|
||||
title=title,
|
||||
description=description,
|
||||
# article=article,
|
||||
examples=examples,
|
||||
cache_examples=False,
|
||||
# theme="seafoam",
|
||||
# live=True, # Change output in real time
|
||||
flagging_dir="run", # output directory
|
||||
# allow_flagging="manual",
|
||||
# flagging_options=["good", "generally", "bad"],
|
||||
)
|
||||
|
||||
gyd_video = gr.Interface(
|
||||
# fn=yolo_det_video_test,
|
||||
fn=yolo_det_video,
|
||||
inputs=inputs_video_list,
|
||||
outputs=outputs_video_list,
|
||||
title=title,
|
||||
description=description,
|
||||
# article=article,
|
||||
# examples=examples,
|
||||
# theme="seafoam",
|
||||
# live=True, # Change output in real time
|
||||
flagging_dir="run", # output directory
|
||||
allow_flagging="never",
|
||||
# flagging_options=["good", "generally", "bad"],
|
||||
)
|
||||
|
||||
gyd = gr.TabbedInterface(interface_list=[gyd_img, gyd_video], tab_names=["Image Mode", "Video Mode"])
|
||||
|
||||
if not is_login:
|
||||
gyd.launch(
|
||||
inbrowser=True, # Automatically open default browser
|
||||
show_tips=True, # Automatically display the latest features of gradio
|
||||
share=is_share, # Project sharing, other devices can access
|
||||
favicon_path="./icon/logo.ico", # web icon
|
||||
show_error=True, # Display error message in browser console
|
||||
quiet=True, # Suppress most print statements
|
||||
)
|
||||
else:
|
||||
gyd.launch(
|
||||
inbrowser=True, # Automatically open default browser
|
||||
show_tips=True, # Automatically display the latest features of gradio
|
||||
auth=usr_pwd, # login interface
|
||||
share=is_share, # Project sharing, other devices can access
|
||||
favicon_path="./icon/logo.ico", # web icon
|
||||
show_error=True, # Display error message in browser console
|
||||
quiet=True, # Suppress most print statements
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
main(args)
|
|
@ -0,0 +1,80 @@
|
|||
人
|
||||
自行车
|
||||
汽车
|
||||
摩托车
|
||||
飞机
|
||||
公交车
|
||||
火车
|
||||
卡车
|
||||
船
|
||||
红绿灯
|
||||
消防栓
|
||||
停止标志
|
||||
停车收费表
|
||||
长凳
|
||||
鸟
|
||||
猫
|
||||
狗
|
||||
马
|
||||
羊
|
||||
牛
|
||||
象
|
||||
熊
|
||||
斑马
|
||||
长颈鹿
|
||||
背包
|
||||
雨伞
|
||||
手提包
|
||||
领带
|
||||
手提箱
|
||||
飞盘
|
||||
滑雪板
|
||||
单板滑雪
|
||||
运动球
|
||||
风筝
|
||||
棒球棒
|
||||
棒球手套
|
||||
滑板
|
||||
冲浪板
|
||||
网球拍
|
||||
瓶子
|
||||
红酒杯
|
||||
杯子
|
||||
叉子
|
||||
刀
|
||||
勺
|
||||
碗
|
||||
香蕉
|
||||
苹果
|
||||
三明治
|
||||
橙子
|
||||
西兰花
|
||||
胡萝卜
|
||||
热狗
|
||||
比萨
|
||||
甜甜圈
|
||||
蛋糕
|
||||
椅子
|
||||
长椅
|
||||
盆栽
|
||||
床
|
||||
餐桌
|
||||
马桶
|
||||
电视
|
||||
笔记本电脑
|
||||
鼠标
|
||||
遥控器
|
||||
键盘
|
||||
手机
|
||||
微波炉
|
||||
烤箱
|
||||
烤面包机
|
||||
洗碗槽
|
||||
冰箱
|
||||
书
|
||||
时钟
|
||||
花瓶
|
||||
剪刀
|
||||
泰迪熊
|
||||
吹风机
|
||||
牙刷
|
|
|
@ -0,0 +1,7 @@
|
|||
model_cls_name: ['人', '自行车', '汽车', '摩托车', '飞机', '公交车', '火车', '卡车', '船', '红绿灯', '消防栓', '停止标志',
|
||||
'停车收费表', '长凳', '鸟', '猫', '狗', '马', '羊', '牛', '象', '熊', '斑马', '长颈鹿', '背包', '雨伞', '手提包', '领带',
|
||||
'手提箱', '飞盘', '滑雪板', '单板滑雪', '运动球', '风筝', '棒球棒', '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '红酒杯',
|
||||
'杯子', '叉子', '刀', '勺', '碗', '香蕉', '苹果', '三明治', '橙子', '西兰花', '胡萝卜', '热狗', '比萨', '甜甜圈', '蛋糕',
|
||||
'椅子', '长椅', '盆栽', '床', '餐桌', '马桶', '电视', '笔记本电脑', '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱',
|
||||
'烤面包机', '洗碗槽', '冰箱', '书', '时钟', '花瓶', '剪刀', '泰迪熊', '吹风机', '牙刷'
|
||||
]
|
|
@ -0,0 +1,9 @@
|
|||
model_cls_name: [" الناس " , " الدراجات " , " السيارات " , " الدراجات النارية " , " الطائرات " , " الحافلات " , " القطارات " , " الشاحنات " , " السفن " , " إشارات المرور " ,
|
||||
" صنبور " , " علامة " , " موقف سيارات " , " الجدول " , " مقعد " , " الطيور " , " القط " , " الكلب " , " الحصان " , " الأغنام " , " الثور " , " الفيل " ,
|
||||
" الدب " , " حمار وحشي " , " الزرافة " , " حقيبة " , " مظلة " , " حقيبة يد " , " ربطة عنق " , " حقيبة " , " الفريسبي " , " الزلاجات " , " الزلاجات " ,
|
||||
" الكرة الرياضية " , " طائرة ورقية " , " مضرب بيسبول " , " قفازات البيسبول " , " لوح التزلج " , " ركوب الأمواج " , " مضرب تنس " , " زجاجة " ,
|
||||
" كأس " , " كأس " , " شوكة " , " سكين " , " ملعقة " , " وعاء " , " الموز " , " التفاح " , " ساندويتش " , " البرتقال " , " القرنبيط " ,
|
||||
" الجزر " , " الكلاب الساخنة " , " البيتزا " , " دونات " , " كعكة " , " كرسي " , " أريكة " , " بوعاء " , " السرير " , " طاولة الطعام " , " المرحاض " ,
|
||||
التلفزيون , الكمبيوتر المحمول , الفأرة , وحدة تحكم عن بعد , لوحة المفاتيح , الهاتف المحمول , فرن الميكروويف , محمصة خبز كهربائية , بالوعة , ثلاجة ,
|
||||
" كتاب " , " ساعة " , " زهرية " , " مقص " , " دمية دب " , " مجفف الشعر " , " فرشاة الأسنان "
|
||||
]
|
|
@ -0,0 +1,9 @@
|
|||
model_cls_name: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
||||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant',
|
||||
'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
|
||||
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle',
|
||||
'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli',
|
||||
'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet',
|
||||
'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator',
|
||||
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
||||
]
|
|
@ -0,0 +1,9 @@
|
|||
model_cls_name: ['persona', 'bicicleta', 'coche', 'motocicleta', 'avión', 'autobús', 'tren', 'camión', 'barco', 'semáforo',
|
||||
'boca de incendios', 'señal de alto', 'parquímetro', 'banco', 'pájaro', 'gato', 'perro', 'caballo', 'oveja', 'vaca', 'elefante',
|
||||
'oso', 'cebra', 'jirafa', 'mochila', 'paraguas', 'bolso', 'corbata', 'maleta', 'frisbee', 'esquís', 'snowboard',
|
||||
'pelota deportiva', 'cometa', 'bate de béisbol', 'guante de béisbol', 'monopatín', 'tabla de surf', 'raqueta de tenis', 'botella',
|
||||
'copa de vino', 'taza', 'tenedor', 'cuchillo', 'cuchara', 'tazón', 'plátano', 'manzana', 'sándwich', 'naranja', 'brócoli',
|
||||
'zanahoria', 'perrito caliente', 'pizza', 'rosquilla', 'pastel', 'silla', 'sofá', 'planta en maceta', 'cama', 'mesa de comedor', 'inodoro',
|
||||
'tv', 'laptop', 'ratón', 'control remoto', 'teclado', 'celular', 'microondas', 'horno', 'tostadora', 'fregadero', 'nevera',
|
||||
'libro', 'reloj', 'jarrón', 'tijeras', 'oso de peluche', 'secador de pelo', 'cepillo de dientes'
|
||||
]
|
|
@ -0,0 +1,9 @@
|
|||
model_cls_name: ['사람', '자전거', '자동차', '오토바이', '비행기', '버스', '기차', '트럭', '보트', '신호등',
|
||||
'소화전', '정지 신호', '주차 미터기', '벤치', '새', '고양이', '개', '말', '양', '소', '코끼리',
|
||||
'곰', '얼룩말', '기린', '배낭', '우산', '핸드백', '타이', '여행가방', '프리스비', '스키', '스노우보드',
|
||||
'스포츠 공', '연', '야구 방망이', '야구 글러브', '스케이트보드', '서프보드', '테니스 라켓', '병',
|
||||
'와인잔', '컵', '포크', '나이프', '숟가락', '그릇', '바나나', '사과', '샌드위치', '오렌지', '브로콜리',
|
||||
'당근', '핫도그', '피자', '도넛', '케이크', '의자', '소파', '화분', '침대', '식탁', '화장실',
|
||||
'tv', '노트북', '마우스', '리모컨', '키보드', '휴대전화', '전자레인지', '오븐', '토스터', '싱크대', '냉장고',
|
||||
'책', '시계', '꽃병', '가위', '테디베어', '드라이기', '칫솔'
|
||||
]
|
|
@ -0,0 +1,9 @@
|
|||
model_cls_name: ['человек', 'велосипед', 'автомобиль', 'мотоцикл', 'самолет', 'автобус', 'поезд', 'грузовик', 'лодка', 'светофор',
|
||||
'пожарный гидрант', 'стоп', 'паркомат', 'скамейка', 'птица', 'кошка', 'собака', 'лошадь', 'овца', 'корова', 'слон',
|
||||
'медведь', 'зебра', 'жираф', 'рюкзак', 'зонт', 'сумочка', 'галстук', 'чемодан', 'фрисби', 'лыжи', 'сноуборд',
|
||||
'спортивный мяч', 'воздушный змей', 'бейсбольная бита', 'бейсбольная перчатка', 'скейтборд', 'доска для серфинга', 'теннисная ракетка', 'бутылка',
|
||||
'бокал', 'чашка', 'вилка', 'нож', 'ложка', 'миска', 'банан', 'яблоко', 'бутерброд', 'апельсин', 'брокколи',
|
||||
'морковь', 'хот-дог', 'пицца', 'пончик', 'торт', 'стул', 'диван', 'растение в горшке', 'кровать', 'обеденный стол', 'туалет',
|
||||
'телевизор', 'ноутбук', 'мышь', 'пульт', 'клавиатура', 'мобильный телефон', 'микроволновая печь', 'духовка', 'тостер', 'раковина', 'холодильник',
|
||||
'книга', 'часы', 'ваза', 'ножницы', 'плюшевый мишка', 'фен', 'зубная щетка'
|
||||
]
|
|
@ -0,0 +1,7 @@
|
|||
model_cls_name: ['人', '自行车', '汽车', '摩托车', '飞机', '公交车', '火车', '卡车', '船', '红绿灯', '消防栓', '停止标志',
|
||||
'停车收费表', '长凳', '鸟', '猫', '狗', '马', '羊', '牛', '象', '熊', '斑马', '长颈鹿', '背包', '雨伞', '手提包', '领带',
|
||||
'手提箱', '飞盘', '滑雪板', '单板滑雪', '运动球', '风筝', '棒球棒', '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '红酒杯',
|
||||
'杯子', '叉子', '刀', '勺', '碗', '香蕉', '苹果', '三明治', '橙子', '西兰花', '胡萝卜', '热狗', '比萨', '甜甜圈', '蛋糕',
|
||||
'椅子', '长椅', '盆栽', '床', '餐桌', '马桶', '电视', '笔记本电脑', '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱',
|
||||
'烤面包机', '洗碗槽', '冰箱', '书', '时钟', '花瓶', '剪刀', '泰迪熊', '吹风机', '牙刷'
|
||||
]
|
Binary file not shown.
After Width: | Height: | Size: 128 KiB |
Binary file not shown.
After Width: | Height: | Size: 476 KiB |
Binary file not shown.
After Width: | Height: | Size: 192 KiB |
Binary file not shown.
After Width: | Height: | Size: 165 KiB |
|
@ -0,0 +1,5 @@
|
|||
yolov5n
|
||||
yolov5s
|
||||
yolov5m
|
||||
yolov5l
|
||||
yolov5x
|
|
|
@ -0,0 +1 @@
|
|||
model_names: ["yolov5n", "yolov5s", "yolov5m", "yolov5l", "yolov5x"]
|
|
@ -0,0 +1 @@
|
|||
yolov5n
|
|
|
@ -0,0 +1 @@
|
|||
model_names: ["yolov5n"]
|
|
@ -0,0 +1 @@
|
|||
model_names: ["yolov5n", "yolov5s", "yolov5m", "yolov5l", "yolov5x", "yolov5n6", "yolov5s6", "yolov5m6", "yolov5l6", "yolov5x6"]
|
|
@ -0,0 +1,5 @@
|
|||
yolov5n6
|
||||
yolov5s6
|
||||
yolov5m6
|
||||
yolov5l6
|
||||
yolov5x6
|
|
|
@ -0,0 +1 @@
|
|||
model_names: ["yolov5n6", "yolov5s6", "yolov5m6", "yolov5l6", "yolov5x6"]
|
|
@ -0,0 +1,8 @@
|
|||
cd ./yolov5
|
||||
|
||||
# 下载YOLOv5模型
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt
|
|
@ -0,0 +1,4 @@
|
|||
cd ./yolov5
|
||||
|
||||
# 下载YOLOv5模型
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt
|
|
@ -0,0 +1,8 @@
|
|||
cd ./yolov5
|
||||
|
||||
# 下载YOLOv5模型
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt
|
||||
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt
|
|
@ -0,0 +1,3 @@
|
|||
ffmpeg
|
||||
x264
|
||||
libx264-dev
|
|
@ -0,0 +1,45 @@
|
|||
# Base ----------------------------------------
|
||||
matplotlib>=3.2.2
|
||||
numpy>=1.22.3
|
||||
opencv-python-headless>=4.5.5.64
|
||||
Pillow>=7.1.2
|
||||
PyYAML>=5.3.1
|
||||
requests>=2.23.0
|
||||
scipy>=1.4.1 # Google Colab version
|
||||
torch>=1.7.0
|
||||
torchvision>=0.8.1
|
||||
tqdm>=4.41.0
|
||||
|
||||
# Gradio YOLOv5 Det ----------------------------------------
|
||||
gradio>=3.0.3
|
||||
wget>=3.2
|
||||
rich>=12.2.0
|
||||
fpdf>=1.7.2
|
||||
plotly>=5.7.0
|
||||
bokeh>=2.4.2
|
||||
openpyxl>=3.0.10
|
||||
|
||||
# Logging -------------------------------------
|
||||
tensorboard>=2.4.1
|
||||
# wandb
|
||||
|
||||
# Plotting ------------------------------------
|
||||
pandas>=1.1.4
|
||||
seaborn>=0.11.0
|
||||
|
||||
# Export --------------------------------------
|
||||
# coremltools>=4.1 # CoreML export
|
||||
# onnx>=1.9.0 # ONNX export
|
||||
# onnx-simplifier>=0.3.6 # ONNX simplifier
|
||||
# scikit-learn==0.19.2 # CoreML quantization
|
||||
# tensorflow>=2.4.1 # TFLite export
|
||||
# tensorflowjs>=3.9.0 # TF.js export
|
||||
# openvino-dev # OpenVINO export
|
||||
|
||||
# Extras --------------------------------------
|
||||
ipython # interactive notebook
|
||||
psutil # system utilization
|
||||
thop # FLOPs computation
|
||||
# albumentations>=1.0.3
|
||||
# pycocotools>=2.0 # COCO mAP
|
||||
# roboflow
|
|
@ -0,0 +1,69 @@
|
|||
# font management
|
||||
# author: Zeng Yifu(曾逸夫)
|
||||
# creation time: 2022-05-01
|
||||
# email: zyfiy1314@163.com
|
||||
# project homepage: https://gitee.com/CV_Lab/gradio_yolov5_det
|
||||
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import wget
|
||||
from rich.console import Console
|
||||
|
||||
ROOT_PATH = sys.path[0] # Project root directory
|
||||
|
||||
# Chinese, English, Russian, Spanish, Arabic, Korean
|
||||
fonts_list = ["SimSun.ttf", "TimesNewRoman.ttf", "malgun.ttf"] # font list
|
||||
fonts_suffix = ["ttc", "ttf", "otf"] # font suffix
|
||||
|
||||
data_url_dict = {
|
||||
"SimSun.ttf": "https://gitee.com/CV_Lab/gradio_yolov5_det/attach_files/1053539/download/SimSun.ttf",
|
||||
"TimesNewRoman.ttf": "https://gitee.com/CV_Lab/gradio_yolov5_det/attach_files/1053537/download/TimesNewRoman.ttf",
|
||||
"malgun.ttf": "https://gitee.com/CV_Lab/gradio_yolov5_det/attach_files/1053538/download/malgun.ttf",}
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
# create font library
|
||||
def add_fronts(font_diff):
|
||||
|
||||
global font_name
|
||||
|
||||
for k, v in data_url_dict.items():
|
||||
if k in font_diff:
|
||||
font_name = v.split("/")[-1] # font name
|
||||
Path(f"{ROOT_PATH}/fonts").mkdir(parents=True, exist_ok=True) # Create a directory
|
||||
|
||||
file_path = f"{ROOT_PATH}/fonts/{font_name}" # font path
|
||||
|
||||
try:
|
||||
# Download font file
|
||||
wget.download(v, file_path)
|
||||
except Exception as e:
|
||||
print("Path error! Program ended!")
|
||||
print(e)
|
||||
sys.exit()
|
||||
else:
|
||||
print()
|
||||
console.print(f"{font_name} [bold green]font file download complete![/bold green] has been saved to: {file_path}")
|
||||
|
||||
|
||||
# Determine the font file
|
||||
def is_fonts(fonts_dir):
|
||||
if os.path.isdir(fonts_dir):
|
||||
# if the font library exists
|
||||
f_list = os.listdir(fonts_dir) # local font library
|
||||
|
||||
font_diff = list(set(fonts_list).difference(set(f_list)))
|
||||
|
||||
if font_diff != []:
|
||||
# font does not exist
|
||||
console.print("[bold red] font does not exist, loading...[/bold red]")
|
||||
add_fronts(font_diff) # Create a font library
|
||||
else:
|
||||
console.print(f"{fonts_list}[bold green]font already exists![/bold green]")
|
||||
else:
|
||||
# The font library does not exist, create a font library
|
||||
console.print("[bold red]font library does not exist, creating...[/bold red]")
|
||||
add_fronts(fonts_list) # Create a font library
|
|
@ -0,0 +1,78 @@
|
|||
# PDF management
|
||||
# author: Zeng Yifu
|
||||
# creation time: 2022-05-05
|
||||
|
||||
from fpdf import FPDF
|
||||
|
||||
|
||||
# PDF generation class
|
||||
class PDF(FPDF):
|
||||
# Reference: https://pyfpdf.readthedocs.io/en/latest/Tutorial/index.html
|
||||
def header(self):
|
||||
# Set Chinese font
|
||||
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
||||
self.set_font("SimSun", "", 16)
|
||||
# Calculate width of title and position
|
||||
w = self.get_string_width(title) + 6
|
||||
self.set_x((210 - w) / 2)
|
||||
# Colors of frame, background and text
|
||||
self.set_draw_color(255, 255, 255)
|
||||
self.set_fill_color(255, 255, 255)
|
||||
self.set_text_color(0, 0, 0)
|
||||
# Thickness of frame (1 mm)
|
||||
# self.set_line_width(1)
|
||||
# Title
|
||||
self.cell(w, 9, title, 1, 1, "C", 1)
|
||||
# Line break
|
||||
self.ln(10)
|
||||
|
||||
def footer(self):
|
||||
# Position at 1.5 cm from bottom
|
||||
self.set_y(-15)
|
||||
# Set Chinese font
|
||||
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
||||
self.set_font("SimSun", "", 12)
|
||||
# Text color in gray
|
||||
self.set_text_color(128)
|
||||
# Page number
|
||||
self.cell(0, 10, "Page " + str(self.page_no()), 0, 0, "C")
|
||||
|
||||
def chapter_title(self, num, label):
|
||||
# Set Chinese font
|
||||
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
||||
self.set_font("SimSun", "", 12)
|
||||
# Background color
|
||||
self.set_fill_color(200, 220, 255)
|
||||
# Title
|
||||
# self.cell(0, 6, 'Chapter %d : %s' % (num, label), 0, 1, 'L', 1)
|
||||
self.cell(0, 6, "Detection Result:", 0, 1, "L", 1)
|
||||
# Line break
|
||||
self.ln(4)
|
||||
|
||||
def chapter_body(self, name):
|
||||
|
||||
# Set Chinese font
|
||||
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
||||
self.set_font("SimSun", "", 12)
|
||||
# Output justified text
|
||||
self.multi_cell(0, 5, name)
|
||||
# Line break
|
||||
self.ln()
|
||||
self.cell(0, 5, "--------------------------------------")
|
||||
|
||||
def print_chapter(self, num, title, name):
|
||||
self.add_page()
|
||||
self.chapter_title(num, title)
|
||||
self.chapter_body(name)
|
||||
|
||||
|
||||
# pdf generation function
|
||||
def pdf_generate(input_file, output_file, title_):
|
||||
global title
|
||||
|
||||
title = title_
|
||||
pdf = PDF()
|
||||
pdf.set_title(title)
|
||||
pdf.set_author("Zeng Yifu")
|
||||
pdf.print_chapter(1, "A RUNAWAY REEF", input_file)
|
||||
pdf.output(output_file)
|
Loading…
Reference in New Issue