Drop icetk dependency
This commit is contained in:
parent
19685a5a7e
commit
1f34060390
BIN
ice_text.model (Stored with Git LFS)
BIN
ice_text.model (Stored with Git LFS)
Binary file not shown.
|
@ -923,7 +923,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|||
if position_ids is None:
|
||||
MASK, gMASK = 150000, 150001
|
||||
mask_token = MASK if MASK in input_ids else gMASK
|
||||
use_gmask = False if MASK in input_ids else gMASK
|
||||
use_gmask = False if MASK in input_ids else True
|
||||
|
||||
mask_positions = [seq.tolist().index(mask_token) for seq in input_ids]
|
||||
position_ids = self.get_position_ids(
|
||||
|
@ -1086,7 +1086,7 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|||
batch_size, seq_length = input_ids.shape
|
||||
MASK, gMASK = 150000, 150001
|
||||
mask_token = MASK if MASK in input_ids else gMASK
|
||||
use_gmask = False if MASK in input_ids else gMASK
|
||||
use_gmask = False if MASK in input_ids else True
|
||||
seqs = input_ids.tolist()
|
||||
mask_positions = [seq.index(mask_token) for seq in seqs]
|
||||
|
||||
|
|
|
@ -3,11 +3,10 @@ from typing import List, Optional, Union
|
|||
import os
|
||||
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
from icetk.text_tokenizer import TextTokenizer
|
||||
import icetk.sentencepiece_model_pb2 as sp_model
|
||||
from transformers.utils import logging, PaddingStrategy
|
||||
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
||||
from typing import Dict
|
||||
import sentencepiece as spm
|
||||
import numpy as np
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
@ -17,6 +16,34 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|||
}
|
||||
|
||||
|
||||
class TextTokenizer:
|
||||
def __init__(self, model_path):
|
||||
self.sp = spm.SentencePieceProcessor()
|
||||
self.sp.Load(model_path)
|
||||
self.num_tokens = self.sp.vocab_size()
|
||||
|
||||
def encode(self, text):
|
||||
return self.sp.EncodeAsIds(text)
|
||||
|
||||
def decode(self, ids: List[int]):
|
||||
return self.sp.DecodeIds(ids)
|
||||
|
||||
def tokenize(self, text):
|
||||
return self.sp.EncodeAsPieces(text)
|
||||
|
||||
def convert_tokens_to_ids(self, tokens):
|
||||
return [self.sp.PieceToId(token) for token in tokens]
|
||||
|
||||
def convert_token_to_id(self, token):
|
||||
return self.sp.PieceToId(token)
|
||||
|
||||
def convert_id_to_token(self, idx):
|
||||
return self.sp.IdToPiece(idx)
|
||||
|
||||
def __len__(self):
|
||||
return self.num_tokens
|
||||
|
||||
|
||||
class SPTokenizer:
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -29,48 +56,9 @@ class SPTokenizer:
|
|||
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
||||
self.max_blank_length = max_blank_length
|
||||
self.byte_fallback = byte_fallback
|
||||
self.text_tokenizer = self._build_text_tokenizer(encode_special_tokens=False)
|
||||
self.special_text_tokenizer = self._build_text_tokenizer(encode_special_tokens=True)
|
||||
self.text_tokenizer = TextTokenizer(vocab_file)
|
||||
|
||||
@staticmethod
|
||||
def _configure_tokenizer(
|
||||
text_tokenizer: TextTokenizer,
|
||||
special_tokens: List[str],
|
||||
max_blank_length: int,
|
||||
byte_fallback: bool,
|
||||
encode_special_tokens=False,
|
||||
):
|
||||
# special token
|
||||
special_token_type = 4 if encode_special_tokens else 3 # 3 - CONTROL, 4 - USER_DEFINE
|
||||
for token in special_tokens:
|
||||
text_tokenizer.proto.pieces.append(
|
||||
sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=special_token_type)
|
||||
)
|
||||
# whitespaces
|
||||
for token in [SPTokenizer.get_tab_token()] + [
|
||||
SPTokenizer.get_blank_token(i) for i in range(2, max_blank_length + 1)
|
||||
]:
|
||||
text_tokenizer.proto.pieces.append(sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=4))
|
||||
# byte fallback
|
||||
if byte_fallback:
|
||||
text_tokenizer.proto.trainer_spec.byte_fallback = True
|
||||
for i in range(256):
|
||||
text_tokenizer.proto.pieces.append(
|
||||
sp_model.ModelProto.SentencePiece(piece="<0x{:02X}>".format(i), score=0.0, type=6)
|
||||
)
|
||||
text_tokenizer.refresh()
|
||||
|
||||
def _build_text_tokenizer(self, encode_special_tokens=False):
|
||||
tokenizer = TextTokenizer(self.vocab_file)
|
||||
self._configure_tokenizer(
|
||||
tokenizer, self.special_tokens, self.max_blank_length, self.byte_fallback, encode_special_tokens
|
||||
)
|
||||
return tokenizer
|
||||
|
||||
def _get_text_tokenizer(self, encode_special_tokens=False):
|
||||
if encode_special_tokens:
|
||||
return self.special_text_tokenizer
|
||||
else:
|
||||
def _get_text_tokenizer(self):
|
||||
return self.text_tokenizer
|
||||
|
||||
@staticmethod
|
||||
|
@ -109,7 +97,7 @@ class SPTokenizer:
|
|||
return text
|
||||
|
||||
def encode(
|
||||
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
|
||||
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
||||
) -> List[int]:
|
||||
"""
|
||||
@param text: Text to encode.
|
||||
|
@ -121,14 +109,14 @@ class SPTokenizer:
|
|||
text = self._preprocess(text, linebreak, whitespaces)
|
||||
if not add_dummy_prefix:
|
||||
text = "<n>" + text
|
||||
tmp = self._get_text_tokenizer(encode_special_tokens=special_tokens).encode(text)
|
||||
tmp = self._get_text_tokenizer().encode(text)
|
||||
tokens = [x + self.num_image_tokens for x in tmp]
|
||||
return tokens if add_dummy_prefix else tokens[2:]
|
||||
|
||||
def decode(self, text_ids: List[int], special_tokens=False) -> str:
|
||||
def decode(self, text_ids: List[int]) -> str:
|
||||
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
||||
ids = [_id for _id in ids if _id >= 0]
|
||||
text = self._get_text_tokenizer(encode_special_tokens=special_tokens).decode(ids)
|
||||
text = self._get_text_tokenizer().decode(ids)
|
||||
text = text.replace("<n>", "\n")
|
||||
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
||||
for i in range(2, self.max_blank_length + 1):
|
||||
|
@ -136,7 +124,7 @@ class SPTokenizer:
|
|||
return text
|
||||
|
||||
def tokenize(
|
||||
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
|
||||
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
||||
) -> List[str]:
|
||||
"""
|
||||
@param text: Text to encode.
|
||||
|
@ -148,7 +136,7 @@ class SPTokenizer:
|
|||
text = self._preprocess(text, linebreak, whitespaces)
|
||||
if not add_dummy_prefix:
|
||||
text = "<n>" + text
|
||||
tokens = self._get_text_tokenizer(encode_special_tokens=special_tokens).tokenize(text)
|
||||
tokens = self._get_text_tokenizer().tokenize(text)
|
||||
return tokens if add_dummy_prefix else tokens[2:]
|
||||
|
||||
def __getitem__(self, x: Union[int, str]):
|
||||
|
@ -253,22 +241,17 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|||
|
||||
return seq
|
||||
|
||||
def decode(
|
||||
def _decode(
|
||||
self,
|
||||
token_ids: Union[List[int], List[List[int]]],
|
||||
token_ids: Union[int, List[int]],
|
||||
skip_special_tokens: bool = False,
|
||||
clean_up_tokenization_spaces: bool = True,
|
||||
spaces_between_special_tokens: bool = True,
|
||||
**kwargs
|
||||
) -> str:
|
||||
if isinstance(token_ids[0], list):
|
||||
tokens = []
|
||||
for single_token_ids in token_ids:
|
||||
if self.pad_token_id in single_token_ids: # remove pad
|
||||
single_token_ids = list(filter((self.pad_token_id).__ne__, single_token_ids))
|
||||
tokens.append(self.sp_tokenizer.decode(single_token_ids))
|
||||
return (tokens)
|
||||
else:
|
||||
if isinstance(token_ids, int):
|
||||
token_ids = [token_ids]
|
||||
if len(token_ids) == 0:
|
||||
return ""
|
||||
if self.pad_token_id in token_ids: # remove pad
|
||||
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
||||
return self.sp_tokenizer.decode(token_ids)
|
||||
|
|
Loading…
Reference in New Issue