30 lines
939 B
Python
30 lines
939 B
Python
|
import gradio as gr
|
||
|
from transformers import pipeline, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification
|
||
|
|
||
|
modelName="sentiment_analysis_generic_dataset"
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(modelName)
|
||
|
#model = AutoModelForSequenceClassification.from_pretrained(modelName)
|
||
|
sentimentPipeline = pipeline("sentiment-analysis", model=modelName, tokenizer=tokenizer)
|
||
|
Label2Des = {
|
||
|
"LABEL_0": "NEGATIVE",
|
||
|
"LABEL_1": "NEUTRAL",
|
||
|
"LABEL_2": "POSITIVE"
|
||
|
}
|
||
|
|
||
|
def sentiment_analysis(text):
|
||
|
results = sentimentPipeline(text)
|
||
|
|
||
|
return f"Sentiment: {Label2Des.get(results[0]['label'])}, Score: {results[0]['score']:.2f}"
|
||
|
|
||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||
|
inputs='text',
|
||
|
outputs='text',
|
||
|
title = "文本情感分析"
|
||
|
)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
demo.queue(concurrency_count=3)
|
||
|
demo.launch(server_name = "0.0.0.0")
|