From 7708eab0f4310ab88ef4a41abf3823d3926dad65 Mon Sep 17 00:00:00 2001 From: jianjiang Date: Sun, 26 Mar 2023 23:23:43 +0800 Subject: [PATCH] adjust to ailab --- .gitea/workflows/build.yml | 27 + .gitignore | 4 +- Dockerfile | 24 + app.py | 5 +- master | Bin 0 -> 1040487 bytes ultralytics/yolov5/.dockerignore | 222 +++ ultralytics/yolov5/.gitattributes | 2 + .../.github/ISSUE_TEMPLATE/bug-report.yml | 85 + .../yolov5/.github/ISSUE_TEMPLATE/config.yml | 8 + .../ISSUE_TEMPLATE/feature-request.yml | 50 + .../.github/ISSUE_TEMPLATE/question.yml | 33 + .../yolov5/.github/PULL_REQUEST_TEMPLATE.md | 9 + ultralytics/yolov5/.github/dependabot.yml | 23 + .../yolov5/.github/workflows/ci-testing.yml | 153 ++ .../.github/workflows/codeql-analysis.yml | 54 + .../yolov5/.github/workflows/docker.yml | 57 + .../yolov5/.github/workflows/greetings.yml | 65 + .../yolov5/.github/workflows/stale.yml | 40 + .../.github/workflows/translate-readme.yml | 26 + ultralytics/yolov5/.gitignore | 257 +++ ultralytics/yolov5/CITATION.cff | 14 + ultralytics/yolov5/CONTRIBUTING.md | 93 ++ ultralytics/yolov5/LICENSE | 674 ++++++++ ultralytics/yolov5/README.md | 488 ++++++ ultralytics/yolov5/README.zh-CN.md | 482 ++++++ ultralytics/yolov5/benchmarks.py | 169 ++ ultralytics/yolov5/classify/predict.py | 226 +++ ultralytics/yolov5/classify/train.py | 333 ++++ ultralytics/yolov5/classify/tutorial.ipynb | 1480 +++++++++++++++++ ultralytics/yolov5/classify/val.py | 170 ++ ultralytics/yolov5/data/Argoverse.yaml | 74 + ultralytics/yolov5/data/GlobalWheat2020.yaml | 54 + ultralytics/yolov5/data/ImageNet.yaml | 1022 ++++++++++++ ultralytics/yolov5/data/Objects365.yaml | 438 +++++ ultralytics/yolov5/data/SKU-110K.yaml | 53 + ultralytics/yolov5/data/VOC.yaml | 100 ++ ultralytics/yolov5/data/VisDrone.yaml | 70 + ultralytics/yolov5/data/coco.yaml | 116 ++ ultralytics/yolov5/data/coco128-seg.yaml | 101 ++ ultralytics/yolov5/data/coco128.yaml | 101 ++ ultralytics/yolov5/data/images/bus.jpg | Bin 0 -> 487438 bytes ultralytics/yolov5/data/images/zidane.jpg | Bin 0 -> 168949 bytes .../yolov5/data/scripts/download_weights.sh | 22 + ultralytics/yolov5/data/scripts/get_coco.sh | 56 + .../yolov5/data/scripts/get_coco128.sh | 17 + .../yolov5/data/scripts/get_imagenet.sh | 51 + ultralytics/yolov5/data/xView.yaml | 153 ++ ultralytics/yolov5/detect.py | 261 +++ ultralytics/yolov5/export.py | 672 ++++++++ ultralytics/yolov5/hubconf.py | 169 ++ ultralytics/yolov5/models/__init__.py | 0 ultralytics/yolov5/models/common.py | 870 ++++++++++ ultralytics/yolov5/models/experimental.py | 111 ++ ultralytics/yolov5/models/tf.py | 608 +++++++ ultralytics/yolov5/models/yolo.py | 391 +++++ ultralytics/yolov5/requirements.txt | 50 + ultralytics/yolov5/segment/predict.py | 284 ++++ ultralytics/yolov5/segment/train.py | 664 ++++++++ ultralytics/yolov5/segment/tutorial.ipynb | 594 +++++++ ultralytics/yolov5/segment/val.py | 473 ++++++ ultralytics/yolov5/setup.cfg | 54 + ultralytics/yolov5/train.py | 640 +++++++ ultralytics/yolov5/tutorial.ipynb | 976 +++++++++++ ultralytics/yolov5/utils/__init__.py | 82 + ultralytics/yolov5/utils/activations.py | 103 ++ ultralytics/yolov5/utils/augmentations.py | 397 +++++ ultralytics/yolov5/utils/autoanchor.py | 169 ++ ultralytics/yolov5/utils/autobatch.py | 72 + ultralytics/yolov5/utils/aws/__init__.py | 0 ultralytics/yolov5/utils/aws/mime.sh | 26 + ultralytics/yolov5/utils/aws/resume.py | 40 + ultralytics/yolov5/utils/aws/userdata.sh | 27 + ultralytics/yolov5/utils/callbacks.py | 76 + ultralytics/yolov5/utils/dataloaders.py | 1222 ++++++++++++++ ultralytics/yolov5/utils/docker/Dockerfile | 75 + .../yolov5/utils/docker/Dockerfile-arm64 | 41 + .../yolov5/utils/docker/Dockerfile-cpu | 42 + ultralytics/yolov5/utils/downloads.py | 128 ++ .../yolov5/utils/flask_rest_api/README.md | 73 + .../utils/flask_rest_api/example_request.py | 19 + .../yolov5/utils/flask_rest_api/restapi.py | 48 + ultralytics/yolov5/utils/general.py | 1140 +++++++++++++ .../yolov5/utils/google_app_engine/Dockerfile | 25 + ultralytics/yolov5/utils/loggers/__init__.py | 401 +++++ .../yolov5/utils/loggers/clearml/README.md | 237 +++ .../yolov5/utils/loggers/clearml/__init__.py | 0 .../utils/loggers/clearml/clearml_utils.py | 164 ++ .../yolov5/utils/loggers/clearml/hpo.py | 84 + .../yolov5/utils/loggers/comet/README.md | 258 +++ .../yolov5/utils/loggers/comet/__init__.py | 508 ++++++ .../yolov5/utils/loggers/comet/comet_utils.py | 150 ++ ultralytics/yolov5/utils/loggers/comet/hpo.py | 118 ++ .../yolov5/utils/loggers/wandb/__init__.py | 0 .../yolov5/utils/loggers/wandb/wandb_utils.py | 193 +++ ultralytics/yolov5/utils/loss.py | 234 +++ ultralytics/yolov5/utils/metrics.py | 360 ++++ ultralytics/yolov5/utils/plots.py | 560 +++++++ ultralytics/yolov5/utils/segment/__init__.py | 0 .../yolov5/utils/segment/augmentations.py | 104 ++ .../yolov5/utils/segment/dataloaders.py | 332 ++++ ultralytics/yolov5/utils/segment/general.py | 160 ++ ultralytics/yolov5/utils/segment/loss.py | 185 +++ ultralytics/yolov5/utils/segment/metrics.py | 210 +++ ultralytics/yolov5/utils/segment/plots.py | 143 ++ ultralytics/yolov5/utils/torch_utils.py | 432 +++++ ultralytics/yolov5/utils/triton.py | 85 + ultralytics/yolov5/val.py | 409 +++++ 107 files changed, 23648 insertions(+), 2 deletions(-) create mode 100644 .gitea/workflows/build.yml create mode 100644 Dockerfile create mode 100644 master create mode 100644 ultralytics/yolov5/.dockerignore create mode 100644 ultralytics/yolov5/.gitattributes create mode 100644 ultralytics/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml create mode 100644 ultralytics/yolov5/.github/ISSUE_TEMPLATE/config.yml create mode 100644 ultralytics/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml create mode 100644 ultralytics/yolov5/.github/ISSUE_TEMPLATE/question.yml create mode 100644 ultralytics/yolov5/.github/PULL_REQUEST_TEMPLATE.md create mode 100644 ultralytics/yolov5/.github/dependabot.yml create mode 100644 ultralytics/yolov5/.github/workflows/ci-testing.yml create mode 100644 ultralytics/yolov5/.github/workflows/codeql-analysis.yml create mode 100644 ultralytics/yolov5/.github/workflows/docker.yml create mode 100644 ultralytics/yolov5/.github/workflows/greetings.yml create mode 100644 ultralytics/yolov5/.github/workflows/stale.yml create mode 100644 ultralytics/yolov5/.github/workflows/translate-readme.yml create mode 100755 ultralytics/yolov5/.gitignore create mode 100644 ultralytics/yolov5/CITATION.cff create mode 100644 ultralytics/yolov5/CONTRIBUTING.md create mode 100644 ultralytics/yolov5/LICENSE create mode 100644 ultralytics/yolov5/README.md create mode 100644 ultralytics/yolov5/README.zh-CN.md create mode 100644 ultralytics/yolov5/benchmarks.py create mode 100644 ultralytics/yolov5/classify/predict.py create mode 100644 ultralytics/yolov5/classify/train.py create mode 100644 ultralytics/yolov5/classify/tutorial.ipynb create mode 100644 ultralytics/yolov5/classify/val.py create mode 100644 ultralytics/yolov5/data/Argoverse.yaml create mode 100644 ultralytics/yolov5/data/GlobalWheat2020.yaml create mode 100644 ultralytics/yolov5/data/ImageNet.yaml create mode 100644 ultralytics/yolov5/data/Objects365.yaml create mode 100644 ultralytics/yolov5/data/SKU-110K.yaml create mode 100644 ultralytics/yolov5/data/VOC.yaml create mode 100644 ultralytics/yolov5/data/VisDrone.yaml create mode 100644 ultralytics/yolov5/data/coco.yaml create mode 100644 ultralytics/yolov5/data/coco128-seg.yaml create mode 100644 ultralytics/yolov5/data/coco128.yaml create mode 100644 ultralytics/yolov5/data/images/bus.jpg create mode 100644 ultralytics/yolov5/data/images/zidane.jpg create mode 100755 ultralytics/yolov5/data/scripts/download_weights.sh create mode 100755 ultralytics/yolov5/data/scripts/get_coco.sh create mode 100755 ultralytics/yolov5/data/scripts/get_coco128.sh create mode 100755 ultralytics/yolov5/data/scripts/get_imagenet.sh create mode 100644 ultralytics/yolov5/data/xView.yaml create mode 100644 ultralytics/yolov5/detect.py create mode 100644 ultralytics/yolov5/export.py create mode 100644 ultralytics/yolov5/hubconf.py create mode 100644 ultralytics/yolov5/models/__init__.py create mode 100644 ultralytics/yolov5/models/common.py create mode 100644 ultralytics/yolov5/models/experimental.py create mode 100644 ultralytics/yolov5/models/tf.py create mode 100644 ultralytics/yolov5/models/yolo.py create mode 100644 ultralytics/yolov5/requirements.txt create mode 100644 ultralytics/yolov5/segment/predict.py create mode 100644 ultralytics/yolov5/segment/train.py create mode 100644 ultralytics/yolov5/segment/tutorial.ipynb create mode 100644 ultralytics/yolov5/segment/val.py create mode 100644 ultralytics/yolov5/setup.cfg create mode 100644 ultralytics/yolov5/train.py create mode 100644 ultralytics/yolov5/tutorial.ipynb create mode 100644 ultralytics/yolov5/utils/__init__.py create mode 100644 ultralytics/yolov5/utils/activations.py create mode 100644 ultralytics/yolov5/utils/augmentations.py create mode 100644 ultralytics/yolov5/utils/autoanchor.py create mode 100644 ultralytics/yolov5/utils/autobatch.py create mode 100644 ultralytics/yolov5/utils/aws/__init__.py create mode 100644 ultralytics/yolov5/utils/aws/mime.sh create mode 100644 ultralytics/yolov5/utils/aws/resume.py create mode 100644 ultralytics/yolov5/utils/aws/userdata.sh create mode 100644 ultralytics/yolov5/utils/callbacks.py create mode 100644 ultralytics/yolov5/utils/dataloaders.py create mode 100644 ultralytics/yolov5/utils/docker/Dockerfile create mode 100644 ultralytics/yolov5/utils/docker/Dockerfile-arm64 create mode 100644 ultralytics/yolov5/utils/docker/Dockerfile-cpu create mode 100644 ultralytics/yolov5/utils/downloads.py create mode 100644 ultralytics/yolov5/utils/flask_rest_api/README.md create mode 100644 ultralytics/yolov5/utils/flask_rest_api/example_request.py create mode 100644 ultralytics/yolov5/utils/flask_rest_api/restapi.py create mode 100644 ultralytics/yolov5/utils/general.py create mode 100644 ultralytics/yolov5/utils/google_app_engine/Dockerfile create mode 100644 ultralytics/yolov5/utils/loggers/__init__.py create mode 100644 ultralytics/yolov5/utils/loggers/clearml/README.md create mode 100644 ultralytics/yolov5/utils/loggers/clearml/__init__.py create mode 100644 ultralytics/yolov5/utils/loggers/clearml/clearml_utils.py create mode 100644 ultralytics/yolov5/utils/loggers/clearml/hpo.py create mode 100644 ultralytics/yolov5/utils/loggers/comet/README.md create mode 100644 ultralytics/yolov5/utils/loggers/comet/__init__.py create mode 100644 ultralytics/yolov5/utils/loggers/comet/comet_utils.py create mode 100644 ultralytics/yolov5/utils/loggers/comet/hpo.py create mode 100644 ultralytics/yolov5/utils/loggers/wandb/__init__.py create mode 100644 ultralytics/yolov5/utils/loggers/wandb/wandb_utils.py create mode 100644 ultralytics/yolov5/utils/loss.py create mode 100644 ultralytics/yolov5/utils/metrics.py create mode 100644 ultralytics/yolov5/utils/plots.py create mode 100644 ultralytics/yolov5/utils/segment/__init__.py create mode 100644 ultralytics/yolov5/utils/segment/augmentations.py create mode 100644 ultralytics/yolov5/utils/segment/dataloaders.py create mode 100644 ultralytics/yolov5/utils/segment/general.py create mode 100644 ultralytics/yolov5/utils/segment/loss.py create mode 100644 ultralytics/yolov5/utils/segment/metrics.py create mode 100644 ultralytics/yolov5/utils/segment/plots.py create mode 100644 ultralytics/yolov5/utils/torch_utils.py create mode 100644 ultralytics/yolov5/utils/triton.py create mode 100644 ultralytics/yolov5/val.py diff --git a/.gitea/workflows/build.yml b/.gitea/workflows/build.yml new file mode 100644 index 0000000..da85cdb --- /dev/null +++ b/.gitea/workflows/build.yml @@ -0,0 +1,27 @@ +name: Gitea Actions Gradio Demo +run-name: ${{ github.actor }} is testing out Gitea Actions 🚀 +on: [push] +jobs: + Explore-Gitea-Actions: + runs-on: ubuntu-18.04 + steps: + - run: echo "🎉 The job was automatically triggered by a ${{ github.event_name }} event." + - run: echo "🐧 This job is now running on a ${{ runner.os }} server hosted by Gitea!" + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Build and push + uses: docker/build-push-action@v4 + with: + push: false + tags: artifacts.iflytek.com/docker-private/atp/whybeyoung/yolov5:latest + - run: echo "🔎 The name of your branch is ${{ github.ref }} and your repository is ${{ github.repository }}." + - name: Check out repository code + uses: actions/checkout@v3 + - run: echo "💡 The ${{ github.repository }} repository has been cloned to the runner." + - run: echo "🖥️ The workflow is now ready to test your code on the runner." + - name: List files in the repository + run: | + ls ${{ github.workspace }} + - run: echo "🍏 This job's status is ${{ job.status }}." diff --git a/.gitignore b/.gitignore index d2456d5..cb8b1c6 100644 --- a/.gitignore +++ b/.gitignore @@ -48,4 +48,6 @@ !img_example/* !packages.txt -app copy.py \ No newline at end of file +app copy.py + +model_download/yolov5_model_all.sh diff --git a/Dockerfile b/Dockerfile new file mode 100644 index 0000000..016476b --- /dev/null +++ b/Dockerfile @@ -0,0 +1,24 @@ +FROM docker.io/library/python:3.8.9 + +RUN sed -i 's http://deb.debian.org http://mirrors.ustc.edu.cn g' /etc/apt/sources.list && sed -i 's http://archive.ubuntu.com http://mirrors.ustc.edu.cn g' /etc/apt/sources.list && sed -i '/security/d' /etc/apt/sources.list && apt-get update && apt-get install -y git git-lfs ffmpeg libsm6 libxext6 cmake libgl1-mesa-glx && rm -rf /var/lib/apt/lists/* && git lfs install + + + WORKDIR /home/user/app +RUN useradd -m -u 1000 user +RUN chown -R 1000.1000 /home/user + +RUN --mount=target=/root/packages.txt,source=packages.txt sed -i 's http://deb.debian.org http://mirrors.ustc.edu.cn g' /etc/apt/sources.list && sed -i 's http://archive.ubuntu.com http://mirrors.ustc.edu.cn g' /etc/apt/sources.list && sed -i '/security/d' /etc/apt/sources.list && apt-get update && xargs -r -a /root/packages.txt apt-get install -y && rm -rf /var/lib/apt/lists/* + +USER 1000 +RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/ +RUN pip install --no-cache-dir gradio==3.0.9 + RUN pip install --no-cache-dir pip==22.3.1 && pip install --no-cache-dir datasets "huggingface-hub>=0.12.1" "protobuf<4" "click<8.1" +#COPY --link --chown=1000 --from=lfs /app /home/user/app +#RUN --mount=target=pre-requirements.txt,source=pre-requirements.txt pip install --no-cache-dir -r pre-requirements.txt + RUN --mount=target=requirements.txt,source=requirements.txt pip install --no-cache-dir -r requirements.txt +COPY --link --chown=1000 ./ /home/user/app +COPY --link --chown=1000 ultralytics /home/user/app/ultralytics +COPY --chown=1000 master /home/user/.cache/torch/hub/master.zip +COPY --chown=1000 --link fonts /home/user/app +ADD --chown=1000 model_download/yolov5 /home/user/app +CMD ["python", "app.py"] diff --git a/app.py b/app.py index 5e61053..f0fc9f6 100644 --- a/app.py +++ b/app.py @@ -140,11 +140,13 @@ def model_loading(model_name, device, opt=[]): # load model model = torch.hub.load(model_path, model_name, - force_reload=[True if "refresh_yolov5" in opt else False][0], + force_reload=False, + source='local', device=device, _verbose=False) except Exception as e: print(e) + return None else: print(f"🚀 welcome to {GYD_VERSION},{model_name} loaded successfully!") @@ -664,6 +666,7 @@ def main(args): favicon_path="./icon/logo.ico", # web icon show_error=True, # Display error message in browser console quiet=True, # Suppress most print statements + server_name="0.0.0.0" ) else: gyd.launch( diff --git a/master b/master new file mode 100644 index 0000000000000000000000000000000000000000..c5fe2a4e7f5de094a8223bf31d42051bce6071dc GIT binary patch literal 1040487 zcmbTd1#n!^axE%m$zoZ|%(9r7nOPPyjhLAkEoMfGnVFfHnVFxHyxbor^ReNTt zPMxk(`*inOt9Q4&6et)B(7$}%ja*d!_0RwP!Ulo{aY?z1MA_3Z$6v7I7ZZ2}F?7CwbWvM@#JjW`M! zA<01d(B7z#7zwlD%+L|=1;rK4B~8W6e#JK3P*GA9kp&N_8qKhUG8j~`^xd*~dwSJ_ z4%?t-N$(s+iim7SJALwRMyqrK^d~BhaE}#|*~wcrc+L8*DPqj^COK~FYnv=aN6_mF zI`cg==~G}akVTa&C(Uhdm#z}Ds_7+<^H#U^Xho1^awtdU%jrF|$Y4ik8ZNQFCb2E{ zo$NaHBU9)zp1ZCL9$%s)_@W!yGZl{@vb@|fFzTk1@<5g!276B=IkTm0KZp0qU9R@g zZz))@`40S-tzzqE<+?1E-sx1ou9ZqF!{fY~6YpcqLI-m-RgE2K+L;)^m13Y3aZZvp zDSa!@4$jN@U#S&h23eEL%wkZV{a0BHf-9d}`+jCx5Tpzoyc^17@@;jM1ga4VpdR6R zpi$W$hgumK*0eM9EeaF`L!?Xo=r5por+sM5RQp}pG&iAu#E`%@gtRA76iqZ?9}7dt z0hX{`R6$-^kd4Bs=D*Hlk|+%ZB2NLHp*WX(=jz-zJ}JtJ0i18j#97MVGz<4skN_4Y ze~^O^e-Zs$%ap{>pcb&AD2=0sNSyA)x!lSMW9#WBkcy{>mtO`&DVrH4VhBQKr$4HB z{^7;|eK;66Z`MRk#)8S;7Fv9)XiF&E9q-ZYqG5-XR31bQi4isxb|7Rske@|f?$$!l zHd3cH)31GqAAm*F>li3?^LUAuVbT@ zuGncBOi6$dh_q0B{80Zy6Y`+g*c$VWncCAd7;=T3=aIR<3Q@k;uz{nO$#4%XW=B*p zw=gltR;&Qu{%ad~Ve-P4h7bM$g6%ZZMO>>2mJfI@FC$lx09Bi?Vp?1#1qdn0Hzzu6 zW|AMJE*NbfZ@7r4=t|{OUX(CT_-Gdlm3^^}4c=;J?K$9NGZ5^%=?vah((smK`{%W} z%EYCdoz&|#({nNqv7m;1;?W7yU=`Q(qv<19=#=UMSM=UjP-FNysXABBetcJYMj_P? z{a^7h7%Je07lUbQr}pYR0DBcJHMNd#DDMXdLu1A{zRE9d9aDrN;F5;Cc1_#G5@eu{ zLNW3#fML}0ud78qLN{P~e{E+hr>z(YTr4a%-!S9}?N4+t%iE(6xI3HkGXczqYb#aE z`cz59kcy}Er^4GTR1A;9z-{e#8(6#*u88KIEW`IpGh3!M^z2TzPwm7ts7|n9EQKls zj^uA#WxW3W*TT?q@WW7S`O8F-a*5fusa87X%rG&a+EmVUU^ghep%yu{_5o6OF&G(q zbI;>A5Xm0F>P)FPPC%l5!u>?@--0~dyr>O}WoJAZ;3zKR?+o1TjS}`7##A26s=2W$ zxQ9KT)DUlyXUlW=VaS#35)A0VZxtwQt8|B8W6g*xC)P}FZ7PbNpn86|t+@pYd`b6y zN^#2(q|xnQk^H)fg`@~3W1ky#!omi{f<*St<-FP@%B2MdA=cr3{dwqd8Nu#uvT~cH z$fGsl?bMo=``s`o*o2vn=`QYW@7KEZ1-4{c{SA= ze*jt;b4oaBMmr|l0R{lEA{F-JyQV;HTM6ot)M-2;cJGK$^eHKSpTpzB7yQFz z2um%FX{ys@eO8yx6_&u?_9E1DdL@eIY)Q%^{UWU;kDp#BjMggRNw^xhNyH)4ZN{4S z3@p;H`EKoJFw56neC09E%02{EnR>DR6|W`}c5n4{oc^!1wTX=}k#gj&+ej=|IY!uD z+d9$5X2UOqPEW)oPw)KiUwgExfV`mv?MG*j_C5Q;cPu)uszmg&uP{iFu9@N}Z1?Tm zmFqb`*kWqy{d$PJfcQeHtL$hCp!^ibE<@rI@^8p`25vv54B5*D zv)AvME1sQbMRyvoyJPgjq%-n-H|BJDdWl6*j`x3muKxE!S5W@1mYDuI zOA<;-Dk6HyA~N#Q0?H!))$qTez4j#Aas?O=kUK085dZ(muz`~)Ex_2$7T`$dW^MJ4 z9c@ruvsn{G^jcDj%nVtra+0#bSP%kTgVqLiqFDyabwh2Fav)=90#ZA~iDE;%1!smH z36Jp)Q8?=goNjP|iNu3j)-ySNI2@ku6ZPSFe%vl~+3gS6MF+7~-GF2`hU;4Onh*PTMx&abo6Hto@0>T)op=j{K_y-EsO%55ZAYRSzAuM5Dn4QX$=DeSG&1Rv zg=HPogAw3ZN3;vA!A=1w<#J!VYV(1>DaFa<%;Sl!`aUR-WhT6Q7ruC6J&zg;Z(<*C zMLywJg?tB}=4s~F-$f-NA&2Uf9Tw^^q`lTdZ-#&g68XI#@QX-W!jfk-Myu2z=%QiG zP%=73vu1KtmxEaO#K>x`P}RM4tIF9nV9p3kAew@R`bTLX@F+nFB0Q9_JPGNxwx+38 zgAeXCP2RTenRqhP%Up=Ew5_}WvfZNjn`kqUTnTd4=iw_}dnMWv1fQEZ!wC{5cU3Ye zW2lor%8{BERwGWZ-% zju*pJx)8CE?EA8|&btmpD%56s<2wXyZcE3j^JJ-}7FMFrgz)QvnB`e+JKk(nMMh!q; z-6}kLait#$97i*-IAL#YHFGPI3bcPW>{?(X;%TYU)Z&M^8UX98!(^H>h)Tfs%QIQy z7Lk+rs;3{b_qxKVH0%V%{r~ zeLSorgEh^o%qHEu8d)BI{9Ef(*z<$-$B6z$hcu~k_h9d{5E@oSmv=^%mZ?aP8}_Es z$!!X;j>%jdtFz-tm`Dsin@J5Iu0TOB^)A79l$DTecWERQR78l?ES!faM zDhd2SWMIR}1T=St6q5JStQwt>NPXafC}IvsCJv%#_W-G2J%TEDmLbmS*^wey?uP}3 zfbhiV)zshfRTq18E`4{OGY7xFE(?-K2}c<@31SEJZ|_kb{pcD#ze%A7qADC!PE-fn zMGb!ad)EH9lz4#^w_X1SNxlOE0dfDYQlg=)jfuJGU+K^~nhT+q0a5rZ!+?`2K70^a z5Go9Y5|%V)O-u9Sv=>oCCdj$A-kr3Y@Ko4s zNYP$Ds$7DEA77SLa~r^!#rQzTssq*k6P)UhHjGB8(>(9TdeICZw$V7B;$rrEa&%S< z{kszU)$eD5ly-!zG5U@6w>;6#C4K9U9W{xjO}?|X@Orp1tc&0=&*UpepYg49_U~2G z9@9L(*Gbg=)3#`4>vw|y0l`870g3#tw#CF)-_Z$R{0A-Uos1p+hKoWK8M!rn#Ev&L zxO@3nGr(@V5V52RRwTd8QO@3?Y6b;BuNe7vNh!?C8x@(US(J^WLM)3>WSFtqF{c)tAG1P+LOvFGv zyL46qOLSWO7kW2;^w|<(n-7BRd?>L zX#&&;+5RObCR|=?WXQeR9#1GWD0QQX=oB_^HrNemD%E0^-$%NG@ea>)c+y2P!g-CH z^qD%&OI*)nbTbQ$-NgKQ21P-PPIl?Ogs=X-Ee!xeau69^(t%!p4xM>kuEVzUmfy#o zB=8!!P0MI0ZJK?sqA8jWLzWa33+u&EFG}m@$@9Abr@Mrum;O!Nw zYZRVn^^z8%SmNSZcKnDV{R{lxu_CBlhj;!beR%z0R=oeKSozloF}Jn(D~Sv!PuR>e zAa)*679Gq={`NQ}g)HMy6|_J~LM(GnS+29Bmd$Vg>c%A0jUwMhN-?VALjxzY z?}ns~KDv54#BN%ahu-S)3~owQ_q2kQvWmY7zCuRV2JH#!GzPwgDY%-i=uuvKUOuG4CXaa z9|Rk2uvH6TiZ17&jGp~2R#dec{LB_Ms3_$smJ%5d&de#ZLmolCt#<|63LPljttDm; z=8~mh+05rag!}96Wi(=JVZ7fYD}V&9!?o{@H@LYo#kO(^SPRx=v2J8MZLj(xMtf2q zPgQXH*C_PcAf)u$CQz`jnMY2P>COrmVRY=HFkFU=5e`4X84OO93;#&8Jo)Mu`7Yrw zlgY-~GweRkus*5#FmD{KfMSuM6O=VrQaYcdAs@ul@lJ;j@KgZ9w-tKwF}fT=jDSK% znge`2KCgguR9i0>5VcC^6@>TzvhrBZau_SSHMU?ns!b}y40FZ2WF1s*Xu>K-HGeo2 zGYbghAJ{6f!?8=w@H!SmuMyci zP$2s@90Jj?xmI9w8}aXVUp{^1bq}q}@a#Oj=P38Q{sksRDp?4=*G>*i9J<|GTYOzY znHd4JJfz4x0rX(x8L0Dpp)p{U+01|h^jzFdDg|G8lkQT`D0Yc%ak9F*ZINbsVQV28U10JuKQjFSkyM+24-Pt?g-|S5wrhsQYRTK4aJ75M z2h8IOyXqfe|G!FM+J9~vTxHSa5I|%Ea4zK^urlC3QpHhOO zxy|2huX&o&-2k$*C&_{ge_5$+l=%Lzw`FM3AM-4 ziC{lyviM@Fk|KV%@C^w@OW>Yxjlv-%9r7|a_ohFFcE`AvEAligbhremR%L(0iok&P zx<%N24tVS#Kza+v`;fFJWdzg}vW6UOY`cRjG%q6ZBP~BADG>Q8$gLkP4qhM_tNT8q;x}&s-ZiLZ*-1^%ae! zGDwe0xHCuop={930P;f!mf_yj=-W&cXnQ1s*G*4>H(VF&=l-n?WKYq?&PI60)awK^h3Eq(X0OfCSRL zbi8(?&b7k+>5b777R-op)~e{v-pGdJT4MQ4l3GOak^$>iNo4j57+#w1iKLrFZpeKC zIdOM3Vr?QR;bGtp4NTL~6ZW{#h&(0&MybS#K!a6;?HKU6?&t<}-Ro87EQ60=>8;FY z%!pHNr%@}}xO_S^Fc2RR$xv~BelBuuB@3CsM|Yp1_!dSx z?*$AqY701?1AQQnnvS}w@%9u04r5Pd)!Hm)otPABauxCJJ*4wX#~X`t<6M~y5FOK_ zo(9oQ6JnUAC+qWiQtV3oaxyLBE7`tH;0N2Zn%H#jmKky9)NpA`P&G_s;aUa~=scWq zWs(tN{iVst4UwK)+0!Wh%ru;PTZL$5dl%SZo5n;z=Y(m3+k*YRl~=`)ui!C?>(xX{TVJV0rf=bu0m=&A*+c0*m5}E+IESM0(~HX5@wpspuEh zC7!Lsne2iR`Ib|XXB@A8vH7N%XEy;~6FRH59R`kc7t2{6Kjc)_%>_Sw6Np;z1hL)3 zt1r==nwO^4>(E_VacS)Gw*09k-&iH1SLrZZjt>|os<7EgFf7~39o}B|C7s-3A4t8t z3oX|mE)7wR;2%T1yf#{yz=Y44Fib0nrN$cxIUJJ+H0VUcr+4jLI8<%JOZ!QacjNx#M2!Tx%1Y-DGDyML4)U+L?_EkknZ->yF3y~+1> z@>2fk7T`uz8&l6vW#9#1Kh9=({w=`xn>uAOTK26vCho>M;D=#pEKZB*S&iQP6r<)6 zOiMS2zKm4o#%`HQ#qV{EuKM9*)R{~J?0~tZfL|X8bL0WPIvxj4Ug{cqoOXdM^BoT$ zt$<+1xCK4Mgp*tF4ImYetFFU%?QKT{g^&mAhCweyNIyINqho2+FVaOVC*ejiaYHFOq$?=iCgI&4aQ9wlKHO# z$T7KJK{J0+Ad@t0o_s%z74)6L7o-Rsv>WD_CTyjgvF`u9^D8l8a!EVIbw(3GItnx> z6PplPbn`&)tlVDaQc^$IR92TFp0kA28@=`S50E&xD5eC@dpz*nfRua7;FE%^NTS&XgwRUyA#7X^sV z$W9BT{i)J))02hn1?Z9pWaH=Z`EX;2ra%_!h>%?48Ww2s;L@#?U^nWIrB7~`u^Fu< zv^nu-|6JH-sOR3CJ-9Ts&vFhIj%31gU3p1>2{hengOtvd)*rHIPGJB$d&-PzU)`(>U{x`rwjh-n1hWLL0AIZ;qnWX7(b%z6 z`Rn0fLkZe8al^CnrOL&qFZthx(Nyd1Pb*}*O>nUy4o5U+gs7<+x$7j zb})DNOAkeBX+(~N^*(UrDx*F^;*le!674x5cv@hir`qB*KVXcH_h?Y*$djN zI}F1U-e6sGwgYj4ELeLCMgko$?NwE6U6q&VcHfC|cK1r<_dr~1!=7}(y%mC%j%~MJ z1QF2`R`s~u*8Iq9$7{D`5`rDQZpH^$Oh?Hxe;BpQp{ zGy$qID}f8&W%Kpzt;I>kUhWoh1^Si@1p7>;8ji=BeqjQ-#j^$c>k8XHB%`a;7s1HG zEb37vc_XzWVpDO)R&+?{dQBja1c?X9Fvx3~7b++#V`>(6Z@9P>-wK#2QBwK%J(({l zUtvA3>Gq)jEJuC`*b?F1VCA8c(fy_G2EYjNjm|N%X0r!Y9bKnM`zG6Rx~O`!e~XKI z`~C`snhRepUn=FzQ_ze>&BmN7K{g|?$nFf2vEXhLIcySZ2YM|%_c-kLFpEoc$}zgB zBkX)3fn}7Fpv8^Gw9Bo8J#|n9z%~ zmrU*Dg7YUd=6%j?wQFZ4c4ibFvXW%SGc*G)_}t!{&vPC~f?TdlS~EPr;h4DWWimvT z6bQ@lVDKF0ddvBfH8efX#dbH`+? zQtVi`X>&&FW_<^3UO#9%v)s&yPyu^plsj7BOpiO*bB>nDV1@Y6*KjNxV=4V}Dp_+7 zwLp&a4n}eTK|yOCIO%j}7HLd8^{u=vnVal`u`)CPa6V+1?DKyAmfh8H6m7G{J`tV` zw(TUZWrYI5SiHUahV*~FM`DL%~DZ5-FRBv+#5&Byia3%xr z`VWxuA0+-J?OL;p`@(rmQ!|dyP@gxJQj-Zfy4cT`Vq;(gN;yTS)0ASIO!=Jb1L!z z_jp*ZCFZD|TWc1oWjlFYz{eW1yX^?2Yd(}jTD7+Iqplsq{C$=^$q)PZ#Vo&l|& zfw^0XNgqnGw>0lbI(rQV#*j)nq2RZhDe9+l2^C7F)u?bB38|F+PluiwGvRGR`6wdN zIjEdk^=Eqis;~m^KGaTriD~xZC5l!hj#sx1wW$3)RI+tf*fbTG76o?%F|prm<_2sG z=%QIVfmT1~4K8ZI3mTCPP2sI<3Ty0jM80!Kp)Dc+?TXfEF}PP(0ACfP0;}J1K(S~` zNSg(4WL=6`-fNk3tJ-DiAS?|#ZG)xOsJv$;u~r>K7kkhW$;8`L)LC1&@zPMMvx4LS&*zo#{W5 z+#vek%KC%SQ8l4ii&?eR(F2B@Rm#5@tvdzQbRCP1!CZS`<4vGF8o~C^78@v7I>YnK z&_=jXZ2=eV%UWU0BPYqr8dlf91Jd-%39@<|{{#4M|N0ncr&s<1P@HIg*8kMMOaaEm z{~`eYhNnvP4IAtsw9X}^jA3vq4_Xne(7CJl|28ig=Lo0-nI*-{HLHde=m1_5O@5qq0` zTP*X978DZ-TzZri4cZIz2PazURG$DAV_I3AuC|*>*^kBFXo%6NMYTv^3JI)9mU)8g z!#7%sBdy@X;UzVZ6VlqKTkg zYY&ro5hemrMn$kZFX#Srl78P)U?rnUY89j*1B^42qm`39R#Hn!N--I5h8^ir?J$Q~ zOx8BUXFuxfh;lZH>+NOLz{qzqui}>u z!WiVSTBsddh!-WyO2&xxqncmI4;2|AoTx~N#we(9cKo3(Hftp7YvMkak{e3&4kS^Y zb(5Ri{i#pyI92~nSF%N#Abb3)nC3eAdL(>*Fy=t|IWQW=mLVnb=iP|Q*Xs@6*C+9V z9CmjP=i5X;oC5`f#4OCHV`_yGYie0d>(OBo=Q(sDwKB4Ptkm##+n0@!CRk6vg_7C}axt30(`dJ$kUgOq4fs*oWuWd~Mb z7XB>hy{^>>kuH8(mIeljX*)umY=*1u?6vT3P8=@-edL+04Wb138&L0ke12x{&us1x zt$6vmSWEewU`4F%AXD4@q;o9=SWy+*lESx@KVAGj84O4wum-Ryj1Q?@68dSL=Nm2y zT)v)ve1zj;eQ%=MR9rD4o`yuC5+bUe7b=jQ*^dn13`qZ}IpS%%P}iBKJxX04-PuPk{ZK+@m5@hkl{MGo+*aMTYG(DLMDrgklpVf}Nf`MZ$@-|^s?E=Pgse39v_>SF=Q-B@#Cvlexcp0;*D zZ?x*-b1MHsImyN-9y=S39`MLBkeK$rZI5~!`%XX#z(g8BvpW|$2x*3my+ELWzF4WYGx{gc{W&lSV zcq=msD5+X+8;vDkM&fz@Yzd!NQzaAc0TkahhwwX=~VfHa-c5?-e1O_M9t zf~WCr(%9D-x#N5V-HXu7X#b~&Lv%*ov#%^+kpgW_bEODbei`_R=W7sEh>=WVb0Dv; zR^Pyh`UzMu@;yR}e@MRaz7Xcxh#iWq^IG~)D7xf~ciXpVVQ!rzvbi8}LvCNi-z`Fw zAwlI-#L9kLHkQc$8npq8)r{-npz)71J;UaJlaLk8@S+Di|dLCJIk z1?(Bm{#Gb>Fw^Z~7k*AUowwKmsVoTR9(`s_(=rHH=MozEZb*Ym2i1B5jv$ivPcAXn z$=bY^Z|}`prJA4wnm~?=^UIV2woVO2-IL`3ssWj72D;@F6>GQ#Vxmxw#=Xb z4U<{ERuf4uZAD)bHYro7+==k=?s42yyECYS(Wb`sndbN*DcTcbFHjD4nMrr7qk6k0 z;X@Yp(w|ATwwKgTc@pO2P@S~Enmk-=ld=^q-!p0lzbo@ZQeHrz3GF#|SywPc5o2n4 zB+mQ#sZ}o2TwN|pRwoK~Mz96zWrtBH(_PM@(G%}DM+96V{{UIN$_7cu=bO@wAlU+7 zd?@|wl?jHnHG%OGEo9i!g0#o9wqGOe{iqgpcAd>W;W0+#ht_GqQ7nKqKB|%n5G#BU3VStoP|S29MW0a`rpZ_T4vk%M%xJ zxcqX-D~a-8m1zvG6(EG5CMG+)H1IBc;hQ?GzB@Ndo+;MjZ2%?AsHmp#EH(Lb&Ch7Y zceI{#_kn0#u4;9TebuT=I|5=FQ*iQSeq;TZ#Q-;mk z5aRA}w5M#;j4APIV78EBOA#avm0p-LI3Ih(ByG=>TeR|}-W*Rk5*2_XxJzJi6!bQx zPd8K(L!;X@wdcx#EnO%e<$jGHDf|_=N#V-69TgkDDf)>J6{8HQUpozPk@rQ1kBsK& zR_fU@>g@~YZ_>j5f&j+%M_F(FIg@AopOO{_M|~^fzc_Ja(o{IM7~{w@1h%vO&1K;+ru3iEP&_{hRm6BUB){Ug*&((ZB!(w`#X=5CU7+kEY4Z@T5JOip zfcY_}RlPbbEG?*zyYhOm>hN^?_;h&%v=27is+O#d^}^pg-)aDS5(P*6>+^NxBEreo z)drC=Fv1BkVfWod<=lO#50xQAZZO5=)xBf9!%+jCPe93=VO9lP3r@zb1RE;bX z^DZB}8CxvHkv0uz*2v>fZgafE6R-C@>-M>6bu7`EV58T;@~&si*lZBLsp;7y`!(F( zjlB856%|UfYarI~`8>cx!$@sL;prL4Rds!Gr1O3pdbE3Q+?d5mBmflS9Cm{jo+}N3 z7H_7uZUPgTgq~X*EBRAkLo&pLz-*~{Zea>7lzZt)z~~z-4wa!ML1x+T{s`uHV&f05 zgcZqG_dqET{|VQQ8Xc*^WegGS6lB04bqe^|kDg1@p@5@wcKTjM|qygWlHOvA4hayoQQT4 z7XuCS+(#b#&jOqXP^P~y#4@z>5#FZ&DBM*~q$^M8Gw0neT*NFzJw(I`xP%o^IygX+ zQIFc$Lr?UYeH%(I$>RDZVcYNpS(sY(-+WUA%;=tqULgY-g&4b7feRgjcAP;`ewmPX z{_ZEgr%r!1+do=Qa~%rSkeFzaxRcsFLzQ_s1@E*}!-iaMYX=k~j&E!JcyB;&=u1-; zPRza-OrHqSW!ASVxmhAQG&aUdOGaxtZ#3*_vz>YZY5MxC>9b6qne{#v{-9yaFov^B znEBdpq2sMt!jXHK^c4G$?c~PSjz@85q;1AUZqD8`UjXCm!N9LG0B6gozGPUDcYe(K zrA+%_f=vog*Z(gUmQB=+K zM^M2Vb6T_q;v1-8k3^}CRGBlgcwTm6y{)fmmO4pSxWfHAHg&}DHk|$()%E=mtpfkk z*!(lJVdG$>@AxmxGWtf=e}}1)VvTGc1LDRV8oATY9_SMPT%~ex`9^^Z=cStob~R68+bPCYVge7iH}J5 zyB`diIi%wd*LFNDt!=@>HAc-#lOPxuJ34v;(aCB|NyU;{Bw(^_uf+y)Zh{HxHvAMe zYAMYf3}ZCac3?4LJaywM3J~&;iYH(c#6lDW7x2CpUhT}o#z8=!X1`gr2|UfJw+nXn zYd9oOW^QMH{>rmfaHvLT#Z`BAFowM^YOEkrH<&>WWKzdh7aVSq$5Fz+he7pnt}6+x z8fb&{ZpV9!v_2($mG4`Z7~d-C+ZLAz>$BQFf0#bReqi$rtYcvTpzc^3wvOWK{V3@Ql|ngAJSyxDPym4e5RES(3-5l@5lc5x zDXm_kqAng5Kbx;Pvu+oJ-W}J86;g)Pydukcez+R7VaNV}%SVmI%dx72q(ugy#uEZl znQ`*GqauqL?}oSZt$*6u6p5Uz4dGQaU0uQ9uZZ#=%pF`r=4`QSdUyl_q5_RXFt0|x zA!O>bYt#e=dk*M?Sv0NLuIi$K%sSLZ0LB-RQaj2N*lR!dQsgJTTeGs14RI@Wj;;bw zJ2v54XM%Ltm~~s&qi*vs0#3^F*y95fbZ|93$N@A#g!6;IRjF?;KL>GOjai zFP|`0mIqZOI^TAV!g)M7%7@d_6W-1e=J?>{64;s_zv2<&I>LLaNx(xz?M~`&+NaHS z7hhSnBpXgUeVVr?E~UWk#PfoG4|30)K_cKwE$F7q;nG-gJh$7HzJ@y2i8oB6>s z|Lz=_$>M`Y+8np z^@tIoWQGKixf3~7Od%t`D8C*cgPA9IUxr6izdRdeLW}r`Mt!G&38G%(F5fEByf12T z2GgPm9{C$})+VYkFNmmoY~4(S{AN#KAmbXTELP1buzI;MK@k#wJ_l=@ES_RPEghj! z$V3Pe1xh|Eq4b@@gG={<29NmD^7}Nt+qqFJ2eS6IVxz7IPT~?V#`*#E*!GT;tp`Q^ zc_w-{qI2m%yv^-T+pK78Grd6R&Yd2BU+%#u_b3^FA-aNQJS*V{I6ksQ+T3Jb5u%q; z1rgxURnu7BodE#nH1-TH{YE0G4LDb(&^)*SJ{vL`Sk;RPw__95mNjIHU;gDWPcEG3 zRI?;cWH7@kAdB+Y0SM*=4#0#Z>gUb%1o_6dX3j7+rva^7qy&zJtheEz57Ju?Ds2m` z$=c%dNijZpix_fn``scV#C#2^qgySOyBr8{wqGj8mS;lh$pQ;nEw0Fyw4`MCQvbC5 zrZ;MCovA>dsaZCad~?<0xG-#laJve6!2ohRFiPok?|bTA{Oz3Ynbv3P?C3xoM{t{`xNMj69mhL6N*i%8oFpT~;x z5=c0>gTSDkd8VOvPA`f7Y*yd}8I)-7%cvotcD{MhS3TH^VMlk_B)gUY77dKoFP7^o zjZtyg?zFAAk;flDT|yn&3TlKAt~SEm0Z0JiY)U0HmIsb|?Nut3&x6xWzpA97B-_;& zRu@(1LHzZ+g!RlK)9CMR-A3^XC;NM6ff~}1j_w9zWlL@A=KX-uH&!z2wtw602}?RPRz6VJm? z+8g55NL`H#S#}|OoNw9^u#=t}TwR|YX{mn!M?%LoRAdl4Fk3hN*a+~yPQKkk8-~&o z{Zl=}qsE`j+Se(?BEbW1Ms<{K|8fswAi_3U(KO8O3xIqxC7K$~-EJWc6-gSdx#^~e z4OMqt>FbuGvvoV}=XEbu5({>!kCv(S+ehxIr!3F3KDZNP6bALlCydrL{%a>ZEkj0skOi!_qec&sL+F!i; zGqRIrb4_+Pf3u0^t~7PAjV*!pfvtJm+XP<<*Uqi}ER&5t?y7GoM(n=Ou8aVq4n|ZU z=Pv0*e{I8cZI^^f|7)jZ$DtldjLiT(>yj`+nM~g7Okbr#-ff!wlW_m2r7+(4W}n#? zs&fGpPY_b?e1tc9RO^x2LBvlp7&Uzv{R*19x|F8OT0FsKPS@k-d2i+>1m@y6LW|LZ z?5SB4vr37fz}BW)JZ|o!xkr1T2Rs|~ z9mZURx2_$58Tz!3-XPDseU0foK=`6xi=%Q#tUz-a zs8eU6(4OKv-ZuO6`?tRVRQ|p+=3ki6+#eAA?*>}z{`3qR+FDziJO26kx6W$)|1fEi zq#|Xr_J_AM9o6Qt(C?`WN6#UiG%9~N7nUFAIk}1@>4ERNK0t_)uzP@ARind{631He1{%aah z+t1&HtF9SJC*Rf4N^J5!C>9EzSuDr=XR3sSC0Zgs6T}@!j@hGz9qE^0Tkk%!Q6_#F zYf}<|q~>rI)hPQ`V=kl7HU=m&Nga==yW2r%XwB?tJO=^}NB1=%;dhsgVUx>Pc59P2 zlV=RgH_Gy-U!ah9j#fb{D?WqByFs7k)j32gPQbz!*8&-fJBIRui-u(kQhg!hK63Ey zS#Ro3<#{osYC@l2DR)|P4On|Pc@-_fKY>}OT;#NT;luan#c~~2U$JI}a+=y&01ft0 zht%Pr((vBv$&q1;(8vl5C~WM<5Fc!cs)J60A^AO+8q)1UMAi~8Kek&;)mLXcSCwk) zDv=xm0&<$Vpu5Ap;CD|8pmWRo5oNod-#h1*F3aqiQ1XQU8X z%kWQpi>q6Pje{~6=L@dr`zypXSX&ch^08DLWkUp5nlysbxtIf$J(gYi5 z53jB7KH)Natfy$_5MQjPpsdr>H4*kOmMoCOclfsQa#@v3&WVt311c(-mGOgR09q?j zUGJy+wzjb6r!60M46v<);c_nIwz3()Bqu|BsP?td+1pjYPQp0vbzf%xf)!{DlU@sr zG);?M*7j;@L*@9n!eyIb8>pg-mKPPoz}@6iNiHcxk_jwZ?@H;_pFG%G+x4PcKL#bG z@-$z5sfen-R!G1YuWe92pjX>C2F<;v$2S^?%(A9o@a5K1y+Z~m7ycQPCot>SQhkj= zDniy8b%k7I;dPW)*+_)SEKstu)Hv*$<(gE9+jBW@E~N&H+{q!RdN4;^Sfs5*jD zjf#4L{O{a$6TQ_2X+Lra z4F~em*I;ShU+}+Pk75MuS}#>8vhyH!UxM+sM)QK5>Pj0$x4(s0t)q8k7+Ri6bAn1m z5hpswr4DyCNI6?Zw#!eHdO~#t$GM7f6smew0z$T7H)XH;yFNpaXaJ_M;?6`9DzCwE z<&ud|_}5XjUDojwP@N?~;|r~xp2-G3PU`5p^QtVpC3N5v@vs| zh!)38u`c#@cy}=t2&oLSq?%Qp7fC$Bn?f!U?Kk4f9p%rsGM|3iW6wf3+|yuBArBl9 zNKs@(2oaL(b>nvNF<~mav169WZ`JPm<^54OL=fGNCPp~vlRyYICSL73=!VEGmZbol z9Pk4NhkR4jsbs<3P=N{y?d2qQFdP4r9Yp!!Fh^XK^idyoB_HUR~%YCp6wY^NN&s^P>$@G zUFK~S^pN}$qu-K6V9L91z%j(vup5-ulGt^7KwBoq-wC!A^t1lk{lc2>A zgy$`e%ol%kh4rf~T1!zSiq9xyO0XzUM%w1wQOm4TBM+u-A|qP2o;-kDs;F5?EB#da zjWTSg^Gf{AbUq68sBDeK-kAtK&i1|;N_t%9GrV%fYAl73V<~ksvC7fs$2g&A2Q`kt z>i_e#Lej2-Yo$&W8gMgi&{GhS+N0Zqc*9X^a+~NT=9I0Du{Tv6Va_hT3rv%J&pknz zF%f@a$0VJ=jJr_{3s&mZ>bsaiTaMgu-R^J8vFprm?Yh&9LgpZ4Ns9@!Z6l7(fthf1 z2`{2oC{`HUEFB@0fNDhYg{ z(Um@oP+-TDZ&dfgPGHvwBzSY9DDJaQnQ@FW>RT~NoQS60A>pe4UnMf_DI6`bh-|iT zm@;}kK79pgkzz{}bmONE)8t&4JNvkb{qBjN#)Lcv9w|GR;K-yq-nZaL(`U~r*Y^TN z%cL=~;>ewbz{K%^7^XFvmdJUzcY2f-7gh>L7V5y8PoYW!VObjmp)ck(WU*9r)Rw9Y z6yp1tLv@(4WV*CC7mk*ye2l9C0%_i?tq^!I7WqCVRTH;O-;%_2B&d|PgIE>sM&e3Q z%+W0Ef`^rnZGgh(U@7<^==s_L!Il^{sSA7axuMsOG6Br{r_htcIy!s}w*gA|Hl2=44#&&ujQ%QvJgz7aa2t~kfaZ@$y)l+QGp8<0u{phwf_gQ>#n z3)$57L#Y}fuO4ytp%jww>FPO;J&bxL9lLM^kyKv-#nOXV&Q z-lhu*PRk@#=g1HKrfigs&HuyKIkjoRgx$4mJ#E{zZFAbTIc?jvZQHhO+nzS_<|J2= zgRf5NC)B>H_FC1p%NXeWdpmasUKqB;Ma}w(QGOI~6hlHFDdgsF4}lJSL*+H4j>dCV z3ZK=xVGddy=GOkE*(-wvhDS)r(MvdO3Eatk_hmogppH^5|L4@oZ~q3sep4{_-np~` zzOl}wBC5>x(r(eoQ)LLEGG^!fsD(Jem)S<&f-$DY zSoastRjKRhYE0SngrUne{D#u8f(y=Y`OI+F3xunaA_(X^1zPoD^lCs%;dQnPaYbm) zDE8?)71pmstS$wtIC}Wz#Uc_E^p!xPsko%i{Aj(o(hZlj6cFT-xEu3iLig8Mu2p2- z07Nbw%Y>wg%Odj+!A39s|CTuwZG{ShgL(BqG)&OQmkI zbD237`fm*lkLf-i+#m4`>AOPx?1O4z0<|>rrRCU%4q0V)2(&xpmmiAWIEhapAQ)9= zH^ibqDBYpX0@a^hAfmMdWHN@X_x;e6wU5d4P@URllZx}c$Nf_4m%Y69i=`{PP-p{h zQ)u|;$M=$v0|aItjk~fem^1x$m96&QK2&#BtIY+6ymc0`HB(dhhv;ot-%7$fLfAlx zuB5w~?Hf_a-r4LY^|rvMk}QdiwgBM4G44&D=b4!$2UPgZIRt>GyUFKn$U1-4Pv@+M z$}jQT|2I@wwr=YEVfe2f6#)c9{6A+KSt$`Qc@?q$lNm>Jwf}C7Ci>>-2OLI~P;0~{ z{Y~U^q*iT~9or_6(UNM7+e0S}C0-@$9}#1HU97IHc>bOy9s7OVV7FCLpHQ%TJQ7IsyQ9hadK*IQ!%Wgy z-SSc4t?fF#e$4jE=(ewxyS-9vo5IfOuKT2(h$n_ z?vgT7Xx&(Awpbw7-m;0TZSq)LnMhPqXrxwnEWF7yT5w}8Fvn=#h47=bu}<_%aklns zqD^hJvQ1o@@-?oampgwq>6on?EA*6&M3_={Ni#9kytDB&l*dc^b=z9EX`-ad_0-rp zMl_gFYn_-pZq=W+n@G8pyfT}JjLl&lF41+t&s5z>UnK&SsOW03O|%zFX#?_6=h)kX zZHwq#IczaeY14H&-my)h>oSsZxSxXl$=qsnuePy+vetcx!QV6eG|_*B2TfhW*>BSA zO2MQ{MKVVVB=zW`IIpUm*raFM$;)jo=hi-PQi$_eHF;{nyR$%WB|ScZ5t8@*iH=nf zVBa`Bk4qQ&^{%rr7t9+v^Z-W?P#>BYXg1)l$XqC5rQT|Ei=5p8LqlrWg32Iy-qM!xs!dt zS24CeebM0+)Mg;}R@G-NHELcgN_g-MRhD>+z0la$k229M|rG3W0PnULYAbvP&=p62cBbS z8AZ{(%^^dZu@!s^9PZhS$3oX<;VP>CWc);(8!^6auTXc?3f)>F7$#O(+{iQJ0O1WP z-?!aXx%=+&58Ik~2FW)?z`A>L!<6FBtWn*`R(bV*Z#wG~iM+yCggS$oc2#`0P+{?G zCu02>EqhN2(>Xp%{w3J_al9`7-Gth8j*c7&=|pO7mXhoeKDB5Y6&oofi-k=ovJ&)^ zV9HRnGN|PX5`T1S1d#gi>BRL9-Z`A7BlQz|i;qrwX-)agv2P`=`XB_h>eqsfpG8UX#F zjL7fl;TG2$X58Vva23VN*=g;|Y+5@LWhZ^*US%uv3dkNf32dD6<)z3@3P<_~G*CX} zh#N^N>RRMabTFvdYK&EH$r|O5oa!;UC=Wig$Ll)%`NQC@kLJO!?Wpnd$aE1dlb8fQ zA@J#=E!>Xdh7yDJEIZf~K)=C4#kdT5;Y5VP5dJ0l^{;f)esd8o><0UD&u2kngkwk_ zsmc?)xn2}?hT}tZ6&pbALET1afJU1)0k^(SEqT-LpWoIf@0dhE8Z_Zr@tGP6K0_Gq zzfFVy^AWTc_u#5;k7+sb7>*j+9RHVWBN5*Kft1%p(Zl(+v~K!fBPqy z^kP={(=cFywvpEIRdf#wDS>0uUicqq6=p&tDw1VpHfxNACL)9j}yMJYg2L3GeV z;S!Uxtc_3>Mhk?TlvLCj`YUH1P20D6^Akp6#}zBboKnk8ZCSS+j!=~88VN4Zh)KUr zN;EQB(R!M?XLVQ);m@XFEyX|4WHvDDZ#yA%Ete1@OxrYR}n*C>k;T$tE%$a5$#yeu1uBbLs2mIB@rP3x5Mo58#U03 zAmQl5SqX8xf6b?A?c4F3%Lx*-1yA#ngmsig&dX{FP#)dpUwh%z^_ zJvwf(=nxP-NZD<)m|in1F4f4q^_o0G7Y3@||6p{)lUlM4`XmNP;&`kBla}HeOICaO z-IK){XhhAQXeZV<|5G4j^$fJ3-!h%~5vBug0CUh6!cEw}&0%G>6F3w`qxPZM5?Axz z>a46v^B?hokv^_;TR*IfpyE!2Bou>kG@6l&4Kg645%ZE{u~9~&6Ag4#0g@WdR5Ua3_GqW;@QOaiv{`@ior@+T zwDEaf2=rdE^5eJj|g+7 z-oQ5gn@PLgHyE_e=^L5ABu74#xmsv`-xX0fhz`T(sDARgJQbUIwi2_c^kE)n;^6io zdF>f~mOT;N1GW%XjmG?_a<8(3k|nXe)c|J#Ow7)#%L7I+u%H!BZVCC(K%2g~&x5uC z(`Kki3Nz5)t@Vg<5F3sqDeD(zSMl;L3$YpMrcQkMFlt%)w z{Ar{xJwFM@8c$&1r==?!lQk+3M#x1Le@R9o3!)zF+F)*r3Xl$78$>5=&{~*u0K7Hk zE94D-6Q*u#G(K?%ae6iyJ3;0Jo~=mVOBiez(Ad<;;2`yNvU$VSmoI~&F@)6LC)kEY z&ZjgyP`_q2=mj4J(U~&Wxl0zf0*Twvs@v4*uQ76MMkwWl*MJuAI=VeSGH*0cXN#AFu#1^$>JEhp z`df=tZu5xUGknedhd+5iI#s#*-I=Gy(o1bKjV%5X?~z_)A=4;{c|-aTE+A*t<~3<; zpASH(r-PLlpspLZf*817juf1v$Ehe9ynQnAzGsBGe~%2(KfsqWP7uGt_#tzd8Du$cjetWRQ|HIuwZjH`R<&8#=zA$^xPbK3_MeGLO5^-g>Td*N? zzcZ{flgpjPTO7Os5Qh+m5n_CCI4Quc8ya03h2XM-3n`SEK&)01NS!Ur-2yvpTzbcy zi(M*qOb<&x;j|d-HWXu!GHo$@GXGm>g`ZbUd|oq;g9`lvk}LES3stin#guAmX_p_$+LW`3t*T11IF=5!+5#U*muS z9YEh5#-=+RO7+xeM>?AZ$_roxbyS91GbvOiO)0?wA0-Y`_HIHD5{%HGe5eMSbx=cJ zI)lShi{dy+x499PJ17^vk5))b(RRg!Kcl%+*6lUmm|yWLce~e8DIe-?6+VwW+iqmg zVlh(}zg(ZVzSN3#_y%boy^o2Tmns4^JfED9NQ?&CQ32 zUVv=>B8B(50Q<&54#5hRi#EXW_BQ0eN_Bn%7|FGPU9H8{Km+k{ z$?vKf*HJZ$F^60mPv);w&XTjy8~0As&JQ9}N+NtDT{WK1Mts8&Rs%zH@~e}{<4lG{ z7F%i4G)^2Hs?R^uOJwYZOnIy<_d$(q|F;4IGc_C(a}CMLR_>$4h^E} za8lF&<~Y)#DaRVpT0QWF>VTqfW!>2XXXeAn=0Hc>`PdvN#uB$D&TEj46;z|Viclmt z92Xc(=l3k*&3Hnyy$?(oxa0H1Xna*=72HJvgFuZy1`ESA%?|05zIS!xAi`~|7$T75 zWUP!i@`44*{T@K7BSP=+IB6fnyNw@QR#*_qNqaJwlTmB(rxu2`lF$?R(q+k576gxX zu8$_`lrN|N5c*HPG8ijJ6rMe%kbJ%pI-|3bC|A;P?u=L`8T%pRGod|FkfF=t2PDE{ zYds#+$v8<{_%%p>9zCIi&hAmtG2bv%A4;eX;*+eDc2BoSJOFaEQhhRZ?Roz(Uphh* zeSXR0>QwJ$$jFJvtTXzgvvTSKFd6JU6}^-WETNeOFl2*-R*3qEK z46`zBhxP?_guG0D3uZATM-ushvDX+S%{J-Jx~@}Yj3Sof4Xjvc?zHj0{l#fVo5!2) z8{)&Qxmx}!We}?dh{Y|u6o-zW3SZv^1X*k)`q7XJMUcR7Hln!nl5>u+5$6@ViG#Fa z+OsebOxO!-$pBaQ$=2{S>zs|Ifm)8!tQPHU%);%A;y|u2SilkdK*0jozp_mnQN?VJ z$K${39UpfaPMRFEsOo?x8A&TBs*^dO{I@Ce;|}_o@z|cYjvhls{0xtApQuTS*s=ce zicPVmu>}Xe1m&F|+xAr`XVsMtd&(mJ)i-4WNz5@Q4T(#XP2a8>qNhwGO1Kfw0`g#? zH!oQmf*jkj)Q2<91^&WL&P6|i^2!z_glLbvE=3u~`@~T_9YxwwEehi52lBwK%|5&$ z4Y|LXa!dCitqsJVs?5$CTsU>e&q0m)$b&CR@ehS|2^QNK%i*|uk|K1$n6Zo-@-tILCkkJX2fY40N$lb2{t*OCe(LUV734&k_kjsY5m zPJxc(p7SRj`-1 zz>=QuJ+AU`U}eA&$N&gWr8#bD}nb*ul7*q_Bxmc|nu<-I`M147Wnq!H$ zHMB#*S?&5%NJk>6fW$?}o_kKqT(K6E3T@r6XX-IzofGrJBSibc+oGUHjN2mU`*?FI zS^Z80PtLBGGdsgT**z1KtM@v3+9O`XkWByl7K{jv^tlA%9b=hh`?j5ugQ5$)AwQf* z!xd~*Pa-P-M?R>tD4<~I(We~*xOKn0cPhTKJ~kZ($3!h(!P}WXWC+R}qvE2h^O~b@ zMRIW&9zgWNE-AsSLMY9oZkEW$ADExeMu%GrEav@I8`HQfbV74H8lpJDYD`9>stMNL z?@)=j>Q`_wVP+^r3Pgte4ddbC;yIEabXj4PcC-HMn40@DmqR(snwF6a5T}LaLe)kj zdd0EPJqU)C!2sf{{1c{jz;$UFE$qD zq)`SNWw@~tvv1niEJE?AvQw%d^Cw96JblIlUf5v9Z;5P%+Oo-?*Sykg^=qAuL}iD( zIsZ2`V)H3%>~7gKRXRA5B_NN9_>8zUs5O$_;Y8$hte6Td7?5^c#{5BKoNu-c9$Vx1+)4@5NOBhDq2| zq6mt+aP*81VjTSC<}0QbnN01ndXS@A0m5b@UbViGhLtA;zI_R1Ks#ey&V^oJut#T6 zEg=_ zkwAeyEBNIBxGqGA?o+gn-q5_2Twut+id|w!NtL9|iLrh;;h!C8MuiKdbaB3#(`)zq zlh`p1WO5{v_MXFp$m_ek3I7G*V zT5EUt0NqI};ZE{5 zQUn2`0;w(v_F2Rk(`9In$6isi%!WlzRl3G-9xaiXH$qqVV5fh^U`i6PgB*B?|I@Rw z8`whEK_!|sF{U?~%Dq6TFm)wV9gE0*Coqw0Ya5|^Lak#o_c$~6C{WuvD^2$s`8VZ} zLI3fLarz4Au`tm+fE0udBL(U<)?_fOLx{Ejl{*}KaSE1Z(RBnyq)w`7rBw`>jFjrIUZMaC6L)<~CbkJP-8kNxg6bU0?Eq!toiWRa z5T=Nk6zu3AOejnqGg(sP?~TEh{qV%TM0U{;O^$4so)SNsE-cUD{WR@^nhs--be2Y4 zXP8u)8O~xm)n@oA+jq{_?KWB6W3UhWCRbWVD|npT8T#+V~qqSFI5= zdWtFf#4kj(1)- z;#m|wR$yu@zuIx=64cC8R?}Uo8Ag1(LvQeUE zRYJ%$+(;>ol&jD_&u{fP#m|S8*(t6|kvN#f9Lo@5tG&*43HGN+>4gX^ZK}f&T1<_R zMMVV{VYdDQwuRMVG*u*cXL39>b(@>D44pk~GBNJ+I+aeYtleC}^` zGfHUWXZWLSc*@BLG{1i-Yu7qO*MEk*jViW^QRuv9wSEMc@w%5Wo_kt05mcu`M|H~?A&Faj3pEAA${c;*s@_qkKP;Tx2xyQrVrLs!piTXvc*a3LG12p*+Ip`F_~7B&-W zxdXvDDvkl<5zP$gL61nNa}gj;WBk5>N#IP#)!b^>LB=NB9D-U(lHPV!bZK0@F;nK| zIjxjJ)BkA$rF?|44w{EIpsAIPJIXc7w^qEBdQ=$C`8XZ9n}omOa(MR37e5bqNpU!b zjpY3ixeA1tR<;{P#nz3nPm4oc+_L$di|{#jy_#=Hu1j6C@oE!zlyok#aK?{58pb>z zv8azC_Z7#4{+WZ1)XPTvq9zjDH4{ekNU8e< ze4#t(ZIi2Tk_?U&>u@!}E=NbFKPTn}og_pw={f^{oN%r0t#t!R z-1n^WgD%Jkq9%FT0?g39<{iC^#6xgm_ves9|FiJY56;JKy=+o?o)0mCNS=-{gcKd0 zIdge#xHqm@N)}Q(KG25(8&ukm{Kh}=&vk~|4}P8_?AIsoNnjaLjf*yd53^TRT90Q8 zJQT+&?I6mN*d(vs2MZ>Ij*WEuk%@m;3iVNEDj_=PsemwbIUrpCLUA+2&TtvuL$u~4 z%-I@nOk!Cx<>?f!>E^a%qXnQ<vRxOA1kxS?w}AqUQ``kVzmQgSB32b^uN3n%B!A zlrDI@Me8$0pqoqy!vODphhUpp+F~t>j+N>c|He_J3MLOFNl3l7=dowza7<4h#TY9N z*&kuQv{HbHAK&Ve|gXZTwz`u2ij|vZP-;25T`qSB&Nq3k8EB15b3x$9V z;?2e*h0d>SxcqSvHglXnHAP6o0~OiWdRqz#tPc0PWRfVE&0kD(k%J3M-74Ro*w87N zgW|YtsgB9^=MXmnB3$6CD;Qhh1fhZtechv97owt$kQjC$*p55p5g(*2Uzo8J;TQrk zT~B1Xp}MGtix0CJa4x~wbXD35=Y03&IHFJpAYmF2(_yPk!*SJg@dV;YFFer#C60}& z!q7-|;A$u6=d=rHL^c#MpegFJT?1`+))FQlC@f@T-&OjhBthKx=C>ktwSwjtor_NH zwnnYQ$MJ_A3+L=5M7ZyG5HBZ9W@DZPW^+=TEOI^0ud1A!k%ssIBSpaR5@uj5XHQ}R zu`I7y9EqXtC7#RLz=3OC%r4=@nIB*YVrOqPfrmmTi-tzK_m z+F+UmE3l6{0dy7h(-a@A)_cglA9BPJq2qn<0_~TvZUn&9=T=*Sq3gW@054YB(tg}C z5oplY`h+G**@1^_?yLkmYPrt$#9D=Oc!`6J{ju$EfzA!ZF3RNpBE+*Ta)nms!J?2b zaovc=Y*%DXb3%ipgqFR1#Q8%Sayw?(LfVlbMb(y<>ZIW`zTnNC!3LYqfr>G3%nkoT z3T#JQkBSdxZ$xxgF%$yN99L2vfO86NE(2K~Ae`2N5IPt0~!#4cNvvwp}m z*`E{sx+5xcvC88FJtXA>HTsUlv*<}F$#20Z*Fxxj1EZ<|3<>GYa1`3Sjgk7eY{~B< z8gt?H97~CP6csVAa{${nJXFzr%(Y<6HeCtVT$Q9^YqF33k+z#5*#h8rUJVq@epWM? zhrQc)NsKi3wDw;oVmNnROq?m4e_C@lz0Ql%qWkF+n;y_lVvoY ze!J6I-iv`iv7X9Pe|BvVo>&RksQzImodaN0x@2(JvOIOnDar8v;eYMPV=jg)B3h!Hs2RDNtvjL_Zx~l(7s-{ydBP z^OKRpZ$WhfpceYLUf_BlXI_3jAguov4=yD}lc14MnZf#p{gLyfdii|}r`B$6G30pfgs7qZW)57z&quw3!lURi+mr2URjqiPNJs z4GMsdezlAykw-ox5*c6qLeFb-u2i)^CDn(KGrZT_2R8!T(#cTKuH3T8m)fH(pPl>O z@Ha*Ky&rv*YUCDg<8DGNgVpJA4BIp2a|-3*dg3pZHP3-p?wio<5YF)-L<9Yozidti zeaj_=5~CzAr?~^P;_3( ztZ|?c$HhnCKLJ}QX&qZHGaWgR=85u?0UFC%=KdrddF5cFpbKwdw1I{4rxmvF98Q`X zU?vG!iPagA0_wzoxI=f1X&5wu5LjhYF<9*c!N-ObfY2M@Rta@ffu84c;x2v^dEyH^ z!dXLn|ID~+VW~8Fhx`r@q6Q?(`*oJCvAr)$kg*^eNidr-#S-JC^K!wZDtB-tX!ZoWvGOA!PH}sV7tKTzb<692ai_V^RML` z`Z;(BbS-0Rjmytn7NJ2CNgZ-aEoaRb)VVw0R06icN*^&x1#^^w)j^HphT$a{q5I+z zD&;VGwuQhpAL7b68gtVs@SQ|%fV#x)WgE-O zMl|>M!epHwhrSX&aq@my!P|1|Hfnv<7V{GAlrG#92{%W{Be6|S7<#cD_qiFviOIQh zbW%vMBmtLQF9-*21a*9g0=OtpdIlVOhKR-;dacK@d*?Lgefhr0dLpz9eS00 z8Lv2x2cbgc%o-C_cNyQ`gL+z}fi-g;^@>wR*Q$9bp6R882U15YrIUT@&!e-?cG6m$ z?mY^USC)h?9b!naD_HzatVOrWmGsdODDip9-%VQd^KkW7313ne33vODk}Ox%*T#CT z@aGd?$7--bBFUc4lIv!pPu zDoG<>0>|%ELj94T6VqU#Yd_mUgU!IGV%C|>YUs4VJ#*nIk6v*BuUghS%?Jju(f9Tr z>Tj8_puJ+OMDd@!Kg5Qjqe8xemPG?;6wUn4=jLp=-~tP-%nb{&=~Do+p3xx;aRP_= z-Si`}@$AUBs3%Ai%67%Ews|}#&7(^z-J0iuj$aJm2kv&7qAc^2og*`ypvOnX*HZifU zfFzIQfbL5oW|$nJvxql|L}4&SR^0RmczJng!I9xMqH@eYNdMi`+p%NSpWAvq4QUE? zD7F?*I}N3d0)JHqO)Sdy?S|(8;k&O4Awpfj<%%)lF7NFmfoG?#ctXgEFZ_->j0qwE zO{B=3kArf4TF*GUbsb2d(Ipbit#Zc-9rD<4(&?%R(*`w`$LoEH=?&23S-}@^cL)$= z+IxKr5&MAMhD(KhoS^<^61K?Jg8=TDpF;LGmk8!DQm=AKwF+p^)TW3&-~GcEqMGP3As@TKhzXrLL}v=b^RZ z?-{(G`0d@DFGr5=baF(FuYcG2h)q{v$F8ogjz9N|UTNLmR;6ui>i?!LwyHFp*uDc9 zD88?pTtDNz-x<5)?dreM-oI%({L&9Y-d!F~?0y*geu6N%yF0!;Iew3Zg5DkeKHIsD z>6d$ob^VK)xOuuY_7yn(IdzZvHg({(Q1h<_0E{* z`penX^(81Ezc*WV8qDCWcJ=*rklAXmEeHNMrJ%mV^Y`=O_T|*qH31675+MAx^YxPl zog)bNB*-iEB^so!d2saf;TqCg$bi>HiOurvc?UxiI_vf15QITuli8iwouel>%`>OU zEw;TC@X4m?y(6$tV(ICWt~E~syL-B|b`t3N4`^RH&@pyWRP_?ZCi}meI zG;+d!;CND*DrTe;6lj(wM37fo=O59v;pbi06eyiYlw$CGLEy$B?ktLOI+YDHbmK87 z8O*5c8}fq$bwrb}F8BCwy7R?XD+Yb`c>3}0`l=_QLD(IEl*h*lbhw*L@DvVF2#EGz zcUMk8{x^L`A~}FB#@B>L?$+Ks?eAC6kNlG)m;+gPXKz{4q16ROrzCR;&nOI`e22up z2uxrw_Zz6Nm(e>TgSo-oFwqR1o$VlynXZc=R>Sa%K6`Wb4?9=6a3lOIJw4w}65k;d z_n`caUr}7nzSOOLkBpHsx4UR#=F+X#rT3MxE~W#+GaO-}R1=VBJK@}R0R?z^fsDSg z8hU~A7BWz^pG@!kDtDfuvC=#KxePoP0uZNK&Vr=}m`I6&UVZxGE#f!Q(6au|Ao3Iq zj}y>>GajRR11`d2Mc=zHZ^;tdx57M3e$yC3$i;5rq>z?g&Hs$4H_FPyHU`L>Ibecb z(GGxLeYiimR9h8uv5vA+jj8gAtgYT>_N2`aOf_QKY3F%o0~1ER{o)L{k<5YLlGCJ( z1HwcX`5ct2=x_kQW)2ysr=oA_y+oAMR@_)8{yV_}+1|eh2BgqmpZGg&IV>^d+2?)f zsXpNo-K2&}pk^fqslKbB-hO)Tl=T#rbBZ!Hk-{_gWB##JR=1k>v|haD)Y42WOP&nF z;K3d?iDe(G^3##XSvY|lx>F=SJCp*Y_uS!ok?z~6O8&lMZ{ybl)>?p!(x3nSSz=7D zt96;w{;4H*m~}j7*FLcDU+?R2L`)JR+dTe8`++DnVc(l>88R2m)%7FqJN(jxZyBC@#AeIgH~lC7`Ky-h#^`>h z-}4?0fsWGxm!F~v!Xk$=Z_!(IN_GqAuP~0U{MLQNUta=_36kh?zQOOu!2*Xbz|rlgm0;a zXrM#ade9V*Xn4=Ux==&gC+w_H9|26dpOdGCraKoQF10$WQMCKY+d{;yfB4sr+g#Rc z{d}IS+O~9g)xO1cczc~r@audj{7Wf!M3&@uH^D?iMO~e~wE6jFS?&O5)|W6UMfWxF zHc^vk+}hQYZ4CsKs;j2BHc~mse+jfF{NqYlCX2qX)cH}}K#dt~#{S}%u3PffV+2_@ zn?7^wyuS8LM?gAL7G+?SEw#OJsORCEsp}gnoWk!_=$S9xL5c!bB40CziSTMn4dj#~}Zq2}a-#9q6lhI_p&< zaN|aV9Lx=OBcGUwga_oUBQP)7+Om6tr<)vnZE{rZ{JyawF2y~wAiyckHH4Z7L!c~- z6#no(xFo?auVof4C%Ux^uRY_V!DH7U=nFaMKQ+y8tvL_$kqr>#X&+T%kP}XTF-p)6 zjAjM1_7YshLeuC-#3Mhc|pvcE^%VuOE@PY_8g>=$a!&d@V(}3*{?(ja@67sikAq zhVw=VnyR=DY@{;EY}li_-b@Cd5YZtFR|Fb)uZK|rrVaIRy9y4XCW#}&nhX^mO#UI_ zQIoRb|9g$nB_I=2;DaC<|g^yb8$GGNtYjRkix?qZ* z{AbMOa%KH7e0_d6SV|kKv{v2la(x&0eb^HCJ?r~=kMn!G^ZO2KzTMH_;vPXyVSps+ z{vw;FARGBw2QLMGB9#us+UmtvvH!mJJb!Cb+G$QnmuR?&S+2MON|cQ5co2Xy@-fgL zsTJoa!b@i*{IS>Tad%lVlc1myk`{l6_3AyT^5sOnTf+l2)auo>ch%ynS-WtVbfD`_ zYo#CPkA)xh!NTWsnBu7OkUT<^p;QcoKrLTbKaEAJXw}C+x*QmGEJTLV=lU5JK#C!a zRJcHN4YfCU7}{VEb2b>OWJv)^>4$R11P`4+n~Qtzf32IEN9C=W)goz}ujGe;pMs!Q ze@uGyJY?E4o-_SsUd-qbAtESOBU+4y*3ors;zCfu4pMEwDs2?Ee^v&hISTTwpj*~3ZkbDc)?abvw`H$p8JVF3i# z%Vk4FP^6$=?81l+EWA$$9`&7^ zHjf+TKT#LWquh2(B7EID>_jL}b#CJ>duOm3K2!?QnU!IfY4f1z+4?S9n@ybO@Hjl#&ui4 z4QG8{(5iuZuE2wA12hi=Z>*!&oLw!JffwA1U-0;}RP<)>pisn?ak;YN2mv*a7}H?- zO>SQ&XLTTqiDMbE)8;+h_MUai6dLIi?{9sV@0L|fsTyfzez+ztNMtw@f?yBOiAx+- zDObP-Sg?{caCWH%{OJ+?-x%vZu{MjEZ#feIf_l@_4TzQCRut3y6~HA^_u{yce;yzO zoLE9*jpSR=&o#@H8pGoh0mP*RzM>7#5auR`wkm&y#hvj2N}XoGFBr%!4Gc{};YTHk zPg(P+4MBIXTTzrC4S0{>f|=kjz`or3lsh^*154?b2N5P{0`M3QS;h>p9M)}oOe>bX z?@}`F2u7Xn78pXF5ELnW6rgbl;7gVx6)=4U8i5Yw7dxajXXgaHZm=)|0pr!QqO1e? z1vkJHH%yi`GT>N@If=g0^?ktQQ*B@;Wf8V|OUJ-#Smj6(#eI_(VlD)sXmSShLl;RX zOkw(~NrBQQxkY9S2ial@=itYcyuBnmx7n$syWwQ;1!AB{)VOJ=* zh>0M0B~COYk!oHkBV_pSU{&)FxS|G7sjl%zdP8fOrZFfr)}qHFOX51^%2H1pm%~(h zU2*jSD`U}mV#pa4)8mBp(r|zt@1wd<4X@oOvBw>oK&O_k)2A0O6}^Y3PFkR%4Tj@| z8=(ad>vi#vrGDdY0TdSG(aa&#;@`H6BfUGXt_N;W2h!`qP#Pa;DB}>;g_X#CfbVRk z?%O|%fj;Yj_?z+8ac865;ePYF*NxB7I6a%jx+8F8U(=02BkHqEtPGl>fIPu^7V2FK z&Zt}6=_Zpr(PWJncI6-n#EpMl+d3f;N8!sLS)M>Wfk>v9iM@{-D(pssn+eAGU{+02 zDe4v%Y0%}nEk^Yy$KYH+nN!D9mLY=sh&E+BAWk+*J`K=mo%BpcJ+2F~B_5H+BgV;_ zK(@Zo5L)RW{89j9fnw&(Mv+caHw&1%iL_-9OsLXlGC_2|9>aF;{jA%Qk*@CqPf8%5 z^Z_!{omA^MTgp56Enu|G`#+@yBq*gT+B(0Itw1la93go9l~oKCe#5j#%jA+V7p3`* z8!!jGP^_(js~Cv~diNv-9z!vyLuoPWH~UP0ve4|u_U<6S^%0IpPE-F1aNY0D_-$PC z)%n_9W*p$s{%Zm}eHaH6;fNBbU3sLS6cSTl8^~U1)*>*EL-(Wxipn=3-SGS2dnxyT++Z zF~fTQAfmxuzOH#%z21?z8_?W$6@{!^wpNPGvH1<2bVVzDMucF&SGQ6M;iA`ZY5wbF z=r{C3M%nn|@aALtcQEbwQ*ENf5|hmkA>HFt>tV1()2?jA_@X!zU|oH`_1h!!$s;UunJ+jhD} z2{`f4R$Vr?g74B*S+V`MQB_&l!GCr&QrD1-XpVB(dADfkxUD4^* zz2eN6HErF}e5>tU0#lAO%E~RU+EIQN04tdFO?9l`KJj!iCQXG{?#_0{3-wacD5JSb z$z|953=v%rzoiC#T0?Z&#U=eKGj*J+(s7$gt7t-A{Uav>B^Ej~Q5$j%= z_Gbr}0x@2m1pvfdd3P|&(1AZ)vG0)tG3nEhiFkS+a-b2MMI3U(+o;#FF#=3S^$hya z*MK*i=Y)UpEOr^9sSwxnkdd29twB~q_GNHx@S<_^qEdRPGQWN8eKYkxLH*L-+H$48 zO%WNv*`j%k%hz!;8+?YAm~1%RDx35eZ|V$%Sf(lD-! zzJ3l*kUnwZWk5**L^Mf@ zpDX2iO6LzuRU=U|B!ss=ff3@_e^j2O`i5d$Xz?3o15*vWZj6*Z@497mc#>f_#Zb3F ztR}tsapgL_F6n$8xaMh^voM;D;|v`NxZw|+RAPeD7MUc(y>KIG;ng?jpEqaFuHQM4 zPV))*mokAbmJuxhH2lAu3kWUX(Wk!bLJVD7yPyfL{m7q_6rUUBdCi}5Fj3$F1n?a` zMi7e3Gtp@tp*fEmG;~lz|nKJSsb>)M)8SzMN+g&-O#f#!8p-!crH$oP#7t26#)YJ`T)N^MT%Lo0q@Tpj)`3mS9V0(LGr`U zDCm}Sdm6@x9+iH=G75F2cR0E<*_K3;FPI)v0IaV-?&O4gyMp}pdVf2_>tlxe0$4iB zjO}D8gc9fS=o{<|p4Kk)C;ll#^Y?tL(q%ug8|tLK0&!`2G%~3qmpA6r@rP|YLyK$I zf|WB*=i=Io*^-4TTF-w*GW0dMlC?{0>AD4bm(0u(L~ULowR=(&P>>yFM@5)UN^{#) zOSW|uFIMO?Cr17!#!cOkLL?Vx~_i@!xo9RI;UdfdcJ z5Uwzf0%zehD~!$~2y^Q(2S9z=xN}LO(|o+2odvD0I97cz@4rNnA{g$#{Tj(RU`C}o z7OcbLqCjv$tT z706URA4#`Xl;tMCYRK{b;fhcOy6sOI-^45m2?sMgC!jfxP{qOu95;k*)*jQlM1ZK)iVaogC&`$E$Xvn@vrdC%h1;yV z>?y|LMlIsRPKZ^ff;q=Ut2&v=nkij&kJpkskaiN5d$I-OT@3(udy!fd%vq3pQs4bz6jj(Z^~UJ@xhi&m9^WTTWC&W5S4#Ey<#ju5K|3}=b@dS`AFA8?aCF{^ zHqm%KxNW-(HNHi<^1S7qg8%}82*atzwl->#^ciRzNgJUt8lqw8AD{17`?mZmt@D>1<-asX&t$+n8B&^ zetNhBDRF^IWvYrPsbq1vP_Vdc(JY?+c&di+f8ZY1`-;?vlmdPXojCHqtW3g=%?48- zx|lCBlVApl-7rSUhD&(wYw7s09vbr>t9a3^n?6ttRGZwIwIaCq{+zoW1E8{VvC%U$ zVblZl^grP;gY9AFGQ;Kayi&#AMFr5~xbY2T6eTyX{bg1xO^c0-miluHNVPf6$K#Vi zNSg_511+D9l9+XKlTPW!-5)PlPQ+apr4u~-DPhpp1=81$x$ z4MJ!Ky!YtH!Nh3y`NVLD(B!9s7+}c8s!|*uxE=(R<1AW0nt}Bcd5d_(pCrP z?pU}M-H$O2*IY(GiLNz-B0wj__23T&sY(PO8qyOSjnOzkzuOU!IwJ{_M%lC4Lq)?o zn1Gn0n&Of+2O}D2huqNeki!Co1&z|fVT1b1mXE9@)e?qYil|+K=Q=d}lbBPoRUFok zTmn-Sx5Q5+8xF5SDvsgV$(Pm^rk${7d9)g%&FF%aQ|4NmwNLP{5Y8=dtIOG+JR9fc zJz*6_lJ%_1uuJCD|FYc}3zU^&;8s^^q|C9xR*!Gc79PI7zcf~>%4wy%6_{8Od7toH{CkF)( zSRbKkO=)DM;<`|%=V{7+nH16kC~4f8U$c9t(W;`g-my*vJ!68+s1&lUw#x_YAnAzm zeuK?_+t{z-_6ll@_hux}x7>dt{)0@QR0_bns^7 zh9)A&{4kx#eEWpa1aikHj)#0*#h)cH5L-micp4vZptV!Tl(iVa$*k@s2 zNWDL9fUQ5%GQ}XBO)E6kxt`%V+CX$y;Wb*ewUuIG^-m}?eX52@x-a@36Gw`=OTE5l z5XI}#GQB1pdj7=GGHgfkEpX7q@L<~25(mA8+xKM zFXJ@kNJ4c)ufS$7afhlbhu1G{$I)m_^GVn*|H-HbN1>PBho<{4;G37J69qIoNeW6N zyvH3zrCrPAN9cJzPyAA644=WDy8TEQjDUNl*qiz@-dSAD6YlG5p|J>lIJwnS(-kG` z*#Ib|3rp^g0bUjA11-&CD;|Wzav)K^s{L6~P>bv*6SS55hV}K?eju<3K7wNMMCQ;* z^4vBi)_?`-N%7P7->OP72jBZssyv#TcyO-jXrR%UHM`ao_qS=h;$Epeo#|N(s#~-e zulxfHdWD3b?73YT9P=`jTcQMm6pr+{0YsW`agW;oSTe-zvqt?kSQ0@+HX7lD>3qq@ zMD|R{HlXG;9~)>py+UCx=o)=wa1%51deZJ|l~X$A4B&~-X&tXV*WTYA&(rbUo4-*x zf6_Pd>`W;1PbF2I*KAK43VOY%9B@@`^p?$OMoDW1*7nv!7;R&*1@D%Ume`=e-EZm0=!{AZGePd|Dh{u+V zArgT&UyuFy!8~TrfsoFU0{u%hX#(915dHT%&zBtRO;VTeR_xU z>@v)>F<%1IXvI0+U4C?wH|ATf3FOx|WAevG)5qK1Q!w8W#`3 z-Yzqxy|hAN*a!`kM>-BSf;lJNZUP%$BV@ssRTFtOH1-7A$wlAvFkn;dPpzU7ZpcC{ zPQLmCCfk~S^}fDFz~p?YyNLw<3`@p>$jn(sTh+qVqWd&8OLd}$RO>x6~StaSNs>KCN}QffJlYNnEtO4n_F1Y!*BPZ66o^ z782Ik(qmJN#--guUE8_F5`_dn{21kCD>(LiY?){pY{Sk*Y{J)%2azrhmp?70?K0=n z(m4N^K+|O!|BjjFI?kAAni;LL4r|M8-ISe)$F48d`F`D3$uq6uc&~ zdVN?8x>yL35Wl1E1hTxE$b>IG(!^w2B)GUc0C8CxtCH^6Jb5*}P zDQpjxu>7ng@Gu~F z1H`)A)Ew0ca(E=CRR8{nxxtFN(Iqy^(mNSx7Z^4n zD{je0@^r=&AxEJ_1|Xc!s9;d^5|^*Z5YqXOvIRni0p@l%ft0m%en~u)|sdsivLJpwzY>JrG9{=CrwWv zLk!5YW08hi$`qY1k#G)#yD#Y-m64Uv+IfOivc-{?J5t@0VY=r1pe zP&A(yafn@~%`l4>K1r^nvJG=o2g-&lQ^uGgT`WXVd+B7tc3b3%PjY-=6-uQr+SAJ2lJRDQuM!tPc`*mmM;f7Fn#QjaC$DM~Z0h z=?MSka~d!ZPqEi~hRQe$`pqdpVh?T~KL-7oa#`dw)|tdz)JeE1n;N zQB$xSPCbtGmanK!Xa4#}i=LXYp~n!>+vnY(JxI(u&RTO9RD4hS9%=U84@iu3=8#mz zPE4Ibo?EA~mOl3ImjhihLtIm1mb_)yZg9>LShuz^~V+U{oz!;B#oB7 zZ}ca0okdsp2~(PFR}{7i)qRI7PgEF9&r`Z7{5U@{vv?QUmHMIWHa&{2Edyk=+D7Tn z!6Z7l_-N_L=!@iga;@5#^u>b~Ub{NN7r{`ihzS=jw9luO3kVk*`zmmy+Az7sfOacB*@|I6gs1T=C`F$m<|p$;IwWGdYc{AZWz~C0-K^m zoN!Dhu-#nizs6j~@J~bUsHMmB&P0(yaM-r+WQiVDAck`pk2!b^Fn-w~QT8eh&qtDJ z9~Qx+SszxqUbZ6=wWZ?u35J7U?wn%%YtvW7m^kS$a47IR_H9XgC=x+{aTIqc_+D?j zQTNS*U^>qAOQ|9%-{4dcIahaafrf~%1ta2>cooqiQ zD$$9aK9uOf7?Gz~-IbE42acY|(!PUy<<$xMIa~c_W;x)3xv^63C;R2|CHW@3d-sO? zS4bqUpgn|+pKIEzjD}phK~#UF{%(+O!z5^!8=U$F{C^S-93IT(ox}hD0BQeUYvun< zICxsn3d{Wu&cWxx4Ou+p)$IqB_4smRc|JkQ-UEmk1SwP(Pw!8{*3+?ow$%o2%Hn&u zw!z75KbXx!9V3Ds;DZ!^mxK{FFyRRNXRpm7?Hlq3`R8@@c}j;ittL|-!wHQ!S@`+6 zcB|c1$4$jI2W2*ikQCO~rIma*rs`DljUDmf0nIo1HyRH7xPjc|&Jtf)g=X>O$z)i~y`o74>KQ|X~{Bt4-+MOm4WSs!*V`a)=(1Bc~ zd;hK|7bb;G@gKpCJ6LMpw)dLwXUPh7RwIDJ1|hX6N=-sSM@&uB4-=0uSlN-!-VJxcC`GbiERXNVE8BHW7OKP1#g#PfT~0MD?1~wk0?#<^jclqKUpqB&!|lWSQKH^WT#auwQoVP!mV4x<0LT4 z3-$X?C&k11(ALHwN8H6BrnYAFO&nmxLWR$#;I{kPY1!X@Y%3w(m5|CHKq;)V$$`Tg zpO`$(ORTYwYx1ZUTQ3&tQYJ2TQU&rIb{KPd;-FneJZe%2|m{mb~?o<9u%x|MMR5p_Ck|;t?M6a>K>H{bTLTy7Xm??31=nI$kM@Wto zcQoel@{Giild@#p(MSpf1w&pTVsxPsw4SE7_uQh(zI61!mRTVgB>@FB4TT%-n@C-pRL|g<%E?gk*uM|=cQyONG{tO}@x+qDX zJup#Rne6pPWtxH^fojpryqu7%P(e7brF(J%G;SCxd7rjQkuPOGURfYhk$<$Kj7iZA zs{%NBKa=e(9!l-t?OD-kUtM65(ka01+dkBxN*Z1GbAL@s3o^N!zzPcw=oUqbX)#Sc zPKp#FG{@y~Tl(R-*Qk!qjoX3S=&3$VGlydWk$Ibql$dzK^}@yg9wa z!EC<{ZB5RXt+UL}k&@*dSXxb{`AO7;pLn4=;N=?nW%2x`My+90V<;^eq>Ubnh53xl zHXc2V{(9F7F3{$yq0?gk+qcQXviIGc)ZP=R6_%e39T^ug10*Rtbt?ASZ?{I_!~b1B z`^kD7YXC-^ z9UK6T<*#16qeImF{z-iGT`Wde&Z)?P9wB8?oM<79Ts&^RKI~yIIdE>efOy4f;!>Cw zeGPz+2Kn06)MH17YTU*~nVl?1_zyHRS`tn%SzwN!Q=<_bTw+}4*VStndq;A8jlQ@W zc?C2W|HCcx&q(dwn4E${Bvq+HFz_O?y)a@^)MAoe=+Ad^5(-nnORc6t2aJ1f5|Gb7 z+OnYA9bj-bq{qV--}*$8`?Je2xr79iWVpmL^!`hU@Vp%q|C&AvXDwU?NAhQmiS_A| zZ5z3XGTdX5u8BPFib5yyPXxKhM{y!@^E3F{vV_1ueo@vv+i+0WP~&q5SMKuTapa>g za)@x4tBLmg%_iR)NcZoMqp0F&>SA%_OWM`8Y6GSb!!fmCS zXl&P({9DU2^zq2;-ePz4?KySQa3hImL=KyjidY!I!_4kenX37UfXv{FJ-LfNjX_yR zA4ozSwo$$_{1_4-F_plnj^>R9@=}uaT-X)BXrAGYjRwgeG`1zr54d9RyXMWBtD383 zJzTSHaU^3$AmI`5W`YNNrVU+a7MB4dbjY9^fwce|(3Zt~-i6AIz}_Me2ZC~MV?O?X z|9WJFo8MNp`Q~2qft7y8!b;y?^bxTL=YA7!cz@h8!LpQ-Y5GvZLY$YwlS_t+NC@PW z`oz6rTyBDY@B)9ni%Uy42xNr!qth+fV6|H+YHHBc@a^T~(CO*Zp;EO(ykakT8*qim zD9Zxj-L)nH-yomI?t-)81a*Rldg_bh>20>N0X!s)b0|C%29l1nrJWyGlX{L7HUff~ zPi>q|-RHG%XY&G>FQh+|dJLuR>HAj6KRWrzF&ay#OLjclJuXBIJwk4K{OJ#)UX4V& zK3mzXPb6!fU*R5Y=kcIK2lF&2Y?_MIbI#rL{dK?0u7HS&X{(I|-Y&V6!(K1%aOfr> zV=j;vhX_g~^rOiCF)hvRY~pk)uctNf6XU?IJM8f>D6df%sVvfW&Ew?)U#(J%q+#BN zeBA*w>jyYu*!6z>HX1|WaFXJiIK04ZXliuI?+)H3Kjd~=(7VRr$jN9m^!YlRL`D69 zM}33<1|$%NwPj7Qe1U!>@8B|C5iVpcYxe;fjo97qvH9Fvc%nkpK)J47DEF;U-V;}f zd8VuIoxJ~nW0RjYAF-~_1Jea@=I!x)i zoH^*AbldcOwIV!Jk>djTJV++Kjh%-s9R=^v_E8V1Rr{$ywt{Yib}=E`A?oO9LsrgC zSqY&e`tS`bt*IH;n|vr*G{~+VJuE&Ua1L+kS5LGlGDd@p>Co5`y&M%^Tq~P@l+^a# zk8oZh%F1wXaf~%Wv$x;)TkU%_bL#)X0YyqNv)!|SpaOYNuiW_I%kUE9X(A}hnuC+7 ze%d-;j_nQp0Qy}eJMHHO-4=q|&~v&qg;_*duOCV!7J>}$6m!8jyhZ_kz+DplP*p%d zWDN?5kotxM>?r#t&>`yLziGh zqLt0e5exT4?rkC)(QOJuPJOrtLkB6lmlW1eV&_gW{4wrwXNX}Hhvn0`{-u4`&EQ~M zP6-4~la9t|%-@tk2lmeoqG6S~TBc$*6#5s?gLuG?Bf(^Z7Y;(DBGr;cfZok8VH90C z8%3KKJAgL`ElrQi%ku?73IB(O(c+2_|SN*2(D zzS0F^1pt<8E{6Pq2{pipL834<+YY!Z;?G^t>!#WE$=CNC_$BI0u=m0S&XEVzOe8HZvMkJ2O`ebPJdX+Q0_14osZ)O1O!FXXxYGIVrot%3# zxo0CGcB-PgH9G-}&!r~;G_Z5&y4|15Y$G*=QUAD**pctI-m(*5N1bPKFb3gXP1oNv zjV{0#62!7O)z{s()j7&)XHv?;R?W@NYu<9P^>Tw>gAy z^~hBz7kMNwNwMeyRa%1-nu)XfwZU?nGOO>3i(qGik(HTdYgW>H-@lQUBwe^PsS_U8 zO>osatML0Z*S!-H0C8_081_rVhNYjIW@y;DemFAsX3nE?AX-%Hcxvc$s%!k1J*3AY zf~U~v>CK~EH&UrO_uKQ*RQc+AbEsu}=w-Uc>{W}O_+j$~ZJC|ai#cB--MM2xyYq|y zp{Usd#Wwl)la(DYnx_~sfvQ-8LQhhMEX@s6K4cc6KT7*Cms!#k32Og=jiPp1AE5qv zX4ly8+CxfNrTc5Oz@7)1MLKmke?(oiwLCJLDmI(a(|w-jLb|;9?653CO!{0Y*6v6> zAnwg^3IA3YPk;_j1_Vfma1@wt5eOa84}uOY3QBhz8%6}khj|GfLFUoWNek%306m3) zn8~|>OBNrOYvHD^Jt%(T3Aaa)itu%3AOYd{9geUk)Nc}qyg$c*j*#f%GcKWn^4Y?v z(nYy))(0XLdmP2D2admp2l3#}upsd4oR}yCwTjcpt4DaoyXE)nHK^-rk8?P*NHXRz zrJ0cqd5LrTpxDxBx#uM`(nnWEs`l$G0DCGK_T@{kzb-5w%*`ES^EgTRo9?C-8^~;} zbUN>WA%lrQlELxe2H;cnifo>sT5obD_i>h>1_Bz*oGpC&QU-uyJV#JXh3`+eL7=HQ;U_z}53Y=iRp;OJzIhyriH8Qupfk$Vf+B#tJx~#IVZCRjXWmERJkI?|F zA~s=$2kQ>_!nuY@Gh@M{&CmpGY$uqqAu_#=5q8<5u85q|Ki^)$TUT<6JAz+iKN9eH*q+BWDO z^|db=G4`JDI!GyXW~iOCK%=tN{alAgP6{nU`RiF(DJGZrX9(M=W!P91w>nRER|7AI ztm=W~9F{}tHJtr&xml>#S-LFAE?laQ#ZDzMxT~v?7NJZwY=PuBt;}gzZo4Vy_{ttw z&jB5;RdHN*hgG^*#aP905R6N#ThLsaLZh<}YHZhSen~E@Lj{VH1H6BDYge<3WfO@C zmR+Q{ZU@xo6vOEnVHGW2B0J(f;J*&J)m>TA7>xpzo!2J(eH1K=Z@u~{$IBauvzvaZ z-vD|s)2~_EsW>32R&+!JXWt7PwV48$=icu)7$7Wd;xEdRb7)fAY+JA*GO-d2V-t1@nysGGW;r$GV zNB)-nTD6{@VPi;ZctnyTqv4^VGt8?-aA20Pqm>03Iu7N)}Sr-GFBSUH;BMNCtKFqTb`u;(Q4wD;7AlT ze@?k$LZb?@OdJf0L1g1N>yuhdE)6EP1g!<`cigu8O*6fZ#7MqIpSI&eM0%QvG8v>L z!R9JJh=3oP-4Hg|NBTp3o@QFwTw$q-3Sx6+b{7jfwth$|e>91mgmUl>t0HUK$$&7% zn;($ZLwd2}*<`wnuA9BL<3eAfnHpF$ke3h@fhyQX#a?HGRS(~ozl(WRSDQnBJz4>!sO6}Oq=Qi6Aik~Mm+YpX&p{@ zTkrx*_W#U7C3G|<9BS zK+Jeya2%#aMhlTi10icsWp|naYczV^F1Vx~_n;Xd&2<3>PX6TSe{G5fFDaPeC{Xh) z)hYYXWXG@XYTdcRn;M7OVWggtw z!H^YOlJ&9AljstjGwN0iGuZQL`o-qk!&nkjg}XYUoq*&Vq=O8lfbN@@1zZ=G9_hjD zu6fJET0WNCs7<&z=V4o*di2o)0RC%3t3a>EHzwayMEM+v_EfGZ&$q@N7OP;TI8WHQN3XwiJ;wRqR0<2@r`D$h3 zk*lx{+?8Y?h&u;}(D@809Hp~io5|~sfhjFtGsWu2N#O;4L}_x3W2D}|&MaJcOx7&OLdzXN>93#sjC)f$#TSTO+BdQ2yE0;loq5(~ZH;vGqb+DMFC zvQW)6@4yP9LnYD7CoqgH_V{C^h+6y`MDQ>b`RG8n0SH9G##hgPdBI z7XuvRZtp3RkH&N>_-Fj+Ec_6Fp|s`9KfM)ATCj5R^w0}5Yc~@!|DlC;hw{EiQbnq_ zHFW+Zr{O*gAgVcoqJsfSqw5)%%Anh(g4a&O0khl}bX>GN434omIM{H@F2=^mJXDyK zXXLO95cy&nFxKwa4)v}^z6!Y3teBRI3DJP#yCW!2l)tllylQ3FR|Qfwxk+OYk@|>X z?(IPI@$919>SjBF6D5t!jzUT*IxXqrp(^9)rIny^oz|AHH{bey!RXwfBTNgHDbcyVoH5cXE=vpdtP>r_JbLyTP7UE}F z*ZEn+!*dos@)^drHV&n(X;Ze)9%|~KnFz#sFkQs+0!3?)-|O+B)(+BuWXB3?SFqz{ zlm&G+s$%%W6iD#J$tg=yIt^LIpg}?$w{UlqQy2!1v%O;~!uZH-e#>S-mB@veP&$t9 zx#pvRn!O=%m{__Q`1g zk6Q6*3^l~K9#K=lrm7hI6;4Pk8a@_j8OLH`z>lciWjA$Y^Zw49eE2Vey}9k7r|lwA zgv+EbDB8(ref+X*6AQHS|eA_wV~p^B0Zy zDtP|74o4~AW%zSDCCpF0NPwt2J-$K$5+oC`Dx8z*>`PO?L)Df5BO$c%Kxx$PqSZ2e zVR2w(7U5tlv3B2kOwtwSf@ z9kbDLF{G909CgKjTB1$P#v;(%L{kF48e+^w0Nrn}`-fcrlc9cdd4ob>)n=8vx2n<=^F? zW~>kOttQM235FoIkoy}`lTuBU?f)7e<~lz zPz(BPdgWkRg01=$SeJAnj!_y37P2}an$7EGdMf>EEAg;ZKmb2()6{CKc`-{vGU;8N z3pH1FewQS|;{eQMkz%VL-fC~X={Bwo0+q;lb_0>v6nguJ8raD5?__+Po#?`qw_D9p zaZgju)Pofg7KEJR;unZm`!5I)hCP4si~eJYdynkHV&>d_Y3Wp9$v357DFo_YYCFP} zHP}?Moi#}Hlg<~rn(r8?-ass^kTdiu&B$C2v9Rxyyb?LEMxNHJ5HZzS!aTPScE!S9 zpJ=n~6N*v8m8c+IxD>JGvd~Vo2=Ekf;<~hp%wtSf6Moky*#Vft8BMUx`Ee!Gsw)1jmWpfZ9$6V5!f|670L@aB zsQNA&AJjB+&pimc%q=K5pT`|vkQqtH*?Za9l zBiL9Lm8vrsd6Gyvg-sz(PVrsx%UCzl`GQ^nDqfb`?5+tnCBUksW@>L$Qc-b>I5!2? z+|BQ(2`7W3T%TC689rrCpw(^(AS&FStrV;H$xcCE8cYAmc@iDs@=66N6#h+J7jM6p ze9VHFLkAkiy)SsLHnWP``fnlp@EA5C^y#HP9Hf(9N$eBlT-H8F+Pq2|mQ%7XB3+10`O!GFJKw{=(jDAVi#>r+1;|{JsR%v^5)Fk^+yl`7OqCO)xQMoQ zebw%jRUedTN3)t)T<2{FcWohEwbDVqVVeB8Ts5bj`Vho7u?ak25={2G7pQ6|!AF$sSi`aZFDr36E;a+ff zZ^ut~!QpORN)ofh47UpLn72FY`wbpLJleBr?~Rv(WluKoddK13WJ78re@EnO zz4upu!Fs=7HX)1RN=9_9t2$^56QeSHaHy$^&4l}TZ`j{zH2-HpuazwNui|7o%m|jv zsG+223SrFB6%_50pV~ysSA8NG@x9KnG$%o2iNVrO-Z9*p{^=CAZDr(O;(KLl&S7+_j z5AgqFfdBx!dJ7=|08;P(04V<7ZYM^jcE%RAhK|-wbbmbldm-tS#)aKM8|rs$sew6^ z1fIl%DceSjqJ8|D4x0cOq~n_F9xO|f$XeD|fz*6N_X6NM*jKOL`snGyBj~#LDQA&g zi;a2RX^Wq0T)oKs?WX&T8{AWZx0{FWo4dgGS1bOHkQlUMs-6-DqO4WUg8JqfC#RI_6i@`KRw_Xo3w z{rI4fV4(kr1Do{f$MQROeBBgepaCziaHDOrj#~{{tI$ZIEQ^gJ$~Ci#A5{Sk`1z6u%wXm)_x9*JQ;Y;&|3%;L%Qwu8y4%=wvJpy7k&p zRY4?8M!|zymNo<+VXZy;AJezAlWO6OygX8;9<+pR?i~wTn8}4pO|ylmQ?&}$ga~p+ zVSG)af#SWAKQkF~rfV3RL>rckJjqRIIQ31{28`=@n+<`(Wz(lw)-6`$a?EKy%SzJA zX0BO(G26R4teK4&N~6|1?V|HZHB&8L1zp$zLh%>HjIm4PZB*W7+Rgkj95@71te4#4 zu2+h7LHF9{A&>(|8bp!K+sU5Cnh`JyB>C9+1NIk)4k*p%{~pn-cuz>6W(p4AMX z=J_F@GYjb@)Ye}6f|d7UwAsh~Rgzzk?k27y++(R*1c-!ifXoDEPLGdR4mrQMM2QLv zd*gtkb-;+Cyst`_akxgoZCp=><^>$H1z06IK|VN$P@~Ng(p+GCyN}WZ-iE^nt&=%w z%R@rw#zDtif>>J8pjCN_OyMpEae=D%6-dWB?m>mJ4h9}Ws)Bq+g7ke~ex|{|grJL3 z&T61M35_R>;ia!Q)zH)18{&=&{R5UaZu5$LPDvJp%9jKpM+Fw4!^uG^E)Lu9BnczU zDU2kvGSO9v7SieiB-NAM7Or8D4394dZRhIx8u5^nLcIly40!vD7u9kvbHd;!&DqkV zT?$BS+dH&t_dMDhJw=hM1?2Ymh z@KzMZvw|oRX7#{eN~M)hssUz>EQlmvZD6@lnaOa)AqR8{nV6%zCx%%L>;%I-WJ|RC zGksoV~CkB@|G7Q3*^R= zmk9&mC47QBr&GFtkw(jw2j??sB$Zts_Sto?dqoU$qmvdA#NV|)oleU{o_(lMhpoFf z-QklgN|C~S{z}Rp=EDZ@;6x;=AiQ{M*F5T)I#Btby6jE~IS4oP|3*lq1WHTLy%~XaI zRP#L~aa~8Fps(;|_4~1QhC`oF%Xzjd7<`AvDl68zzh-EhVhS@n;xf6sFLZDom3tcOJ3BMAIRoL{mZj3dZ+H+Zc94yZWohJHqjBe~riEtvYX2 zre88-@t;Kbp;KT02$U?nm#j{Jr@!cVQs4Srx9gsUOY^ggix4(xS3B^wi-e!l2EY8E z=oE^WLvpY|xI#ykzFBJ-S8G0~8l@RSnKm+Vo>#ZkcE)}p{W)e~jQq3LO9@Yx7j!6& zUVvMH9i-_)nxM6}4W5Q+zPhHQT=+!?nO!i3at#IwyeQl>%q`c5C!|ZikM_zWfq)ud z15@!SvDRz3JYR$SB!+or<88!5)`>B_%g-No9|u@w=+<>$w^xjg~cF4zny}b!)lj)(qbqRpB#1mlX zINQ!_)pesvKtX|627PpxfmEA*L53CsYuf-186N4@3R7L2Zxx6B!6mM$@5WVRguya$ z-5#}JkgwBwPl%kHJlr>l6Lj~Tjz8iL6btf9yosC~d0k}&nV*xgN2!?;6SAfUwEMm8 z0RU=(GSFNTt0~+fofkIErD)haH!796)%`T>pH0^d-ImP?TN9WlrO{6vy)KOrQLx2V zeyRyADG{uq$G$#C9CVFGrK!;kY*j)!lXbqvlt%7PrVKnu2biw+>Sn{%oFbttlDEY1 znlGF0ox~Wyv~vI=#*alPo1J*<gWI8&cL0XR=HQRc#xsUm83y;l!Tj6L) zqF9QoX%E-l>vRE#ep~^wxf-$!^MQpQd1hU^J!YUy`Qc$4Kef32_}v%<3iq-K+*)<% zt5H&yv^(_aYu1vmkS=s2QXUDJ5&3JJv1uy)Rj&=jKoywx9(}6N1eP|-@pjYjEw${q z@Qm$)wM>l%B$Kj8Q_9J7frcr;^n9vV3qb`JT{G^B3<@ch1^nwz7Ksp3IEGS6A=IL% z;wxmCz9O`u)$oA-e=0rzfKL-QwO{W0zn}k)zn!s-p_7xPnFsxUS9|{_6vTf*<^F{C z>cRm4%+mq@(EY!Q$NvuX$I;Zp(%AX`E+Lz>yp%V`5P$smhe7t|A)skHvuf#7Y^jDu z*j#wn{I7I4q>7WpI+;AP@#?&SE4*Vq6Km6A78>`Fx>-2_@U&TAJ2GELh>Xbr#7~>E_4+lwRc3V6axg0 zn@lpuXk-CnqWh4c^!40m0{e82qEJ5{hICy_)54z|G4qI@FUnfFs>Fu%UX1sft45;f z(Cndzik_~e59I(@HmRtV$zBBf zBN7-1V#_G&uXW|Lb8h(O;LZ1s78E|AKB$q@0CIJ-*B zVUj<3fqEyYNjIVQ*BdRSbp5nYQ46$X$DXe2K_vl<_vnY^(SA&FEa#-@SjB6&P4Y%8 zO3sVu`^=P+RqSW3W)>={FXGO>3~;~9H`{1_pJ$k35+Z@<2B~QxU|mB?F^%GDx>#;T z5D2s%;0&E@9XOhIpD4b5T^(3dC9L;k;*V>8{M5QMzSd0#*HtpTl6Hv4>Hgd3||#x%_G{h%mz<)DaG$0_8LHw0Y9ZaagpfB6?(;96SfyuRKrFIxUc< zr%o*k?Qer`r|##neDOt}L%<=o#JF$E{X}_nQ|An}g<98+VPV9oXaT;Woc#Lm(XSZ|c6FldleNaYi zArXiA(wT~ok1eJnsiDNCfA9vcX5zFzZbjvgxXP2_2~x5d+V=0bao)zs#jg3MI*vjL zuGJcCv{Njc$=WwMIr#d59D3A(IE;d;okH#}XjGB;1=~GDC_p;im zgmQhGc4D>_&t9IBDS~#>A83?XySqOt*!i=jSERIu-}z~p&c|PGe{Lm{=%ef%NpLg8!kLp(^0rGDon~|I0 z^Jeb=xPSb|MljqFc5jva#M~=T3hr&$2^jA7ogAh^&Bm65(&nMx!kGcez4=%nOM*w1 zt8u(Tph-O@T;$Ww-ez7B%{Q=(Z{p9j(V zm$cRFexL(6eBjenJaEtZJmODim) zXHNHQ$-a893V8e4+lcYSXyK`Zv;U8ZO{h@t1o`c_a3GzDgOM1f_D;Jv0c&F*^bU0H zK6|0zV}+03T~)EV6LNqTV|lj|10?`5m)~~?byp0=WVqn~u-|gpPtF7H;{}dr-%TLl z(8aPXN9jICRen%Y^>{%#A*N-uguc&KVSe59cMIZaAyd!KD8PP_%8u}w3i!D7bOL@V zh6q*eqFf`_7Zkc09(k&I4ghX?LY=Zlb6IAqZJneC28LnUcMyvKbnB+LwYqzuj2?6L zkN$aeNwX%Gy^P6$sDRdnVBPEB&g+v8dhq>#Va<?yRiVA*7mf*vSX7`MKPh(B_JvKJCRJLG^{jIs64ZU_>_#d1s^kVU6vj})e)Fx zj={=?jd!VvWe6y!LXI;ETj$?Ef`4rvoGpFXy{f%g?dJUUl5hq00PN%+fLsI)a4J#| zs&>p8Xh?Qj_kX^^6~<~Y8Y>tj#T0|$0xUEM)F|$!wuqh%nwp9e7_1XZB~30#`I0eC zP@AnL!c$Di3IAquDo=1|K;$!)a*0YM&Uc?c%0?mRmi5lkpvCMzLrMhnc~0!O(TsM; zU2uQ4EWHKz(iv$hO41?2X=@>adPQ#_w$}L-oYxHR1eUgBxOzf<+XVT7D!VKn2h8siZzIf@e>R_rclbpjj^%RH0qVfGC#jtu=k%cksJmT^B*jtoQo#=UkFt@Ao~3K z#%scWiCcq><&;t=B`$f@CE2QB^*i=oZF9xDXOES}Qs^5)a+9kyr0u-(S$7E9`k|D` zhdXyV8LC~gE%C5hNMuNmYThOh5epcWf1K-V(_qiEI+cdC@{+Yu&Iv02;hk}9AZdSl zq59k+0PfFu!?2)qohF~(r=vP2KN<$bsknOh4!lg5@ zuMXG=1Y_1$5CA*2L&ho{O}=H)`a=dlJXxw>pXy z{JY0s)5IY`CT+k#b9|wY%+zH52d_4t2I_Cnq4A^tSs())+wAnWV zAKeT|`Pc{zq$@u+bNA()s3smae|hHgoU{wzUWrP>mM^tEe!x8fFCM*-tursZwIQ{~ z3d|^wBqM-&Bm)3KCXBdotxLGDbWu?>9AMP5Yk=VA;8%n+v!zv{t?0O@=_$tMpc6D9 zaIJ}<8V%pcYt#p`ZcJJ2$drC< z`b)v(Pk#(EvpqM|*!Y*Pj?TnD=w(A{QjJO!#vxnT7nJ18fH-L_2bFo$?#*YcOxYmivb*D7jTGUZ`f^^KXA zn@=S44|=9-O#f7|Z}Ru?+tv0v`YDW574pmMODld{Y$$q|+URM6ABMrHDx+|>JasT@ zS8jQBOCRb}*;lXIqA##=lQ2XCh4qGJkLOM|b}C;aX4-n?=m9;DAF6KVn^f7REr2~_ zwMj)W5FpcrCb))2ww2-0g;0{91a_6tJ61o%;a)0i#UZS-oX|?{h~$B>I})$ph>;%# z^LgMI$-z&==h4f<%0=^IxiTy=g$dyB9az2MiHHUtF_+`%mUeXl>!l|HYZ0h<%HL_$;w)M3y0+0i~Si4-Avfb=l<~tb&(fUxl~W? z!0`Tg!sGGV_Oh50Q~7vn!iT%_*Z$!$m}WC%dFKN85O|**;_Y|0OixGZ6cJ}aHQx7p z)BG&X`olh$&ecQ*a3P`cJ=aqif+NN+nh4jqV4UN<*^GT%MGjkMOV%G44nS2$yj=$W z`y2yJMR1&yI??h+RjTjwY&SS!;-h>ib=_5CXtmgf-2Tvglt%UYH~zo7p`2D>&#^D? zSGsrMf5>$9{v2XR|C)gEhs#|f^CMQ}VP{T(;)H<>;JMf8Xz&u6nutOFX1X zT>uvz`^a46of<`LISyqm^pD6k?d*v|mt>xa`LH8^xiSR&!o{fFug^9Ku0jL{r#&k{&wVExuvFV@AZ^^9?->9SKEQtBX8pfRQ$q!_zY z(AtTGCd)xNA%CV4eJxnY@BX}|oiBYne-9~Ob?IR?@u5!j##8L<@?Rsqua$%3UV z)m45s?2AeCoGx0LW;n(^CYgRpA^dqCoRN*v0RI&ob(rJF39H~A70`_>g6dDbV+@)k z>)w$)_4{wd3Z|O07>f!3aL)$-K=VH;R%b^83)}y%SF5%DtvtkC|E)a!x|s1-sFjku zy2rcpL2}!)w$|UYth&AuoU=kiQc2)EwvZf8VgNmm_dfa|5_m-WFhAy_tl=EA>7>YrJ^oLHW@R|DymW zd62mMYv&^p_x7Lj$?rbF6L^xLVdfF=Lbq;=;SJr?WbWcc&#!&!v4umDQr@KJL@a6<0`27_`eCDy@SD;ysn9|bw8gQEVHVRQOGLQY3F1%m zA*LxtifEV)_uE7GGU6|K^D6I!ik!<4aVX2@h+vA*Y;@C`f_=PmKRS(d`pQ8+D$|e; zd1)-^;Z=+>Mw{5BmeoTj-f8*eNM_7;S^}byK38f!cUqEaitP_E=N>i-MxxJqT1b}O zK?~Gg!$lnjW8IZ~^Gws1As_1^(i}Ns3V6&{zwcbs{wJ;R1apHHduYY6gK|4sPr}fAT6g8j) zp8A}FHUpw=u~63|F%KjK0>&xKQq+4qdD9?ED%WwjMOOCXMCCTihEm7c1s6#@N{)_gyC2Fq?7j}ZL9F>R+W5(m?$Z;r;; zc7I}U9x_g2(;lfL@*C?LjfS;Xzxr=dafgwKB!I_VEGzu@g#d! zl3nPR8ukWfGx8XOFQ&V{JK^h8t-zVbHs&lS1s|mJvvHLsVxjR2b!eEd6Ob;_2u&S2 zI*WRq&N7M*7f=V{n{O#xWrSu`$d8HUtJ(-AOQMsyj`UI&k0^dlIT^RQHY){>cPY_P zk7O^W`f#U~aamyZ*hCSV#2CiFIef@}-mqFngy&f{r-abHdzq8l&BOgn3&-~ZNChOB z7&=AhGG1-7Y_r0D6`Nw~tg&T*g)*`u=mG_TCgiSQ;@oM#mjB|*+sV%JK)d^Ud2ia= z0oz^vIQ~g}`#tJrcD9kqlb)$-M`bp#x=HDQ{f`^Xh~2y-UnC@V&}ta{3yFCFbBh;t zBr(|6J&}e$T*?dr1ws-LOba^%qO5Y`MUcqlSn_zFh9o@B1YAMgqk45%P6aUmv5y>Z z0pI3wkhUieNL%3s%vGv_A{+mwn?NU!#wVD?X!#T_5+VaE_(d8Ey&?Qb^KdB)Yik^b zURzC_6wU0OpY@@JELn-ySn&%Cm%e=Y5Uw_O{zV?`>llu@AEA+g0c9lz<}|9IuELeP zr@yzQ!BQ3kdgT&|Aux_C7#UQZb9i=+l1~D zs3xie7w^&mJsYbUWU31Ve^FR|Uh6Y{EvO?$5&~Fij`qoWe0thm#tgZN9 z2J_ctAh1Ue45Ko29^6Hpgc<`wXlB*FVg#=VCP}k>@PnXtor*=|~hNPsX|=y&a!6_=j=gJzqor5TPj+8lRN zA>Gceo(v+tS^(7{J{}?80P)B`6-{W3aJJ8BuGueU1{zaDvveJdB|79CF@&v5?*tKz zu`wDkBXi}7A{rq;mJMq1x!| zxnpglfxy}oW^qbio{|75qW9;t7y7eazzrk+p$~Ib)!0M4z7)lT2P@A;D~UN%Gf2|% zqq25ZM z(L*Bj9>g+xMj4{)8XaDxF#*|w%(6j3e|x$-&t*=Bk9D?&ae)p~uM^5mF??Ts>E>SK z?&~;vfQodI4iMo@9-tutj;|X+^oE?x)@D~1MCen9t$mSEWk8BqT7Q_!yG302DyG&a z>|4oT%BT@o&?gEcQU>_Bv?@byt}rkPc2UoY5BAM(B1_;`WC+2pGe3gdM5YVPiw@LE z_$CLQs262ySLiA@mD~O@WRNZRCPm%@i|xlphx4d15|^X-EUCK48v6mtpsI&!EF3y> ztA#>R^KrGJ;h;rv0jm@;T_^Sz%&>)~*iiYJ)fhy%0+Hl4<{_X6Sqt7uRP_)SL8fiw zv0dX3v4A+|`Z-57IxqcLDrBa)npk1g^LPL5=v=HzfksGz{TcY4rQRQWfNt`gRAdF=Rm%aVP9i>sG@$9QrbEz8+U@jInW5Ru zm$&Qf?dLEe_6VVmka0~F!?e8hZ-*ISB!Jc}c;vdOo5|9~xtn8W5muqS+cQ*RpA1m2 z-XvqrbTa9l*h0vCIAt8cx2mIuRkt#(n&!mST58VbvNnuehC;JgKT>uA14N{p;R0}p zFGFK<-DZarjrCYwT%Y?s`rN=)EcgHrRKwAMfV6~peL>5NC%hMRn9Ia1NrY2!8D{Fj z={x(SGX7j10}-rx9tH4omQKBWEbOvX^Ffua19CZ*=E+%y?EbVX%x7E|4X zpITkAf!$L@08vv)coQ(?#R;pkN{zf~*SH7~7l~_PjaH%QTo-S&W0Il&k%!<(A8JGw z-8I5i9X7N18n7d#vT6B+RtwPmvA*5!M&CT0G-j)SMjJ?LhTJ0x6(3c$UV{g*l~Oqa z>aKIA3=?&FO$lpy?Cm#uP=hmk(3&xHQ4r2V9afGE9q*tpu^F@JJRCCL0Gq+AV;(FG zDL%l?Y7p@S?)$y*Mbsy-!KSirWcyb(+6xa5wePr~yxMZWhY$D7^L$`WC$k>DkhvzS zgS>Y+f<};Z&aD;2_91cf%d+5w4p3{e#9lVz)FO1J0Hd?KQv3WAjSaPbqi~N81kpMe z;^(Vwa;NkgqsYJDy^<-YRps6Wf2lDKNZT`r>y)=p{6>HWkIQNA$l@)Ac{}{yxdm9{ zI6j<*r0DVw6UjEs_MYlkC+8VMa~Ndwg|V53vE4R9w=UCcs(>N+q7f{N%Ag4?QQVYR z0`d?t3&+mMF4oFwwIK^lT76Xw>(w5Mc1Zysa4M;9TCIgQ%_gu>J#1MCK;a8D2jG+uJStc+cL!{&6 zhx6ep(N;w=jw%%lT8C7ep3;FSYT219~)_W9Rrc6Z6W%`Hz9Qp+B*DR|~zx&?iC^yhXup*r^p7l*QhE%+hJscbTD zu=_LKyOC}ea4-j(o>Pu%cQdh{j7nu+{ilex&iw^Fm(`8A^F^!y_DVqKWHevN{(7` zKvV@fHZ))g=@0qWrTTnkcVMbhCW}?wU{Vw);Y4i$>{P+aHu@@&eP*myA}^K^!l==h zM@`ppcbpnWV&cGz7spvbdCIvXw@#ZXJMX)fu3DD|tq>I{g2ccN5H@kB)}L&)q}L43 zsXK|HV8iM2{LOq$yE5|B54iYiVtLukr5?fK7;C>&4d4BFd4K*LTFz6`aPN{FmpcDV zH_H23+D(r~K>;*Dv_H;~Zence^I&1l<=1j1$j5VUH_i_@u?$o6`FhptdM{WN=%9X^ zikVF&Uf6-a#1RZ=MM_}^)2z_cGeeF30@bLr*4wn-vw`EiLyMf4h&X@y4M}O*u;_HD zc@|Vpv9PZ!Ll-3CY>!kw%Kdu*E!Hlq|4Xm$aRH*`#ZH8a9z$xVsKN3UV#!cviC1%q z_Eb4&zH;Q-_)2La*f2Gi|7N-iq9qQk;a2JSxBq@rRlTh|-%6k;poJCr&I%nJr3T}! z4NyUZP6)N)EWd#G;J|<6spI;_O&QljXj@?eY4PPm zdR60E=>U94rNjie35Bp7!1|GkeNsvejgh4|YJA0b2kNw?ByUTgH8OJOC4nwiz- zf*YDIGqK*7X9+g;scq9_`G<`F=L=wVLpy8!vqpy)b*mtCxz2V=h_d2Bb}bq%CoySz zWVZ{eGnoQg8EVT@X4ukXcFev8p3@s0=QD=@$UoF6LCj&Db^^j15ODmbu>~8uCQ^bP zzIJfc)_T)^e8t?-O>GA^e3bbi3b@JOUZ{4G&j%&=#3_?_4;Z)gq889{OL@8VbZNG0 zV99)zJ|$+^i|U8W(>Rqemn1+_wycZ>ABckqBR{ahTHMP9?MHZF1RGzpDELg)x+Kkl ziS84d6Ys~gYY!PZr;Lx`Y`3f`o019`@YIZx#DHoZxh`LLPC48KMdOYXVw~_WDlbYO zW4=+f_T?t$q!}(gj&&BOsP`m{w{{6HZi7$kp%TBjTh-8Q8Zu~aGwAW1E4)pXiwz`fFe*(HW6Zh4wAFL#r%+#wTb>`u2tLfd4#A=8&v(1gW67PF;+(4Kwu5Pa)iUo=mrXC zd>Dq3MXg!fH!tquCu5Iq%bs=oagx*G%DIHiu*|f^>d4X9MM~Vd zW7kdVBS00-KW7z19gZhKV>Qh!ooooum?kwMVst`$NTS5&(Lv8gINrzwPLV65@s^>n zS@0jS!aj=yys9lGihmG2HI4J1n?N+Dhf=aSCdx*+A=4Hsbt;@)2Y&WHS*>qoLKIZ> z{syyi{60gif0)W1kC(@6JRyez!v-P;7D0hbXE ztiE1+TxkcyC6*zS5BVJK;N~DY=E-i*e%#GF-#-{U_Q*9|aS58}NK$Qp+Dd8^eIJ9^ zfoWJq=uTk5idp^RN*&@OYXS6Y0Da}t-f72AO`iXvme-#G6ufN-ZbiL=x>Cl>uMDi8 z9YtT5#4e|a$;-Y_9z$iKROgX|z%U7nBA>?snN+R}uKetg0uJ&DeJ+x8ABl4*pS-<6As)i#C9)E*hY{#9K0%vhqhfTlEjmCL9)hK1HAVQct*UZ?HuOUEtIOoETzJR+@FjR@V9Z$U+?mnz}$ z2J7)ck#)<~t9&GWRYDN}NHZXsR8KC$pR3-Owcb-{>!IvX_Sr=``xC^OS5ki}Wkg70 z#fPaGqK;!CsAodD-S1StZ(zb#Z#0pM9ia!fAA+OWkKKnClNMP_Zx_1K2P%ZhqaA~1 zmnlZ9x#)q`Ww||C_`7rKpNFr(gXt@;_igys3A*2w_Y$P`r}dMNj~z9@UNYu`$)hK9 zcc(;#_sMR)?*<=y?#54aLOlf}$rgY7V2#v@upj|ElSI+W=+BDVDEB(Fgtpvo$2enU zS`9EcT~9=r8ry&ozn+8p#47jrkh?8&_S_%G+jxre)jg?>3px+96WyBhCr}us@uw_H zJ3RRk^-?f~V+oGH{^xo7{Dts}x;!!|_ir`e4bIN(-kyh}YQWvx?$JiyCR)99DT|3> z$?{pxh_Q5X5LqobM>oY``_IkOPi>gJ`hLX)|3MHhJlNE#+8TqsI z^KAJ=1Rq3&TDlBFn?Hkx^yUc!@WTysvdRt25#iU#lN$Q zE(a`fQ(p~^VNbxYjb14Y!Q66Vn7(#At;?3ny@it(xUFUj+!Gse%A)%Y>RuhjmIV4J zJh@L3;F(}=IX@K+!L16WueEH1YOqNZE&bd9d3xRME_^Qz3|%AaBxr-_dp0k+T$ukVp*_q;6x!=%+@EBxPwMD`NN*aTb~rZXuo?r zo-9&+cUNt%=tqGj9viGDjp8KHD3uaB5~)zb0l}-iymcE{K|%w_Yqu0cw?JTL_;o|4 z(i%VBVG-glS~H|kh_@f>GOqdcQ}7vnA~UOYAoS2ar|a)=K4Bs+B7H5;Q?}`OW_4w0 zJ!45Qc;XKf7wUe~@vgT0GI3O{8B(#gf61^R^F#~e*9Q;x@9pjF9=~?sUfrCIb$X+F zAZh*7yS-I+5faQSa(Px~0irpwaHc&U=jqR6GWf3EM<0uJ=Dm^JcdVVcc{$r-AVEQz zgP^#G>G0NQ;wMOo9Bg3j#03u@I{hWuKXpcI8*ukNZ2JSCZk&9U@L$NfkG+SwhNJs$ zObWz3lYSKZn1NXVxz@3t#SVYY_&(pwnF-DKcs-u%#qqifs0xp!pW>rUi{|f0{k#Fr zG`;3)WvD+OlY+`@$jZhcGGOjF_I&+*^?q}>F_Ib|@lm6lxA=%=@sd{Kbnz1J+xYNt za9>B=$@eZMxPPF6v?$-=_<4s`nJq=+gS{2Fd!&wk_rQyjQ9ECia%~~nUb9F(nZxfU zZa3Q?ARv$0Jj-jA@Kx zLNL`64ATS5+Uq6&4AW{PVz_G-Lx9>)i*AFon8~0i4v|1(dY}h{t7<$`jT3=&O{9{h z#Zl{DkJ+GhkFW*u0?b-s{^Fe~$W)z*UHIg2|8e%;;GS?mrdl6dDe?T(4OpoQ(=9*2 zC^o>9s8#bP6B159ee}lKZNZvC|Lge;f39f6YUw<5Ji5w#HhPZY2ZNts|6ct-3jB@W ztLd#+FsALBw?KolHw&CEj~~)BS$lh#=NF;W8^@nY;F062X8?cZqOtS3wnr!B+km4} zj^A_7GL$FsL-v}EET2)1qMu4tEIN+int4EEm0!E7osB=xOSivkx6{Qz4l2|eBJ_KY z8W>kA_j7Q}m+j;9^qeOH)o;y?ExUg3SL{6ax%BW*Ax?I^7#-%jNT1<8EDH2<8x=?@ z<6VjuC$`Hi$wJ!~Yxwi%D?V8d_7L@Ol3uCo_6FTroY3gJZ2emgUP{$5a#J45pbvIG z?jV-Vn*j^|b(J|5E}>(2bkXhb9wp=+#TU2E3a%IIFr;yr)Z6caB?g5{cxHrFU_`}_ z9OzcrZ{9mXvF_tBvl1sdFD~o$5e2s3g02pg7eFTWrcu-%3fgVLc0s5vscnLGSmik@ zUNq{$DV}7L4K%F|xKBq`jLW=6?b%Ja@ny&Pb0#Sh#4(99NYWkFeky4Dk7!1NSK03E zuJ5Ng`xiJP){7Y(_=nzuExR{6j&I5DvgO**@nOKnvMHI~DHJ*21$YwFj;Jl)1Cj_$ zx(~w{%4L`_Gba^3A4%i+lew=q42;IWiRs5qys|B(GNjlyrN_&2l-lV9>z?3QG?)=1 z1&_+VB8%X?cMPTREF^q@{l*s|@Fy_Kcr7m*peF(%9_uL>#Fn52_!p*q6qMUxTJR=_ z2Ja=TQ3zp+z`7|BP}TaH`b~yR1f|{u(1o3YBXqQ{B0qGk)HOJ!u>V_! zfyE~Xd?C#?eY4!sw^mAiqQQ*i#k-#*cghd?r{C)qTbpA_Etg@`RhpL< zufP-SYh()ZTh{2~;kYqp2F%DHgZS6@crhC`*i@FRtY>lzcl`RIN8C)DS$EO8_gS8M zQV~NPw7Rmp*70$u$@lTj?Ws6c!>%Yg-LB|kl!&3#YxL()*}{8krzM|_c3_B#Bfhfl z?kwr^s`;e3mvE8VKtnZTA$mP{>xUpMI5?IV>g3+&ZLP%~v43m7-KU<_PSXYC$ZqneaN1w^JL&H4eeO@& zr@>jidGa(e5od1gx50PgHEbEN{P2Y&gSh$qF1CzVA3FAj^(W(>-YBAtOF)KLuObCI zZnC1Ju*UJh^SV{yVoXeyPVb+CgR)gK{^25rcTB#*7k9|F_1VAHC`d#LBM)%=5BjIG zz{+f*VnshV#TyQO%)PK@(j<@+Nf402GSqdys$oyNc(P^4Ah+lM>T~&`7Q|57+~W9W zhv3@=A|9$(@8#ksLKuhp@m(J`FSmMi#u*{-<6q{SJeYD~PIKg^-{XzI53!~El_5e# z_KQI*mUF|jP;P=`c!|Bgi@(cVO@6;+znh{FR&NXfr1#tB*Ozj=19T_f_xDVKqK`ii zEFvHS$ZrzTrbf&8Ks!B3Ld6V!a~8vr7(DD3_;`sR?);xL$yF-gZ(F3;)_kp3wD<&k z-U5|BILqJYM(iTDfk<5;)B?0E)ehTV#q%i-7TFkg*%A%d zRlywZ7h`($+Vg{EJ|j*OZ8e}i9{ z#im)FPNj>Bq~ezc7va5S?$(FLJE^I4pESL)EVW!1lKb3{Il=Ow+FIW780QTxR9t zuHIK$$=xHJEif70I$V!~mF?ouz^{d%6CPUlhwf#MsKy6oG+baTh-eh>cm4(4sE7W8 zvKq#HA7Ws=qCA`APX~I>ze!((9c`ogxdnBND33l7BDtYr`JQ(BZX%#C@|QX56Es{@#;^O+1hE&~YdCot!$DdA@q zbJK|pd7!#DbHb2-UJglqdT|T}A*aHR=m!YZSs0s+6n}sYL`{;^Ny!3(WB^iQvWZML zLvauigg^&D0Uh(OP>5BImJQTXfzLI|OIPavLVYyxOjapOjLax!vfMTc+>mqNSP3e(q_1x;(aJdVB3*cDFRGOxE4mE8D~gu5e6gA+vcUKAxDS^s&oN5{?q2TTDZ5GXQ(i&J;nM| zt%8-cy9%Q_yoZP*U`Wyr%u~+PkTNJQ%xOd>|2*5$7TB9jaMhc(cm0Y$i=r45Rk3ck zPaiqqA_U?D=L;ayiA96YJoeHDQu|T<*c?hZ1JOpC;bGS+t}{(pMZn@@fa(=6MwOT8 zIZbs)jAT>=YG|2i&~yp;TWUl4!J!0}MplJ1rA&#)b!GtB@-}m>7X92Uiq({Jtv1%S zSVO2&Z6?;Ea7}f^NR&;mnNcUrh1GMe^{rl|tK0@QMp>&X*MFhCke}>Z1hSUeO|oi^ zAS3tDY__o}tl)R0jl7!vT1(DJOw9Qmu9dp%Y%(mK>c0X>>$xuwm}DEP26QvT@BlYu zlq6HqDR*zYECG4ZnTwN(D5gNpowKlQ1U7QQTVQC3Jk=QzR0CCG1BC(Gj3;V$l2^I+ zscu>GMqgGHd%Xjk6YXP8FDG$sxKM@FMXySm=x;L%IkDIz(-}`xgA@R6WQruH6Y4?5 zo0a~X^sgkeS#5JuZ5GIIuG&<_ILF!878Ft^6mbBdX$Pyf9so{tB4#2(iw;7Y6HgKY zx7$v8FI)$zN0`rZE_SkOG1@w>bzn-WXG1mNtEUH7!{F8!BBv^HF<}?raw(tzP6~|V zduAw0fAXZf8wRMREw71>=9VTpj%!den~|f&hpa>TX|p|EYk%|}o4c^^JE<@*OoduB zOC?2~AI#0|Fac1A6lq!5S-Zk*rhhDjUSQwJ94la*G@MH9?fK)k0q197Z=G;;tp>^x z6TYJwfq`dsAJ%txCwwj)JyhJs)0P2h;~C{wVZ%z1j}jAVM%=j@2ifU(VVyX@bhMAg zfVEpu90Bi%N!yU*r(6;a>eNBnX>_OuZH(qeP5k);PI z2=gfItxW{)wAX;JSg?%NT!K}=sxy}Y2>4iUGkpU{UT!cp=R@z#aTh{H)qgd5Sku8~e@JEsK2%1fquxJf3gw%h|q(qb}E zPq8i&Gx#4Yx@%Jgp)4--186)DMEZL)^A}r0ZC2-t=IJFxAX}W?ggedb+ZSc{5xs^R z{}XWy`bjj~_2Y(hKu|E}=;a4j48sx*ds0P%xm{PBSRJN6NkfbV(nF4zTIHcl{7#EP z%2dG$w=S!90<`%Tn;A`uP=5~2Jc7zkVBA)Q60#SPBB#K?e&4lKv%rgldu0ySw7E_F zn+cBa^V{v`V5UbfJDfzgWoxAajI?YJurDE=oJ0`i9&VIVXIwVvN%hp%XIL30C+m;n z17xd5$sP&Rjl8)5Cm1cXW$~DNKs}H$T>G(vCTsxq^93`R6}y>Uzzm0(_?R~|UQ!d( zi}>#>u$fnf(vwBD%=0?lyqf7{G#aL2I`_!X%|TiMQ7V}3BxvY`xe`?gnFwD5m}bUa1iYu@$y2rrzpQ_F*mk&t$+W>1iVs(63F0bmN8?u z=`K+G3n>Z0{*%olY(UJcrZ){rgX8h|4=OxuDAy|#$q8LPRBDG_=bpW;o{V64?`Vhu#E1|{X8qu6Ent&i+o_j7!zscS*nh$y*K95OJ@n?>c;i!Hko1x$m zR;DB0=G(5A;m>)DF^t6ipP0F@RX`it2tv7koH4L@!L26#thM)D-Nrs4ol-07nH?j! zvA94sp~h6kSyI`j>TtAFj0Hml-dXct=MNYVOK4_v&gIojgvCj&q_9rP%l1*e76qRA zDbhFHF;uMsqY%QDpH^tBV>K`sj)uf%^qw)sp?LBt7wb`3uaDGw zjG_ZknPwqcZDZ$p1SAv(X&=ArpyjVpnHlH#?-7Cx&@H${s9U^7fXd*xtW_YJSzGhr zgHd{J{{>Fg&a(qI0K@8cPp&3nFB;l5iBIWEN;8`V=x}So!pc~kx)@X9al?DHPwDHn zlUYICb^Y*?-mgD`ADUb2ds>sUUHNL#Wm2uPONmyx^jOtGSZ@4{+2_RR7XGOUTrV41 zgl5T;suK;kn?>3N@JPnz)pMme34h7!Ua}L&xg$gpeQGjz(JF$%)F-~uxc8O+Wz@YH z2tLN;No&mN&o|JTyZ$?#-zDLvQ$%N$+V&>yreP=!BJSSDo4jHu_OND=?%bPS-VktP ziM|%3X~?Cc0K47|O%I(Hfx{g+*1D2-fYl4l4C`9veRRcfec0-PC@(xxsDR0}h+4R) zCC+@FiKOf`#f-k%fV#vgf2K*B@6hanGjFlzm=z9&jL?~@qB%!jN@7NMP#SebV-!&e zQXN-y$6gvtm($>8Kb=VlNteyP%{{5vc6Rm6CVwwAhUcije^nlb9C z{Am-GqxYAsdhV+6GBx%Q4`g28?3M(yI^*LH<>IPzZ% z&^u`Ad^3O6_`goSL4v9ko^|0;6sHurtifa2z#b?zH&)mnORRu4rP~)=t zSuK%xa`A#SG5zT5YM2+DeuR#-A+ z%o!6gGZ)>LQG#BPAqstnr38|=>BO?rz|LxZOASUGuf*vFghgs74E?LbBkh%fDq9Z^ zVs5B)IKrC5X*H(f46;eAhAS#AZ<5Hx{ct3;h^`?u(^MVP)N&~et`Do?XkkZziG z5Lkw{F(-w4KhmCk!F(9&O|qt35{;p5Oq{TfL7g@)T&#E|0pW z(gV;~Q7lXfsY<@v?co_9)m!0qwjMubYdh+{ivTuqaV_cRZqeoP>chp+Z!gk7ouHRb z^;33rAWMJ6wDvYRqIf9#Bq^lZmsTpdZ zsw`U56f{pP#z-x}*o83pYoIXsEJBR)*bt5Yg6nqcO%zLY*DOM@%#rC8LX zF4URDSOqaUO_@$)F1~4inMLI1fr}W^Z2vwq zH7^hyJx|}oH;qlIz`Z8vkkLq{3AXv>NhqhwEXcGh{JL&=I6%CIwQc(})xeIdsk!UB z>?So@M7`4O%3jl=0v=Ru>yzf zb^l#v7W}4%xt&gWzyf4-qo90iCQL|q3PX7_VRNx3{@Y0krPDHPP+eQ{KkXD@_+#cT z8cBPtC~xG_q9a`CI$Q@%Mie*Cpj^Jce7KluKE*&`%pAdmY(@qLu5@|N)#X%;6VcHQ!sMDEm z$W2i67w*PibYrF38eoaH#TNfZkpdJf`id~IpUm06(T+tWma*s|NpAbEK7*v=8k~_r zo)877!F#(NNiMTsBMtdrGGD?OZ$A=^t}PXIThJy?ap}x0T*U>kJT<8eZk7{t76Qa> zAs}*nf4s6dpIkd-{_z2h@NCGy;8h6&=7>ghM0s>pRBESEqOB0HQ-3zdDG5eh6RJG> zF>7D}uBL{0Rj|jlc9v!Ta{}gP9A~3r7Yx(3N+M@xU*f>xS;VXn2oX0`a>#eYD{`|km_*!u*%c(^TTkUDA{X$C)Txt$+Gi^YiS~D3+cw?*AA@-x2}2s z)MI#N!L-iXW|4R!>kUIv)QZG0RJ|TkI%7prl2){g9=GhYOtbd;X5z(C5}COdEliXu zsNxV!euL66Q45&~3g+icr`x^WzC%5jEr*M(sOVkQtsJ+M^`+Q#jQ z7DRx?1vDA#w34=B5nCF48UF0Hko*M|TlHpykEgDO2QxjV3NE&J;0ix*l@%L*BMgXX zfpJwDl*Y2>C{uBJlfeyUtD4wnOTfi(gf)%ccl}a zHNCI{H{=`(}6hN^N<;|nts;iu47aZ=2bQe z;z8}WiR$iRX$D$X44FVJeZLPPI)iNeK@U)u98^tL~&UfARq4>a6C&hlJR$#_*DY`DU8}5w&$3emMi` zCLWu*tgw79`r)bKllq*tv5*p4g60s@O)BNOnbMb>|3)X9>2>3?LQ|1fq=!I=e7yZ&O^p4hf+V`AI3 zCpIUxZQHi(Ol&(R|9`3u>!9|h7biO6ytOd zChCiwSeq6`kL|FoCrT?7%5-t86KR+Qx(kIaF!B*_+p@ZFt-=}1Qq2}3)VFV68pDfd(dL(B{>ArFUoRbm$LZyW$JV}q5f zeo-huz=+4{Xx~CRI5(P@WdTU1+E+T3DuiSicB;R6C)j0(>1Tcj@bNG4Pt5q}iWz~l zuosItWKwS0f3wGPHo_b}`s;l$M?;dPj>TBW);ujz4XvN-B|Gc-PiSOSMT~h-QSAuD z1P^-)xsf;706jhS-7$94V|8Unpv0wZmK4YcKM%Nz?Yb<{=Zq0nDPl6y{#2v{dy^@D zxOhgc!~Z6~^f<#2%5-`T8gvZj*5=xKU6pIdkscj{#Ls5YYb#do?gdRA*2Gb+6XVkq zFy-xCys>tMPu3IA_X}>hns~|R{0n{D@gcx7pn1MbOJxovI|6go_vf27(d0z}jE7Y* z>3B$n)@9^LOeqgaL*0e6Ul$u~W0+w6>@nix5QBB@i-~=)RlMWISeI=VhT^up3PVdA z@pc8u(ZOxr(X}ao@eHhT&D01bFG^dU+S)mnB$Q#xwTen` z_mGBm-+HTE$OlSiEGRfSuuOc^#TTWKHb{VRv>DY|yH9NrfcaDMs4}iDz~s}ZaUi4P zIN90BG1PC3h1WKSaWhV#%8ygnK<#&Lfe$u(V1Kqo=G0;A7WXQ4E!E}UCxruQ9zxOV zRqq8P=bap=&VWd&Wcm;=jYm0AgAK$YT;X&lHx8_x`xzi=p-g7R&ZdHEt#nLV%7;QU zZ!#V|d-j%*WD-=sj8ET!5`CHM-)g^(Zx_OL+N+yxMzq|;-jFY@B*RGZ zTkPmFQEbD?@XL64Yh-vs3JYM>7=;_l{9qyGBK$~aK3I-7mbjdD#nN9JN&hmL>G2Qo zJuG;{U}%2Uo#pRD{GX*&p@PYBBRd@Om0zAnrm%FWginGOJ}*rML&G5S$1$4GAth0v zS{-H*0YPjgUDH`i%l^A{OHp-wH?3liu1G*x&89~5&WC#-n7NYylC z(6TX3^spjFHnjv_372=Ary74)oeprS;^@t|2fR)P5~;GYN?MBiTqfHQguX#OI{|0| z1J_(Q%ZMABM*PT&sDH|1r;vAu>R3D&tXJS*m|T_;pr^Jw+Y+6hh79{K!)1%MTx6HL zZ)V_Ye>!PyqxDb0@jV)z_ufb#KIn9sPSz{))L^~yxRSdORdpmq%v{SvKtAy_sj&zB zC&rNw1AOBRaOdd--*Th{07MCvgY0O0!$iR#2&0#Tw8AK-AUpuJ$Mxcn-DzYJ`SOX( z*@J_|8Vp$L?BAuHKs#6Fq(yTOIcuA=JJ1ECa5h}SGh{u0KNSgKq~QYHW?w9*K!=NC zhReYiFf#6R}ErLzRhE{hOxQjH zrL|10(L|##%u9k9LwEBBnpee{EM7Tsgh(U=k}CcZaHa6XC$apLr%WwLY$R81LkNJDT#_p^I5xT z-Bk{WnqDn&nQPFsnPh;>Lyisy#1(2Qq@C2@xb3n-0>RO#srF@;#ckwixftR^MN-Q0 zTrRSx;L+pjWIqP8duT;aPjp!SX>qyV*Scy_AJ{ZUStV@(Pi}?L%iJoDv~P(n-F13c z!`J(QjHS|AYmk-*j_Fc4vsJH6JI;AwASdcO`-n2Ll$@R3i9l=-?=P5Y!rMk;rlcD$ z4>B${kCNU-^9%|iXegb|krJm(X0SrIQ8o->o2*-#wTXiwYNn4w>ry_~86b6-S);SH zOc!qe&UF;m*0fVsPr9Tp$hH%9&e2omX1xbipZ5J#@%V2@D3mY1!wW!ZfL!snjqO%4 ztVWLLd<%;Pg~^oU5{FCov+?KKY^704hh=(r^m%Mn~5;SrJ z#q~Ke9uY^p9e)VVNCquqL32v@&Z?H>|H_VuU8Y$I=kik|jk4nJ3F%giY1!W5&m8;4 z^Fhr`XJVD%t8`lg(hnXV>#*{I)e%6)6=(Mtoyu-SQq^E_K$$WQaMw+-4H?LGe^vE% zvTN9g+hXk!HakhQ+8Oz%J4ypAA|_gYM*;tuoNV9-7@bx_$)}$ok$3YBWb>U+5TSk4 zfbT%e|1M>{x==bO10u7IW)vKd+2Y0qk}#NWC2N}5`j8F#TS{%4@c5(=mV0>@iwP4I z2ZWQmHcA61RHu(aEp)UhswyzUF)m|KwcM=Az~#pvJ0B1PwrpWk4#H_*ck5KL!Mp?7 zSPpyd3d=tzx&K9B6@3m;5MCBt?<0~6KE233BZxp*&CZL4UH3ey>-XN9k{b5+h=3pa zb}IQyS;hn&vUyE4kFjHHuKN4evKWGm4o>3|ZZ*ef+Vr|Qw`QvpCdm7u^GU(^9|G)r zMzX8aEPTZo^UEuXIad{eroq9j`hFsX7JwjdB+a?%c!c>n-fvuP$u!6|I~rA0A9LDe zTEkxcC^S0dloz4$fE>zfr&3un(TV{(K&IK5 z*F`p3GGQLJ>6!CQDqTw#5f%HAYSg6#VR1O0?+nIprP_1#R_fx8b;#k)J;LOU2PWeP*k}#hQfQBAlHW3=^)K6 z-#CU5KA%H%SnOJYSSM$Vsa+1K6f2yCXiXX;vq6niwTX2GJOt+n zix4&w7p^5JRjFEgXBAeuRU^?66uYxPl~++1+!IkHdd|QPlOp`4I(m+=B%K>hmeRJ; z)a5P!eYbv+Y=5mRapXhnnG=y(`KcI&_OFR_9;4cLTg#X}wFu>f&)W(o5w|NlB(YSa?#7mGtqPCC8=P2amsz!^9d-{6j>|A{blmd#Y{1`4~hUkxU?d#&K9q& z*;&@JWOJSsKDWg}eQ{(NCw7zmi+Q0EXLR;+Qt9;zWi@Z&)w)FrAX@IC#XK;vndV4* zrGAUk-rY@VSb_8kiI_~5CDb6Nqp=SsmrHPe0*YiscA*T;qv~HA%;Y&8LnaJHwWQ~d ztD?%ZomaG7h+A)Pz&wb4c@Ea_zmFj)BU0hHGYtRAEkghX(VxO^F*UusfCTg8j5Zn? z@q}lS#*uk^M&nA_OA#$uieyGqUE}`!I^D{7tHcZQ!df|qNRx&ZgcT>|0q(-+{1D@vRg|J_@1s+R7t5@ zySk3GnQ~&CR5RYNwzMjz{Qgw~yRgnHuW5yMXuw%X2DN!CvUx%VkV>l=o!FG&sAF&I zW*CrkO#V+auwBgDw%w$ZIgNN-2g^8+5Rx2ZVpOH#WKbB8&Zjzn39&iWcTxHj{P^@a0bUg70N)(dQ1nQ`GqAP=R7%@#Im~>WjD=AiJki=QOjx$4EEyhT^mnyds*%4 zL!3^V{=6m0J?Vl?fA6@>j7yI&Srm&^`O{N?ab(z5qa{4u3-~SxMD%bFA>F1@z53r{ zDM^EMuo6$K@UIZ<^qGRn=lbSe-LYy>}WNbtoPA>^7XH)yD#q zIiA^h=LOQ!Pte@B=FazJb8n?uHd#i>`UXHdtl5#5o&kj+X4B+uXP{t)y6jSnt`p7? zRM}m=$}SuhxErO_J!@IB1{V@-?9FnK$a^Pu%85K#*8J1$x3Yiu0!k3qj58V?NrqIp z?hIDAx6;pqWB&C<&uYIp#0Q)=FV^l5N<#?vGGx`;Py^k%hc_}r{#7L3xqWucL{;sx zIz8USEdb438Rp1MJOae2a%C@_fRVx@{ef1ZoBFie-Luy#%P zG+|^Bd3oVE9~9x<+o*ZZIXvtVNMfC}0y|aYl@}qhJT06#W1tour>2?)wRN5x_B%~t z19qy82!AiFYvid!iwfug)jp|yuu`<+L_+F?k4>w7A)nR>JE@J?Rjr007~iIHE``w* z6HRe(|G=>nm~I5kD?w5j1EYlpg7j`N^`{YY{hQL$H|p^bCDdINsJyAe*9T*LL=~WH zVEbgvox=;q(9qdth3IhMC}0S*YEV7yJQ1ftIied#eS|f9Y+8(Gy1-n9oLY8O#ljESTBBVU)*Th1yfcxYz*pas#7`YQQbj@_ z1_d&@nm$V)4DYS4Wfh*6yr$I$4q$QZS$lNQaED@IaaKEW`XOF;15z|y+?$&)5c8pg zUC*LuI;o{{NS;03h|w?rjp5;1FStx&QFDI#$@j|I-J=<91~bWZMQ=Q;Ls?sf`&7@h z#*5`nl|>pyr4h^!_Ci}7$tgp6TzCoii|E5?OHa#F6O=R;M zEu7w&{6b8!f(>f)iS-7Qg=bX6={)1D-&*>D@Ir27gxJ2$7KM30Q; z>^=YAgKi147;|48Qmtz;d+b!#F`9bmur7*Ry9pT+dduMv=hLt8n~&>c8Pk?D)BGZ* z3p`_9S7lZ&-%4w|k+DmTgu}A3hJ2qV(-6uL3&=ALR;6SdTK#Ov!Q~@9Ok14}B;AX&j`-Fb z2f(j;u^N>wt2jLJ8I$};jWE?$i8U@0>amV#y2c9_%??NBS+U}n{U;r5DRW6`+Ep*# zI~7a4v^t2^NdCk0HxK-C6zM5Gh!xv3?CQFLR;M8fz=UkP;dALeYh-owQY9-_R5zN(WeU)5og*F$1zoy32En zJaN_B1p|aeHbuhnRZEDryuC2~1Ty3>v6lxLXqA(TKrVI|?I+G?j=^R3!*x?zrkVmj zy&=vgXzE|CIWjAfFx1(g`gD!2;5tkwRQ5;sZQP9G)jIAlyQr(sX_WF!F@#y$ooL8{ zI8R(p^JV_nt_DXx-Gg4%pF&&#ae=uZ6$Y4jk_rw_oXM=0WmAAtGBs?or2=zZ6Yi+0 zvR$boCPg={CSjIL>&TpMEiOL!*5MMYa!RCMf32KEyGLbr)wdtlxdm&6zK1PA=CCU7 zMwO}x8q>8e+W>>{uJf;>>}EM7eCqClPGuzPKE}D&?-HzL+G_0ScpK(>0!p{shMnSs zD4>e731V|uXiet)fll2>A(`cr(<74_W?TiUuIp1UIpGy)!Gr5+NEd|^e8W*2)ya%5 zVk|a^`JW#!!Racj&=uh8{CEkIuXe$PK>o?36;-2+ml>~#S74XM)V&fKMR>HaEE;xb z{l(t7IXO70TT}BIa+h)TFO_Caoat-oDXQjp;Ynkt%~N{e!z`7Z#ceXrIYNp{dQ|~l zi71b4i*1%M^R;_#FZ)X;{0q2R%MAPdXBXpnb}$!jYW|eDIZ;>5J=XA4*Y>~|I5G3d z^VHrTTgebK9`&Bb;428 zk5H}nc!@qll+CKYo;1Uhq5eu^HsIl(=nBCbUd|LguhcROk(-dwp_+?0$2JlRN#lCA ztQI}YARcO7Jy&FqW#m{+4nARHn;ZsvwO&-oB61s_;gt$VhBg_Y;*?ab9hN00<5&R+ z;3?9^dRp9fE@WM}geJzWyr%YfN$q>u6448rMX3fX_QeKPLLB$ei+P839byyBUY~d+u-~pGAQ#D5cnfQ!Me{cfj?I* z4nY5`!^yjJF0}65jzmTLCiLcvKzpO{`laNf0D*AZVjoEk6Y}Z@YX^Ial~;d8XpJZ1 z9(Bc4u2oqW#e<2LFh+ct*ml3fZU(Uwh6 z2Gk)rK_9{hDC>K1xqr3$SE5&;wy8{%!q@Q}*SW#td<}Dl67BBaJUdgP+u5E?34HY7 zgv*}22TZ?-b=bvUd`=TY?oFe)7s(1=mQyWRQ}UkLJG(-J3;-WllV^Sb_E(<2M!4yT zFtO~VKIy`bO=(5Gq5SEWq)RY{_n_5$TCsW)yu6YYSNFkQ4XNmY88+cH+P1 zxp3>^?=JYgdVDP8e19B&n760@rhnBMX_t9Bgj-I!oc4RJsZp9udu8JMxy?=g{PloF znr962LOfZo!ix)Acmw(-`raJ|@g26)cLj{2ZMLcQ0+ab20iglOj|~?(pm&8t`h(CS zo$23P=&AX1_D2)0O-QH)XN*EhcJ{YH>2n?_HYvw|iho)#{)ve7<#b~!y!gG9Y~|&M zQjq&&_+QKor6Vb1*?I-_kZxn!GsqEl<~>UreEGn3WK7WR8`YBUz9lih=_^5A`>>ur z>ys3}(SW{uZufiK$-jIz4=q*5pMcZPK>t1H&Mx2!p%OA4a_g>OU^D9BD_xe0?SNo^ z|BsvIg(AI%h1b%9m2tP9c}KNaa_TdvfvD}(483MnewRcq@4g$jo`)0kGcEi+B{Ta< z8-&=+E$&0VK)Au4FqkhPJloH9C+MN@frCp4ps;K8pM6+nL}1Sk0=L`fj`C6Pfv*(ls;M(!peJ>cP2}-i| zXpUJYcwV)M5i-=}fO?c%zF}-RYC7**(LM!4vl&M)oFYA~%F*)#)6t%)j^%}AeXyZ zc!xT+havFU+rL(fe@T~T-4fMZTwBZk=>l_j{J^VTrbbt8DDHE0yM{kNr*f9veZTXj zNbMuo>5{^t0P(K|ZZ_h^b7TN-1YGLPMg=);cJ2ah>CZ}2w%SzqQ&BCM@CaV z)(*yM7rS2VCfK)6=@$N}4-|Dt;lHOPZg1^*(qp~Ijo1jLW5jsRreeGnPHzg`n0Vnm zw~ZSif%#Kk?uWW5{QeATI{eDI&wsWB$`9ZH9AWbxcl@W+LM<{D{oQfT%D z)ctN;g}ZkWX_O|ISqy|o;EAYwVBkaAF_ABs!2jfHs|pS0k-nG7BU;XD{91`Ja@_$N zcw$OYd0+8+J@y0sXA<59@B?GKjoTD=aR0XJP*>n{kh|W`cXk4*{z>YJLCcx8{8YQZtH= z>)hF?U87Y~)4TtSZF!q_Em;Tb*#?Tq<8fmbm7C6Zxfzgg(%&&jI^w1xf)AxoEmZq} zkB<-=8d!Dv*fQYbOyG0v=X1aQ&Gqth_uB^wTEwq9hm-3rHt_UT(T)Y7bKBXS1!&x? zkv;Q$Q7dX~Zq9pKiVCOpzozyOpYn2VW12kZ^Bi7v0P@#AH(NBX04r|N8BR>m?53x~ z@QbT2an_ScQ?7DuF8_pS+vQ)y)Ci_RLxYO?5tdFb;@s8gyvqa#II{x7VJ}pDc$StO zi4=->KCv62RS-%E>Xma<0i)GzGja$`JZ4H+_ynp|OY&~NMFGGld|<&yx*i~tH%i*S z0WIsFr#NW?aPg)*Ar7Mp;y~SG2?NTtx1q$|1@bE;%*!~_QdOr)Lqf)>fe16bDE{7t zbsV3%xl||;@%?wnemcy*Oq$XlJ(uMSpjhN|q|&vsp0IH_;Ldf!Qr0~W>evE6aiYhh zn#lhnGWhv)e)jS3R?2@N>pAfn<`IcSe7yc~E&C?^Iaf&$eHr~$;NbU=^Xbi!9@jvS z!{f<8g0Rhirg#VbWXpmR9YX(l0PYsLq+%u0$hHH+vK&#ieZ3ps`rg}H!>N@=53Xh! z8go3b=dI7&N?x>|76uy?h|4nF^L_vGeEz&@IWn++t3w}P{YCz69w``fhbGu(p>DrL z3(@Y`v2)jZCFMIYEr+9O4Ln!$YkmLv60deBGD>|>KPVL&*yE3zv%hon|BiDT*c;fp zq5ixkOp}S#<-;%48@t^3Oa+K+;oVl-RWJ9X<0`h*_}KUlANCdUD?)_ARX4<}Eb&^n z^~qy_)SmnQ(^0Fi+s z^cy$wL)hU>-7Fhl2arElU{RVf_io6G+aKdF6!7;)SvBS_e*xrw+2YyJ#eQ$>l! zlC^(WIKX<7C~0W>nz4_0{|olAEaGNV2Q@2FxYhu zx2*8u(oD~PyCjRV2;@Ea+;hZaLC6s!3B`6Mw$ouSEa)Qcx?0VUg+_bfqy{x%QtC24 zJ_~anLjD%xX2!6t>^fuvZLoHGcY3_e9j-l*l5eCC z*sQzu!iX1K9w%BXOdMyV$iELrzE61 z@M*sHxD0N1n~dc)AuYv=(!;@gZq82pwV5QJ;?bTE%2`54@71;BsE$L&@R|dJoWA= zqoQ_Mcp<|Mth#c$+z4C;dZ?<8r%N!>tpj>VKegL0)Bu$aAAFLb%|iY05ofF62&WP8 zhRQpqB)EH9{1fT*HSoQKRl?aB^-K6;kvI7ruJs;8txXlA97?U7nkEiak|4;Hc-mJ9 zv%$U!$56B>&XkZ@flWqgZ5C;Fae=?ny$H4DudezJpfw0PTFO215I^NTrbf$GU5# zBFXitz8@=+H93%ima!-FO<3NK`(=bDl0MQQi7x6p$jxx~w}&@0G&aSQ($1YlrqTmt z3Ojw|2>r;wZL52(J{oDN^rb0RFQPJ$s&TxyXjDF=7HBZM@~=90{&zLcqm?D}q`$Za z8vT6WIRbn6NI*jgXvy+O=a2>&#yUP#n7@(8Dg6OdZ)#<`k}h8F$(p@|#_I$8V!>9Z_$o ze@gOcB(P3<5xuRtUUd}7z)RbP|DHfJF~jw7sxS!3MygAzQblH%R|ocn%mt9!MZkq3?p)fEQQXJj z(?-;k89oqz57|FUc)!nX=NKima6(7;&U4^D5iH&*@)gMEQSET%D?sEsgcxiqE7*h8 z1DQS1aMQe`a%b2wnPnmqn?3wn0f3vN&%pc-!)mMw>rrMz2|m;1KWA$2GEn z_owyC(-OjY#)%|}>CVu|%;4R|!|Q@w!M}ern%^Jgr2VZJ@||dc5AMsc%Si%2%eaG; zh?ECO%E-dk4SRbA0<>Y93AB(N~)-3pPo&~Revt-sv+41FnR#qN}4{~CW2fDo> z2ZY>EN88RSgJ>;S5=O9==mx_(vRLkdD+euSQ=!*ApYFCbu&8x~crLq&Y3GJjFsKZc zsR?F}mr_zBmr1u2v_;fj7HTr*l>zgz@Hx;1d8A-B%4Dx05_2g@xf?%BcmO9gt+WI9 zFWZE>MiGC#psLm7g+J@;=0N$A+p9GFfdR^U_!P!iD;K*48DI3dK_X2 zCo&YF`{OPS-~|p!@4gL;NhQe6OY_dxSq*1hq#Nh(Y`~ga8HY7mpX`28vMofQ*OG*h zDlVG1ew4gHMF5NeQA902w+PBwKAU!jI#n_7b{{6*$PtN|m{j}a){xHiTkIf?$OBk@ z_@oH#26Ge?E?`~jzY_bQOcBm97J{^lR_ zOldHsU1$ls^LjFVm~k1Z;FXgI=VbF9Ox9%!=au+pe5a_W0*QYkv44Q%g6MWkNapSz z2bx~t$deEWs?6z|OwvCVK0QBz$GaILv@_U=s#0V%OvGP;q~aBBT6e0r=m zk(j7;Div{RQAJ+kMhc`J7LO#ebD4&7Lhd-W+Y2}Xm}6311?%lIB_1jtu#9AYWmvst zs@xVZEr_Bf=oUvl`If;OC6w5&mxKG}ziR4n&e5s?m1GVYjkQX7r6oOvhe1+Byn^4u z`<2g6A8$==j2-Hta1Ne<9A1CwMx;_*j(V3r&(dYw5`HkeDai*N>>Cm%)xPRM5-zSN zWCP1Y#SqxQ#ZK=APaP#a^XdDl^ZaL-rKvDivH9mGe9+?G93^N9s(w z)Nf;ODY@nF)r8LtqwhS{5+9pd{DrgYT8uQ{m5uJo1`qvW6sXJ4CGP5Ej^#{^HSlh* z`X4}3DZ%b$eNP6MH_%$Ry?)di+8Y76qNe7iDp(qT$(5{iLC!^&B*7@q(X$5O`rF%U22ZsLyL&Zl_-E^dOGX!S510fo#X6QM4O?}0Z((~2mZti@Qw4>8s)Z6yQh9sFquvDMN=G>L*;W$tu zY(rycB+JFt{~(qibkO8!>`QV?IDW~XE&kB$H~13veaI{`Pn|Aq?%xBR<+DSB@$*)L z4rw@U&Jc##`kA+I0Ur1GWZHnE#}x;bRj#`A?GJCoR+`5J^Kn{51inSbBJ4%xY@bB0 zL&aOM5g>ekR$oA-_93){=K&@u!gMyl32eO3JE#d*mEbJToO-`xui@VvE1)pTWRd8| zTw^K_`$(kY}AL{PMB@kr0BO{O@(n1$Z=Y9$VS6(@lt=A2F6zPw2#|^0M z^;VG3LR#%T&@H3%S|``m7gnJu`J|_vV-e38s40SDI#xH^nA0;w;2)lRBxcVSco)K( z?Vj<;cg(}{2j%y#wby5Px{(>1(`&_uH>4hmfWzTP#?!bjU_hu~fr+L3oKT=HIaDETD757lsTK=}{B z|Lq-9WQo9AW_1vOQUU(=3sTh-FUz}dTADqM?3E%x96VNT9JboDAI*qE#j<{4gdSAN z)v$Duw9fBqO# z=;H`EOr*iP4p?5R-tc`ziW+}s&=SVuGx6AvwiF?~LyBv78SvQiHke-071xWaV`Mj? zNv&@&M>!%8K&#S$9NtSwiD#J^*4FdVsch@nzooaLVIp9QY3)I!eK{N8f&~N<-vlMo zJYzlLCx1K{du?+gCJ(CH)LW@x%)O9>lfo#^as>N*)58Dp{Xf&S40sGm#-RZKcLD%_ z>i?6j<@y8G`X7AJSsI_Vo2@^xznlPB&m^{zq^>7U3iR2gHV(N!uI6(NL6`x=R^*js z4P>-<$4*Ar2hKNny}H=hG{Q23ny&5*uukgu`=Px_yO0Ozr<#L-gACrMp6{>Y9qVr6 z94DQ7@3ICFu#3;JJ!AGwQ;*~@rSQ2(40pP#m*T#*(VAZgyaMPk%?zU#bCU9}BX27Z)QAg)| z1g#03-BW~QLPhO7!=IyChRu5P3R*MxNs}ScjkQ;(%Qgo-ho{w|Iw-Bt_Fc^>-yEp% zw40mzge;mF<1FoH)nfebhkq8vEYp{V@s08H2n$t~1u_yl;LiCJt#)6jj!Q!&(v z-JktWu`#PHG6!PCCT)M3)dO-fD*x6&(N(~K_jq$~Z4Y`Y>Iy;fGkn7a=q#6*WkAy0 zO*g9UYH38qhECGEJAPOYO?Y!|8$U+ugt6d{x((wW-r>9l-4i%?qD)l0jz0*zy{D_G zy&Kjk9@73|C2(UN;|p4oBqyx%f}b!K?2hUsc7lK*CpUY%e10onQYo5Au!|kmo|02Dc0IZ zwO>UwKZy|A+<&|)xHI5T>ND9pO3C0c%Gq*EZaedH3QGW7YCdsSn$vKH2OCBn8;Xo*?oC9z-jDEKDqTLRU>K(@pQ(jxbS+{ zjjVy=Xcj0Lz#No^n}%Kn(^e%5ArylEt1M@B4*>)SEj7dm5fz)66(MuFlgJIhp&t5| z1*|9#P6Ye&%FC3-h!ynkvB4W8M1WOf%#&}-QX^e%px?itRZ}n*b@`81VhxNE;%gOX zHXBqi@iZo?x0&DDoMt(}Nei}!E@bhe;K4EC5<%Nnyx|LS7L6@C6Y2XVZ3($!YM9=} zn=O*cj;Gy=qesNq81=2e7x&54M#f4mVIG+Hz||pRJ%aU^=;*gf&VtgH*u{LsP}cSM z2~9A1+KKR{NQpr3s0A3WB9YYqB+e>9ncC0uIz6J1! zWVcpj=b^OJ^4E1!%D{$7sTrseJTb=bd#@HHgO8Tx~$`#0W z-m#j$JhRJ0uPjC=MJQ0Xn3T^>B%Mg<2t3YQ*KBTKiYm-AlNT9$loFChVAZf9s#*l{ zWCgC*tQV$EY1?EMn6>#WHi zFHD@x+R88|>iU6w>~0?|LgEI&s$bqe38+?dP!HZjgpDwqH`Ga;Dy8nBv0j5DC%7ZT z4=`&*Sv~PqC>9(asg{inVO@ij`o~Jv? zVH(%Ml)%ow?9rjfs*Un+fA`C8Buq7t6&iPITOfx-cnQx=BPbU5g8=^XdhQT$^N@mx zk~!gJHE^JMHJz^u`s}R*v~6xZMga>-$%#NL6n3d1I%*4Vpa>PsFayVQt&RSe>}#ST z3TgJE!sM@k@eUGDKoX`meX>Gu_uA66!GBLwJpZKq0c*||n{hSbD|S1S(b{0FdQBbf z1APo3!WXTS4Zb}>1{z%+hYMcp?2I8>kX_TMF!Hn6RFCujtd~IeM+}!5GOYYd{htz{ zvBhfpeWd?aGsw}#*9t*P)y?i)7}Xz2jG~=Ox;?2iRHrboHU_?C_ZgISun3Csn{800 zV4=DLc$;&q{V}jwc~qJRYg8p|rADHhOQ_$#cj()AuJDB2*)wDvHS|~4QT1yx9W~dI z5XhKF0ybpVyc>mvi~HdfEm8i)5U>I`bAyj?>PKg*o0lTg;vrJyuwddF!`wk3i_@X2 zH6fj)LfhtP_C-F5cbtoBCv{Rgfi#1lP8nd_L&uP^KcWOQVHM)vWqdo`>Y^PG7x8%h zfnr*nKrZ_pbct5#1!Z9|odsuo3VH_*NYT;|v)vtGUVmMVkyK&j+}^Z9+&O@?!CMPI z{ri@C?=^Z&y)Y^;sMu<=5F4U?GlhjWgXyq>@TX#4jFb}Jr%Y433X0T$$?jR|8c3vN zg~G#_^%iXTlQOB2)(;Oua%^%`!)+|XMEM%xH(K&YYTil-Uq1R!gJ8AL1Cuia9mMeC zg~sv2T>x`1Qs+|^mDZTBiYAtKF+y8gW~b`bWB^DRP|yQXzMe3N2t$$gHkvjv&$L&H zcTupyr_(=qwxHbTudfv(zfESk+~rz%O%$b}@ygn`E?r^*```Dcy&~_oFOIWvuC967 zV~1K!;XCu{F;(ZicFwo;qH_L1c~*&FsGLQp0XIaE@U}%{%Sh?3BFSih46TlpBN~?b zJ95MFGEhxNZOm*41O#B+fWb&VWfel?WFea$0bVWGF))$I4sa|Rw$?B_)QAxoajzL4mfQ$ zX+%Q-BXVZfZ!RgyA$Og752`o42(@pgKqW)Lbul5TJzA@4rnM3Wj5ZOUSL$nPfn1$H zKu;jZ@T2jT3^O}JOV&kqI;Dtov!{4KkNCI=U>SABrD~oO(|J*vkKdb%q;NRTVNOVO z)aC(I>RzEUc`NI&t%hdKMp3^!Am6bJZIGou^WMwD*8)=`;6nqi+*fzuwPdIl0?pns^IXyd1lVyb4FGz0be$`PkIe*lkxenN+$6qd0vhc!o z8=uOUpC_xeRHm*-*jGY9hPC7D-h_4HDqQs0(>) zarAqC-1f9_Pt~hAU90Fd3uvOrN$Gi7pB;xV2VrQ?gk3l2Y&=GH)4ST~%|uvy!Zb8M z0jE(ypRHc#>>FF6_R`xV^GJ*s4MhR_+Ayc{h)%sYrPlC}vsHep(S7_Ied9;r5QT#@ z;>;3mw1_sceX$1(tB^sQ%53)V-^^nFyH@+x|9xp}Y~XD0e^P1_O3D1200jW5epcE4 z52f~h4kPGjX6I_+=ww3YVPIqZ-`KTHs#7r=Y>3_Ol;G2X$d>V6W5wYBg84#87@D|T z324;nx?Iw6Q&n5#yhO*x2b1i=TY)*c znLVvMfj!@E2fUT=H<}%qCxOakczyRN$G1_@f)y&ss_<8R2c9-`CN?G?TgszBD5_kL zR==wcI@yXM73apVl@v!cMQR4gl}Rh$5l29G(UG~sgbFlBEkXbEk0AK@e%#=H z_w|`Oc^swiHA>UEM@Bwu+Twoh?c4PTn?4n>5jE7tHwD?V88Ewl$+BSP{-f^ir@#Fr zrwMV05ELv4npTcfXOD9Qt2Tt)z#08ZO>v>@0!ll4H-v*rfCDLJvcBlrU-)< zix<({s>D=B41@=kp8478A6! z7FARudf)cj{AwTHJb^LuP#*!MDvD|AeK=eU-G(?AyW6IsErO0M-A+%}Emx>q zZp7~4E_iW?GDpAKmE_9ag-DD=){4XIWMly?_Z)HuO0L#oKVrgv!f=*Wpd0wu*_fi*&fo=cNd746ojVh2mS+ zz$6jEUfUzNr|(JC@+cBz$7xmsC}KokIwH+(lY@UXW@+GSyUC$T@@Q@Ae?tUji=Lq@ z1V{uYS}7Coz@GtrYm$$v@h ziN971<8nmP!6%9@FzSMb^&fIhVJIRy1>60(;(Wlxv&CxyaLF&+`gvIz&3HM;|K_T> z&mIvwE(GNOMM4xaocgDau|T>Hc@>r6uZnG%5C+zKN1LV;{{HVPh)~_*-0$7M=|;vT zpV=dLU@OFpVnui)g7yne%lTgIQ7)!;Lp!y~FZ#`FecnPF&(-XJTqN=ecui=7W$ILp zk)x<2$?X?XTUs3tmmLI{Orgpmf zU(4#vyMc(Bxi2)6*}EoZ*>6f4cTn_K2PbYxi>DXO1q$fXK>fK*wuzGlcH-XZC%6{K zcCAB>mVMdbi>OO$nqZgPzu`ii17n>d2w2KDUnL43)+MZ7B~&{qTLQ3S&tdzMxBOFN zv{{+_DC=zh1}93=lqsH%)TLK)3I04kdHBB>C_m3AVAf;gcV17Bio*~%tg|Q1>Qn99;k%djEsSZgr1`Rlt!A8&Q zEmC+^>Foe3K%ZCS3czYwWPpLOs)&kv^vs&$Dfizg)lkZy zUrm>Ce!mY%PSRJv;WEQg(dtk@MubX{Yzp3+6}1R_U!`-dFDmLCL0gj1MD6DDeSLdD z^3$&f(#-N$GODn2z*cF$KHcx7*7bRVF}0)(&SwUJDaL}Gu7ghD7ZdcK+2K$(76q%D zRJWJ=gN-T9aDd&X-0@2lNq4#~$O04$!&)zEH9A_*B2`3P%ZR!4QZM#^_nak!qzxvM zN;up(EzXaSf6Yah+5|7NcZFd9haNy**9#7w4rN(KsE-yj?S$EP$Rev12+&`R2(pw( z$~b*VW#TQ)d`Oz4!++YboPzIkD5Km^+apOOEuSqAj{W}OqrRTrZ+&)P)YSO3bx*GU z)!}p`r5y*yW|>3suTJTft1ii+{;g3>f`$~eaBn6ap{&)kSq^d%ZCk^VunZyQw~rNi zN-h{Jn3Iq^X>86o-iu-u;b-c*t=rrHNw(5ie|ULb!B@Zc{2CAgjO8t$9;`~bm<*FR znP$BHT%fdmRf;@7eE~+~>a=Pw3?fIU{nGJ=_`+tPzT@Pi6?jn-v#|$mONg;m5kFOh zIf;UoJpG^4%&5iNzD`}w@g zcip3K4Hr|ALBv!d1y3V7agOky7&F2^R6CA4#nOt$Uh=;%_6CN2SfCQ`_PgO{%tkrw?!EN_NK@Uk#t9kgIu^d3{P(NP+T!}x7*{sgb z&jg7=MaYfuDE})eJDD8r%Gz9cdHsE+K-!l<63n+2**nfw&jBb(cx}=jVGVe%dH*x{ zr_6_4h8Mt>9gtms|BPE{<}juw0sw$k2><|^{~>NAtPM>6%Kmlw&w%yznv5Y9YuL`w zL+qnw2Px^G!n?n~S)ZQF7oTBX!$w38z;`ooGZ9rYcB98l&hGA@s%}n8#^?Wa>E+MO zbBu8pHhB&fMlkLW3F>TbZ^vPBeEd*)sP+AQznwLI@cnuH{c1IKmHC;E>b9&g>c;y? z_`3T!4V|tWEh>NQ!TD12mGt56Ed0&H!&8-$I2L7lW8jE3V(W7M{%~mTs(Am(e?F|7 z!_!-}KIZGbkj3%*q3?J>_@I0j)8hN|DI2BY{F2Y@Ea6@1k$j293Mq0nAcFFv@+h)`A4!-pvg0IchdGvT1Osi`hf*rreEUNIVi{j|P z1uk(L;;ibGfO9_7OVEqX9qA>`mt)=4_Yb+3dClT7ePJoEMH_c==>cz3+TVl$*kWFXdSJgx1OP`xy4o_KhhQA^v) z1o_<`{o4J#U3^0Pox)S3v}Gn9X7WYrsE4bz?8%4Nb>O+LU_O~vlX!rT_3q@`KfRD~ zfRS|99$jfITL2lU_%VB%HGAw|-0y(bN zP>|@BJ7I0Z#c7dlmhW>xju~~g?v|ntR#4i|M}j@^)9G;hETzLWWIQeJATm~N>~YO5 z>ggwT*FpLS#I!ow}S`g)M<EdZ+HO0- z-Y`f?YE4^wRl?(hZ^tZcT`k{TLt6v(N8T~?;R|*w6I6V@F=Lj#vqf-ixEc7ZzQ=Be~IP^7CUJ7%dDe3MOx22 zRyKESZ*C+jwi>(j$ppFB(T0v9ebH|7EjUJ>-@=My_$S=vhM+LT)zd>tgQwdpqdpm5lL20v)3K;IWQxX}^&Y0q#_uH|N#h7U5h$8dn^ zf<6S=M4MCJw2In~;;2k=vZfzch)^cCZ_)l`u7O4Uy?9?&i1%5irqyZM+%lU?o4f@o z=;rc@N>6^v>ub_=H?8+O=P4Sg4U5%YNSCg~9xVLSjNNQ_!M zim?69R&6ksb{v>k?8bulWA|<-+D3M!+iK*W6=)7nlrJ&!J)YImUOHEVvZK=#0W=*K zpAu#x(meY7m@zGCAxKQaR4?iXOAM7TGmvEK(Jelas$i#$`MGbK+Or{X#3;TkP+@oB zX0$+ioiHy)O2ovy*_xj+_v&vvTai(%EIMaF0xt7wD!@el=2tg?G>Ebte9R~ss)<&1 z5v~Y+ZeBtYlKR1;`y*P{XU{ylUBW+>h0X;_(%29?dgxdU4uupNeY@~&i z8$Sqz)yv3q2FQ`kGRVkg4tGDi<*Fu|L2n9n7M0Y)D1De-T(T7uU)^l+q~8iE2M5NI zgiZsfHYL&LUSKkccldR8-><5?)V^F?n z2syXSOEN;Du(aOHqckvdb`mP~@GO^(@Bb^BH@*%y!jP_ra#u8UUy+u36qQnjN1k#& zCO~W7e!2;}ymA(S%eiAeS{UAa!ViErE4r1k#$NENU?V#pCDX8K?%d6gfo*S>kXY9E zG2fC};&b~%gh#ERL_wKfEYj7gp&0KtJkR$rA?99eo=H>%2d**@%jWJqB!3^8UdFY^ zkFWn(!!2oli1r%frN%Ne@A{QwZQs`TH-8*(l)QR-3U@h4!tF0c$C&?IRN^R~M#7tU z3jT5|Ss{}9UcKMn@|PTw3>?Q6T9U`&)g85hr=8xCbu2Gv1sun6v8%cs5NQ9b*J{q7%e6F;--ee5*+Wb( zLOYl+3UWUOzyN+xO|AMKB|MT{>+PlOE)oRi?jw)a_7oyV@VTvO8(iznF>Kn-%LPw= z1oV_V>b}x}@JIciiI%hRwD|^<_YB6_G43qWP|v*`P_S^q=!GRB{77xD#Q3A7yn}qb zW8)n^?e3F#3(z(VS%X%-4JSUxD%coRK|b^@bMf`)yUG;xW{!n+xOeop#jN{6gx(wA zVP}W!$~h_Ny42?b5!(GyZT*$_bOoIIrb3vQC1Yzl+O&Zv;79lclJ<48{QkMvH+w&Q z<2<@|xyZcazL+dUffTf`yHC)y>)+>6hVawnr7+j{-rGCpF<@)EoIG`+_W`I-1i0%O zNi4)Az7^VzxrYrq=UdGMcW1HW#BMZr-y40;o~}A_ZK83%rmA|yiI3SHLfX@p`N^k3GX%j0R0;RthWF+g2ONNyDD2iH&l z6JfxI9fG-MBXsXpd^?{f>DrS(674sxOd#ouqTo>ReX@EiwDjz0(4IhtOzP?82&~)% zF7AnOIw>a~9=(+u&fDb|t4^LP+*NdQR;_cz*~i}Ijcl5e|DN&Ni%~V{H_Q8zB_|)B zXInFb^FgODvM&b$P5Vs2{B^sb1B_;G5{q{pJVZ_H&JO7BEpQ$Z)_{7!=HpAyS=uk6 zfymk;aDk7vpzmoYuES8tZ%r;QLrP0D|L$ow-|Ytgm9f^V^;v8NXm?&~96s>c?;XtI z2dvM!XPZn)>ZC6I2o6v0U@#XW>2u^Saa*aqCC0=M%k;#$b8xB<(07jexM*0lYpWPT zp2kK*S55y)60RI7Q5cI3&YK%6Z+9k#ghP3K>EYUwy{uYon}ZB`X!f9rk`mlg8*{n% zH?Hh~bUrfC$SG@}YU`#>Vs|6+p~uYo49IwIDiv2^%aRaj^0y#R<1St;jxz!$S9nR- zzl(IByNGUHQyr~IpNr8^_B8?AG#A5#$rBTM!@fRREJ($%b?I;-9}O!cADdmq%!&hP zHc>3&!t3Ln3(*p0<3408Vy5j|cm(5}j-y2`t%m;+X7HPlGw>(pD6ynFKTv;R!ykOo zW`WC0+j-mE(;64`%bsexx6s(q(|F<_$I5+WkcUDg%B73U{}wl1W{s#1`v#9b=J}_+ zMcS_a?x`ZTxPjzLVlBk9C|A0XDbfRqp}Jc^6`;Z6;blbB-D?acW#~4#rP;~{FDn5Y zi;yYmz3jR}Ap~HcCQGwj=FA3!wtJIl*~HyE#C0M;R2Q-(nG3!r9n$`{?Lu42!AQu9 z#Di^w6c8=)$OB_%TR7I>C#gJ&so*d4t%zi5)*||?$W$UmDnJf-c|2SQe1H4v6leIEM9n{CG{fG z621p}HMmXHY{Gpz+0Tg=nwuvWXQgpv#_ogTWPbe485s~_@Y}e|MuK|YH`MVh1SdGz zcX~3KtGI0-Lba$Q4=m9*$W{;@=FC=jlvnt$S8=dH(A2lU+<-LVF;s3!&qKs>g< z*>6kYhdL2-R$=RH+%l>frAI}U8F+z0)oIljvhji3u;s#L@kaW(c%tLal8En~*rNrP zWJsNl+e6xBlOhh6_HWk+U{X7GuBAIbsMGAOlxWcQFWBE#aFOykbF3WDdECcI(Q`Wy zcGuKbUScJ@kxMZd3ndWBq~ZGJz@>`%vthXY^}khCLv=9zS?wS`lvM_fN39jd;<*6~ zE7x6?xLYEQ?{Ut>cRtIHeZ(~T)Sfwn4CceH)`q4b_4>McFFv;!+~m%bQrt^d-J51= z8H7f5M+;CRB7A`9S~C|0wf`w)I9{9#Ma<>uKqoZQz{uPY2lLha5ZHPw2~4@;1TBk(>25(~*!|RoBPHNE?=3-{P3tMtVNe zTeh|;wScc9wVN`hqM7)#9&-7=Hv=xE3%6yXD;a&Io>`vmQ+s^ld<=Oo)0bbZ7p3S|J3d zs5Q`3c6VI~lb;{N3C~1^KDgs|lWTo!b+fyV0f<9I`79E_(Y2Me63&8N$`3RSdAhVB zm(IbgbTTHwA##Y&gB5uX zNlP~UV`%0Cd(mUt`4T>kQisbzBj z&qi51!13V>+1Ry_UAapI>k|~#z|NTPeuac%xS0_ItPp)OG!Ne4zX^D)jtI~`v?_O2 zat#)Z3}6yZdSENf5X~&8bWK3r+KIuz@*DNgJAz6F!fK(Cg%(KN_sjP8=g~%HZ#@Zb z_Fzmh^c zUV{kS$mf)b`2km#&UFuj@|~QI4AUFn+5HzeG-fL)cP^){WyPo$ZBIAZNB6swx?md2 z?A@fkW?On6#r~-w&cdWIP%Ar1Lqdyud*yb}`Ur)Xte1V1YsrtYJ#hW=#7ASDBBtZ6 zuA(+IK?yvSPp6TrsQ?jtNl2|cS7aSSb^@mgDxNsG9b5$KeQ$h8M%z87VtGPCC8T`@ zopC8MhS~ZZ4UO>Z>leAfo>z24=FFX=3{4Q%^IxK6dC&pO*i6 zY8iyN3j3y~F*8UI6jFw)&G}bipe~?h#YUM=g1(bkQd~8=BEm#4?{f$1TnXqKM`l<@siR2V35y?e;LyTR;i?;dc=HZq% zEBfwrHOR%$VQc%$V{A6b-hwhD%4By5NWYL7Wi&cZRg&GD`;3a_!Zw8mSy5+ z8l#G*qovp>9SLK=3ZIjKe3}&}e;D_ZE{lq1BJVtdN%|jxNa2~!O1LfSV~EI5$Qk{l zK%|sA&}~H3hE~H=Wd-~~UQ?~GyD=BG?7x~2aievO)KZc`+##W402vutsOGpSGE!bB z27JBw2+h?2f=fwf7_s+CghnuU3)=0YK7j+eC{1-0tMVm14i7q61NoyKkz%~tD$71p00O!+1G z03yvmmHm9m-JMOY{;Hz#LxRtZ$k~X#%NHDn!{K6 zqF0_31Q&T|lggTY?x#c40=MO`tWZKQt(mU!CgGEmF{%yrH}p{x<%~c&haGf%WLi|{ zF!tGq+ZcbRqs+L3@wkbWoI&tmwDGFwOw=s+g9gT}syXuptri-b(TsA}@&)smSR>56 zMf(O<^z)Tr44DSBm0TlHAe?|9;HN^ejsQ$6bfJuJCh1qHT`~^Kry>GNXLgJO`gLYh z!IH~=R&lge3d|l9psCR{lmcTcPFHp)h|;W;E5pp!CW`|qOO4ZxxJ-rH8ZF&10%WHn zCn4;etX@^oJ5(!UMDn$c%Z$ev2R1nZoLf)>SIt%$tKUAXddHCiQY8d7eHIcB24{LI zUZ+@QaIIQYPJYi2lq=KQ%R-@hdTEl{=3L98e!^kvK?B$EC{ zqTD6!Ete3TM{(7VE?=w>hYpu(lCSqmZF2&PvD`$6pUG#t#V5jm^_7N$=q!pTXfS

z0zo2NTV7>p8I@H2op` zh6qUhoB=TW-7OJ29|CvcK=n9?kjdBahs;-*6|;eF`nD<>;Ec#9d2*H;ibNL>lPQb? z5ORq_+RV#F23e_H0xD>jV2K=Hyw%yo8*F-s@CugG8z-`u< z@Wv9&jkau%W(SS4onsecU|Fd!xhl=hg5JBwU*bwyGDhbqe^-B(!LAPNH|5sHk5iD+ z8WS%zu{;jI3atyFM`x29cqKSeMZqM@I)rAKM10T$#-R{+4gpDyBH|B24uguwEySFT z5Rze4Wx4f-E7m1$a{X%mF)W;O3uP|)!|ATJQ%6FT(F{`>?)&iKuBv*Cg0?JjmY|94 z@Nn_vaf&fWrH-IQUmj{tLNZln5Vy#2Va;+ITpPm$Dup=YYIO$`RL9DJ54X4EO0O1p zyg$#Ic_7u|kS~D46B|WTU)YJWs^y<4{)_f0g#DG79!koFD|kxA;eNv*q=Hoi?wPG1 z3KhB2{56v#aQ^n#nQKEWN211xLitZtehvqTl5?rp4mlThMzb5}I+C4^n2*ZIFZVnt zWS>HZeA_f6fY3uZrI$>2=`jI_)|v@D@E=)y!<)c17uQQ9WFF5y9Ly(dMlo=471etbWLD2gl|lSYWez%s_TZo0 zExU&-^->BP{+4#rZc?eCR zxQnz0t9e8}oo&2iA^j%!ii(k=rwGePeaD>OT%f4r$3b+cq-i$r3QXbp&>RDrvM|8+ z>rLSpAuA#;x?qxIhVhKg3{bP-#)FBlDd(p!5$((V_#bVX>L847Q^~6pk&2kXbPQ~d zsJ83enxNy`UC=-qb0I$xU#LM$s-0v?|nWWJYOXUiGbvnWayMTjI^}eO> z02@&<8)&_lQ1B17lB-X;7iE~~VLANbeUduEm;-$HUWnWt{}75sekD;Mo?IlnN|`nY zHue(!Y8OSmCuhMKF{P6uT3ua490EAmBxeP^LbY?SwEKkM{mRn+>#r%%H=@m=osY)*_U!QB~U{%y{EBQ%d4s1!F_T+CqBsq8n9w~KguR1ap} z+%Om78ylFz+D0m~rMTPwlfpvnz=Yg#uK|ZviCh{043eDe!S{(yAue}Q(}J#8(x2UU z$V4QEFgb)IC^9D$h&o0eJTJbcg!rpmy{32-AwlDvc)4eYR)X&mZ7?cy|DIRzZ)JD! zO|C_O!~yRTp@7gRiofaZq7Stka3@X6=>{4fsU~9*se#a()*j)h9gluMW74P|;raSE zAHDX2W?1=${)82306nq&UcPbc`sds$M49~H!m^WA1))Qf(_tG@bwuPRTvzyLL=V;i ziV%bRR3|CphVDYXbxtC^hEN2#EHiR-M(^Vz5;;BqgLU3cqg+Y=LE^+RVQ8;EeQZUsnP3@O;c7{;J*ma41$$P>>aU+mN# z(3Z>xZvs)RQAX%;JGujXJ$CSRy|;oUOq=JOkf4Fo6U8tZs37*xkqtB0cbl=TjyCR2 z3aXW|mK&qL;%suM=OFR7Bpvb6kU09lX(D*KpK4crCRCz@_9YRZ%1BS}b5@vXAXe59 ztn+MC)sjc5=3hLP6QT$^_y5#~%#Z{`4M>5`QoMw?(%l~B1xj5lZ_O;J0NsRDWm2!X zLWs?m48uO#qkZwZ}fo(50*C zAi6Ls$)V6}I5yXaDPj2ZaJVY^nN+yp1zkfAclVyIo6^eml)HaNCtz zZY0V;YQ+mPRDR{X>bS~<@Fc5@1pzDnETd$xB%8LSFL=K6^~u9xKHC!wq@ri%R{BrZBNXG%iAr%i>I2yK=p# z5ju_J01KOIozjs`eMVJh6~Rc`}%_z zh&ta4<%r2oAkp9WO~f7_bcNUDx#Ej{vXp2FXX4>NOeq~pvZ48^yf{OyJ}DIO)Z*`Q z7{6XkZlO*=`DZf^!{H!)G}ObLTL8m&)A!nl0+I2jRUO=ceL#XSV45b_{0&0>3}Y$m zhx-rQL6L^j}g0z@nRx)!(=0(@#E2rr+^Awht}t+Uw%|=lR%Q>mMPW+PceM zy8pzHRH){R%_9H+JQD!`(ESfM5;;SQzeY}uOsp*bi6m*()Uw4IPxe`@B{$O#+ZrqC z$W#N=?CbDgY#{ znVNCEuy~pu`iuD7VNoTelcqR5!AJ$Sd424#?vOc3lPb4~|286xS6!?&tLhO?BB~Oc zlOdE`J((_rYTsy1rB#_qCtw#TU|Ee0*`0d6RYU^o^ZxGZ`~EKX)T`M!#N*V=TT$t?md;31luE)O`)a)eOc11ahGhd{8YuBxbMz!7+x25s z(=cZE%LXy@`cwf2nkhv5HjxxIEsqlkDxHkpmNeh30m zI&+QzjJ>!!Q;0G}?=Eop-v!>4;NbB=UfmTX81OiD0?9NO4bB!ZVWjR-zri?Rcca6t zze$5#{6O6-_uK?T`jQP>YbZyA2}dv6o>Ag4c;gudXw>{riTrtCZ@u>AB*B}mU4KmG z@3{;4(h{(5(TJeBg$Hkmp-7I64UO*6SM~;?2Emw+&cxUuj1o>}1Z!kNcd1Mwwj^hQ zFL019S?e`O_gDPoS#?LTsj_)J`}-$x&?w0MY!p)FG`?~Qt$`SKgpsH*4AKhclg~qv zy9jlujX~=q95dIVVYnbXnrHqDp}}+zkJ}H|KIvB&OD7x|O(8NAkp)L1W&p26R;fU5 zh+HYRBoVXkIgOH30%~M8_65U zd-~Zm!McJKr+rF$x_>tw*Xk0{_6HZAlYG1F2^QF@E0CThRJ)voW@YQh2xoSZ(X-_b#o*XEbK zv3Q?=PdMb#YUY@beJ$z0QESRAc&KASpwfF3g=SR3&X3&zB4D+TR@!O_gA2;tLUjrK?K|h0E9q@5=*qn9u=lu2!sU`A)jZ^CSy4 zIf;SRC`yuGp4y-=&1%LM9lr%{u{{N~Mf@YqxP|3Uj4e{t zb3(=GvmM&<8uT{ha^JjBUYRfy=xO%`cvrO;qBdlw$mF2SkSNixmvK7dsg6kAkOv0} zE&U{Y1!VLTKGp>K`JBy3!e-aHp6HRC+MV+rh~Nu3LESfoN#Ump;JDBFeRFwjlf1^K~a8CISAid01WM{oSiu zdg|4Ub;Kk7_JN&g7W9kf%ZMK$wmTvuqcQ}-Zm%QXWrS^e`z5ZhEA0xXZ%9DF{(};O9N8$i2TL>8o~WOO zVgw%wo+Y`35X6ri@Uw(=^mjKl*e}yDHHt?i;T3fm9qTeFMd$hmp-gCD8I%p=rfWWU zj1@%ieNYgh2$7asXqUe6Pwf7Eu@f1=-7t6uIJNGzoh?U7IJTk#6#){EUX9|UIVzAI z$gpTq@c=aG6ppNyAyVIzyG>;L{;NMDpCVmk&?EO|>AQ#JL}%Q4P^Kg83PIdyMxBNs zG01~_rqx5RgfIgCY_+a6=O@CRqgcDfI82^+NLF-LsSv>ItMZtU1qFInpSSvZLVUI zP2_o!48+*G|7ReA-DAf@F)%D3+u6k31uRlG=-?%Y}6Trh;dXu^yw8geFJAu{K;F5ZJC(}5RQW^8bB}rj%iqQ(#5Xr`u4800ukaIvekX5fcQB$juGJi zhh!d$MuVOAApwMl?fvm>V7H zB+#+|S;VRlJ2?szfMPZY=zUP7}D#X3VfRx11)@`Lk zybD;ON~YsN%mWI(pok*^7|~%_;0AlRASV3-0!zpneh^A@1&1h)hh3GLD+2H(Nb_JAoZRWE&%}jUQU(l zB!rutz>Xr;qo`Nhq}y5|?Hux{&#ZR?_aFSZGEhXyLCi#YV3;kFb`*v4A)>zi%;>*< z;A|k0gur+rZ=|7L#Hq%9!F=L#fCx5a0X+Wd#ON~Rfl`hHat+;-jMN;%agvdv$EeD`|{sx;j9Ej3deGX z!37p_rH;6_OYjv7q#~9UV<}$QGh8+0Lc41BQ$vsN?eFCUq`n3V4QsnzayPImB;U#A@FLwX_@L=LCDl1kr zC(Kr3quB>x86=IhQxj;%;B2Sni@iVi~^F$Upc(sJi?{;col+Dc~f9R?;rzjSY^4_7X^a;B6R-#{gC2wB&w`Ie(~ za9dAAo)~5IVxqpq1s9xjicv73e>R>Hv^Ptb*7_IGOVLfc(FboL4}oF8O6hd7yV$!gozc!#F{r-zE#9r4t*M4(}O-A%uQC4W%=6XM@R1hOIHYk%w+hk zdFpz^onp(Rx~~+)|l&1~;%6 zx-SRKGQWE$P5H|Y%;Y~~FOFIc^g_@1%2=1)Rw;CRN1!)+<-YT%;=g7seq~X7`G5Cs=Xw642^F2H1QhGb&*jb-^~7r>GDjfNVK1{{F2g8 zQY@LcNhY}@qMckN1}D-LSl8B*JrS>xkX7b7K=K}3Tt==M-(t^Ymv@h0fI*!NCacA^-jjU{e}*6sk$EzgBozZLunP|xg` zkUhHoDEFM({3gABSaJxX6-ZpWZ`?h1Pg`lK|H>;ThU>7r+`)ssWMHd;IC<2D`sEl!q;t$shne^i&Ei7r--tsT25qN{WT;dVVEoz`k+Zq<9rqr zW}DV@8koNv>8{gK&_`4w+c>3KH^;SJ2)?e=cv3GMy)`i9iEX{aY;A?WJy;mQ&v ziX%KO-VbDYyPw{+a--UU{k~$SZ176ujbgK(s z$MMfX9TQmE9<1%@r0v`G@Nsf-C#9_atnDTcS);qXqDr15(Tv%hrTeTpZkuX6s^5AX z%EkoPZysjpn~u9V=Igd&!cU^P%*xC4@nvrF?)M$cTWD&JNf1e-m|2x~SN%%eFIg3I zEmmWGcdjQjF(!Pa>uBTt6lDU+GAr0FdMfzS1v=m6!bFj+6FZS);lt_PPb9dV>8|`3 zo#t|K&-gh%Gjs>&uL70%vnQI?c616D3py?=%?$O61dq0(id|*qm^6`Uot*gHOdE%6 zYqIP@mc;lZ%kJ!>Iw!aoECg(7)3yoiY~^@h01 zY_Y)c0k9;esfkY|8#f3zz5?FX{JS`dX^N2Lv35IkjdJ_3`krbG;p(V(&8g-VbbsY& z6RS-%na%A=5@#-}EYo^8%w;FviFTFaW&50@O+>@9v`z@T1Q`1oE|t{ZKhpsc8~t+A zDcab&bNsmooeCuGv-Z(>l`!Q-8UYVECBRtlvullTqg&MiK|5?|bOqeF~I{_R^ks1(%Bpww7FEh8o0;cVQe2DU>bl-5IXu`x&QzpSIFFYQ`bxsn7RsY7% zl)4fr4!`7L6YJ1+>-(0$axWFL$vrAfi*M+pBID7$4+U+*=zM9Tuf?b8tV0ioAGrA2 z5dk&kPv1m17cPl2YPzdf1=@o`sUwBx*oNZU*fC+efffnyI!aHE-g)nIq8~rQ)#S1b zLZE!{uJC%uA0G2+e`9P?ewQ5Mg~kwzbhY(|pAIrf@|{)pG|_5xDs$+IL!&RY`5buB zvdpJ3ee35U?~&?n$4-M>IIc@P*QLm`Xan^bEQC@<8W@ks4xEag)aY>I=EeSr$(pf7 z&ZvExdpTubXO~=`d%q7vcQ~%dKJD55XU5t&@7p8-0{|$71ppxb9~!%=azg)=tkkA$ zHbwt0nYZNL-2I1}&S%^Z9EX^4sYn%g`V=KE-6^WRN_=+-OiRwuvR5R)_)abX9?NN}U)n zlF6k6t$}``MqKW!DeH_7>_mZLfjgd=&5$xQsrE|R6ogF~?S$&$c?~HOMvYJ=FD_Eh z1Z^nv)z{nY7tXh7Azb&0W92hL<+CNJML(L5w>12-Y=-!Cv;g8EYkv;5v7>&~zb`UrghVPs*IMcxB4+i5Ap?q%1Qnv! zV*8YKmcGkDe#Dktl1-thMoIOaHp9FOa>FLV>lr9ZSk5LF`6avOWHXE&$4l&tkg^fc z_l8}gj+u4+HIh-pSKor|3wzm`kuJM}#+B!k1`%C-DdVM0<&IuO+NGq~UvsSb^-)8n z@)D-bluA&YW{amiG;8XRTzhRuLsUz_6^(_`0DHW*mIpVQ9eUitO4GniZc1IYZ z8x+j4YXB}5Vi*-Jg(StKvIus`6!F71AXwe%GNcyVax12JwQ(udQna9pAQBFvd*qS* znxS>?qD11&dVaHz$WG^m0c0lMP~`*USczU&3EfZKj4J7&mUK!A54RP%wQe}tJ8Yqg z1gZK9*>oTk)ZX+uZll^=62q@f8QRdPpa++H1!DVH)r`LbYXj)XYy<8}`L5^pW+01h zsylS)=xspt6ye%5%7Ex?ZcDA#84JaZ1?d{v9wRjavymVNxN;0&MpMe`|KJ8O&Y06| zh4RYN=!hBFAb#N)l&CZx`z}W+>{%e_$hTleG`Lw*d*bz#*WWwv9`lE+Xgw+%gb->j zuCIDNi^V)n8#1LrsW1!hxi>h##lCZR zSGM{Yhwok$v|<-=gP8GZ;eCM^`E?I>T=5tv%M2j!vymL)TvWs+6@%G%9T}%8KmIPu zXK^?9_g=`8!_5uY!adh645ytA>0`Q%C+&-FV|%dBrj{6+;CSQ8Rk42&R;IB|0Ix0x zZn@RCZC7TtR7I95pA+W2Sypp?q^zxJrEBv~Cy_)>CG}PTt46dARr`6Q^a|#e6pSCp zI{Tnqu2E-G>D*_m+b4{uMA@D0Bs%YyvjZHxkRD(^1;W@W9Db&eo6B##!XuT87)6Dl{EtE4J#M`JB^w*2hgXe?NzX;#wS|#6*7Kl z4#i8-#D78mv*L(L+}+Rpdn0E;|8H+(RdYvS2V0x}QrhWO{eNW#?A~BJiI7CY1qrC5 z2`&Ht%n-%JUl274wLOWor0weFf-c5C%j2fMw19t?Ms7~*Y$_q?Eaq%ex;lk6UuIc*c=kQu$# za<7{=EJf=U1hkZ;6tdX7;Ks2BE~y17OG~K8ZvpFwXAKG6&LofxR6F8^c&FIYDpwDs zBcSCVI$?-|ZE6L8lQ^0|d#F#Y4c8mO%{%3&63J>oUEABgG4biB+#C1{rCKHvnMajK zb0Jvp6AmgY_Jq$Tj$$*7!>|&tR6eL%;T_73*X^r^+f4>`I4gH-6+IdRY@2^ReEHHD zZR_M%g?J6x*!Ebc^vOXvdlMIy--6u*QTfOSy>(@1Kk}slfC2kuJo$*qQV;@;4lf5W zKh@vy*qlPDA4(-}GBNF);lc*n?cfJ(pl=qYe^yk3kIG#;2v;G{8j!GoJ! zz}XQxEbfB3Nhy?9rFwHNNn^IUiY7%=Zn3)kce}Yf0~epMc7`_UH_5a%aC-h5k%&;1 z70jE^CN*`vHr!$Q)Nx+>%tZ{O8heHq1`tM`$oL#*htNq!O(8+qP}nHs0Lbr~B>QJ$j6N&L4;`cdU7> zJ7UG0aJ1S3)e0(Rsx%l*B!1%c)K-pndq!&?pG`0B(m+GkNIawU8a=C{>wz%xkQc~G zlvW5qQ3s(5?m@1ST6#gzGWcHUMYQ}hs*J%zrch9p`G6@;y^1XSidN6fz*^N-j)m5I* zg(uNwDIVX~sA6!h=>xJYyIf!Vd#w5{!|xQ#sZOjW@rGTS;ShO)SfULw74b`5229w6 z+MeZU*#Vnj93jR&UW!qLDI5*v$@SdtMY_`#+Q=8hH)c(}d&EKV&yE#sS1zTnU31+j zTksflfy`YWjm*1d-6Uhno!WEfZ~83+sGOkGG2nC;;5ldHV?y?8YCw@4?>2pfF=<>b zSmPwaFX%F-#xVXengRNaprY}@2Q^>%g5}th?q9&S(?pibai3&dN6|-9yL5zF?^wAq zLrf`BzHljbhjKAew9tjZ;h!|PH!;)eegY84UTP0wpBj$E@fqZ?K@Z2Bby$<2n9j@c z2vS+~vhjIe;*MXfk9NJKKEE5}*zkww;n>7!gz_izv*G7X)ze-wr^vfC+CZh%hiuXx zZcG%EK9)nTdr%C#!+!Bg>6f;!9{3zW9Yxp=6LrwRXN-UdT1qMoZF zkjsqCE34lgye)q7giDo0_=@14HIf1PeCz64BfGxO5h(tJuH3-Jz~-OZ@=O)!=x-;o zjyF}e;zqx8l)m2zk+ku89^DIrx-=~oG+TL9KPJU z?fgLX&@|5E{Y=%6gOGd^?MY9bJtGZXJXNnDq6 zxoRqZ~t1+ic zBFdarF?;dkyd`)~_*3{2=w$CLc$G~{HfOSVl8|?-7gz$Pd6VkHeeGozyMVpdqle18 z3acRC+8o`kQC3W_*AOf8u?qKCt#-xf1 z*5zR$`lQ{y3iGU$h!B&CwuXsDV?5kJDLcBxE#ZdT4{Dq{IF>;i5A9)A;)IKOQwELe ztj(Gl?vs&2Xk(r8<==O;NLdwa)twuq{#Es*42iba6}#^x(S>MMDf;k}=}{S_z=f!( zdM>3E#j)D{a=m}-SI}9`VKc0t9DoLa0$UP_{0EfG4e(M(#|IV^oU2o%_2Ah_9bz<` z9}xM1z!@{R4yL0Sn}AtE%2AIY%n+4O+hhWnig254>^m*-JUKY?6I%cQsQSg#FgG3t zFi6J*QhFANV`NJL&68^0!Y$L-OykCXJ(n?x*~8FSZ3AC+ zN0bJtxSnbJ=-S(JD!T`*>GoKVYpfE9#)jg6PT-r4K5Q?>uX8j;VlsZE=w=BcurL`n zv!H7j<}8*HDkg#L{%Bx~VT7ojO4?q!r304|blgA$0)=+k-&#&kTtM>LIrg`9g4peh!v1uy^?o)Cxi2$DJ$><2?Rer~TN zE^t`}gCYjiU<^=b5EG)i<#!#SZr?ctnO>VdpqsdsxW$$WEj-Fk zw!hBZ{3=eo-cNlvtqgeP(bMrWEt;0cCYxOiMY)?)7kLtmDp9ImoQ{JsK2~R7GpKe;3 zRYsS*CXE`x-YmXD$+EES0+M03cbTqSvxVwhxwm~cJ+{4s*$fB0=ro!t#XBJdd}80O~t6s84sVSHFPoSSUP_rt06DC*`Dz9 zv?B4zbmPeW^9lUV@_9BlPQCN(RwniBR!09X$|nOOJB@>p$v>-TWMY@~o(STg2hRY2 zb`scfCXak%h*2hH&@X^c71tkC(q5Rhex1ZQd3Iz$xkRy<6Lh%k1?m>^X+rFFMIc;_ z*7$4U{V;vy0L;s?*=L#NB)hB2v*?tcz!G{CKdxjC?c@3G<3Zn9aB+TBn5QMDEu<~P z&D#UdNitG`@>EDmLXf)7vTJLqvDB&}YoT*$&?c*PbqRmy*xulmRDaQlav718|J4AM zUX$I+geT7j21M`YwfIB80<#D%r5Ss{WZPcYifzuBg>kN8!ivBHdI&gLy(E2B_NTk| z>mMIZ*E1K%RCiA4%-U`8_b02JeQAZlBfigq!K=)N(y;lHoD+L#J}WmBSDkQn}7jBp;9NZr%^ZF5bd* zD_1C4lzK)-xV3EK7<6dRn`9!Xq522nZ|A~xn^XY~%CrHEl&P6T`zLrqZfsu44NwXn zHgsywUA$_g3P0mY-!RGw7Eoc0?Tn9)p*jAa(@s(3LPgl0nW?&1VvOTrvnESX%XH5^C(-0M@(Ph= z29SIY$XW&zJ$lHXz^fM7p4%JF#O5bea;teK+eF0OxM*fbgKu5tYf3w_aL)(g;>We0pr?T1F_{OEZ)MJ zHj<8T2!y4n>e@m_9F&!yHz__=EO$w~4xFW#^&T3*wiaYE#RAXH?w;_d(iIx42sE?F z^pR+Ul69*`mm351Mk168_n1zGN(ukip49*oeBqhHpgMGTz5!sGV@4sV5kfYxDXap| z@T}$~vI^c)KDRzDUfa@cU~wDJI?&p4CVE2o_i*#pJ{k2yZi}ptT-2bM5EgSWGpt!$ z2Fm}W1)?X^*+6V+%Fu^mhN%Y@Fu-NgS4ad@@yBv&<8QVA3$NAy0m{Ic84#d5dGeJ! z!TfXVk_`dD6}%Y-It<|0q2SzoweU%s^F3FIsI~*<=k>piVFud8M4w(WM50~a=GYdFItY}6nutz$KWAuR=ltXH*uzX!Ic?mTd2^-I%@0(v3c zdpRqmAC%EPyOOo?RPqel!gpQT=D#c%@1K zU;EY#?r+_o{?~QmziUQ^H4z))(0^z~MT3T!m*ybUEW0h@ez;(a|5%|jl-&r}NTN(- zr9@`$!Vmt<3E3FY<}W#dMKB8e7EJGN&EONfMDy}=_gtm@cg=8@C6K!BJ7iXdwkEZcrA^|sQ%#_JVhhFBS-1ew1--VmgJk65B z-hRib)1#w3&~o}{kW(VBB8aGcr!X1A(yJ`|&`Tjn&tLCuAF4$`T70YT)V2sysK=9? zK*F^uD_&#MUS^RXo8|R3V)4kqO7K?M7Z?VY8@GZ2X(d0kL zK#<~ukUUPnUIveJ5K(l8GO)!Y+Hqgmu zC%q7MbhR+=0p*Cuoui22J0%zH9r3Gv?dQaGoOG+=f8`FnbE87#;~xfQshPTNSDXyL6bUIHDxd@Y*YciADbkRwdwGn&z*o5 z$Yq80J1@u;IK$qM1qQJ)(}V_Eq>gh$2^EUFL8V8|dgy*2{Ds<^8xV{cEC`AY*?Zwg zY2|keZ#7f&trn|X6qz&J8GkSDqZpDoFgWlfJ3)JLva?s-YPUtI4OSCZ4dOHW_?=Dl z8znCT8H9fW>+*M&{;R8{tY*?Of}Ak+4*okBuNMbyIz}9c{x?`0D>Hv5Y%RL|ccU~5*sM+(d=AF-oJvcc!qvy~ zub9)*?=vV^XbS6P-s zA107&m5|vYYN3v@(FN{SI!d@F5PKkWT<9<(plcl8=vR8~>M07V6qkN3A_uJxpK5zi zL>_U+p#W=jYY@o7@AN(5M01qF{rO^?u8xp9b2l-87%6xDA_ptIazVIi|Kl6sgn7vE+`-=yD|LQaR-+cA|aSP|9 zARRqN|Bv5&wN;Ds!!f&A9750#i8f%rehPa{r;&1zJ$ zO`NImvAgwco2HPp)a|V<@6YZbFrU~>#unF^7PwDamt}PE@WSKgWA@e_0*t;2y(Egu z7N_TOnosvPc)?iAf#p85x@UptSn+ZHrZu9w4d1%<;ODFe?`wEEjnmX(N(TI8lsn6d zcxox}?)779+mr%Cm<5Bl14Oupo@o>T8sf8KZuOKX>>kycgc zG7j_FO$9o-UT-#kSTDiwNevaunX~bvS4aG^p)G{(i4mRpbd!i+|5M6MkoGoSowVu<0gGRSMVbl9&<|S zGU_!qakVA6oY(scVoe-lnf&6VKwR2v)3Q>{mCSyC_4;-JP4cdkl8vr~xe$#ejjC~6 z+7&?Ll|ni-T#jvn85e0d=;;Nr8)a4YWKE^;@aGw$4qvdrOuMdO1puN zAuf+0d%h(trl|5lVuuR5UZaN#nG2Z#$KwFnSs|aLEZpJ0xE^8;${IqL@7CczBqUr{ zB=SqP0>LRXawF#=oFA4((lNX5-k7|ejNs6QKLw-y3dyn~kD znj)0}sQSZcm9*GB%GVg?gONd7hx_s0HtPv#iw(?obCmFXTg>x+vstZeX!M*+tcK~~^r^|7#zG3WLeuO9FHUth?B(c#dA9d)>DuazzWVxrF+zx@WY2vir1F6x;N3h( zAAn9Mm-85>-EM3;F1O9=^PTL=6^5IU+~~$p9)x#76u`d7H6HJ2uF5iPM5vhI&n?tm z#=mX9pqci`m8R9d8`r$gQxtOL4`c;Bvq>5g31&@-71f`rsDuf!0hMb z%CTIPJFiCmklQnFFlw(6aK6Ri6obS>tR8qbaz?C-XymsjUEBgp{lOf89)V^`6HB!2 z^URD+nCq>S72C`F^NFM*u>*6Eb)^ez!se8bcxYDaRh+@gk9C!sdt;J#d%jv7GI^BM zi*K!)IcjpGW3#nYvxO}S^{7^`$)xz%ClDM_aK`{S?n#2$>n8-F!kc^RAd(Gk-1`NV zM2hYwr~^0MHDRDYBg;|`?`1Jhi_&TyX|O$p%7}Fv1xhKdM>ah(WWe#0f&p%}U)KOY z;{KXaL5LX>$qIiY1XDpgZ?_OAh$sO>(G9TrEi64Nd)(cAyyB7fvIlJ3K#4u$^gW|S z_*=1NeJ(Q=#8_>qHm=_*gt}Zqj%eh`y<>T@Zt*H2>AA1fv0btWA^UDkOkB3{sko+p zTR@f^;iph?cbCDX&&Y#%@s{D5-X7wILrB=sc&KO1cu9qE)(m}vYJHXol*k#=Bc@x- z92Ps2rEkqH z{zOd^33&+;K|X?OGx@)+K~BRP*TETzoO?m#qzQ%@KMxe^6$#f!n@5*Bt9wHXw(vuc zfZJ|+Sa#k)|CtTmjA;Cb-{ltnU2dHJH|6GFV6W$BU`k_ZX7Zh^@n6#^yp;ZZuI$@) zeOd6_*l6s`DUCKpuobEn2;DYT7PjWx-*xo3J0@( z{w>nI0W&4ekc$xP8eY3SCmQb#w)xOqD9Bvb>8>@040}Qo;w&$RUN&^w;~NyWqFER% zAeRm22CWrOgBvu-k=Ir_G|ehwpYy>+qerL5)MEuSmpN*vRK8R>KY3CGe%94!Q=;lU z-tTOrFTA}UVsBoiKu*DYl)yLTApF_s}9Y;gE?3OD@S z3a9}2btPHA9Kxkmcn|XY_VG64i*rHVjX$R3QB=kk5Wg(uo}JM>Zbym)Uk|0*&m_Ty zaPBZ9aP1QnbSX*jdrRn4^y9@5ytCn0gT@8x%(cvlaFaB7B!+60Q;+;Tj8k8anv4{z zNZ@oceKWui#A_V-8vFZbKH{!C$*3T#t_hZu*@~VINEAvwPMPTf~TqWhMoRGsloNT?MherlZ5H-zv`EL;i4D|AJ z@ZSZO{#|e!|1Sk+Y2)(W>ut<>o*s4Mh^lfPjA{DY5I;n;kT$16qd+2{m|q`_BP+ds zyFck-oVolNp7s4_c6WpHArcVRQI^By*bs-`RN32tG1PZg_6#qKKv2je^(bTO0o`pqF&CSRb}vynQR~HUrcOlBC@jA)*&9!GUt=5vr1~4K*pxEP z*zs3|tJMzm9f3mqFl?d+Kj;#N5omnP#;Yl4cVwKFX`8dmTEt5`a^+<>mg+?NnvDVe z8|Mm%B(hm8%&_qa@HVKany6lk65F^m2$2-Nbrl^3+sU1xYn^c5z4fV!*&%#X8 zel~1wMnZbsuoJghqoNZ>d<-|B&qHyf{A-hr_*wePB_jc^O!&CIL2bOy;6m8vZaUDq z7UrzZXPAvXW;=!Ap=pof4Blb$#b3gc;?4E=(2$wYvA=ETbdlDcw%5wiJ)$j)O1i=C z*gf*X>A3JSpTu?bIpQHTYk^H~LT6=o-so#E-l=Njv@Sh;ra&GtUz>dpDp^e}NS2^1 z+$#Q%Wep`T#IPE2<(9l>aq50*JW5eYVU%$G<${QNxMvvYra)9KgO!O_I7G9+MsLI% zFKT`=&4>r2=&D209y?dgq~{tcaqA~Xtk|c`JI620ROqeb>7n&*^!>fB6l8aQ;<6D^ zZq7*_N`pA$L|OTYw{E|GS9=W``9l3|V1#&KJzdOXuFISLmsyKN`WRn>>cr?`9HT_g zb7=DjUVFKPW;UM>cm^j}jD=@S{sob%Sh~rG#r`S*=?;LU%vZR@FZqZ1A=*_ymC~^Z zf5Z!sGqZ9bsdY&NtsGII*&F-$rjSO|GptZj`WXsW65A+sn=4;b95yO-w`MM1`OEiKpwVwCfV*AR+d3O40=eykghTAJjDG;xuO)75t_9Z&+ z=X-{YDwtSLjYG;t_nhuDwsGpO=tY4F8glMX?Spa~ROc+WTrSsjzDqyuFd0X8qd6zOj3h_pi@S+F!&Gy`AkpJYH!&BqG z^KI>$Z*>38H%6mXZ6gHN`P%4{#!Z~3YHhaOCa;EFjf%Gtq_c#ni52xEaZT>;aYI%B z8^5qSV}OvcL5C7~@9x3gn@c*v%LdK6t1cyXlO*z@0H#yJu~@^^wcR#ywofWo4&gOi zjD9Kwp8Hx^&WGNcmt4FD=ENBy5aqpPe4%k7#J*)H2l@c*b;HfCFuvl;e&1nVyu+uJ zF!hCW#)d1P-f{8R@@pMMj0Pia$1%T8FAfP>6c3Ld*dC0#L|w?^iL+TA^!X4el#`Sn z*bdRDa}Z(|xXktRSjn{fYrfNO*c1~dK&%uWfY1Bq9gb}gE@<0+#)Yht)23}=*0{}h z6gBoq;@&V;pg*p{CrN%@C+v`)Q#I3GCjn<|Vjl&3vL@S_5tR$KF*Q+5tKhp{_NlNf zc@-$Zy|VL2Fb1h9s43tj9yaa>ad7uFok(!6vGE-2aV>q%S}t;0cyHh zFtnzeR}9pG6XdSFn^r1qMvJWmD@8QX28iJ-kg{|-w}0_>PS>Z}VwEn}*TnC7J#A3l zEM^U2HgzPs=wA|jAuOr$xG>TjRiejjmN=A`sF~6PkBGGv-CmHL>a$nkubN?Q4oUwD z-_UtiY5#+7gYEprGdBOhH=BR(EhP2d_$HA3pL|RD2jAHC{tw?Y{=v8Gf8*OEYE?%n z3*)Nszw_-~si}`$3{nn1H}z2GKPv8j9#@h53w$&CM-<5adSE3Gc38Zo4*`I;h4_~O z)BewD`c4kC=C&sP8JKq7?DSjtY>us+^+)C`4asaK4q`02yijXfo1#E#n?Qk(L`=dZ za?ItjW8F!xN&b+-TB2$#Wp#Q^;}m;ed> z0-rrf#6BIyYHh+O9j{nj7oyNRjKP47%p4OyuZ*m zF-gRCg-Q{}f{1c~?TPxN%h0C*H=`W4d>zm|GWmmWc#>pzQeXh+ZHj7m01S}ON#R2s zsCX;=g<}CO|7Bn`z1Kz03K05e#P-XKk0*luj6SdpmWT8)STdcq!9v94Mg)09%k{|A zW3cr(i;nR7O3y|QxMrIS6L__tPBDZX<=Y#~`P^tC2fxA~KnH6M$DDerL3Gt?<|Tbi zhJ$?1_{}dh&iA}Wkj}BZ!q@u|hR?kx`pk#v_l2^<_i6mq_~lIk;IQ?%xng+lqTkiQ zL|@5(_}X>&tVJn$>d}K=%3kmfOz-=End_lPx=z3JY9S!Nb0+$9sk_^n#Qa@=XQ__^ zG`(p6FdYNsr&9&^rd<+bcBzmZ`+=ErB0>tiYv3svLsvTi`BxbHOaUF$u`i~N(Dm-E z>BVo+!(V^1gpP>d9e?Fxq#yenM5CYZxn@hbCxG?8`1AG>FaYSpIGo@Keu3@+)qSVA z!|Z-fmO1x%7ZU{cq1tC!Z6Lh>%@P7D3 zFLYQjbo^gU+}z`Ne7EI*zOHk>*v^W=)Bqx`Heh(%ZFm@cZe750PfK4T3SAB?JxE}V zaSrG)_&Y#&`F;&p!YA3pj^@c1NfM=>)X;l5WH8h4{AaZ1^Go5Ojf# zL6rHaOi_iv7(q}0vV`EF;0pY}*R=e&*RZTWhux&ra2kLUzjohbdMK)HP;&5!-c(>I zdO;^$B2)mfZ89OnGzLH1G@t-L+l{>sMh404$59L%KMk(5UA=?vmj@8s=7|BXLq?fI zlYw2#1}+BT)Mdo9jou*_i1kH@0SyGQ@e_|h&j56T#{fNaL+XO(_^R!s@KaPj@d7ZN zFMPFoMu2YV-`f2Q`GF4+s4{5JJJ56?+JW~00?kXdalYi;2=Pb0BM|+RHNhgFlFU#(M|p-jiSXUgbZ}*nN*THb$6zb(P#* zoc3Bp4~naQ(7!k{ zy&KN)0diyTy12cAL}br%pAM5-LqF&M0Q|HK0XZlsJUlC~mF03gwFg+M`$#o7%kt&l z50)$JYAY*%>f$mQ>Qj*@rB@MB3;Q$QmE z(i`%#s3ICbCJ5lB^tgIA#}{YD2h&bJ)n&H^N90q|UZcfT8hy$>Y`ngROfAg!O!sun z@AyK$K3=b68vS=4MckuAru3TVAH0^;ms`}9ITAiSwbk`bdTj*Ua0HnQn!e<(byh9U z6D_}!{Yrd})aR9a5U5hh879&}a25`5S;mqM^Yx<*r$Z`JhQ zOG3g}aw{w*q`3RFt6B&wS_V-DdI`}~>s+sz;4V^FS|k$$>SuH+R$ZO}$eCrbtw!^B zI34I1<-71HoV(dd{e&FrsML;g)!`(tbo<;7F%Z;z?)Tq)QM=EY2t?CE zR4vUbJA1B~eRXq>5Oc6D1PiRs>}h$Q?bAK_!DsJLhfyMYmmYR(3y2a#ktYRyngf>U z>?^|NmhOG2`6=*meY|H;VJh+zZRsnd;R|BlbpOiCX4@=63Tv4jPLyj1^`gi}d=Z?AH~{nNtk(*cpo7l0OU=i(xIU+qqd4zSLPZ^%U7B%EI^wpXikQ=eZPhi^XnD_c7`lPafEx^+=ZF|@q+6cccj+eyZ!_NjLEn#DZhlYS+b(Gr z2LN!l6B}GkUx01|6g~tZnDuo|OHBAmacNYL%%`I}l!~VyF0LlWk}b-QP#q_BNj>B$Tw~r!LYm;~Md~~FfB_r2O(g=1 z(q&%yeQ9d8f>5IbbfX~~g((($bqg~&hRibfu-wa|#7Ma1uM*@*p^jRE!XN8QczeMm zj>x>yD5)R1UcsWxK96{R+rh}FZqMt|CPJs6HU9`#ai(xr3Ggiak^t);1)UymhLuNV zqH%T7mvKP07H*9RVhzN?H3F&?%{)I(=x0M8#f~;;u5L)8n8l|xOu?Itzm&Re!-pNP ztF&oGPt20UV={bHRYiui?sMRqZ2zqoHJ7fugP%R;5I1c|)OSuzPY~XKpvXT;y|^D! z)>w)wO>-tuHG98!(7ZW6D3^?gk%3kInT5C>*jdFpB^jC9L8=Z24Rx6WrtyX&6<{Jm-k1_mtS4PdT(DeSlZeuu;!KUJz#p37o)td9r(WPK z5o$NTnh0gwd7I6Gu=xP1R%UecBcqJ9Yws=V9qBqJ&MO3DCQ?Rm8N(!F)Vv@Ii)U}M z9TnQ26;fk!I>Wd$-{GcLf_Z9Vr_`igG-O-S*2oXrf<<_!=~L1=FGIsZ``xu#=eRkU zimO;*?C4=36u7!mgYsn3Im|`JK3e&2e*J-)K4Ch;u6kSVH9))_oa~>B*%g)vJH7Ql z!`|<#4}b)-Q#L7f z%RN5&%5_Z&DK5FhT9vI22?}V0hgn+c+ioV)6 zRGVGxM)Av}B@1NP*(YNISvDu*v|m-D;~g+zg0Xxi*5xKx{6u|th7^rC(W=8(+HOp{ zYg$oH-6!5I+}L+r)drH$4+eCJd9pEQ;Ql2qWPQDBm^T&fs^h+t>HFQ1;8Z`4f(3Fw zo?DAGd38m_j~AZ5&go6uBrKEHd~|BCIHqx6KMcj^5kG7wlPRsbJyPBfL{GI;-EaU? zneBsM?f6l%W{=A#EBT^O)F(e}@lZfHrjqz9oZ=w!TD$|rF*gNxl}Hl3ckXbdVxzh| z_6JV~vVQ}*eE1s|2eXgn_A99MyW~i>9v0d2W=mGm);p8(f^mJ_)QrYw;<9 z3<_{_wf2#8WtWKlwtL*gZBPsq=Mb^}>8ZtduZwyNa%*}shnE$jeejEQhdluqBzh<% zSmMw`+R<KFyOVIF45GqJCd>aa&zCFlm}dom&{eJtDo35tZS?gyCeBpRu{R3P3(VW(Hu? zRu679A)iVcGYA#99E{LmR@7wNwLAyGlwjew0cx2s4)JlQG9P<+bg&;P@rv#G<&LrH zGmgnGO-`_$bU4Jgq6K-01i?`y*0pX1R-uTj=An5uZ84^iAJsb%toc8nb9Hp9ayneC z?`6mttbQ)~BP)A&PnEk4#ZA1KOsx`TNq-W4oL@%UQJoLfSjFj^6jnlkG-YzO*$3gg z?GxotBig6<(GX#`c68@l8!HnD*2kl#Eb>W8Hzp0iU{8nJN>csV_ zA4%ECGjgo~+Dpd5G7h2N>SgB3EIF04v7aUD!?Y!z$7PH(7a?6B;FmWq78!wa%_5*c z9jCkWE&QW2{5UbTgVm55t|h)I>ZQS?04xtX5!$gx1O=qa!Qm8% zVv1k*B|kkuHOzS?wV*9S<%T`P@Yw&lV~-(}kk&3g`L}MVco0h)8#0jwj3}`ZG_hsQ z>8WTMJ{W-g9-|vEh(iFQs4)!2wb5TymWeL4`mlw!5ibii5$~H3;Ja!QZULz@oTSiM z)0J*5ZD$t~{37R$Id($197Ie!yqobv40*_xPmQ^|9UfeYK=GgPpHZ$N9VRr`3s~0= z=744$?m>=dWA~!$m;5QfuCMmTRt4GeJB@LtsKKIjHBhMYiS#iNU;7a|WYGcSZzV8U z?Z80j;hsX{9e;V$M@a+ToX90oHMpaVE3Kao{V-wX+qI}l25RDJ6eVxUN~grBQ$i-X znz1_B@W$+bkUE4(-2(@>_xmV{1?26zImT~;wJg+?a7i<5@7H1vye1r8uEqyPXBpCd zj%mA1&frEyjo0d$r{88=kvFZ6Dd@>WKO+?^n`3vm>ncv6v_6$cu%{+QD{9_NWme5A zJp-oZ&uH6r%8{zMQKfg+tls>@JbS*qimhk#oW$Y^AW>5)eYX1eqy>UJS=5=`B#8`E zrxOn-m|vSK!v*Gs+J|7Pib;UAqP9s?h(_)7z)iY|JPz8!%8|Z6Sy5T*y6Nf9L>|JS+{@k#k9}~I4O69_+jqj+;zk0^@6SH&>b}X?yD8F8TfSz zNTspvsGT41g9TL2+ndEB@7zRk0VxnuH@9(TN?Do2V*1-v#rZIKK5(xo zy)F6d0=n%M_04J%*H4wX$}9F~qidw;pPI)A6Dx$}Ff#?Jlv3srkbVbLR&#lK3!i{W%zR9#*NLpTzSG-0|lq`FY(j8oG?~p1J!|*c_SSW$V zx43wyszi@b__9b8-n(%Jy1J!#6F3YMoS5{!4CEXE!oD)2vme;5#z?Q5P>5RWA-{oHRN2(5NSN_i%k?n~k8Y0CtC|ODwc2v<)@U z;cd=En6I<8{zU)iH9T+|Cy}CPYRKNWo|X|L-Kn0yLiT`kC#I-yii<5WjBz9*jx`He zv}vr>R!o~}7bJ90bXiBlC_azO9vg*B^()9h^ya5*VL(sLq!87(jdk|hokJe8aYKCr zv8)M?c|^TM+!ZeGt+?S0mzR+G7L;r*KO0+1nu z`~5W#9R!-}uD{!oO{Ovha^#J%BzxXSBVQrXo`e}zM6f@>bjrx>!~Dq*zPAA)<+>td zVNUzVdKZ{+rO}kSffCI!ni@9z(JL4ZWpM2Z2=_d5z-;8-j;9j%yncy@AFCNJR}i`R znp$~-ve*THY-|DqGPG3~w@C4qVLl&CA@?geYzcghU)Mk)0i z8hu*x&F3x1)>;}~v2VO=gI1mL2t{@_avFuW6?e(|xo9{&ZfJWj-c+cO?4X^+M5a}G ze@qHrKq-$t=#riKuSO3t?l>j)v6$ek4mTScyhSCqP#T=5DVC~bWC$IjVzz2>JYdt2 zgc!Z*+=_|p)lfBZ#m3f0aWVuBy3rb&i{K|X@9p_u$n3u5^4Z{94Yo-dxMs=pfCL4u;ziTVBF*n9;Jm#jv?TWH|^WVdu{ zm}=Y%RW@=C-<@3D=6-5Em-W+~BF+Y|!eU(g*)K-$Ly4M}U{k{ZNi}zA-9NDUx12^( z%J?u}39>_F0*9z>+hJ+Z*FINcotK-U-ip2=%YpSP@?7tIA1xAav7t;ajd&(5_?!jD zT+7P_UYaX(CpOtR^lCAdrN#X`rcuAkQl`NYa*QKL;p$C1@w?Q(DE7&I!w9-N2C;r% zA|Q!AgPb;V3Wl6SCCY_=nMU-$0pv1^+JBC>`$&Rs>mhUC-?T(Bxls(-c;u10uzPf(trm!w99#|aQ*BX z2upmI`&p;x)F-69j_&9ps=n9c_$Z7Ks^ygqf{$cf*vG<|K`=YJ9%OacMrcSoL+K^L zI!(cK0np@ zZeHj)^8`=~qo=M`-_Th>b@LJEN{=_`GB@``3mZD~klF76tvenh5M4N#2Er_ls-duP zx|3OY4^yq?$>vJ|pUtpU-Jw-{PbxIHzDANaCiqH{?kQ9dS5)THkdvH`T5m+kAhQR7^D$|%CC3%(06sU_oL81b3N zo>NtAzuuk8+(NIY?VrvG*t#tx7qg{W>ybQq0!SXuzp+9a?WxZBF%4B=7uifKm<7n# ztxE;VsM-YQ(k3$9JL$hQDTJ{lIy=k_tj@eSo6F}4CS3UuyVTreFmycMI4s0L$NCLGl)C#i>cjHmNfH7-3d8leEbqrgZ^_xN39S>(ZW<@2{1iY?s;GqK zL}uOBmDsEm+OcZI^hH+C(oKY9(kVPzsFf|O6aYPC7@Nt=L2Ag0!Mgh!p%R4n2`n#l4>LbJMqc>58`g75{Z z_&z57u`IFP$>`Y!xog-&`+;uWRe^TdYjNyoeMBm;4@XxUfy6;@j@h6J6(Q5dF}l^D zp^!7J@I)N2>PbFYR`Kvd35EBA-I2k2(ICLGD*e`Q1opy>T^eW~E%ged+?mUhXh1IY z;z8NqD(U%$I#>F7j}lUmLo5^IL6mf5+TYTF^>pWuyFY6OswZ4`_6VE z5y#>V2Zyg8*QO;STZ*XPu4hLipG6uIDOpXcoAfYJ{avn{F2h z4DHC&M^deWe!&=4x92J^bQhzdC_OVmVY#d1t%N7>8h3oN!@XU)lm{NEwCY$Un~r!s zb1dG(yT94oD9DJu>^~e!y_p}J?CoY)hPjmpk}twuYwbz@PK>W+h5ElQNP62xWX_X8 z712G_67f~(6g!$4un0Ym3pqn|hU?4NxgCwX6CvuEeM~e{q6USp)3NS{i)01$dy{qw zJg3Wya^?yS=gPcq4@Hw%60qNmpbJV^iHCBSY>{jMt%c(~dO4%1-E2f8=c9Z+!ZZEA zFe%tC(!!FIgw4++#{`-%DKtDvgt(?@QtRW&+8rBs4Y1l9J^d_Uq}5>_pqZAI&MJMh zWuT28u7EqzV!#-v<~6EsfT`nBHR~j47H- zc=0S+OgQ|tO?2P*$D4ExulEHj2z^dJ_l+i-)w+~R_F;rXJ&rHaQ@W_&Np{q{1fBJK z%^NQR*=D}vZkpr;+f=*e*i7FyUsR8MW-i;lz@BZ3ec-Op41BSGfNa?34+cVu(KT@c zl`_i{Y3VJV>+me568O}5z4YE=c@iq1Cy zR#A!eN6n9sP^3|LPSJ@Fn_#?qS&{AM`58AK81EiJ4YC0b6QdTnx^_Z)wy7|+5OXa~ z2%@gw0fHB!!eU^r#!YXUGF3#N2tN~q*6q-TJFMGND06J6&YOx(%vJX#S=oxvd8T5{ z;2J|L3>;p0EgsViEhJi^*~q$_T%UoUY9x$}dq#vot^1*{EWrc}PK&l9F9?Cku&iR& zel;=qKO3T)k*0uM@EwUZ1`-<5*OTCvj zOz8PB6)Rqru4kz_I<8n^K?kSv17!^NK8$k5FXKv&4>sZd17Sd(zo*|pZEaomHEZJc zxGsHAm{c#^JB6AmZ$4JRW6qtIY_-19o9?Q#kLDtEbZlnMCSE5li5QZa<~@GJq0`B; z+Aow@rC=p5w?Q^V+uh;Yi^c$6M4fO7=TV~xvUE?3XOxq!Xe|uj;PyIAx z$@IeJ^euG0_~X2$#OLO2+VEhjR26vr65bd;@IlI@$`afcvuGq@3iHf%l8eMsz4Pd$ zJAlx9*!1#dMC*CN&SI~>;nRZtHB5l5Z}Li?fzzu_zfMkdcbOB6j$gAsz;r=Fs8wBX zb;IcV(<{K>X2yz9L!h{OPJ{WQLGkMVvXaq9-}+VGYd_(`MonAiS+BOwmnX3!x;_bX zCjRa*mei~UTD}7&RDTMAd-v*`V{hG+gG_LN`Y?xG4Jm!~pE0Lg+$MTm;?cXZ&G@}X zcfeLodfLqQPTP)`T+`_$Ycke!aTv|$M=yHha4|S0$gttamPE zW1*Tpz!hhG%1tEO=0s{EIAUr*fa!u6-({9yM)RU%CiMr+cJtbIFSQj%)LPUwXwjVD z451{MlW;@b__>+K##H`JviME`9EWRQ0%@AvOhkN}e397EbYeWaN0B`%)(aDKQNiPM zZ-y!vJT-~LniC*pNwh5bV*)@RsVibt+tO(_nCtEul0IPmgvVjfiHUTA?vsTH@$!wK z)J4th+qK5W^75ASM<1QAyJK>Kdbhw;2!~jdtnMLab;Ud)gKIPII*|H1nUZ1^Moi*a zoIq7VG5S=C=$sj~{m!~u^F3to5F7V(6q5pGcB`(WJHT;yx}xKzI%Wd*2?AiZWiiL? z1Lyg8oV%kUW$X6IGHM}pkfHn+j^5AV!QI<64oam>CNpT8%H$8**)5~qAvRk$YevTg zDkJ%2o&@H@HAa+(g$6*u>S`Gj3QJ()wL^j82{VeC0k_?K)!WCz9jC#}wrS-UU5|Z% z9{kJTPu_h^XxTrDcWjjR4zl6-(5Rj+I<{IFz1|$n$T`wfZn~n~co8e=f5KTe6enh% zMCNyGm*%ov{>4)?EPtP2VdxIfd7r}t2B)W%U99I#*1J1mmmyZ6XEa!dRh%gg3=KXL zMjCI79Thc>3|4ovOO<02G6hoI6yIJ*iq;no4%ZK=KwW}8MQz8Y8@{zS?=n$WSY_0J zng=1;BGl>X)+baGUxY~l+JIF`jy9 z+3R+Ph~$E3zQ*>}sD?|-F{|X_PZ;*%_=}n5@$w``yl&yQnNDuYXnb6})SR=Npsqg3 zxZ2~@9*P{5&y(5MBF4)fEpasG;$t%X`e^;q+VM-2jATi+`;3ixf za%fW_NeH5UwLC(kYtO_e-Pq|l!#_QjNtJ456c}*_FqXY^x34TYc;DRx>3Hi<=3Coh zQ@F`^V^QkHtd<<2N{BA68=6S^QhIr-DnlNn ze|d-5pz*O(1+9Z z4~iy5hO<<`wj5+|`kUt0vH;59M$%EsQr*E+CnF2tv9Rc_N3RZgaAgiT0T;(>CaJC- z6PFULr_pYbyeJJQip`)2a<@VCqpKT+A~SU6XA$sh-E9#+QWah@ZJHfaDiy!hTq=lu zrh^$coI!Zru&5KPj#!lP_OQG9Nlb}zch1AZ?t0GJZC^yUJ0OUgl&LPOppQb3wT(yupmP<;qQ$Z5m?q_bKJXg^CW?_-- zkq^P1=32IWMdihLhX3=pu?W*u9;&@cLDJF(+6OCgU*`oV{zVv7D- zRfrK)k$u}kCbB(qIoXWmpHpSsbwTE~_31-?)jKW9grQ0p>N5D?YrP@rw zBKR9A53*fy)y+6IhrBnQ`-{ugDd~l-CatXa)#W!@jJB=eQ`dgn84!Tbc+ecMbx=Yj z6#^-U%VJf}RhH4t4XPcmBcG2K@x-)Rg1!%`zLU;EUAD=rYgDia_I~2iBIsipiN3M? zqXC*%6-y;iJAT}E2Vh!>)p-y{X{&J=f+D#M3Wz#=3hTTuNu84xHpdfhZC@SAAs9=} zboad@dq2a{p;kMt({`%A@HD{UdCvo6*`(V2vN-tTxsy`kOk91H4z{K@A#PS8LAQ_D ze2gL^C~$}K%MV;WfM0NbeyP4M7VNZ3U_|#)nVi=+`U3n-1H$eQk>6Haukgv0Pn9=? zwG5{|K&vO;oWwF=s*4d@9w+mnm=(^a%$>i;$nT-^uvGu9x`NOH@ zguY!4A*73pQFbmG^qjyo%_vfYiGj?Aw{W+EqIgz@Bb8W)+v@QH11ziw7?NFU{7-1+ ziiR0Y5Aq`njK2Yh*&}p7Fb9JPkO0#w5 z^7Zx<*{w~+#~}H&xHskzw(97SvL|23r2H%6(tJvj+jN)3O^ z;}Loc$YxZsR%An?2NBf*ky7^e^hO~+3ER0gNx}$X8Di#7Jy34@zs3+ zF`k9^7-CIhNpRd`x10(dpRNakAD2oVWwory!5k>p?1-qN!R+FPkMLBSS;Fd!{BTv| zDY4|`(egF^O0c6ewOH_p_&O>5D77@*GrZ#?K1_Rd3@=tvLHo#B?i&T(Jk{@=UEd}< zbazrt!$R@9Cneeu9!#U?9kChgcde>=vyD=AP(0BR@7S6cuPzJqlEsUfk@rA1fA*jz z5R0^<&e1v>Yz1~)@f2FZc-Z#6%{6t&%Kx_1#EF4ZE^na_9OUr<_Zc88_9C*i!9@As zaSIlay0{6{L-N4C^D|LF)uDbvc!Y?e9J6BAo|qH);ERm|A{phk7Q+>Z(>hShX`Bxp7HQJeMtdpX2YE|_H&1W(@mCZFjsrl zx7F4!dzyy2ye*wv15(FzR!ed`@k>SAzMpXU~p~2jF6*?$&hUo zK@mgEXn6X-;gcn1vSt2GA5=)aOkwU9u6D_tMON77;N&f6sqzp!^~SVoLe$^(miBwd z-rG@TfrZ2LN%#j%+#gs63sUDH^0_^Z;?GZqNZ z9CMD|im`~gBe6BomgbX$;mhof{*ArjLom9spj~@s7(w-m`JZ=ysp!Kw*M)ZV()Y*8 z(fevBd@oKni2{TR)(q`C+#mPKbm<*Lef%O+ zGUGA*ZRnQv+O9qjLPo+}SJ76o74CsC+Cea{!}&%Cc||ILbHT-y83l+!qW)TsR9qDd zA+>r2V(KBYt$*{3U}<6vV?7YRmS>|#=9o#Lw1A^b3%9ypIhSUG>V8 z7PJ`RG3hP~FgaMvTo3v!k$IUe8|E?{ZWc%_5q|J|yd-oLDwJ$UGS(mGpvv@~Owr&6 zE$=G-n>qn9=u;y6mTN<(RFFcj<>U9%1I78%UFP5pOwU3kMJ!!TqV?ehUdS!I>J(U| z`asj{K-bNsHz#s0X!1S1SDS}HipC&;t3~JdI6=yIG~-r+FO8K88mDB(gVs)ZyH={6 z0TduQhG{-aGRGUqY0cX$yl3NWUCcKtt6W&Mxz&|)tpr^NUOzA{TSBuyp|7ln=r>H# zWi0chRa|Hn0~^9$p!OZ?{!kIcccKjsl}t1ZjZsCAc$yvKs_9soUm1yi&ZIO_vN&9+ z%EQ1z6vMC_6$ITRiV!2KeWgI^yOMUgRv+2fgbbFlSlaZ|LKAb)6P|t9`a~=mzx8HC zx8CIYH-n>+G#>TxxNJqHZT zTzI>+Nb*us);`Xb@}^I5 zM4^Xh-1zrtnXhd%HH5^k+_XL}!bywN2&^A#v^C+d8N|wcJ*dj{3^w~bHKR5oMl)NH zX`CQHK*W;BQ5*i;>V1NpKRAl1cYsTENcM^5Sq;*YxQo@-Q`+nMrMt0<#cUmSz_*NG z$UZjWp$%9HqK`k*CzNnX%q~Vl3&>FT9bQl_v$ZlToex4M+FdA^#xh%v&f{4UThAUW zT(Pn-cIpp5Z9(khBwXdh7SL8&bgI@Nsk{TiD8DWEW}Rpy4~#)L2I+F^ z7iZ>rZ0KKD(dq~okxI?=P)(p5*t8tATq$@GoHrG2i@g0n5nLSJYNY!{1BB%zxjuLYR1akFCLa*Ck$f$SS=w9Z`Yt!s zmNaH>_|++planF#hZFHUzBoD*!#nZ%)sRi;9k7_6iLke05;M8!O>p3J(^`N4e!`Pu zOivcZHINg(&cJRLt%H9%RGm_vNz_PgphsAl`R=X0uYP zQ&$<|1`Hy)J!C6(7b-oOXnC+iWm;v)@w?+epKwMxBvfq~6HQVXt*5HoFJ80(DSB3A zbdx%~cb1pwD6Ll^h3{7NR{C^@K{hyy-Xg?mzeuTHlzc=Fvi z5~J)z7`8wsp&dMb54pvZwUO0oT$In{*lH6t+^nV=93Q)r!G2gq+jIjsdb(a%WliGk zp3DVT%PpO2tWpCka=7Nx+3LK>P7cs_ZdKK(YQwzWUTw^4U=v40Arp@ z<7t-HM@saAH>$d?>p-qWSXy9z;-qxzZ27zrDo*nAkd{SH9g+4YqP(HzqGgz7%_gc^jX^&b=Sl?n;)$wDZ|}vd%mfX4zG#w=dH%lT0;?G!Q~YcdA1Ac zvqD^y59(p#7us3Z#RVWa5w9Gf&c`+>iU@%tRq}uESSR zlHs4STGxpzmbgahuyWmBX`ePk@}cYvy*|8AXc?T|SIV#n6?x>5Drb=@RhzsR<7{sj zFDpSS`}&M&cgY^U&et+)ddxN0zdR*?R5Yga0 z1C$n{-lcL;Q#Pb+3g+`$xEPs@u+q2MwP?4w5OD!g-(8a?G^aLchAvb?$*m)cTSw zC5711$kI(`j7#&vO>dWvAS@EOvLrdhV4=@K*!EZI_acD`jBdGThe%&d^HJzr%w zOvZ{)L_a#C^VJW2c%Ge}I{@*K4&pV_P$SRnSSAKfWZ)%IP(_2_ig}9FYGBZgZt9z< zQxCI8WvN#$UUW1wol<{<>hPSe!U}?mo3MJ0gR@2JT$_W;_FKl9(X7a}wX^ zNKoYC_7!N&bb%A>IRZRfbJbEE?Yi+t&<-OM=($h=0xQDZgejj_&fhrhRk&wX=#|Bo zgA27pOOr1np@XNbH&G&ts?E13=kbs^SvQmF@+(dqDa55Y&6)rr?P2>^nx4nqA#TVb3y%=}X!Z^fv{i*buMmCM?68m)_4-uU3LX>Z)Af^E_4k#s zY2+`6pQKgu7AmsnQ^zHmIGjdX8bz?glnQiH?u>P}UBuMquQ?+fmv-0$Qdarw&g6KK z{%kTMH)wXg0|>!<1sdW!1KBxKeE#yq#qB-lxT?7)W35{{rkqHe%(jvrBWy9eXJ+bz zGgBQXV`&WBaY+pf;%Do5M>?OjbXqLi)f&CvT1{2(N8I!r?6pY7W(?-H4rsK! z`C<%z>UqE^ofU9J1a1E;Q2SIsTS~aYi;YOqZuR*34v6>czfzTi?UQe(-;X$BS;jL2 zKNDRkxe#6TirT7W*pc(TcrV*}4_kf@kN#HM3Zq;h?^1=!OC?{oFYCKFGVcPJCf(nL zlJZ9p2K5mdlnsc|L|-aL1$c5Cx$G(~@RJ9)moP~vcCRaL7$ecfM_KXjakLa-%aH^` ziZW=zZ@&z%7_q@SQkP=vA?bc5Lb?VlV+v!PeW|QaUSUkiuOhlC$x6JvRBZji6N{p_ zXWmZpiu9xKZ6(i)|MO^D1zGp=oES7e^PG~k*Vo`ffu)KyNk+lho_dQc zRFqDHB;aa1FWvHI52FuBo`jm~2VXXUm;B9LKJK;VAI)Ei^`QBUOqXKO?czAm?QuKs zMJGxRub5EX3gF8UYAC7d!LMv)=DY8fF26N-`|54T@X5>YV1>1@;bF2OtHYL;@OEf@g$1d+ z$C6G^$!^60maBT}*6roxmZ9(bJW-YdZA{;zw-Rqp1Rif{5x*4}_!Nde)sxiAkvCf* z1*vYsI%iR7+kH0QYeVTNGQqtT|29AKMa{Q{>hL6^vPLlN?cdz5BiAhVgK>s-1KQdaDx@544eaByto zf|h+13Ki`XMc;->xh!JgP0!P?o>&Q9(4%A7Qb(;HQ2KimXLe*#n)wkv%>B6>8q}#! zCE1oa&@?dTsKqBYio3fUGQ4r!#|-t#ut{>9eOc&>OA z!TTlQ#e}jqtEbS!E@o^Yc z_VHZQnd`79nX(##Cn-43qPgZ{=~1fz8A0ro&SDDlxy*vyY{# z`Kt!owwf>IqY8Y|?|>hXDmST()Ehq;zWI(QX=TZj$BRRSx){Q4pHGBusZ&%!QUl7z zck?RZIb}5^hssVmB}vH-QZA>lf^T_8W_m_N1|1?qy>KK&75&|=nev*>vvXV%C1al+ zIQy~{tpa!ty~b~kEqhVfcf|T#ljgDVO?C`NjwUXz6)dpY*sh=*0e!uIU1Hj|JH$(~VRobbuXi>1LK=x&_a%o) zcr?1H6XwT=ddG(gcO;w5h&+q%#d?HXOB39bsj(J<_eZ*hQtAyQAYDeoF>a)(;UiHB zqV=?qBltN#O3#p&i|q;ACHiyZPUSAtk)c5mIEnCC8>E?Aypw(C*|msEj~C7Z zH(&2WM4CGPv`nBPML1cif+!AuD?1*9XtGqU&V5g?@bHHxGC~tvOnZ1pzL2t3C0fng zzukg3Yer>_D|wg{d1i>FIks6IH#996o=MfgFGceyk@)rYt7$DQ#}a zHKg{P_X_s%(WW+!<9I-s7n-|d`l-iz!4)oSQPh-y0WLRvr7%BCg=G~hqRMWXy^PF( zl8x6~S~KsOnp0hSHdBshiiXBKXo4oVFG_g&HZ@Ser|=?el(*lT#~j}ktb47#9`Lf8 zZV-AkqA%~fN~fS4B^6I5aCwEgVh1aFtb$d1~m3Pj2Bp z3S1Lg6L}zvm!PB1&ZSDIxJlxFeWtz}_vG`eugDZGsf90=4d?7TsWS1%_VL(@s-7bT zy3Pk!WaIHO(gviq&g;a$__1C5M(JG7C-YbNqQNw&!`B>(Xc)X}q7Svq33)GOKNq8K zVjJ|#Q0Kf`C(A-QSSvh_Y!$ryFudi1c_K`q;g+lH;c?dRHSS9oV=$drHmibHFIJ`M zcyWpX)yc`tq_6Hx(Be%)UKAii~!W-8MS{YSs~%Y}8tLg4$2h zT#jBYoomF_V6Ch&bw~vTx(AK1LOda|dH)MkK&!t-IgdYf zL_fx-sb6vhMR#N3jXE|qjFM#JVM4Y?Ad?ox$JaF#mx=Ys9#i5SJ{#XO1R~-v`Nwd@ zR#o-lOnYX%s$5G+={U4-RLZ5iUC&IhHqyc!TZRJ!8l$OrYSQLIaW=yt7zY?}$Mvim ze-UXqdRoNxFK-;KAytN6?c52&o&YC_E3CGg!`3L$cy?v5d9u?j?X$=var{j*4A>{s zsr+luhHHkXmn{DPLx!dftX$itN>-TF|T=<((pJHfBs>6c*ev@$x$m6p^A%bvm*deR-`lYsuIJ5CoX39yk zByqfQZU}k@1$a67*L@qebnatX*0VaKy?wyZW45^wYhM#~Uw#KeaE1 zG&@~WK(^8RU28dA*701npL8%!-M73z8=j*o-|Xh7YM-=*rSPLvn?(4n;q8CJ$q-O3 zWz#NX(}^pV#q22X^gQH_K^Vxd*jD%f<7-z*Ay#NHI8s@Z91-;y&3k`~ zz6*R3@t=jQHII${0kyi$} ze}n!p@dky6)Wd10T(+-dNdN;pH>#H`3CSTYQGxy;(!7af6z=TK#f^hoKkNGJenx)Y zz97^A}zJ$X1F^Iw+U9{8PcXW%FBTzX`}c6Bc^ zOfB1THUlYCmmq_jIP2QKfByhzU)XcT)}9j8e-LZ7t!b)VOFg#W=^U-NCf?cFp#5+w-uy3ef3mGL znIMYxb7dSbys428BXMLXP^Rg^Inyp?bh;S9B3pbJ z0{p-b@uqSs*t|vJy;o4Q7P9y=Pta$C}-i6;3Ng zeD)*jHD;>HTBCvZiSW-t@r|v;&F-nL=(qP#qPehZSuEys2Wgr;k=%QKu559ETy39* z_3bA^X47H1fxcC@Slo~peeva?B=q@<4E)_sZ>9VTqsy<`NH2VGp_jqi8ID6J_jCnH zfJO-;9r7!k@jj!cX*UB&mg>hDcnT^b9M;KyJb~)_4pL+E0S&c8@!diKrZa)oL zqvo1d?tIOyUN!zS`&kxAxWI3gLyx=fTe~ z`F13u48CD~irf+xC4OK6vjMvU^Y*CJT@MbeHneE@$5zm^Y01>BWLt@LD9n)*NfkeV z(Xhada7fDMjEceVn`+uVvp%Dw$8j~ODC{j9nPS_PaA8&);EqcC%h2@|^f!rq5BSqS zv_qlCX?-+<4?FcdkdQrmtyYZslnf;bnVNNhB&mjpYh60Nu$s$EAAb zfV_SEsjKPwSBk`b9)rV|<5G&|DGb8J=am9V=mPmj(*-$V?6~R>5I6~ZN#cv2HMPm) zxC@0jK@_D&auWgYdW>fWgPeoH>vtMW-Q@PyvbD4lM5xg$Vo`7zx5I>HL|}v#1fD%N zU{{NZ!l}i_uXCFRm`jdc4PWs#L4rG*YsAqeXc0=_G$pN4NSGkNG2wy{+a&zJSBD*N>E9B( z9pO7GTWvD>+Tzy6?qv+D`f_RFNaT)08;oJYMpUb|GmL%V@bqcoE5@Y?ns2Yj`wTW` z$yPkN^*>U7Y&~#%3r~PvF4o>#yL(%Uy;kV?6J5+>dy7I_%8iysXv1zChJCzz#})7Y z00urZ_#5JmK_h+{PCuVJ ze~KF97c$)}{{Y%1NaIG9?WbvDZ!>ZY$W*F^T%uzH0&&H6o*D6lhPQ7Ho$<~n@AP@E z?e8y6uF`J$eEXkQh0LWU>d9F* zbNbQ!n)QDSc(daV#Sa^3_KRtEsjr6QaV%*a;e=_KQ8)y)Rz_txByI!)UuZVqNyj+j zKK1w&{{RGawD@nV{7doXt?=K(H}^VDjSMka+uZpo`i;H9qAkpxN-S!Sy0VDEsq+bO z@}7U753{6*3K9k}&o%h>6XpKH7U{0b@<-KStHyCsgSsM&f=_dbfu zmU6N*fh91$8){1f9D7QK{h?m%e8~BUPjQ;@&yBZm>D~^#yt;jn!DV$RVt5;2e_jV3 zwcVC3TJ+`Fugq0t?#s~l@8eI0^{apQAr_gS_^$fmJxfLK2ZygGmwb`PUde5x^5qFE zzGhbn=+ZJse)r07KbIuEN7hB$at*Lq#8WsUdZdKpANPhq;=iiD+XD3I-|$KuQ$dy1 z31#qpiC~K(Dg!LS(lH)ejm%CuAED`A$}fc>@b#aM;?sOc1hz&WGUfog{J;^&izBp! zLK1KQC)&TV;RUikmpHCYb?L2@-^ly3;lG7`Abec^0E7cf@q^9bzYS>~6uQ&2)w8;m z-tOWEjkI#lB$1-YADs>OClO$kV4NRbrte$vls+)mzu_0PwVKNHtk&Yqc%gWg z=63^V+0(H7qijCcqx=xn!z9gn;8-n;h~dLFn{_-xE?bg3&s_WSTrHQxp9%Oc;r5&0 zZx%-d_xvo$FDKUSKsd9pvT5Ver2E@eS?|f15Dp^>4?&)@;$7UD&%r-{{w094cNS0L z{T68pGPdg-NeU<{-)KI>bj6u+IVYNGskf?&)G{{+(xM!Mo^*AK3(ori*4X?*sn(}#7d1tQVQ*NS3U(*?!L6G}E+^{hu7Vhl?kc={6Z-+jD$FMzSL-JL4OQkhnPn;8)iF z01++q%@g)k@D`8ZTd0NnGk6l-E1gC*n0%93Fp;B##2JBH;B8zA{5JiLe`<|$;pc(A zEbBH_)8F`B(?`A3<96JTJU5bD#UX^wh|x4cWSP~w9&$;q*PTD(*TY|nzX`k}4}$eD z!oyndt(^9^Xl-s{k`aNrDR4@;i0pOTuaA_P@Uu54!gGFa=ehfi5;v(IRD8woQ}$}Q z@fYoL;RXGsujTleb*Ok_UAvy<zu9cO* z)^q(2e+rV1FJdcH%!XECflqIxd5_0!a$O7IE~l&cNp^zb)eLg(zz-%E{GgM8$QV4= zrAFm4dRK`4(-$ND6ehHivklYQfL9qAbJILmlZT|$Ncx>uO&%ZnJb0(TzAW+Fw>mwX zR`=%7iFJp{B{R-*9Atn-JAwTEo$>5#{f`>$$@7r@Oe^6p*y`2nz9V0(s>wLh+1#+= zP0WC@;9vj;198WEdQTJ!^3QRFT%I$@&OL`U z)!D|Hb-G(CWnx?d(~e0$)Ym(6Ydy}jX(kBrBWV@85acK7GmoWcO?&6+CrpAPBB#wO z3~W=?P@Lx{t^nvc#zuVhMM<`G7B>?Mb0n+Fa;yH&Z2Q)V$Qn5@{l?GYrm20Z8Q{YY zoa6AR?SjT;VspJ;80-qxa@fsoHAcwdR?gogKMVjV@&g))k&XviSk7XNeIsA}1XYy^ zV=CPCBC#}Rvm9bl1K{)id8?8^3STbV{tdzq?wURFy|a+^Zjb={BcUk*})y?wp7o`yyLBJ zhM(_}WmHR& z{{V`2ehx-KkwF;rIKlR>t=*zv&epLP2L+UrIQ7b4*UbL_x8Q*P0KqALX*s1bxIPz{ z0VDaCYz%EDoM+tE*Z67gX7r-_OaA~#k>T-6YX>h?`J?#Fv-@4M$Vp+7$FEb`w`}}F ztJt$NH!{VZr3qiAa8y=Zyh(6ccTfRxQ?EczZ^pFJHj|YE`g7}F(Q8hJ5JHVpVM9V1Hh<=|2hdk3P##jwW|uD(wZ%04w}CIrl#G(^mkZuNHko_*RN{q}pbO zfIn;B+dtuKP+52f;)cHsrM>{Py1S24LOTLASgv1huGtj!&jTN3cn|&yGy7clGDU;p zXNUYh;@C`x3ka?>X~J+09u~WXM(d2n7$*aPUP0l{haMQ#B%Uu3S;cpi8(G)p9mxc9 z>EAi8l>RArZp*`7C7Vdozjbc6ND&Jb+IS=a-Lc5#yo&IYUE4YFP{&{rs~Wdo*K_+0 z{gS_E82ecugr^cXqQ zt^m(W`E6b{9zM}IHPHQgE3eN+oZjswer|YAQ^z5#QF#UJp666jXnvVx1)ax}X#s@4B-=YfoPV;X zZ%=CN?3&@{3oOzHJcDrzb1(h%AC}|s&2tf}$1j@+`GMe{dfd_PZezM4=LB>I*o@bW zi(O6NdIgcx2k(~N3!tZlf?|#7_at0@sfMO-vwjDgs$;aPC2d46K# zxa0xGYi=f(VVfbcr2Z$7UOlzCH&R-Qsred?qIEl25=mVZNDMMIjCAYLu{8*$MJp_2 za6g@P`ry-!JgCxLtDGQ(jprY?YaDhbI~4y=rSqsH`QmxdK9?jq$1A_Y9|k2SbYEWwFz4P=q;U z2Z-HCKS0?2b?Dbtl98P$`>gYr?VZ?;>Pr26#Zya5gt@pah7QXh1GYc}eqy={+dFMJ zK51SyUh<;>j=9{q70+91aJBJ@+>3)GXZ=$K8Acs_uuf~P6#13Wo0W~YQG$gnoPRF0 ztcQWeTH>vB!8{W+*buy7i2(8P^y}WY>~1EIDupac?i_ZZ(}?-5bbr~&f2Z8SK>4AN z40ZdYR?AzW#-cKQ;5_{WRI}i+u__8Oo(SZQl|8J@EtC?-K4ytJf4VDzbdqMuPR4cA zb8gCX{b~n5spcu^*0$t`F=4l;>M6z~WDECuR!*8@=QurQPcqM^$OqlJ5AE_rA+3vb z^MH}Z8SCD)YH&JK^`Mfoc`702NqT3r#mso;z|dV=@{q<$5SmnRr2w-v2pah%3_b*(AJaMljS zH6J#TS1~1#uk~h4Q%TeAwj#^EIGW03Z0%CBTQE7mJ-QB++-REImTkV)H?+A-t4`ZB z6C_{&5>4%IDFdh=lkZqIZp}69(qj!bl$iePDi{9%LM>N-QlPLHCp_1?gU+#Z*TsKb zPd5>Pqc5}f9)$k@5`1T;$K}Z$k#!S4%2Mu4Hg*8=1UGTKIl<5R>~^m6!+tt4Tij|o z>-> z2^@&zk;oq@Je~!4@5CJ{Jyzb{%FR*ZR!ezg4VR6>tFj(42*JUaf6sE}5$8UL3megd%+w`bc97w7B1IdY6#4 zIl<$w-~nGrLyj1v};qAmj#lA3u#Clng7yc%? zTfuYAcbB`z3HTrJa>my})bxvptb=0W$6JceT7k(OQLa(06cz++GY$_RabA1l zpZFx7!%b?^Yrlt*$*0a^+P~O(z1E(wsW|~O-9TUIrN_|*MmPtL(S2Lt{+!p}Y_)R~ z@-{=e5JM0%l_0N9n6AD%879)rwZ?K+1jKpz^Ggkz)~5a0G)-I;IV)KHVSX@w!7V>% zKMG#SsOWl+_N+~Y^1M%_yBQc~_l>CNvRzw7z4^94G19&;@n`Jk`$c$e+HFJr5bKRu zEs!hf9u(A9Ta5;Ij6-d*`CE+q_P{UqiQ>Pqb+ptp;%+Tng7kgGq9lL3nc#Qyt~!FPSC0caG{xhVrD1W0XJLCAD+e7%7*F1lJ z;maf8zZq+n+9mAgXt37S<4cvseq}LTMGUfa3%C={eAjE?4-)(_w6!+6r-yY5i5T%U zt@OJ?bS5?iKdx9{*Y+Xf5821zACB}Zi#B`6G}T>~7Pm9QsoD+>-PZbo-5BtCEPFxe zU!Gnt{{VtY{?3~6$UFz9=@z#q5=Pnu#-rhhh&ap16|9#QPQZ=>+X34nn)(bU8sX%v zRW$pf&z?zEE8TZL2_x~ouXV0Rr+8yfHr7!{xr<(&-+D7R07Ow0iY5s;EaUXAWAO)w zm%(~s-*}EqF7iZnb0v+^o#!DzSSMKIY>bn%Fzwql^=HLj_#^)S#fuA>uD%}lpIx3P z)Ui!xPPEox85#LsN|x4sPX(R_JY@H;fV@TfApCvsaeG}GLD9TJBt=Hw4C^ophCHz^ zXQ(BdfsazEWI4z=>t98M&*)UQva9$10Kq(Z*<|B)I2}q}{2=kyf>Et56*Vm~Mg=AX z7Hc!}ZUFqDt(zf$JfjBw6I?aN!p{WUuw5EyBS?#RVhO?8j(&7g$=XgbJ@~<{D*ph- z-x&TA8;cK!T4nEsVRq(SZ$-L--GBfQ=a{3mk#KvK2b^(Sj-TUgD^$Gy0EB{j$JA|Q za22#RgeK5)!YU$z>Q^j1>)xS?l24gk9z|TfoSoK>(D!(4d_$sI-8I~YP`Q>Xh$Vlz z#U_w2E7M^eF@nB=ywAfnek!up?tDe!3p-0Kw;^E&=4l9ZXrapiyzJn(%Bao<88x%1 zd`!|b>qu?W$YF!)(fa&fb5SoxFU4~z9n8_4GI46sFS1mPo;#F4mnRmfll#%?e; z`==F&%SKc4ws;^B z#A`3$y+yvseQ|9$iTRFaRx!93$lcKMfI;G^p9)*rrNzFJs9svx-p_Awb7u|1{gQcY zkM5;-iDWV$BnKe2IOqj+PX?;E$}eWVebLiT8sSbJOu_?f0Px)^3{ zI`CZY!z(eKCAJZE2qP|Exolu!zk9S9+2Nf~j)NR`AlLJ^h-v`CKs>+MyNbyxvaa{;|S!Rek8sYFV)-;u1QEz0sSfzKGPPw~#F ziK4XLVQEJV{pSAY_pi!%C--xwH#mo3_SBl=;%^XrqHO;HR6fuby z7I_`80_2{6SHF>9rCSjQ#a~tVoS3SrFlzk{)ArrB(JjB=mzu7eAreDvpy&}oCMHrO zS#1Kg=?gP3C+`!x-oKfz0BAzrjhW^ z;r6+GrCV4}Jh!c4jcmD3vaRgJ3WYI7tX3f^_FcH#3Fj|$s|^cCzPIq*!|A$@pKmfr zEM!I&B6ouYB#2@k7OSHdoq~w{NIk9aW^f)W)4C@*B(+ z(3t+yEU_lkX>w4mB8-AT)|b2QpEHBNZ%$8J9~gXM)@*g{RzI_g3wsG+idYAj7FLE? zB=U0(S)N5gHw^3!Nf_<=A^St>+GFTG8Srhq(WaxN__qH3O90Acg3nUWQgbV+oCIs7 zDZB2OK2gpq9Z==7|=3Nfj7-3&BTRlG2C%AQ1kVH&jf~)Z^86c6oM+VeJN9NE1s|#CmsXFeCKeNviw+Nsgnm~m@ zsTeHa6T?^6`WJw_A9?Zr0K>lyyhWkOp!jo4)kdFbqg*ndv`q!ReECY25<9~S%EXey zHr70lFu!Wgg_i#SvG;{MG4R8}dQ0hkD$)Ekrt2D~h|7U@ajI&UahWYtC@865iy9Rm z?r8?$^5wka_HOYPiF`@%yWvgminR>@@$Uig`SExX8)HFjVIb00yB1>tZwJv64; zZEg6TeiI1{Je4-RtD{ z@JnaGejWI#UkQH6KM{Oes=@Yyr)hVW;tOM!XyjYin6H>r7ue+B;2d#Zpg*)Oo1&c` z!nzK>9Cp%b`p%VTsW4ecbh4gAPBN^>$`7VSdBu2``Q1wUf51OMz(K1?9p{3gzVT=6 zz3}_u?v;Gcp?|`@)KWPA0C%_jJ5sY`AbDlU{n*J5@{xcrPJT%Jlss~pFYGz{U28i0 zZEL4#-YocsG*?4uBsiSO@~&Uyewo2J7#_bse#ScI_UDZ}KjB&BQGMa>3tZSc23Bq9 zs(>6RIoqCj1A*yZ6#Nm<@8A9i&HG1bJ|~^$x?7)!Qq4Z*1?IMvR%iJfXLHBM+*I-o z;lca@SanO&~Q#0jsf=KypQAjT0O_YE6WXLXM#Dd zt=2b;9m_CgXwLz-;PnJolR`fFI-{ZSckE^?SH=2)u}~N65)~|0dv1|3#48X1!5nds z#%t~$7y$Y@u7BmcKl&K2oIhtD1ls7@?e~am^+dlC+j%BEs2v-2T(;e<*+2z8hQ5;V za)G5p%06Rr2>$@b>**Y>bICq*Y2FR753UVlg&*FXJT~wy2;GdHM-0dKn4Bo->s$xRQF7 zX6i}mN&f)r4l9xH%<<|zBGz?Fm}QR8Ngb`Q2qZt~!Gx?zvH4m@V7MQ`bIo*`oced! zm>a0jsn5*Y4;-Et59e4^XH;Ukn#puym&*W>K_dY49ep5Rkpb}AV+1&{{8^{hfsX3Xy_IAT6tGDT`6YTIPV2h+AQ z*0EnwTQ8mB^A{i=Z+hvVDJyJt7(GAF6;VblX>u#IQxcWxdQ{p}ThxZ*1Fz#$uT|rN zZb2Eyt$i#HE1KU658ftCNA5FG;z4N94qF5R?_4GBl#-wA1#BE~&l#@n@UlQAhz<$d zGupiF36k#CSAkhpGmI0Q_u{>*cfxT{TC*Lt85%CRP#AqiKh7)WANVLmsIdP4f=2$) zYaT)m4zdsX>2f*x*VH$65Kkg3VEllRd)Ld~@KKAEPxvH9?GF)c#k2zCo)66=YB=`A zeSd||{uU|Uw7>M0c-&cksLR!UX#OkgwM)BV>nKLr#FE7489o01&MT>dT#%xNjc~jI z4lsRwm5FaPw6Yl11ahH|%so$joxjd%SG$23t!^z!FdxH{*Xldh^pk_!{AQ*3wK~f! zQY)k~IuI8m?IFk1;O8HOb~-)Gb4hlHL1edJcJw=jI{t>dm+hK(BHlG@xX$+IpmjZe zrFFgo)NL+xTl+gan4z<9j@&ejxNbi|j{SRAE;b9;$@v~mb0-`u+U#juL}G>#GQ`Uk z21ZET&;J0bwY5zxMa$fyZY)nAVD#ucsympzTUB7c>mnU-fKN_3=DC}#UTa-maAIwhLECVObHUG+ z4^K~8@Vk51WdPjqxNv%}zE5iUm*8X;lW3Zz6nwWy_>U+MYt+S3wKmVusa3l^miT`H z-b*YXZ3!9Aq38P7#-FrQOK;iX$S z9PLr4NTGiWSL|2AYj|%j?jAwA$&4HxLEd(dLE!OUjsF1fNKF3#!wu+atPb68!~=tz z5A7*`r{!O=9}3@W_vG~vr~ZU%Jf?(nk3;OTs;*cnQvT}vkI(-Aj~){6_kzAZU1&ZT zwiecMM-|7EpluB*Ze?HgLFwt!wNqFa+l=6Y&%Jh^wB%xMj~CaZ$i79jtb2rI*O-Ah zE6B!sisE$3+c}{S!*d*x5^%Wyf&S^iug){nqll=YtdnQx_y*l5x7iX|M}g-9$sH>~ z-A|lKp1o>y(dJBC1Ph*{k&u5%V2#p7UYR-lYv(FdUC%}e#=J00_!#+HJdU;3Xqt3! z{L?n#d!K5s}rvuS0luIvAccO@MS9esyvwS^ofc zj04d3sy1J_Eb0pvQ@8wT?VcID#_o9b?OZIhyP9_xm#-LJO;eK)pkbW#01i!A^2C9G z$r;5~ynXJGAlfiF?lIc5r7JRJ9S=cp1O*si6wVJL?&RjYR%kT#SCocW`T1Aho-Mv_f_TP1g`cxGi2QLKyq97--4O&xS2>$fh5!L_2Ui5=wR_nG z2-m3!Pph%bkF4pz$sa&?Z}yA$5#o`HFB4nYv+!foBa+vX+jNVt{{Y`r@6h~1@K=YU zuxqR2x|2{>@&%Km>SK=^n<20O$Q^6>n)rSDOL$vfQxA!BnRJVlByH3h-ZFk|ge%1( zBM^G+WA9&F{6F}MY2bP8o5J^3dMjTAE@4>aid9Zm{cLif#(3I6>&<<>W56yq_EKs2 zpF4-*NWYDJ$M5Ea;{N~$>T<@`_vo+2R$RuzKFkJx0&Aht^wDvpTFVm&6vVuzAQAM< zeoJ^i_MY)gm`}DgkFVQ>7>4TJOF2m#b2Ym5kEMIYllwvVTT+EDB=F9wq+IRD zlS{j{x`3SaQr7c-Ck?FUQ{HvI{w`+OJqY@aA z&u%#tw6{*W9ifw!%N(9hPg>{huMCm|9S%)q(Mn3?Th%fmGd4lU#YY5LhBGk8jWT|s zCgz^t1O-kQ=jbbL&INrwBaO~?1}E2H7_NDHr%WfI;{GqvZLf53a(+gQmA(D{07{hU zYkA>kiUPi9ggS@haNk4Px}9z<))QGyfTs)f1pfd!r>8^Y{{W+o6(TA)-~usEBx-r;trICdL9ey$;8*a=!3Ynw)Z-oSn6H^*vsaM1xlDiv9mRVptmE*=;c-pf zjXo>*hi4~~;SF+I?V*2htH*C}-!^cfSk}@)M?APcje9?ab-h}W^Y)0!^~h$8vN7qEV_ob}$1)wvS3N?W2>dF( zxmrH+)fu`FmWx9F0EqRE6vKQq8REau?W5klRnng=*E|s-hJ@#@GH^5RUQyv|KN9Jd z5$IM}zOtI`H&l6%k@-9hPQb(xNB|D}SFc!I>RLo!@g=x;7>p4cvTpwXduagvAk|y# zZ|w68S5ngLFRvz&IG*Ihzi23U{{UK^T)!`GpFZ^IX3$Rc6GY1b-po8pZSb>Rg3j{q zQn=IgX%5KWOf$8@N)PV@W(6!$AcMPfWOG?I9u$X0d%N9VUbxmY##qIoUEEIQ7aO;S zgtUCKa6UjW!OwWCt|QTPDD@2*_f*o(7%+->?-jvdMpFJcT|mc0oL5z=YPzS2?Q{L7 zrAsV1bdOTAdt-5qku>OMjx6v)qb?6Sal!WKW|SwSW%uZC)WOa>qEX_VM#|gI(#t^& z?5dH4UBM6lIBap;el_PG7?Z_*Gw_G}A>InJv6|Qv^90tATr`9*03>e8r0wAEE9+2c zo+9|K;rClzN5Xo%x@;kkKAbIet77}O#J18Kl~BFf9zAQgweghtq|l3v8faycD7Mo) zDKix~&y^!2ybKe7!~!_Ybi#Ea?u?~ME$VzCx>tiVPZH1JUlP8fqP)RM*x56|@(e7D zu)E1_6druFM&SK3;##llk^3)vVevaf;AQomOs=Kf7FEag^Vg?aC^`7POx_g~3l zz~jAsn)u_v1L7K3n@k|r188?_%V9!k0h$S;ZaLUPESV(Z zI0K$YuUznV!%LqJm5WW))us@g=5poT+Xg~hmOnlLC$Do}{sW3JaE+V4uk~|+wo^sx zvp~HjTLRYQ{KDnMOZdX_6_5D@W9a z0&=8u1Xrr~ixDWd7s~v<;M~GFeFXJaK5G4vz5@Iq{h0LqM#sR~mZ^JrtfjcrX4Pel zo<_Ibu%vNC6iN5nI~Sh$BEJ6c{GSe5QlM;X9X37>uid?sm@&k;9PQoNsY=x~^dP=_MXc0TO5)}b*N_TiXg zAoe}$ox0TRA%UJ*6@0#1C$>1RoO~za?~OXfg>kHS!{JAYd^jxE&6Hl-MRZJ9$dOXU zS*F@S=wl8$pgdQb+y2yl2t0DJ#o^6=Pm<~1{yoLaWzN%r3{Fx&eTvtB@_NvI@;yaf zoR_-Jui|#Od#>qM4Hq(7@_`9bRYAzl7&y-+znV|kPWikS`$=ftF7WNWhN-NLerrn| zF}_KNxtNGj=I&)^tnK58Lp+Xm959U}nUzoUC#d-2Mr}^+-%wq<;dWNWcPT^2_xAq) z8vb*B5qxR!2f-f}T6o&fMXKphY7<^b6zWRc$Y;*<4xF$6DJ`9u#?i%orQzK-A8MbM z>U>`kJ!5|}`YZ82fG>2#)jltLVbsrw{9Lv-enSLh({zXpynw-^TDfm1Fh9Mza@RK* z`JG}B!yocj@RAKJJSPPD+#XbEYi|dZBsq-vQ57KL=D{0!VCOaZWAQKk3RUBu7TV9H z{5bH9zl9>YjpCN(9YRS9EAZ>~FCbd{%1AB_@Oe@VetLKk&Kuk5Z0CU<+0r=FZv<~s zfz; zzi5s)!ij>ZP$b$F$nS#NN#u(1hWI;iZEJ6FsH8VCSvFvFW`*Je<%u{W1atn^df7gQ z#={L&R+O4B{3D_G)5ZQUhSycq;4#^uyJ+vfE18zm~$>3K7{iET( zg*H0hgmrjEu^zpoNN;W}VmT6k-(=I{x!Q{)4CF~W9FSLO%C{aBr6!xITi9Pq1XoKG zyCF@)%F_9643fXjQJ0}q2u9*CI@f(GNjvn|^kBV|eeS2#{{XeW#f^94et|T<5w*BR zwXMrOx2L`A)`G5f>#M-=CjMBjDZGO)Aof1SwQRL2&lk&tjum`n+_ObZc;x7+) z1I4~1o5Nb83Ex`O?XB*<$*fo^+uT^dbvqYnR?#GqM)Kth=XaK}#~$`6;o~WLT2Gbl zf5`i6Elxy}KR|zBW`^7Lnn8Rouy{i(0o!{BAb$`w``g{p>gfEbA| zN$p!}{{UoEl7ANJH&Yfb{hhSu z&0;@%nHiK1{B#9B!;m=o zAIxan!Wg=)!YkSSCHQ~h&&3ZB=^6~0Vz-O*gqu{+F72-&vb(o{qT9iWlzrV`#_Wj%wwCT^Zd`r3F_YZVU(>#2TaLEsDME>lBO- z7XvvYfsQL)3&Ue_Sd4}k$gg2S`W-jY#LGSP$Ii0GSp2(XjHwv+Mj86zx{DcZc1Ih) z3ji`>Y>%h}3g;c*mE)A41wp|BrD$6SuDrOVRv@Vt!5uS| ztGPf%*HP`99-j5ctatWy>kKdEK6|AD_z426+uvIO^1BAkK4F^d!_oJX zGpRi+j*jYR&AY4M3=@-Fbgp5tDnf!f5#G12E`nQ_<|^HIIT;wPV(INJqVi;hRmi|G zGN1f(;PYOFE*#M@!|u_{-3isi$~O*xduKSWn}6V=@U74M5>NJrW&~%$H!~)abG_E-pi)k{{X=;{xn!f(cHr|rKC~?A(X6_PzF}| zgUB`Yei%Dv6z|$!`b#`cEO)@m)<61EKZwl*&)e84FbZ2chaR6!_1fxJ6F-pvI0W?X z$La^IeNWz97XK*(L zj&)>o{oj}aD}Y8<1RQb*JqXYAl?+rWE1!_!C^aL*ZPrVzUUZG}h;t+3sbY5H@c#ho z*Q)$EjTchAxm<|S)<_WZk{N+!KZ=1*@W;csCh$JB;_Iu0MAN2d21nj8V{sVc?=Ttf zO!#+mzV}cp%-awI+)RFbLGjhyr;T-Jbut(xp>(Mr7&}&0 zRaVDr4z=ZEbmb>DkCEVdytAmEk@R_r^GpUnM6mA3$KJ=f^slY|0A}lzmqOK=6VmQ6 zhU5NOgZlf|$W|JuyRli|DpkLTumO4uoM%4WGhc4}0q}mQqG-2~T-r}&FD@c6$#9IT zF6i^UTNohp7~_iW#z}Ho=jqgGv+Mr=0Pby8L;wIIKD}|%C$Q^Z2>#O&L;nB?*pF^Z zSC=Kp{{XJ5w;x|>`?KNN$sVP56~+=s<3B4LF~=Nw`t`5R{{Y%T>K6E+aTbN>+OOuz|r3ZiuhG2d#ylc zk0}TKK5Oy|{s~e_e#0IZXTU9}YfZ=fgk~Sozgd0~+%iw76W7X2eK#80E{&W|t;yqT z9XR%i{EvwL0BK!j_Rsc;)u9p*50!2Tjs`rH!Q-jTP_ep-05w3$zwRF{Qm#PZTyFk# z5A8E^3H_n&t`==N+`G*k4{i3I<{Lj&{+5YY;$sPPt#;mZz z6UI0hf=7=ZfIELm(vBuKCC$`?0n%uaMbFhXH|t!*w8(B#cLev&D@|`?GlY=iCmA*I z^4{S9lYa!e7TwzAMhCzjQ;?@t9sW^w*a-oHxT0-l=BBa?L=SsS1TE` zc#Kb$a(|Utw<@k4E-}XhgO9?zn$WvCVFhgt=F?Jw=5ZC3(lH0_?h48- zI6QxoTx3&=sM-t1^Aw|CJ`X@odX~^Z0_?O#h@vK07>tsDo->2_R|J)w=8{Klx00f; zJa?)x+~pYL1J^ZLM!OIrH04Pj^3g;804yKYnCQ$ECK10QCNjuz?hfJl*3|bQqtX0L zJddM9#~B7N*zd<`;ABB8!s8&7UAY}_3F}=JqdQ({!rD;Dg8=UI4&+8G|o!L6mHCT00ZBO{gl_@m`xi;3pySN1CPvC;2-=J7s48+ zi+(EnIMZxmEduG+5X#J(;#ZpDHBIMmE5Tw84@_~!e#3#)@wD6N?|s^yMt5(k%Kdcv z&*q2wKJLOJ9p$(PtQ?m+fNyQyy}mq&v4euEHj8hlr5G4zzVohPEX1^*8!>cN5e8mBxz<+@-#|h zj5KACkW?^HxNt~2xdR~Mn*NH0YZ+-cpNm%E+Kc#AKd-!@;eXm&<7b2!UejF~v`PRF z>TxB^VONeCKPq5x(3uauYu@}n`+odSu+#_IbX!-pWW=%CTuy|r=*lJ%fsgLw{cGl{ zZ-#nSyLzx_Z)-6M%%&*_Q@11*8DI~-Yt8Rt(ClZD8=0lCb&#Vxt0Jc0afKulIl;jl zb6U9J>geKgO9PluR)oJF^FLN}5BMn-k`$j7X_vM*d=D)|=tt2Uk@VU4*Rp6IwlD1I ze|R;kZxBbK-E?;)?B>rO-4V#Z9yfaTuf(k{OZ$9&Tso8&I0Tl54t`VoN*PZb2_5@Y zW?TIojM7CXnHv(jMmk`tVB?_~!Q-`KJeGvCvC)Ojaj;*^o!3 z52b%CFnn6^WtOOQD=l*4O}O68z8Cv3V#gx{Mx``XBo|ax3$U(dSW!$(Dja{yCnSI0Es^?HTVZn~kfhK|jyXGIOlKn;lp`ONc(|yfj+$hb>W0CD zqbIM>)^)TJM{e>1fXG4j6|+9+ZO@r+k^cZp+%Wdwg*6(8)d~_oKBN5q06NDE{o<-h z>c-HuNNhw3cvzKBzR}Hmy>V-CV=F>q$OPes3Nz2sj+ON^7ZFV=`D_>faxys_^{)}v zwDSe7^(O@F+x6*>TKXPjq>eP1;+`r*OM5$uQRTE(3zl9EA1Z65wZCG(DfIkD*0OcI zEZk|=5XZx+?p@tCA>2AsZ5JqvqXdD)deWktEO5@FQaa?lLd6DDf_n6*HTi9hkLSz= z7HCLe!OxhZuh5*<3rvDWj#kDA2B_|Q^F+mHdvQq zBT}?&Hre$ZILMMjrT2sLE(Ul#e_FOYW#TPs!;xtk>y1{%NWaux#+NDcE*l_jCbfitq`R+zGyoQ)lFVV&(NT63+eD^x*e>x zmQVr}V!F5uj=5$tK2N4orykW(;e26lc$$xayiY!faKsy%eM;3eOF5VhTkpXvWPk_C zIO~p0b+AQmATp=kD~_EgXjOMKfMdUrWUs~|&x^|@!GP01ta~WX3f*GSI zNcJR*_OEvbnn^UL6N0`DEojc);oroM59{`@CWqonYuH(qEG@!IA(vrdj=+|{^k5r3 z>*+m8&hlLr=I2h;JjfNqA|?O@1auN9Bsjs{o}Dl{*XMj62EH5WwvbzRlSj0_du;i0 z&uUP-p#lauE|dY92T?Yk=2 z02ADO4IJAJw4KrB)WJ&kiS^Eb;p@#~#UI;R^0b0D@dT zYEKn>Irv}VZF1X8)lx|s#S-L+id{5Pvyl-3WM>#TAch#~Fh*;@d^6+Scf;DO8jp;F z>Q@kn6YWjv|E8QE8krrBzE~(C>Z>c){(i$A$b?E@g^HJh3c@`y>Rk zd6Ui=ImjS_4>jXbfuO8Sp<;vYSiscCMNXlemaMuG>wd%4JY^Lv*nRa5)T&eL=-~O@@)7Po_bp=n}2q zf)HbWJ*H(wIbL_MBd!V0r%ox6oR)mg=R$K_G|jeldw^hq@RFl(Ac^E!xG^^2>Y zBVgE2LL|Wq0o)oRgU)O7tK*ma6Sm_~iM%uLFIwB-O)h^n)ZC!EkX>97*J30xTD+07 z1q=fntfv_x75xPKRkqhOLmbd)_j;X-jEE8l#P8-DhY~61n{rEI7|waGA@SG4odO%{ zJ6k(ge4?N%aA8yv(`t-yk4nZlg?u}`IcjNED!R2zPvtAe{{XT70LRY-YA>g*m1U@y zmnX`*lFH&n136oJ*yDucb{8xG$30DXUx<83`#}6N(i2DcgQsi$9@E%#xzh=@Rbqbq z)Dg*Q2mQ3~)K~SGz6;fK8+(|nUPnQl(9ek@Ax>}-P|7-TI#-Ho{utABC|M%VtnDvd zw;6QtErD(AlEorsh0k1)nEvoRE7ijBwMS^yifj7$eg~UVhv}vJw`2Ka@PCi2Z;|dT zM7pSziAn8m@f!R2cx6ob0)Ca#S$t5|?X?*qyLc__n+gTq`3^m$NW%XB-#~iT@0Y~? z0NBU&U-*p#x}U^f4`}JBvc5&`lMT(p(Sh>$H?}`wxJFhZmLx87o^xL@>R<3jzXod- z(Q97?bvf-BK!3AaY7lBDT#xx{ZL1_VTyz01F_F_5&(Yzy%L}S^kK%Y3yo$4T(Vv-3 z@l!#TMX{E~JDD3e7L4vlQ_c$~{{ULI<+kt_h?gE9vyJ@N_JzE+AP@*39l#8O)4prg zz9oObIsX7^Z-G)(c5sp{?9BQO&knXwh?oNPtj@f(Fzh*OOg0!~XyQXnr5@EH?fqj@}Izv&}U2 z$t-hu{!_+0rhs{ov+h&8IM~sKYndA2A~*s|c^tA8 z=tB{MkVb2=(LN?m8XJETYB8*s!lZVN0~I`+qeuxI{_hp*e`rlRNjn_$vYJu5r@KDY zwDEV0{6Q4o416W3Y4^IJFx~0;wcY3TV@nJxE?F-VA7#`nT%)rt&ps{QSa04&Grj`r zuxdI+x#Da8014Pyj}*fli_aabR+jT>dW6v}{k5{8W}4pZqJh|47m@}O;kHPqzd7i> zBf0TZl3QsyE#9F5uJ*XZYM36XdwN66rkq@FR_wWo-uC1h0SR9mCid_dn1{v!Cx;rHzE;H%6303F+SGJR$%jV{LC z{{T(8f#ijyn%>_0D#3cOT}K@8!L~**qej8_E9_qbd_AxHLj8jD-`Vp@(L5XCd)w>l z`LyfOKeaXQ?Hh~pb8%~BrLDS2Vm^5xlIH621+`b-CI)NZy+=pWt~E*ZO{UiRH@>2e4}!k|JQt<-li}>wx);SAGVbo~ z^HJ1cHx^p_7grB)CYPvPKqZ(!cmCqyNWl!|e4aSwD>N-ppS1oB} zHS^DLEGy;9Ylbnxs;}iltf=YzPRFh^vK5{oA5u1C0r(pJN`GJtJ5|@eZ_fyPQ`RPo zTx&PpD)9uGd>GkfB#SoGkSWA&=I%vIjn0vIoga_tNNTr|=4mhr{D&TZbg#;MM2u-- zY12#W-RZl#zvO+N49V1^Cf{H3JLqp=Y4=KY=Qt#Pg?X3l7va1A02%xw8b*x1Y>%kg zIT;+RWy!`>hJK&}>MNkK*L?ZHTrR*k1oX{$&+RX(Nn!Ao-b+PeA=Rx&2_wcx*)B+E z&h9$#_}9QfvT{C+!KRtU{>)w();vGseOvoR#M%$+=+n#$j2Zmw?fF@bR1WwafMcJd zJ|Gr|>A;-syNsy(MSREmE_m0)9wYI-uVb#r(!iQ}NgM8GP2y0bBRYm4401`&y?r_3 zd3^Jxss0Ox-a&N{90-JPYxj2!dSnye)~z#ok=;!l~e)3@hY=0?x|0A9MB z(Zs1-|JD7~{iiiUdHXvzhkhk^j%^3V8moDF71WNG5MNzAxOKfqwD{IZVuCpgml4}d zm^L;Gg$BMY*8U6lw))#n@eZwPsA)Euv|fGP{mgOP-rfwsDVO_DGkvDs=HNEOmomnL z#xR6|>pl_q39o!Dv%m3Q#A{h*(zS@L^uG>h`n{TJ_WBL9kVf~rE$y9cEvA^Fo2Xhq zvIPPb9J76gYvT_9!}~DB;eQZEY2j;)QpFnDz*tEVLem95=(fZe{Dwv==f?7RFM*w^ zEBJQ4Y3wAZVPnj$zaN+5q5Dl0Yd!V;t^G6e+r)k&@Ylni3u=BO)$T4Xt#sw{ZdO?f zdGcf|Fzoqbc_opRA&(di!)OMZ@XtcjVDRmxv*I*EtlS5CrG<;ak~tg1OhWG*1riW9 z1pr}s`L~Q^kH-En(|#F7$#0`*jTQc(6DVbp@l;C`M3C8Nk%XtXa~pLP^wz84Zye~~ z4Pfz&wug4wc4Cg+Xrn$;?qY}wjQMH^#^>A9jFL0;bF?X0?)5znY42)s`m5Nm)P@W~%9HEO~}k$z~_mdT~k-w5&Jqwr%T;YyFcm$UrgR?yh5M&1V$W zq~W{h2LdgTRv+ z&`ah^KUD-}r6A`%%U>Y=*q2c+$K3|jIG4?q31yYQ%Vb26p>jz$3NSr}I#=6&v$dKJ z0FZ!_=DMlR`)&NqetG`Y_n&M1tYXsMQdY}Mj45TgRRr^)~Pufaer{`Fh z-ZnfM`%1a6{h0-rc8uyejE+j+7E^G?ub~J5uNC-F6T^9^JfAdX00Q;ro-xO#y?yiI zPYC=me}no)o2qN9sBI#W1&Cq%z?;qn4?x76jycY2pjV1Pg*jx*aIj}__57ko70e3ukKEG+#C5p!u^H)k&q2OM+!tKmNpWxQ3aW4-;z z@0^*MzT`>R=~fMp321Te!LN#SnEc-pYLkvX((VYr=N@Z*d}Es5gU{B=DS z>TmcP##f#gyEfOXC9snuDC(oBBeQeP59eRApRxzUty@RyEtF=0EKR zIg{f4uF6TQ3Nw<8Rlke77Uz)bRMr{nalte@{Q~Om^A(4)`$_BBNUAP#f zB+sbW7FFeFYPgH9mnk> zs!J&#I!3%><|zzd{$7;2TsGc7Sk5w|jAPorCE_ZPc#4+(XZfF_WzqK|=#HA&W?7>M zI*<-MD@t)WB}Pc=&{j+l6=f%&tuHmPgU)N?>PqrGm~3cR!yuOk=O50xcwRW;!}11y zD&YLanCwQ|n&>p*h^iZ|Mt%KjgA$IaM{{Fjk0;t35w%V}gjU>fn2Q|p%D4xx3I%f( zdepN{ZOZM+x8;iHq0~{Xglsy6=eOMzIgEszfq(sU zOMH>8&@<^&C_`n}PfcJ1SbZ+X*Fjm6+>fi92)#E{{Vu*-Rcl{ z@4#`bwD%Uzrd&IuJ4g;4033lt+oh#xLI>asv z3#ZQzXFP^?M#cv?Aa$-wTJYwgEu_3ntptUbfWsg$Bmxgycdfm@HAg4aBPqeC*&NmP zfczEW2o~yFiy0f8qIi6V1Re-=+J8#&-xhdG=p~m$yp}a{zxNj=c(OU^CU6EiSJB@H zJ_vZr<2Q`7{{RB`E&%e~INu?f2x5X2KRnVk#L%ynnHd3#bHF^;ar;&N$~yl5?CB1Y z`p=0py?OOe>QhdCI9o}#a7L9LNaa=lkntV37&tfwvX)~?HB}__XEVV~!O6!%^SSQz zSSE@+NiFXpoH{X*5|5Afl;hW&4z=wcvfh-}9~?Xyq6Y~kvVq<`+eSAL*RBWv_s3fD z?NT)tmJtDrthxHFeX;u`S-k!{_(ihc%JaNae9}wHZwqg5paM9++s=FBb>_W1#$UOT z@_&;)dRTa@Oj_MP)cvdY84cu`Ec%SbOPQ8g7?KMy0PIB_&p@g^mG&Qk?i$ltx6ySk z^h?b~-tl9%o8)JdO$?0~Q_q+YSnWLEA46Vc`yyGUo#Cs!dUe5BgmE#)1}AArACBM1 zSI{0G(csm558+LI?2omth%O!FJhKBk3}>j|bE9LIc)l2> zjW>Smf)sJoH*ER?&3+a9Rrrr5g}-R;9>d{nbXi$eLs!Eo`)tf5o~5xSn3;ei;( z!(*emIhbF#+&_8H@f--D|#(xudLS_Up zd}@}z_smV^^w01fI@hm>$gxzOkh=0b`Wc-WYUN|`9?;6O6u+P0#laj z&o$vzUlDX!6K{sRZJ=vW#)XV`h}IK@1LX=O*h?Om2Q}%p7y90l9CB;^AGz|RUBYcT zRJ)HJgswn6@J)Q~D-SgN=(KuJsTTd&TO!oJxn$^URM1e;c`Gz`z4Rq3n zyo~2pOBniX^FE&xg!0+`b$Kr4LxG$gm6K-_g2p)`Q|0411A+DQ>5A62XxwhwmFPdl zwZusyDrvI4?5wfG>T*aUo@s-_cDmk~Zu*o_OKy%?QdC(NAx}7PM?Xr_mKdgk%k<7Y zkLz7NpJ=B+SQDb|{Z|#{RmIt8bT9QKht%gZcoi4;=BBDrP8@AQZgNcQ$3cI5Om zm7si6gIkF&^{HTCZn3P1tuX1!VG0g9^u+XMdq*IqBF zSz1_Xch@$@4s@=LD9Z>zNl_Lv|`j4g7W1H z;0D1T-WWLc&2N8i>SDlK-9(p>DFg|UIl__C0%eo*#c%cR=R_}0XgWVX1uR>@0< zQVgjF4d>efCg6DHA^@!@<`nO4Z@kK`23wrP{qM$27DyiU;a2Kqg(K3XzLppwV;*EU zNj$azvIg{WI4Va<)@?Jwk`{7j;Z0_ zwcIlak)ph|xMh5O-!+61ka^_BTO4!6dMvuP!!`4Col#-4zKuF+5xg%MVSvG=MPLtS z2b%AWEj_;jnc$e`M7^^rG4mB<9*xf*uKHhq{2?T* z6@o=}yH-y$v{wuik_OgL4$yjM`PS6l2)5HS(*}_odr1VOL(5`M86%UxKRZM8E15`COGxQR=Q03x_97mm09eznT$-v+)I-u;MK_+`%dTN{{ZZF`xgGzI%mgU1^ig?{{Vsy zhV(5HSX-OqzSL}d=Y?RE14j+K^D_}Eqite1Qh6W>{)t3K%Pg{Eamm~{_xx+%9T!La zptLU#=-v_VZ;y0u6&*-O$4v1Zk+HjNtT5{|4G=*ZWIyg)Gr9%GHPqVv(0?5~4dP8h z!M;BDMXXGkOg?P)dJWVXg}Np;3hDc-tNS5p!%^|JuOh~b|wGAXMPqrpN^aNMOKe8=_-kal%aVJq8`#=JNkTEFEI*>UW6W6fKeShM{ zc=a6|u=!f`2j`mVf=L|p{yh%P?TUu<9M(CWT=0KS{=H~j%^8m)xU5~@=lqJJ1OL|j z)xY>1bpHUe*Ze;7U)=w2<*d^>A@ZhTSV4ccYhoUaw7+g#eJi;1GL1dDJR5zG{U8FY8UITh4? z)E~5OgZw@HlA11&6^x!0(=@GTRTkpnC9=F1HnV9~{{U&8CXO44r;)Zyut~jKhkQ9k z$G!cQbWe}kEx*U_3faMEo+R-E+ODy#>N~ENP)O~}(oElInia9Jfd?Vq_M^~CNJlBvh7jF@m zPbI@Dd5VR>4YcMXgOlZ;&MVeF7Hf&2Ymw_0Eqgu2s|CbYD`PBit)v(#W4mV!2E}3; zRgqhJAD0XlZhyl4C*bGD?;UtsTljn99aF_Nm!5T&uKISCG{`LkK$CF=vnomDJ0vip z119XVCO{>%{{U*Q1nNHu9egS9jc%_seHKV3)U>J6-q=_ukuGiJH&P>BV=A=9X%g6Z z6Zw;t+b|Kh2M-dG4M%J6L*grZC7PqYNaHUlyElwweFrR@u!Ub5qv#l?uX#3Yms#JF*UrxJCPhp%MHe$vc}A1 zXC7MxJI@M3VH<-D#uQa)QK+nvx_hVTZpUQtaBs`{=zPUzsyC29kxOGdbgf%QWRG(V z#k0FUwf9D|t9V~ru+sc-sp!^_U3hj|c;%MIQI1ErjpHIUCo!2-*v8SUyJU1MHlMoQ zQ~OS7p9}mo;+T9p;oS=J!T&{jrQGs5@QN%QHZN@34 zl6v*OW0o~8)KcF4x*tB z^UvnkGD*e;e=6l}Cp#HffzK52QN5W|Rh5A+KeO9&F&mp`+B4TU_OBQHukXz?{dQ`{~&IGyJRa-{UxI&)Z+cN`rVyu&NYv zReO+B6^moLc27VY`d@#I|S*1cQ2pA7= zh%kSRLJ`-fILD=aLwsw3apS+X%=n5OF<~i;o@96aRXBQ|yOqzK;_H1vZEkqYyrHc0 z#8cJbz=KipIZF@{fb#(@b0*;jg6>{ zpm+ZOM?yawlb>q%1mHp#9PR1v-oF0*iuloWb{{Zn^%%hG)$Gg4%02ptslz>g_nIBcaJoM>br9Ko?j`~p;+6r|a zPtLzE{y0ki0Pwf3N^jzx)%rC$s&Cz8!|?E}tao zJp|VhxCh(=&3>AEACM%MV}HRvW-)%m-wdt0N23Mjt`=DU&*5LB{{RT) zA86DRb@G${07I?takEF+Wp{X5ZT4T0@_)x|M$=FD)vZHwaU!+F!fZntOCEfr82OhY z*MnTmmFAo02u!w;%h(?_+@H&Ol07j{{?T_AF#LGGxJZjCO0Bs^E42XrRga_IF37H0 zJ>||r5sU-D{XHx2?Dg9bQU3sXUzF4*Hvm%N;1PBFY*<~+v)~6ytcj$%hXK@ z=l=Rlzsk2Fx{7Jm;Uh^Ie~Bc)iT|VMPFwYoqo*3*ulVH=1o0>fye+hN#oMFonBaRz1X2F0L6FWC#v*0p#^4TYX&8l%v$gy3OfFz8)69fA9G~w**{XMUnnmoN=__d~uNXhOaqaVrkIub2!mydNfZ9balQa2X{^^gHgK!-;4u_8YyW{w$;ID*rJ1OS49&SmMqrA6C6y%fF;C}Pue5(-ZFcH!jDHPudD#}y*Ic-kFrXktmfn5DpK-tkiuj3qW#SE5cF?tmZMQr| zQ!Ti7!DM0bnAw=0IySAfeO3$CDq@fVK?f*6&rUKkUB;KI&og<`!sh{q^8%Z#ac5&tczt4}>wJe>k zS13dKp$GXI$!KpQjY7W}#yRVX&U+hQKhL;{3w7M1Ykp$}yy~jwZ90tfSd6j6V@5vR z>PuN!TV%C|rb;pLTuT|pMs4HrV1J!-*4Hx$6>%K9@=IfH-5$h`(!7fLGqw!345d?G z9D`S3$y4vgJ;gxxF(AzL%sBhV!G?W18hlsQc=?XNf4m6i>x@<~Z<^?->}c6fFZP-j z91P%o6_t35vYChnYZ88$t-EzITqN+W^g?pU^9+I9k4on+_ZW+goyB@HsN7M@6|K)d zyVGaB)F6OvxOS7KIUMABeJl8x{jWYJ_=86Mv%W2AJ{Q#&O=t0Lrx3ce2(KW4)&@sn ztg>QA*busGHO!Z=J3N(b0No~wdNy#R^XYjIg<0`dkZDhY+(ER@Z zkEzadqe_&l+rP;0&kp|7e-|{#Hoe`3s}f;C+*<{a)N-4YXmM zvE-1hBMsEAU~qWPO8TSrXYlm?5Y#+FIF(*WlTKlQfTRhI2PdI89qaS#!!M;6xl>j? z^9zWSw3g@S{k(eeszS!z@400y3-j2k23|kjt!+f!J))b~rGx|bupD$f)VCGK=~|V< z$1lkQWMlNMyHmSn)1M@b*%%(UHS;pjq<184_*_~2ghLad3b@8bPET-ZTdg&1$Cwjn zB;a)Xt3Sf`B26r;*lhET8}N(AyP%s6E@AnqRd?Nn#CoI9`q)c*i<{{Tvk za)h&m=hl3Yg--m9_N8xq$L?Eqm!MZ4Kl|o)PGv$ZM?_vM8Plz+0~ak9vI|v z*PrKF=6k7T00M*59y9(l^|5Pxa9@*?u&x)JuOG^ybkWfouc>c+)O;(9VEnJj^Xzgz zO6Y7gJFN!Fb7;9qz!OG_HaHpK<3A&HJyg|5)g3|Pk8#qZnc53>W$(x5TymqW(W0!L zjTH3F8%Dg9HA@XX*H3hn+{ublc!^drK zpyTf$D+HPJ$!~nuJ)od%7TQd81e|)Dn%jzUtWGik$>O@jNwlj415*hm?hO@U4~aO){0TP#LGfr1oq+}GVcEt$WxG;$Bh zZxiz%;=V?-uQtzhd|I9L(-GH!ip}zK$j|xwD)h`QAyNqBcC6zJf9Dk!U5s@<|JVH+ z_`|4pTlT&2{=UBo{v~L)z7WxLW(h6b&8b-Yt5&quu5V`w1Xotp@`Nx>hC?)go0wKX z-*{)^J;%YJuXqm2O||%W;HxW3%byRW%PK&&mv0@_wbBTZX#DA8541dNpuWcWl(l?~ z{{RI40Mhi29{eZOd{6N^!|`}uSg_IcJ#)jl%#%efp{3hF0Bc2tStDeV?ROJTc{Fzs zJ0zDP5K6?Dn&PM1jTLt00~vixP`6F*=B^TyeuS& zR7}Bi3oM7rU8ngbrUI2p)iBb20sA@O&%e3iQt*x?7t>hbNBZa02@y9me@vDq{x$&#So*Vd!@S{rj zci|UD1T^a7RjgF$kIfK6vE=*`5tpmbrMA^;Kv)FRan#3j#q|-CCwcS zCp(_$;O~q6D){sJK}F+l9()w=d4CH@;rojV>ubpTFRf_0rlBgSa;n!5+*rjlL&<5O z=j8LbAfM6ijz6#mg8XseogZ2FIjTRykBM605nWrm&wjDq*$2GIyoFwEB0}OucZHQM zR!=D8lq>l4;t3PsAHrLY7x+I`)3nbL_?J|dR)bcy&}KJUU8-s();ldX&zbHL+Z%3z z+{Slc#F)yu{crKNLRRb$s4$TCIA#lwhp-H>29^Yrji>!wJVk<12q(k@G*nkK2>S9s~GI ztoUQ$Ub(Lrbg5SQNqkFrf2?2Xz{bkcL*+YM+QBiMBl0DYz==SKH?HH~BtH|p1>ipg z{A%$IrQwS&2}-Xvo8X%(?N>-xFFcs!hflV*!d-sd&6D`sR+fo*;vfCt!GA+OjUw?cc_>beC+B4zZ{-N<> zTG4Lw>zmz1(?Pwr-#k)TM+qZQyqe+|Ucf~vu(y^Z7W1aiP?uf5G|i!Sk6!Tn9}4cY z={1kBy!R4b2xPp578&zhZ!Ofq1cUdEBEs*{I2*4u+U^jwVWtL8?<6i`lO4ogDd)wx;+va-fMd$K7_eaw7 zzYgh(4wG(#$&k#&ODf4IB^5{<;F0{XQ|rm4*m$E+()>3%-s!Mi z&X$)L1I>jTgp;7o^uf*se@euSJXIui>1(RS*68PV zpZ8)_IV-uz!sK@(4|?i!d9+4St7LlYTDFxueqPwzKOZAwr>A=Hf76lTl5tx90JJCV4e*P`f3Q!)=(OEdSkArS_$1SpQLw(#MaoMeIuvWmcup0|(wl#hr03$$@~3f2;F`=Cdl$tNT8ugh4EoJ5EB5 zSDcbS!8!b^@)P5|=8bjnV^O)%tAB&TVwvuGhpCG zaC#HB^skbp)+K`dT*9H2;^c0O?REx3oRR6<{43qzyQe>q`OgQ^SD(xEF+ATk-+poj ze}C4#{QZjLRMK^2EtNN`l_$TDgX(w{@(uR8VR@>XD^~NZt|WzbUc(q8 zM?kp03dpN_&UlND$EAK)d}6zV{8!YwgMV;H$M;!)C*Rt?O}rU>9mUB=cPkjwe9Mmh zxi$G)@mgR$E$T|#kL?Syk5Rq<0Hu7~)s@c&j3@hu+qyriFW3TIzp-b-K<&JZ5;9w+ zNs-Avjee4R9+)-8ph^D#mPj%6di=rv0D^p6?)`|q7e}4OJq;0?)U2+*(!WN&5?s7` zh45Z;0w2Ub{{UXPu#nLoXO_*ZG!yKP-s?Rq@!bsLf;vAw>$L=dbztQ=Ow=127{z9`(n_ zmgiD;I;iigr;qI{gOidm-!;=)J)HK)(I_2H(>3NX#c+y=&-2JVD^kkj!7z_F8R^@T zS-NWF##TKkE+s`+m53M}J*rsmZoblO=O#p8cyJhgwT%qy!=9p?B$e)WM!;}?LDs4? zyBE%m(p^3U(O&Wh(>!pXr$g$vs?Q?Ea3z!iIUg*FKkuM_okVZVzlI{6bGA$zbjf4s zT<_c3<~N6MkIV!fdFO%!bk?J0jH%CaQdw>8VG}%%l?N;4Bg98I`^vCsYvz4_ z;a7ov9(dQndd{B<&kn7v+uB^)T)&wSRyiPU8NpnsUUQoL9Qbst{{RT}thxK!@O^_C z`CsCEin_0c=WJph5J2tIDnpZ=dSlkVNy~AS6;%Z%W9IQVc*;60Pl|tQj|ccO!Jo8^ zhMC}PKkOo34_#eJ9{tf0ZV^yNxcsAr$mly_y^inTXM((Ar|kG+`j%#a=4#^24D?tg9XA z2#_fOhH?JZdz_qC=yAnL>8{B6xnbitE1yqXe#hSx^w`S2n`O_v zhwV}Dc7KK64E#5!c!&tKeOpqwEf1KCQr-kbP2n=RF2#WdrUCS=kA|NWz9(r~NS8*} zudNm*5rmFmEPp5;!69E^+?=3zxzUG6YiJ$uU z@b6Gaw#5#!djr1yL;2E-6(DkP%LD9dm6vflM^-r}+@I%Pm|~-MbLitMXm=lJ z{{Te*9Izyu{V5{8Qz+vqP6w@Wt$MOVt)G?o1KOvvyn${&86 zykyr?rbydj;|dl}*A?fmUt5JckAGk3U9=81qDFs(vGf?PF1EX!@O@32yVi|C-ZSy{h3>7R)AUb>+9rcH z*-~gOQVmMt!6Y+WLn39zo>>+}WHAQLLhV1H{{XdL#qWxL2>vDbdf(x{!|Q(-XgBuv zZ>zjg&und4ITdaEqiq|jGofZ+z!DS@oZ$Mm+ka=@1N=Afj=ijScIHdl-8x(Q(+LG` zE^MH8N89ERxShm4z{7Sr3i(sP-xz1V*R8d08+K8^jS z{5zoOKLq?qso4ieZnSMhCW=SiN-Ph1VVe_&@OO>g&TgO|&*v z_F8sqVkHshF|c5&%tCI?TWIGQ=D%uxY5xF+sRx=UQ(#NWU}NPYBnW?XyX7GEFgID{q=Y8!_xYV}dir2|WdG{{X_u((f!D z&0~dJj0H)4fM7pAhhIv;m1EL838nZ}@5@PMRdU>b0&l>{1H0t?EA$Ep^DCbpDsqZ; zK6UXnf#K~+@@Z^7&SEX{+ueN3iT&R(*DZnEl25I8^Z0kle=kO7wuodEf>#Ow9N~FU z_zr^=^u6zfY|O6Kj9i?7-yob0M_;dc^1XLOy0pG&Fg7Uu9t&Xe`d87>sJ;}>2DD!_ z>xI)wgnGJ}}{=R2|YlrC%SPuQnG)@{Bj!F8uBO#stwC7iQl{gz^@@`Kg< z(3}In&o%NzyfRO&#{_(_fcAiQZLF>*B2D!fnOQ>pkO4?bdi)sbQsohr zif!5@8;LpV=m|B4qTE}EQZ)O_2_W&$YSF&6mTOZY75TG(4_f$|lJ~Veg|X21dU)j1 zA(kBS10Tk_>n9RMSRb1lSCjZ{*<*Dlk%58Qy&F%OB#303oaCQs@iRB?Hjex=(9_u~ zLS>KdpHsl;oK>GOWc#^LSQGdPf;mQd@I^`)Nyz%wjOKL~#Ecb+k}$Z(ZnVpr!yNHs+d!x51$iLnsV?BY$tXc12j(P2xAU3mQ z+;DJloULhidNq>q+dQHUJ&Ea9Q#589mtniiEy3x@#dm+pq|7hxGdAMx&PQV!ZW;NC zIAN3QaB*H6sXg;c_Em;PMH@-m{6LUL*N&ClYWD2Wy1^dV82qd_ufflV-x&3u1OCx| zJ=64EcKX72_1mbN+RGtMSzGP`P&Yx6Gha!=nLEYvMh|UIBOi~A8##49Wi2DV{rg+M z^AR8+6nw!*12{j*uNzr@*XIOiowK|iagDj+zaccQ+7{=;T9vKmjpm=kmln#<+ujSw zEUutZ+nZvdEN*k&MaknQfnQ8`U-q2vz>Yh6U4O({b3}Hp_JlUtjAJ9x5Ll0L0X6F4 zxL*}dM6PqkIiU2p_k0;?IT+_0_Rnh3p4!}5NhUY#Qos}3bJo6L(0^&D^%+{)-fa_I zK3R|~ayFlK#D5QyHsuE$$pXE4!{U~Ws6z2-S~jnzGa=gIB)Wvp4orquea(TxC zHR4vw>qkjM@284{wTrpyI#-hxiERvA0UDp7BPO)ekO4wRJfCk$^D8eLcn?(6e#PO< zehJ}7@T)4Aq<2lRx|MJ?fg##5a!<>Ec&?JuSB@!4N~L!$PUC_OI&)kVFfxnxk-Bcj zNo-8ov>mpGkd99Qb`SjuyDLi-xVer)%Oj{#I~?_{14PssIBqr|R(AyqA&(kz!VIk)u1dz)lrcB%VDgBS)7jpFCHx~JGQa?%&@-g_{5O7=Z(DQ@2zw#$BCkWlq zV^Hx&hjlpb#m$US0E&R37c2=VdK1P9t_U^se~8_Gw6s`Q<2TFy0HB)qm-ZBf?hQ-D zFkG>3F525>=?jny(vy&KM?7+W0gisz*MdoTrAXisw~6=+9M^U!`}R5Gy^lnORanp; zOnqs-VD3MaRz%$pV0ff4$)5iJm;V4>v@k#a(E2;#Z^v&Ge%2lwPX%}PpH z@mzlp{0VWUYkIb=rd#RhplP9botpo(U(I%E90ZI#rE5t0~$o^q^mPD#sG^Xa5(p8;Xlv?u+XZ#6r+ zyMGaBIxYRPNw>zI+AAEAU1~ag*}8*Fyo*x1F(bl$&d|)jvqV%Xe@CCP=k`969I^h; zz7f=XJFGae(XFmLP2vWLF4Z3drsx}-zbS_~*oa57U2Vs6H9|a&1#p*YxX&G+XuX?ajugr0MrJ zwk4spxND##nPT&c!{jR}?ecukqh)!&!!LpUGthMXE5=$Kg|CmaE9*Ec*6Le}xnO&l zZZ_&N$V)ZVoN(K$(kvrtd5m^2>N@>-O$qCN{;e$C$vejna=x8c3jpNc*m`0C43)oyhy z3P^4eNi{hdc_-9uY|FzTlQCe6a!icsgC8w?om>@MWF)ZKE4%x;U)8PNpX78!$D`MK zerMBKpM^AU70s%AJ=J_k4WxQ%MFgg686moXZ5msYG2XY9*9S5Masf#Q`I%(-TjIYH zcr)TJg0$^A+sAq&I#jxZKWIe~hhxxW?PpMV869zo`ZxA=__W^{JPQ8+6+S2F8oz|} zTi@*1wMe{2W-K*m@8l*G#19x`u_?i{xsQ1Rjj8}VFYO28%RdUTHUMTEounxOy*?Ae<8aY*>$}I#M!c=B-?ohHqdUscUccA% z(D~!-4P_!*$`m#WZq9N&2NhkVl5$w=1 z>tA^ZUD)W8u^)&flJiBlv9*zbkqWBIyz&zCK_b!BhVL>f*f!SCuVb+VnW)l+~oJem&^k0`Rwhzu=1h02zEY;j2Wp zu}Qpcs{k26_DybkXb1;9#~dgW^%%{5&;HdKl30JiJ-#nk#yq<_e+|T*N(@G^sfcX} z_iz+oE-{WP@-xL(7M8#8M=y+zI|Ns}@#-lj0JC_K^e7qXN#IxM&+T1*kJtm_LPS9g z;d0>Tj2|xtBip@xlf%_t_Jm~r0Gg-%kbItJ5B6KH?tke=;V6i+xV4H$P>!g97_Q_2KnDbK$;r)plA3ko{{Xjyz5>!OZtQe-*4P_pWg$XD zs8wTT-qG{(4Wt3s3jGKDir|oZF7Zq<5*9xg>gk@GF^!1*bM@lB3h?FY>L2h@2_9Xg zQ(3&)e~aY`qjr5T7=3H+DAbdwSDEaOnW=YXet~||I(LtL8UD+f_r%`_c$V)_n@Wa# zL}}X8R@YXnA#dJ|@x=weeTuB*pb=!llt&G}$L`OE>Wx509DJr|X z^}y+pKse7C)3QnJyvH zq=+KC1~7{D@i|c-;y_EBp4|^h#{*LITW5#GP)iQmJiEcZDAT-0V`X`#+TTMAa``xx zIN5=Xae@|HpLPQouLIR|G=o%oIdv;o<%Q;z;<$FVm`6LEhh&kc!Q=zGvFD2QZ-#dg z9}U^Y`2^lgkWS;lCmHTWE5zrT;?u@jmCmOEPSQrv6A&%?u*9o^xg_!d=ky%?22o8$ zq|{OIyfqj`tw_Ok{Y@v(HP+OGx@DtYMtr8-11#%+M|j!JI*jqhrG1V2EWsoztVJp^ zXH+9;1QEbJPa^}~zEAN*hKn}0qJ=wkYrpKHZuYFIjTOrX$a4@sH(1$sE2;UJbBz6C z`#pFcL)5OdZ8{xaR7OogNMH$fKKp&DLHUH+Tt>j-dWRrMZSy1>p1CjAp+s{wm#L;x+t=ITzQA4Ra zO71sjBHq$S7)L3ISfj$OH*MTNlw&v;uZKK&t?D-)6Sb`?RkMakEU)EJa}2KvOXhB3 zOl-34InGoQj>fzy*h$%?(C|2-9Mo5-{bK(B!9A{{llCb1Wg=q@q9c60IhD_Edi@^w zPbeCt>SwF~_5T29SKy!QtNT}KUk5$}{0I0ydGPO9*Bi&yGur4ES}o;_-eXyYo?&z@ z+Ri&?^7qNJ%wSa*smR5CmT6zL_rmXj`hCxhzCKy&-T=}PDAIfVXG@vvpn2q2;}hOl z8>?u;xeBcE09b_tk_Bsogpy64S(iWDQ%|xpK0U{$+-e|5`H%SRjiU|3b z0CEpwT-Jv@)|m-!C9Xl}V|61xT=QOY@sIYE_)+2yiMN;D1@W$#aSp2KJP6lu#2h?m zRIGO%TOH$-;{7FT zHSFWBM0=f$*hdmFI))f*4hPrXwquEB%(1o#_QzV_^gVw}Ybfp-*5=R5=j4&VBi9YN ze@gCc5*wn;V|c^m-HBmFT??PJh{O%WCBh|)mn2Y1QKY0MOJ7*F|LF?>}X9nTKfDIsX91Nvw?y zk|o@$h9r*Q{&eXfnmNq7zFZ7?)@bt~LL>zbOdhp$=T$@nj_#k0bW*j%-Hz|if;}J^ zSx8uvVY}wJMYe+0RFYNG}?jb)v*xSoLkvl7;r-IT(@$PDfwDzR&o1c@^J> zY}OeSimn&}G7jQMBEDDn@tJ%g*BQ%4sINKb7)rVP1%88pU%y9>J&yqWyEO~lPvdTb zd8sd#Blv#g^OYa#pywZ4*TVYe#a|BUnjD%mkj)Lt+xcn^9Sd#RK4Hk`)K}eKx08?f zURo32N~z)LK3tKX-&+z19E|kq)AOz;;wOwhW{qdVH%D0bPo#+!4aqfy_N%ANpa6K5 zE0%2a!NDNc=vaPBr6c7hHlyyJ9r#bg{vYu6l`XERD<{q*8xX$it~djs+D>tVA=DrfR zEId-d2_<6Xx(-=+ud{z-X=PuGeie}q-Ja!$92^TQc$@cfnTbpE{ShnXq__Tu6(9(>sqKj-4y= zP9SPHIktYampj#u_0Yd>Z)nBd+RZ2D3~l8@&$w-dy!Te|ZkuJ|X*?oqwJ7KNI?gU0 z%0{!pv0a{eZcyuu#ZO`}o^iQhsM?@t+As*tTc%0+QcJ4OZ!=A0D+Vi!b~X7_9j|nK zB$76lQ1Jbov}*T|s6`4q$Jl

Wb^M@nn2GAZFZm$Zx5^Q!lnywiAo+G~~!B-@pK zMl)Q@S6WJ3NFufJ%jA}b?LS-(@U7}lMDwH7^w+nz9$LCFJ#fIBegxN{*cUOQE=u`s zLG|QU%MfY$oZcmmQIA+Q_E13SBo`Kz(nTW{QXIIi1hY16*>->eQF+(|(DaH1Uvxeddw%mD@3iml)3` zsY4?yW%I!6?O&GOG5-L9w|>C>5fevY;@v}Ck|1&YjihQ4!zUU2-PH11TOY3dx$m0! zBgJ3vUoVFi5$yO|@ZVFvX2A1xy00b3Le|xu#`qg)@Wl_4IP&Dfe+k&fp51Hbp9p@>9}ev`Z7;`P z2Q_A}wAOA+`gBmD$!u8_nOPDMVKZY4+eygejDmCg-uTD<3(fmqYS+f+;pUa$j|)Q? z1wYUw)h0$(IAJ~9@u}^M+T-dgxNEd3E6n%{Ii$1+ojcMRgco=+eC%b&Fu!GC~$AN{F( zW8llHe}_IRmKb#J5L#-wUHzn@@PTUVvE9oeEy?*}I}Tea;Tr({DEOnqy0?in6R3E; z?e$x{?iV-g_qPD#AC`NznnfAx7-ZM!x9sQPtvljB?Dziw2!++{uALNfl=E&Qc_M`) zo-5Q5SHDx5tFK&XIt8ASdmfi{b!)0aB&hmt?@}G+>+FnD(e2F5MVDbDUk;xVH=j{dI{{V%55WHmv#1Dd=6^Fon9M|-XKJG0a zOrGvrJ9~$S`R3U#T1SdD`3I1!V~m5d?;8B?@lS*_HUKa|&%V}gY_Fh-NiAe#^O`gb znEGLqDIbS8u9_Hkq_+G{Y)&#Q+9yQ@k9%k081+Zm(3so;oQ?ZQBazn}6K2r?rwyGAms0Z_*P_BiWbrk}7hQhlq& z(rrJx(sY0ZkP ziPP_NJ!(cENun&MQP?)zF9dYPPp3c6=4}U3Ho9ut#>6_rc=jOl_phd|VwqD#gbbuw z5`-Da#@J8(&0msn3|F#G%>9Eadf4=R4*e&RB4unI2y|B5PI{5F{uXfFa|RUmDt?4l=h&TPWY2yYZh8%^y{u%- z8oGv6Y^V${Mn~Nw{*^Jlflrkb$&uSQ{TKsYeWTq>s#hlgSM=b1mDF3yIbzJ)l=dSv z=3;5juqK3bnF4oUfPyo2qE*tVTSV2NbG&klF` zcWj>Z;m#=RjF!cgm0X;jc zrvCtg6BqF_kk=H-@Y`F;v0?W!H$_2)VozWICq25?@i+1DwJ(i-wYQIaUGSezz3~iQ zAn`r)+I0FHGTq5>6V2sAG-A**n4}7(H~XYA^OIlMx5Wb1o&oVq?6H(EXquB{hB*5q zyz^g$U$VY~bMT|~M$+Q_pDr(dwC?;uEWAf`q$-VcX-j6mX19joIFe+5%p#INtk^8f zr3vHp9}Y1O4;r=MX7pO^-}F8!in91(p&Ao*Tm8r5CZ*%=i(U`C{{VzXU(~fdChpB+ zEn}(Mm@c7NM(F&=?%`X3y?$gbg3HR1E75e1+C$<7n&3?xrT7De`Jy1?9!j&R$mjx$ zSLy!%?eC^|*W!P|kA%7h#dW#V{w%BO3vRQ#GU_Kuk(cat_wyu+1J9o)X_Rl;tQKIa zAaBNR6#O>$kKuHAHEjWiSHLDYBEcLI9XFvl;GB{8V!vI>@l>%;{p3<>N89D(er=d! z*qRdm0B5M}{dYdi@b~R2X{`Be;(IosOMd_~kg7knz!u9sKR>{D2I?L(|-YTyWw;)~~=NhKMHU`CJ)#nEf=hrl0a*1Q#{ z=r=IlTU^U{vx(-KF>e~ciT{&!=4lf_VbDX-Yo*q~#C*6-ncKFZoTJm_wP=AjhU#z{7- z+Qk%GK+U*~g5>=%@t@;Afxl$W4#n_O;;)Aj#}^kim)iZduWJ}twEO#sQ^}sv<71@u zQo|!}R6*r13aD7%eovcXt5B;LdpoBV@6kzg`Sj5HtS)tU*{h#6{43MENuy|YQtA=i zM%T9=Yo67Kk}Wt~J9%jtl|!U%rCVvnNgM)ey3~AG2AARm(sf@Z>exie8ZGGNM!^Bz zGF25-kdn#{ST1?RTD7&*{CDFo1Ni6Q4VHs(rueyai*0_##WUU5*w|f$iY++7G*Ee^ zuO#zlYtg+UkTh=*2aT_X*4_v4POq+bJ6VqY@@u^!=6H2jth}>tsOf9uUs_wk1daBK z3#p)Tmnh`y{gNC(`3)Ym`ZEgHhZPm4m(q!*Fr za!D8^WDm$?2Q7jQdFLmdYr?!g@dx5}#Ltadr-mZ%WV%;|^!+wQUl8i4G&0XLvLeKm zurN%<>$v%xkXIxOu6m_jo0gA#k4aUFXDqfF&zWRmq42;Eet`b9%D=C? z@22jFb>w+GZEX-EZV`UF$<2Jt`&%i4;Ma&Ha8+5Xa!*5xn3Rr(w>9+L>fNTcmvRJo zl>r20co`iz_pbu|rSxrI#oq|^Jp)dNHRZ{*k})X?ghe_z%P4Gos&U8V*1B-+)m8hU zKZN=3_9&OkzVRxtEfU*WDmWtqd6HxRpncv3azW1rgI`!{GTqwh`g9ir6_V{dymTjP zWB&lJUoU>ho)hsOhPA&E9cC#4U0d111hYtmT#2OGtF_oFsBTL)PIw(Y#PP?2{8^%n zFT@&+qWzBBTa!;~m}QE1zSR^m5`svb)SPk;LOK#_+{LfnXmG}A=UQ80g^1&dXPExy z@vdGSTkRK7SuP0>`LcE(WGMX2Uh`t^2l@OfZfLWeyFE|;(fuX(Vekt|@oXAB{5Of> zB-I46%WtLK+eI8P#K9g(?it=#Ayy%pa|X~c#t1d(dOz%0@h4pHcl;*45t82i%30=s zsz_ZUc&BKY8tY=iAW|{sAQ84WI61GMyczMM;+KoGD@&U#5BoR4nx)Xwt-MWgW3fx+ z203p`P(7)+nJ$*tNMN26ND)X1!0#UF+WhxF2eo}qM)9_@r(Nlqjk0N)Rju8pJs!-?Ee6#T4-Jc@QD7+(=`2B?n|cE?`ED0DQ@(;$fLKneG$8Y_Zmlo#ITU%S3aK2JH#2m=* z8Kz$;{4?VQwW@d@#nzey-S(NJ_}5PGd%<2Q(|#TJj(aU4(^IvyZDz(@J5INb#@~I#w9<>#d1IPl zMZuCLjPGd#M{{jH9wpU{2VONbeHz>F{6{{Uy57USYa$NvBt zjY8YQQpe&O_!mXKxN8w{B3dD_j`m3{b$MQ8YmY7nklW=*R@@dpAo!o~Q^%e!Vc<ph#A4-Z$$N zyt+@r8xI?NN7S?%#`u|kXr3bREwmQ!lX0rp>7QU!l0}oqJ8Y8JOK-kd#81CDW^waN zi6=^=79ti?e7CyZ%GX*gujc%YnA1^w%ka?PJ_hK%4%a>f_)qq4kHmVek*evs9-VKg zUwD!;c-pI4GM_$4np9-FSy_ur-|N-z&DeRKqu?9A4tz-e0EKzuOY40y2=+@Q=!$7o zV39*bBSjLkuHaX2Y#7dWa58?K)_-ariQ31(trptm-$L;3#VN(MpQ&m0a=f2o6I%XW4@i&LGPmFq+ESl2WwT#|VPiAke;qv2_=X7(Iw~E-i zqr8GdY@)deE8ERDf~Fp~DvvU@of~)Ruj_rj_IKeEOP1DOuYI=r{^REV02*j|-+(+< zec;~}*vSpujGH7V%OVv&az$){(YV1@$2sQ*iu0STOGXpAnI(uG51SNu`UBv42_ z!3;PfxIES+-L<6Jd{Br&1fC!SWTpUN(`gv5y_H4FbD2i${ASktCE)!x{s`^yo5MEN zF-c`@s`%Pyqn|Sbmd{_AZKO{$u~&#jg;;VJZu`WV{XYG&?QJxV_$K$py(d6{A%@ez zFBQBIF4aYe6h?>_wg3PM{KfH1vs(WE!6tq&ktDlhzwy*QUO`gN;v1kdxD%ZE9M|c` z?U5)?*aPE?cf)#*1>6=7fswErHr_eMYW+KhWY%R(%U^o0{*Zj8V+ZwSm-j#PqwqW6 zf9(9G1@q9#>+&4t^j0 z*?JGeTkjCuTIkxLzq`7<@e~WB{f={%*zGVxksX~xPJ=(f-!~`PJ`?yh(Eic7Y#LOP zSQz!+6vT~bD?{a=sPnQ~mG)1S9T#2*8Am-aH({{Z0w@dlBrtlBNf zVQG5=z@WEdCf_NT?;xGLb-*?GMdI%f4O8QPi}dhR7zLj7Rt%fo)(0V9jo=n5k_SV_ zuj#+-i(zHr580!|@#}hhgX%gihcvd*+Cczl_CvH}NxEb?IgOC;M{4|W@V|hsJTYlM zh!KpI+LZTEppcf8THa05O_xK)&7Uhadk<3UQtV-rSS4wTa6ae z?9vBDyO~ek7{+)zhhCW;zV-9ok*(_bW}|zn+q*G}LaJD97&10_$iey?{uS)L51Loe zY#JuZE!4i_t7q%#b6ypH_WMm%@wKZnZ6mV>gvQp&${hUOSisIP+P;%4vYkcT`0gEz z>s9%Fr=i~Xr$*H0&_vp6TF)EW7M?jW+hdev<7_MEXz0bTc~hGEpY~RhOtsX!L3`ni zMQ;hek>+W3%3PEOkst+$1Rh2~B=xV(3tNvS>r9?0S{YEPB8=sf62u0<1Fs{GZfoqn z*`CtxMz_`HkV7Gs<5j$`jQguClhkv)z@~^x90A#!S+5Qdb4SW$L zJApBV3A9Tl+!puAug_l=>JT4_{v#M*KeZ&uBoI{#jl;h^Fl&ZN-0S+>@%W|x0J9&^ z=j`V(9}d4`Wy$^0>uxf7f5e*cbM?c1RrcTQwk)sz0AP=f)_0LdGJnDksY(^pFb@z$ zjetCEMgf%d1Y}p|ckJ!sEjHJ}zp=KBG;^7*ZS}7&WD>~|h0`t~!^(S^aI0w?dJHKU(3qKiCQ$od?UVe&AmH;~k5{WIH7h3Fl>Y!(AEHu+JZbmk{{SQ4pM$?2 zemQt=#9k}cd;x3X&1Xi`JW--}dr7j@{6%?W+C192BF56fW4o4gmRUD^%mO9=0kXCF z*YKeJ*&YP_t1Z3@d{+34ruf^!@_1(RUo-yzWW{HEE+W2LWVHn|m{3T#m5-R<9l##H z2HeFrhW;Y>)dm4ii+>LSafR}viqSyFZ=WQ6b6=&i>dgNDw!9mL-QEJZ8@)Da@g5KR zS*qd+{Ogu6TE_b;?5(TyHNZuy-Ss}heL~*eW>*BSatC_1ZGCLh80Cj5=y+>O6@KS&731APf`U zuQil1C^JKEDx#wN@S$vwGIwJ=ed`X&cvc3uR>_qZAIOYiwc!Sp(In%YcxYMNZR8&!8UE&obQFy|vSw zr|`)1{OfuKb!2ppATjyz;EZ+zR(!r}$kPr70}9>q>BS9R#YM$xYIu9V-`W;XYFc&D#`BWDC({Tx9jz7p&@}*Amknh?0BwI;?zHG_*t#oLZUHah6FzOD{NWLA&IR^_P+py?=TKU`J7O8EgY1ZB!mrYnCy0s}hfu&M-P_41S z0O7k}9<}U0whioa{7})ZQNPxBPT9k9G8@a}ek1g&-yE(QSq+#Z?9;-5-=|SuqTubz zE3U`JR+CC8d7mCduf^dh1)MMmjE<*1XO=-Y9)~&nIjrB0UNf`3(__&rtmC&51eChI za22!D9Pa6!)$2bFqK@}pj@`d_9`Ixyc#U&_anRzq&)U8lL2M8zAtC}csK^f^XQ#K} zT{w1?c&3VNs$ADUHMOZ#d}kxR0vM1k)4}CI1F*(8{Bd7ne#hw7pBKD7a0y5*<>#&z z(&M*1bLn3ZYBHOj7s+hQxd<1I4od<#!Q%knpUS^L{{UkvDQ$i<_-5&b_M1$-n5bZI zrrJOihi4fXQ^?Qd^camPJN7;wFrwv-qb1Rw(I3JDojem^X81*p-5rl#n_vU4C#NLy z{eFegJV_e-A@Ht|I_0L1d{P6B67lygG0#v>JqJqpkKv}g*E$8TIEpa}ow>=w001Y7 z`YzGnw)h3%XL!rJE}v&*1eIoa~g z=v_79ntwSY-?T6UdY@cZcZ~l4;I)4l^{q8DuLgK~!`e87w=2jmHAX-8 z@YzS~F`uB~zBuu({1pEH_RH~o!P(2uYae>;9w zJv+s}7ycytM>3xsYnQspG2W}FU0mKH5_`vYJhA6E!3sI_u2)UIzp|7yl%HfW^2=;I zjGSa-L==8vxkGazzBm|R!0ZQK{=I41++4t{R}3?sn~bhyYprMj7`4?VRvQKji*3p>F7^5R9%qTy**mujyD2%RCP0Cjo{@2bIsc?^dFGA_72A zK2eO0e;)OW*18=={C7zwFqRAe7(TfF01D8K>nq8}uc^oR`qw)R%dCy$F-#CZ1aaHz z_|?BTRzPGS0O(H#pHt3iS~_7}eW91n=3U6c?y~K{KbZILgU4$6>)@}&T~omy3!cFz zHu`<#%v@wOF9J^D5bt*&>Sv1bk9oq zXW>`Fe-P>)54BizxRTD*JlVvTGDi~a3!H-NGItD&XD5Npbl0Z|Qc8OtnC5t{OjP}z z=eB%o)~$R);j1lX>Nb}4*6I-VQ_UyHj7UU<6zx^qLl!yD1FtpWmMdj3gTWfS21KjncLk_7!l5eTz;;Z|5 zs!=~{buZaV;xX_yhrCJP8*zIb&X;E__6;D4;u*|A94g4cToHl}Lu2m_mH8#(OAGis zVXau|2w}O3_U1WJh$SS6-5pLcG8srX0!Un!B| zYsyt2Sz6m3t~!l0lY=~o*&)^0x9;-bkB~AL6k+u0KN|g8{e(3L26;? zd0I(TSMVxNUiJAp#Luox1LqrB!A0JB{26kqnOG`oM9`sbtBM%qNziL^e(3+f7va%<|HLr?zA)byLE*d6{KR1x!m zx9sJPNXAJx3qH_jSzxvsySp{gY z7;qPidsJ*j<^!>=D%IOnpzB&GGP-$+di3V9G)(I>dyUe_21(nW z#8*2V@R8<{MOI+#^JA_%gVwb4hHcWa{{VD!`d1)lkuCNCjJ|XAHQxUKgprh28*RuL%K@BZ6JNZ4w0-n&e$HPKBxXOm@Sd*C{{Vom)84 zX78R&d{qaD^~ii}srb`Hx;FQd>K9kh$sqmY4RLiW%ks;;I5J}gE1rVAbHu;3H^;4R z#jSi?G|g@wC(2yFZOV>04+E-}z`*%2$;c+ZMOazgDA@Vhuudn2+36lE@i)Z}>>J3+ zT--p3>=AIsI1bJ84cI;F>@R@V9|x!S?csY*i+YBW;TuaWUrp2R<<_pj(k6*+ zg4|6H*~jl-DB#|~If)V&rIt5eEN}T2O!&0gZ^WVF`~3#v?H^B?8*g9G`Ul282fSzdJ?h^NKWUGJnxDhp8EF1H@g?k< z7xovMd7xNLZEz-^Nty|rWR2}{#aXhL30cmJ=?GLzMZDPCb7JN%0^dpjiPwwc4)r`J|5k8`t#yff;>I& zwtG(rYmtfdJ55hcwT@fs%bRtQXx{DQSrTHf!tuh77)D$x=Z(L!{{XYU#ovk^4)E`f zPmO$0;opdQ&%{knOwz8rGpy-?*2YD;lWm-qi3_EaA7hY`>1r&?6^-SRb_z$qW)3Q< zh5hYay0xvI)-Nv1EjdOA)$!;2702Ljh;JXp7C#Gatvn;4>oY^8=u_&k#|_L=86;Tj zxgg7Ws| zZf3UoRMv3XG;0>uiKdBFoD?M(u|ENPEd7!GBK$G5@mK9R;hhIg)qHvI_r|f<>Y7K0 zucOm$G|6u*T3frzDBzaj4NYKc*%2aHNRC*`0?!r)04_k$zt}$nzu>3e4Llq0-@{)E zKWKexM)5wh_V$`~u`ZzAj> z@b#ZI8lLX*Pj;S~bxC}eWORF~s#SGI(Cy;y16}I3-Y4-5j-(>Cp5?6I)9x*$w_?M~ z5Ko4Qo<`hN9Sb3L3=y&%XM8SSh?W`!-;AcQipxd3y+b{VT*Ajrxx01=82Oe~R#=+^ zA^V_{&mJB7J@{K#@y?5Nm;$xs)~HO zf)~vLY>o&7CzFoDMOR+QSt!}vJtDSiru|Q?hAs+eCuQgQ9YxjTejU>8zR@%h{ifbO zvm&@)%_0K zC;W7syc_UB_A3t`+UYXu8YZ2r%7HDTDItebyoNC(F45du!v6qe5`!#FzjC@5>!$cu zCx~VEXQ1DFL%zP$d_@$K{{U#;Y6~25-QL_>G?y|mK#6W6Y2BIzw^fM7$`ueO73N^E za#(1}zU{T5^ZDDSQ`Ev^xtfKwJ-XsXJ}$RR{n!a3)E(c{SIj@Qea-Hh@N(+!PnF@9 z&9DKH+BO@muyD#$jymAy9<}tc&E|N)nGQ-?D&x~}uabXj{c76(0O1t6g`}$_M*B)t zV17&+f&s|wo=NntdkmK{{{Rv@t@#|6?8&NX6Z}58);v+Je`rlD%+V&FZl>zu-rCX! zXSthc+^H;|yNM(l-{xf9w5@wSi)r8q#iDpl!}|&RI}OZwmDKFlFyA5+Fx)X@kfd*WtPTWIV@vLmBhE`(#!j@RT;_%i$=)Kw9xl|hOl}9St8BSpDo-LOsG3Z;8(}r5&ky( zS@_V>Xg&(Nx3ckOk*Gy*+U3>ES9cnOa6rj)(%6_xFg?|Yc%p_VI2mx!HzUQP@V|n! z$k$rXyi;RmV|WDi_T$5s69}S{=1Bb1jI5hffxUQaWN>O{ij*~i`}El0sa6vB+5gh< zUm73V+s79-I;X;&F4N%*e`SUgzSQn7WY(|XgfvX?#Ve^7Ht8nswug#YTQLVs#fQ~e zhr|B>1o$t;x@3PFr_*lk<&W&<`u_l04RL)vu@>ao>Cq$+GGch76SQ#oG8Ms_GY9hj z01NzWi^nipNAUMr)4X+O;qMAd;w$Hpd%G<~v}#7^iSc>7Qx`}i7gkz+ie*Yu5Z4T*>u$5e_b@HG56Wido>^(Puugtn`ui|eQ=(B0(#J3uzw`SKG zJ>1e0r&!!xSxfz!XtJ#48CDmO<+oIh;iPp`KcIgL{uAgQ2s|g_+kb_h5Uo`$jnCNh zsSUQfryE_dUl{cW*478Wou;>il3m6Xiw-uJ$L0BkSw@~BRgUTr_VeirC^dxVl~L z=54ZtBOEROx8on$4^Y-T1>+xwUI@Oo)GW0hvdtaWoqH^L735B>=Uc@(NF#!I8KP84 zfMARiZUt+n_&4#(#J(W3I%bdJ9WVY8Jrv0%k*Ml$s_dEw<;1P$Oj)6LLXD<1nMr0b zxhkU!U)Jc)Rm`Nd-_G{e=DHm?nrrOoZ%^yUKV%OAXx|BMd`a+A#u{FetY|Y_E%%47 zZ&v$A)mkg&XfGZ?6|+b7wVD8Ttf8clV*n`#Pp5xo_^ZO-676pMFnmShKMQ!NMa9C+ zYk4*Co_G5a>IO;LnHkzZlYSuPuL2{4$*kR*X?$)Q5MSxOZWtp4Q~sLw>ife{*j3{{UpW53=TX<&d%~l}4UD=^yM% z`$PDlG>h$L;;c=r*&1@cERF3{$6-5N5E{532@ z>!?>(O|9;l{6DY6+2SY5cuUCr0Pz0+i2f@4JMij!Jk-gX#FvXb-Sxy4;q4-OmT9dm zW!orb4rTJosNZC8+S`rDvqu{{Uk6PghI(3+r;?;q5Ntb&@-cJtU2y zcPw1AD$6n{d~m@2Z(8fWwXTc%Ny`5K5;e^`#2Qwo1;?GJX{-ICr|QWJa9c+ltzh=n z!M9GAe?6+mB#uQ_#udLz)5nlm!{RTB9w@%F(>03=Z?H*iV=$ifRf0YDCJ#0^%#%eP zOlQakYcia>@$wm^3`PqRC5MkS`>k!Q*KIV~*Lo&)P@mdo#^1GH!`)ZHo-&`tce zj<={@M|j%=Qd?g|vPQR&GC@%Uk+e=e^mr^4tK{8hFQsDNX_!g5Hh%^h~u+RjK^MY1Te5*Z%DER=P2kLG_Q{{XW$$G;DFN8{udelNYXnk(NE z>v9Qgp}UG0VUpWoPUz-jhBjE#>%y$aq zn3-;#--yb9Nl4&hB9J_>g4_{bt$(t&{1W%Zf3ffF4d5@1R^BAiJ~LfeO?7d3rua@c z7MpPVtPX@hn_R#TW zjqvYQ@n^wrgjZfI(liSzIrN=V!=5X+v%b00FYP6Gr?iIl+%#8~QXgRx<3<2EN>DheK!6zTI@A!XT z=6-XE+ldDXB-wKk5TSB3i|K%r~QupBYYY7;o%GIh^3t*A^McsyK`RB zl;K`dk3|0fBgf&1(v4cGZ?%t)d}pKB_-fM2N%04VHC+>4vb-K+YB0}ki4$bEmZ4f1 za>`T?dVI=GFn*f-pX_ufq}6V`AF0QC6tjt0iH!)8$WT;ax8-rjWes0xe&2r-ye;vY z_I|Y2d?Bh@Uf*c??wv1|W8ZLNl4XEx2+>IxStM3*f*WaG2@XBqME#%qCcXsLwLcR0 z68$eAg{F<|n=E8oY=WvlJA(niVmoJw+xt>J$}URRZ}dLZ;ny=!`_Gv_X0)-k_yys8 zLL%&L_ejL!ZWc+GfCo}=dgB?d%?}w&lKfEDKqLM?pFKDZ&(!`o{{TGxmVVCDUEO}i ze-FG_G#3hQt}b9#mN6W1m>uxZVcoWnPIqnO91L=QEc``#1m6)g)`D2_x|G}0NDE*V z>X-~L#~H~TE2`IXzn|uOw-mX13nTgy{gbsXFTj7Y#3<(iFA?V)f6JWs`ixiF-?oBU zYQM10#+y6qcV(^u{gtN=L?F2Q;C*?Icu&b=xAyjgfUQ&zOvIbI3bu@m%RXd_-6Cul>0F z9|I@JPW`{g`IpDjYWh#c&mNgY&aH2C@q6LYMHRde?zS-{tjBpQtjJRlt^xUoC%GSg zx$#tAxBaETy0aQOcn0w$fWZF%X!Ad{V*sS0O{6p6oS@pPv}bl#;hz}ayL@Kx_1yNt zX&d7YfI$f;WyD&2iy!rYa!DJ3;|=-O+&7xE2lm~wn(`}%eBT0HoETY;$*V#^{m+}h z4fL$DC;PSj2mb)1#NQ0=@8*4#cww1ij^ly|-S{4VO6U_%jDX3?^d7jbFZ*l5_jvNJ z;)(Oh$lh7}qzY@Kw6_z1C7Z0s!|x#uI{yH(k^0x?m0xq(wa&`kT(_DAK0-dcX1CT@ ziVXAekHd=O?MuY0vW#FKSnr~hiUdQrcL%5)skgEs z!oiOndH1ev9ZEBh9}Gtws*T0e?BTB*e4`$ptz0H$HqF~zLh>tN=PnN3gQy-nrt_Bx@FX&#_Cw3m93gswwFTSl_$PB*VVUIIJEg28OCv5RpR?- zC$bQ#f+GFmhCRVK`eb&mYYB;PmEv>Cl5uB%{>XkG(!4$K%j3SKVH|K?U3kw+hT>R< zmSsVp>9YX9ae*YVKTo{m_pbx^VH8XIG+3l)B4qJzja&C)XDzSY4c{&~z#o-+r|i+K z={G+czB)-~a}#7;%8D2-Kc-*C(Gk1LYx%m z(ZAICXW(DLZvyL{CHSLp_C;xA@oDpkiaAuD?7JBbM2g@I@-uOcSm&Dgt6%V6!c9No z55(9c)FIREZfrDZtgOYuM+8>{P3Id}VP#d4Pbo}*V2v<~Cs*vVEQyH#~3^T;d=&LNEnz-Uab4gQDuX$J*{AwG)^~CnI+b$ACHNJ^gF+ z3OO}sN>h~jFT&sCcr|f!r|_fE{wVm~+WX?HdRK+@yZJ42?FPoi;wz*wf2OC;A&Kt9 zujMkb5UYd*eqJ+J9xC{&`#@aynY3ROJ+;&qHf-W%iB?}GBeC~1Z-)EIG8J*?I2GcW zmbGbn@vl?7u#ir#HLObLPT!U|^Uq=l=xf@1aU^NuSXwg2Zi|2K{{Sta>VI1LYBA)r zTE3mUk0z>Cy6$mvc>Bis2B~Qdou<9XyLKrpvzH;`!EA{Yb`YHLA>$*j2Xo_>kM+Bo z>swzK+s~xOI!7c4ExDV_Dha~NZt^G~H!8{r?V7;TT1$;@LyV2X?H7!3$s_Fe+xd+9 z(|$PWw|b6)r2V>9m&v?U`G-YVT?b*))a3iuLW~_~MaO%YU8+)d*!go-v$t;(+)ZzJ zYcA;2`95flU;}PrByxmo0gqliEA*rGSsHvF6?_waZqYbj4P6_lV|8FBc%61J2ZqNA zr;s=v{{WVnpj*!t-rih%t2OyDxEa1{aE>oRyoqeLN>k6>bv2shOHlmVUGQG7~r-Ag1YWiUCaYx z+o&8@(;hq5^eaDxnntmuDoJK8Pn3`ypnmdBI)ypGBe1W@kB%M~hr_?K^LUft5(a=y3rDzuvkW#fk&u5k&Tt&qSy}I=;*Zht+)wWon;z+5u6SzD zPc4eiYL3C*dWQqK$Cge9;a?Pg!AI@1uN?lyzA=u%<~b(P*4I=;A(fBV?qhZXAaz2+ zisXJXc$?y%!heRE*Tj1Zs}B&iiE3_Uv6j|LHk2t){#4P<;XuhM3`Cq`BRQ`o_~+w4 z8Q**h@twDfbm-Sl{>QjW$t*8^($I-x`IuYWLjZp);E*KA0N`}5lgRS73{5KWceIz_ z(d*_F)Tv6FT@U9?QI_f`)PuDA{S@P#KM~TSy1TY6cDjNxG0*4Edi@sD{s{a4@a~%o z-x7R9d#2k+i*Ww{VbYS}A&y<78Rv>ivk+|XB@yGMGAr$$3;xC5v$dU#uZXQQom*P9 zWlNb5T*+@F*6yH*V@M;2?m>t0%8?+-l`Xcvc*pU67LUfC-Tr6D<(OKu;b=}&~Uy(>w!j>kfV zD+q#aQEdpfKmo=ui;U#@*T-f)EW(=QqeZ`0Z}UCq<+Y}-DOOrKm zbhT)bc-H{DWVkGwL%hU~R%Pg8-dQKt|~aR7|k z+zq>9RhCzlDH)Y^5}Xtpzajif;U9}%wH~wKtp~uK5Y+E~v#jQ~wTjv~Ci8@huI?mN zSXC6psu;*41mTzxE9&@jiQ|f)8rAI-?|pPuK4UbYiH%22n{4@hN&FFNs%`8pF0u=5 zl5?Itf$#qS>*lvKom$Y`gt61??Dwf%%O2u*$lOTJZngT6@ZJk}_`6VwSnRL0W6MT~6tb!x_F10b#&57t+mMcF~PvV;=dWZH?LjjQ$Z%5uFVC! zZ@9w;oD&@66gW=4)p<7=)5lVkS`e~M+WIf^Jj~Z6o)&5omD^W5lzbWSSBCVvjeo=z z0?Ip7EdFONgTNts{Z2ofd;W{y=zKAw#d-FWMww!jP$DY%ge$MjA!aNX3=jvT$_1NNuEiFj6{o$RE$Wc3~W2e&;-@IW&(ChacNogT7ux zi0vmm1Y@6bU#LH^lvguoUMiZ@6aJT{sm6K;#u|4xPJ*GNNkw6|bW$?$^amfMcIhC)A(~C3avUs!r_eX+T&ADpC8_|R42}m%=u%y(e7t&o z75Pm{oXq;#YeTEDxO773Vr+muZOQz%e=5;Q&eC26R%6u}Sbkg|(zu9k_VCBAuWr?8 zCma_JP$4@2otZ$j5@|6DoeHnTB?Z@j^t?q5EY#Z#-$2MI3##ZZ&I5oq; zd2*KkM=1bjBi9wN9oFtn81^R_tYuF?b!VS^S+de~--W&}(6#518yo!=@(HDhJjPh0h^v)cjl=_xGBfL6kG>rJ zknFXe7DJ?bJ=I0*G6N0F*H$<|ZzwA&Hsc)Jrr_$Kfd?2h`sMMXN?l{%$Bc9+?qq?l z^lQ68BCc99GI@K~rz@O_{HgF~z`q{&V{ONW{9|=*bqfZvlq;Z#_i|hpe6Bk$1cA6> zzf#~AC}Ao%y>I#-FP}B-prx_%ABultZCd{T;`X8Ne7Z#rsbeL_*^2=kyIQRB`Ceq< zu^Y5OS9a~EJmVGMe-(dVzlfg(?1j#u2BqQWlEyowLd9~-p^Pi`W@M6B!TFGkfI$R< zn*Ao5!v6rZN5&u86I6@fpM$P7?L$t}A&UCu#Fn?Ww2;n^9M5v`#cu5)%k!IsX+vxZ zc4Y7#G5EvrKTz-_dN;(aHva%t@b$Fz@WrUwB8l2#Jht|l7P^KwEiZ-eXPIqYWe{I1kh(gEKNxryrM#+eotqK+l$otSb z?)h)U9~Ga$p8$RpYTpR%rk_pK?)8&*WvZ-Kme-b%T*A`n+Le~nihFrv8>fkwN^7_FN*JbqUjoi?wx0)*uiCN z>NM+HOQ|75wA0?=S9pYO;yA+)i?tAMJL~I@huYtRz8-uu@fXBR2gEw0nqH}GapCK| zI$KMPn%&|=g7(%|EofqUfgxWi>Q}TwkarP*`Mj``z__~A9O^e`_~`mST`qZ;Sv2)q zp5y-j1myT{@V?tf*FG7wt(~e#;jLFd(L6<=wf)bEY!8X0n*P>(Cd*BRSe?O|DCOGG zwW=ye#anX^Klo|;HTW&GjTgcG9MPWp#y$^%O=rfbCY5_TN2)x9=7qHcl^z>?(X{*K zwjsF;OUs(^FNAm6=fKS}e-v3;+G)$Di|I5SD*0YbTwloX*xNOwwWj;|Z!r@@mk}e! z0y{AXg`{8A57~dkw>mHE^YJ4^@!x{&d^O^46>9cTX?yiQwmz(5yNgfM?^ape7TQ}| zXE$(JllEqvU0OpV@3rISUX?}7SKXV_TR-ddvGf>DSyoY#yF9B;)<0;k+1KI^inWi~ zYgvJOHSq@8%F*<9_DRBNGe6_~h-_mwcg6nz1Fv-*6UF)qOkmTd(_Z6AifahjRbun4)+qo)LA$(xbA9DQ;Gmp#lr8AZC1)b@XZx?hVv4r?b*4|}cK+%XTSyINSw zcN}3Okt6=i5GsaOk~yR}IZ}Xa03V=r*}Ma)cy~gd!&=OjT7|3K+FWV!jo)SwN(^&E z-~eNlNB}p^9UH3PkCDC&UHG3_x{52sm|e}`n=z=tquF^dTigbb&FnVl#g^Uo#VM0< zlq`eH-?wn|2iJ97L&Uxw)9t*iBTa9abxle^Z)YJgIDPWDMMO=6u#;mmGNO}_Up<4V zO0FT(jIPptm%7*2O%I^K&Jy>c_C5ao?M|z4a*emmfnz5e_wU=2*O6a2e$<*(_5T3C z>+MR;;ya5`tZ874wfPO4 zD>}($v0R69v5cx&1H=*6&Pa;0h}>@+{4e`N{B^UFKw^DV-Co>(GvkRuht0uSaidhWaN$HgD;pNXbt02yBIR=C&fwEJHv z+*~c|+bJogTeQN>nsl9h%`py(g~U^grsa0_UBArne!C`~y-vsCHj(>3 zc=qnoM9{Tc%@%DFP_(%hT0W_DZr3euYL@qlKA~?s3fC65iF0dlrz_0X)d zr-tss;qAP#z>~#qEIM|jsYL#KR@bvdZ+!B>6!JjVQYaEzN~@P()sv$B)*k~bbZbj1 zJvP_Lh8WR5;*-!DWTJP$NR9Uc*3DmJP1SsLa^qeyLD($OFhz0{H1Ldu)inKs5;{KfHO z_E_*o?9KaLY0-R4w$nZ(_)}2QuB6cuS<>WJ)GRJpk{g8ycRVm$TkQ*Jsaxg}TYOO} zNI?5%_Sd~Sr|i3~d_4G>r0DuLiM1aPX_neO_l2xJ&wFV4ZPW%caciU}m3EN{Jj=MA zW}TCI+n|skf6dK)4}c#7emnSMSkb??^^b&_cBy4ys_Hs|eXB~FO-PJV8*MsPeO(2- z?q;^P^5TZxGtSlltNFJLR<%k#)oCYvI_dMj+^?w+6Z{m=) z@Qv-Y<+S$qx}meWwKiltjig;(!yUzxutZWv5-hVAfOr;0aC7)urfV98v+<9|U$qy( z?;S~~Nn@*DMd6?9lcL&P#cOF0H(KnvcA$5~ryD7iSX!da*Bgqh!%E6MC*s%bS)+VP ze}=lJjeZ~7c$ysrb*~QU_ZC`2dfo1VW|{_@Qj<>8VY6lv#)&Pj;=Pmrqph{U@o{N~Pm{&(MF2lYATa+wj`=#9s%r?JrdR+50W+jnvn-kuBVY z<-Fvx@gAKcTg_z)NX=;kmh3vKd2UG_H5I0%;ZFl;pBTP5-)dSX!>QQl6IKe< z_Vcfnx@MzmGGAX6hs|h=o?$l%V`%VK9u4Ae+P~m?{><=bU$x!H@l=rLUun|xcr1;* zmYt#|r0-z`&83|7w-HNa1POSs-%l&)*AA+s*Did6#oC^_eiP|mv`3GA9_hXg(5#;9 z_;&izJELo-`BU4p`fj0RD_+}KTIzEu+(j7>&j~+klui~y9&~teKF!8=wyF2O-?yfl zKBYW!e(T@!KKJo2#E1Cj;LQ)={qMv1wJU9Z$XgqG(Pw#eszDrHbQ-Od)aUy?2<=dW zk`U3E_}&DFrM^}8L#Y1H(Zgf$!{IKOuK0G^1=Jea+RsfN*|AtEylO4Yt9dd+$r&+Q zPR!Dj^A)FAAz|~Egnwy0d&b@@@bAR`01$YdS=Yq+&ZVkd=$;qUA=11*XDkmCcQ+Em zV0aU+#(RlbKGu>bC1QYNE`Ck@guiHS8)`2; zu{MdUP2ukxYxl5tV@T8_yzv)?wR_JpON`pbEMMAI4kNbnnOipTygOEBo>`E4&%!&s zOX9DKyl3LCh`u1!^e+mQI*gZB<4%Ix!&Wd}7Q9Fr;@LGAZ48k$ysdgCw}_#3RNBa% z4r;2nPYF$^*{LgQeYEsit@X8;-AIzFwcWAL`W<-iuzSj2fMqW=a!R51r5B;S+7wfS2C9a~L`%}~P zDV}JjwVv!B?AdP`Ycl%MNYV))ZP27`F_B&{*ae6_>u;i2{2K6Ve+N7{p!hq$J{`BZ z@e$YWt}LUELe%uDhILV8W%i#qUSGA$e`r`(ERJOXcC=)6npEEryhr;lr@^lbXjb}I zzEK8`eFmW|ls8v!I(?@Q#)~>3w-Wh~Ne??)a3d~$K~=<4#X>lywY{2FT)i~t@4rjv zo3-DiN=fbge_z#)i~b4xK=@^Ety|mACB6Qqt6rq0(gSg*EyNRHF2kXC)$VQ9KRS7p zi^3;GiJ5^~`v=E*Pl7x_@b=#8;ye?-g&SGZ#*28jQbN$%>Jxuv$LB{nr;~T1nN&Pj z2-e%(x0X2h)8ICb@iWA_J>H*oG{`Ps)SFGvueFPth@+3}kUCroXNq{d)NM<2w;Ih@|*&tY2w9 zBc8_A@?8yVZlae_yAnq=tdQR&#guF3fY#AEFlG(=$upKTKWzU1A9zRNuZOjthuW`! zZFOrcYr*=?yB3|RTqUjD{hgYXA7_N1j(A;X{o>tC0gU26%6T7*zqM7AdN1s`@poGA z--zPz2AX^Zbqg7ylFw1Hyn(Gui?(q0LTgaSRyExj+BUl60)KJHvMA@+^(ws4Z<|fl z*ITb&Ro6y*-eHY&XgMv?Uzzl`jJ5v&9RAk6Bh-8=@Snm^U3h=S_bGMaJG~=HxVF@8 zHOmVJcU!xqp59AEoLQ_A++93sWQ`#XWD%DAD)@8Ye++)ye+A_5*TqdP-@|wQGVp}9 zm$tqfyN>mAE0VFnd!^ax_Ao2_%81iOOpGofVuh5Jf8*=+W&Z$zhUmW!yfJg(3(Xr- zwY85^wZHoXj;|%1oz|;mByN`yqyiZvhDF`J30cCi+62*n2ktNI<@--~FXNxYX?{NF z{xsG!twFU|ucYwx=CLdnHkP+Z;60ami$kud_|u^(c;uRPorwT zXu0tOvPcYgczN2;FDfM@bBd^qV1KlUUTGiqNgp8ikx# zwbWNlfjryGYe^RHq!LR6VU-E@_%FqrO)g9ZX9p(V#FpB1UY&mf=D3%DXkw%7Xg*i@ zpTh=-@I_&7jHp|=m<~pAzu{2c-d#)LC{}10m91q^i?#AMsXu@{YbwT7U$MG8H!($V zFplEi%vkOLQ?_{0P_C&e;n7(`1u7T@$g8(kfNODiVa$fr_A=vcHz*;w1XuMOV|h7u zPx3zm#M5!DIKMy0PZCKSntTw)3&kn8gB#Os0>}yZx(u!5(p|ssIM#6?>wzC5pW%lPXS_pF#tFq;~*T7jtyA4)D@#9Vo%~BitS<` z(!TEa>8i4R&YnD$Ly;br9LN6I-rG6-1$E)9qZWR#mR&}h@<-5LwO*L^elOFstukpE zSoDakeA&O!qy=Jlqh>N=%_nY7@;9Ei$*;{X*dI*PygmCN_-4~uSkgw8>&Qg57UdJ| zEDExQaLid)mdFP<0|O`YxAv6OVVmN5iJXm=*2E0;KRN!nug_1}XI6Os0B4U3gC68D zO4$RD#_DYTroSG|YFc=Rcbfd9ev5=wr%%xM=f$5DE<6MKLHODq9LZp|H=h)IDI{*! zO#wp%y}L7r=8s`Sx7cKFG>}2U?Za2-otKKdOrP*lO*g}-9A{07z!ye2JouIH`hvWS zV%j7mIwFC)1Tk#!gYhSf^h-^9<6ns^?%Grq{{R+zBRT|S18~wUiQKHLryw4qgUCC8 zufE~AGyd3?w=tZ5#SwJFJbnFA9RC0zMq?^|%{yzz*Wnv7a59r^U$6O}b3v|LM&)Kc zV32W>k;k#kYTC)C+)O{vAjv;_U{=pwssXPrv(?JNqEmv6fI$Qr?AGVX`FCfWjC=I2 z%&St9TAx`5b#uRqFiEx}aRL7TVrM8v`>a@0uwC8BarRMk-8xGWKjXktT)v;HT|J_# zm=2=^5(yubY)7b{vTy*9E%&9Av=evMLPzfR+a7u0iA57O5tO&od zZZ4*{Ozdp4oq!&o^IEqWgG&;~Ph8hMdw#R&H&IOMff*wsBadHEUG$@&GIl;?{hDXC zhvR3)$t|NmCh?A!xsU)!Zx88*B#uwaN&1p|n*4PAqV)@Te`a3@Lu>>xCy4x9uApO; z)}~e`7|wC|;=fh@0A}A1=ttvs#^>`R*$0a>){(yI#v{;d5y>QD0LIzD;~dxGpT^G` z>AoiT2jHz&K$p+4yYVNCrz{GPR^wQfdvld60BEEP2sj|*WO9FK;9504xhHOrzy1Qx ziO(vTo{}{3qc{`1L>SZ8{d6Z#I`vuz+BQj#D1F`k$?E-W1SmHCwATD3s%U;Jj?r!sSlY(oP{ExFtWqdt*aHK*JaPwG^Bp%Wn2Z>~uw9NC1+h2^mrjc5Yl6a!%TkuRgmTX`g=c(g?Ui0BU-rRUe zqXd|*^yk3fke3l3#{eFc^KIneyjiM6!=Zy1> z;4<%$;soFyXFu1ydh%ALkB7~h`sE~k`u@@ygGc)_SwIgm>wX&N9hY3QC-tvL{i5}# zC;f$Ow2{BfzPAk09orYpy&wk189RZm0sW)dSN3nRv1z43`tOH7)wb3-)-6fr2b`So z(12^yziCrF@9ZsUYh!ZuOy3499bt>$tpaImLas4aE{{Uzoh29v{{3+sZ8Q)tpx3;^16;|gxeozm!RQ;eQ zk}rUMHoY;HX*65FRwJHD6=Dh6NK$ilQlEkaS%W#HQk%ll%^PgWz{Xf$DJ7EjKEvl?e%BlkK_Y?vK zI%6CT)%n3`tLfH1@J%*(F(8M)%WESbXWJ)|BPv1yepcbVImxfpFAZDiTB652w&YZA zHxKf--T}ta0T~^ek>0%SB*fH#5e&z@Rf_Y}76gOt4SbBVJL@!hpH*vPBE!Tt zSL#QFklsSUm8NF$?Sb_32qsK)A|-qt2^G7dY5JvvpJ{8imT8q%c?b!W1d$v{rwI}g zcA)& z@mu2Ghkg`%Io14m<0tzznWe&7?oe3yak&xsj0R5CEDK-~2Ot{iwH;IJFf94YMHyvN z&f+phAEka@d``Fc@$utJ@lV6n{>;&Icy3_5{{T+7xVo118)jRv2#q0)AdXi>jewR+ zC_bjXk14{&yw@|b>Up@Djv83{7xv@SBv06H#*th|%PiJn2A#?r;L2H`B!!DljEhYgRi_-CY@^?j8a?L77jxhZzW53!b=-t ze)$w_!N*^(>wFV|RIu}n*T&b*%h3GuifXyni?>6}u6$wP`~5Rh)0M->>m&-K9$9*@ zG#IwV*3Z~W{Ox5ytTn4_a1ukYs-Evyi#AK-lZV2l-nu|$t2kU zSnehRkT6JI2`9CE+;HpKLj7)h(^6P@#!FkH>#qgr`j^B{3t4!c%Gs@LZ(>X2iMEid zC@!n=A_KKZ1gd~fI2{Jh#g7PCX}<+LPpAmzy*NM;iymvWcBuk8SCytf+cl#KBX+z+z z5JPVhm;Ty~Ujyb+Ef8db&wBjO@H96T-XYW)_9>B?;@ua_Mvs=fhmpG*lnxK6uhy^G z3i=Xuo=kquDsE;Nu!Q9W&Nb9U!}h@?-kHB7(5|1t$%Pl z(5g0V!(fmAZ_hRN55(P6OYtvP5o5=9lG%Ns}} zeq9yDKve+e9P|GG>iYxYjpeZMmZuBMmgY#Hl?y8n#|Mn4J%Gp1*X5jJCa|jA{{YPW zDSBzP`)Zu1@?QRPXyBx?E{Q)4? zS!$Z1+bL*W0`}p!`h$at{I*cB^>0m%?%z{;gfR1!B;@nnv?A2*BT$G(<6L#S2%VZ% z@6`0gYlm0CtR~BhuesP;U$Za+t_^NQbVv=;rEzwQ5agafz^&LW113oW=~+13YF0YS zdxFXxvNAKzYOpUO-a$No8|#|q;+!0Ncc&SAz(Wi-03Tp!C?Q<#t>#l^af}duTF#zW z;*FgB(auFO+UNZdla8E^m*kuY{R zUyB+>tKwgU9w+ejk9gJ--)XW%6~Np~EbO~v0ZO)49fT)QKkx_ zf?OOfd9R$K@z=#YH(Rps^m^T{vR)B9u}N&!+h68Zg(ScelsI7EC}GH7mcLfusQq6J zIMna@A19wd&a`=Z9tUypJL2WPjJ$2&ojysg7sT2tX}aE=4C`*tjgm}mZEc-W>KM8h zClW`sm}8pgJ{^A0*Oop7)ikTkM^Mw^zLoD&Mbqq~lEYCpG9odNpoU4(TYNEAEgUMN z4od<{{CWF5`18O%8Ph*$ABbKbzq`=T3?5xh3;*%>#G*D)2;OxTr}{(a`A8bT#*=0mW8tWo-#Q;&Jz)b ztfweD+1dJ@6qKU*TRn^6e~mBoeOmY8X0@p4Rz4ZOI*P=im|Esf`q6e_KB zmw}i;8$XqDir+WNP}BI|C&Ay_Q{m@?{1f007U^yAe^1na@TP;YwR`UnT3uU33+Yqq zmUgxl8h)t@MAJT-cMwlA%N};kvscbuDucjLT6mjQ@c6k~%~Hx~Euhx4The*@(`=5yyS~j;1pL2OE*JD*hTQ-u{ zQMs1UpxF#635wl>tG8#C@%e|%uZgFHl(CNKFS^#({tF_bPA}T*e7)hH*{jBve*~pI zFwt*3Evi8XONsT%ON}PvPXwV`BJK$8VYiMl#idwS=7>{h92%ar;DAe$2C9 zjRV7$pJI|tN?C61ZuR?-Z6t#7$}5BROL-m9)qq8j;6O<{B6S}R{s(^2UlaUp_TE3# zJXPZzY6Q5@H0iZJ62qx3opCIY+}=jVRn#RhnJu7^AqBqA=QEiV-Bl~vtv_e~02TPp zPPy>3w}R)!eiqjjZ6PGPwl~x1f+=77J+ABns)YgVQ;q~xGiS$1dXxcoQy}qmAD;+}7+h2oEaeS9g3Y+&R#yRDl z)8xJvdsea8eRZhG zVRRv6X&8N-mKi?#C!2{2{CVL20NOj?AH+)!20w%~T{FabjBwrP&>LuVE5UG7-@uSt z!zQN{@r@VEF^@aV+Tn-EBG(VD>s}r4TX<{sf&HVj?;2`0+WxI|r0Umpwl)^O+FE^$ zv!~c}u{0JokhP@I#cy+154PUyon47wl>9-^Ecq=Ckn<>rvIN zY_#iL3&eBj@mYPA9W6Tdz#;?9SLGa$w_RH{3!LNiL zwHJ)MEv0zR#@-#4@B3#_xwVf`pH#GViYd$=XNbW*qi)wwJdE+PykS-)N7%l02Oy0M zN7gA+=H}8-nB8;x@hEh$PW`ReZW7 z<(gF$d#4RvSytZZ4YW~t1{38;r>S9%dZfO+r_5GclIEr=GrBe<|c+>%%(+_Mt__4XyI$< zF9Cda{i1vU6|S-33w>(;08a3sySBH`cHLf0VH8TRyf)FolEQ{~82PAWR+?zCfxdD) zALGZyop0eG)3twyz5vzjd|iEgYkT2$y0&|Zn+uyLq#GiKK0{njZ!ecEu4I*?B*r(X zboGB1d|CL7@c#f@(vwl}<@bzre~FsQ>pHfXZFzNVqB~lw7U^ueWtuf>G<6#!FvW2p zKf=V1zonH_ohVdIZQp+!%f&H$24*W*(Ro0QFcs|!&ZBNNt-A4Z2_QO`N zcs$sQl0$7Qkk0BHFkd0JDzqSCUCB3ud>!zsTJWZqtm+;Ozq_99(g~!V%UHOvwvptG zS)L15u$`^qVsenQ(iqnYUC7*hE8-`JJbR;jeeq9^ZvGG2YQ7k;(qk9)8vVVTI#rw! zM7Jw7%(gkWj`@YN3okBQ5@d#7DgJ2k^l#h$0QNPXNVJ|$g`W&}JSfNeJ+7>*@>C!6 zdr>(ML;nCg;{O1aYlZDz_7@Kr(@HRZfBZ4ST2j9E{=HBC)cD_Bi{lr9d=aNx>HZ5} z3iv}s*CLO^UJ>yOo-GjDM+7D2xs$|(!U$s1)+r*oo=7dc*r!!-E16RsKk(DwFTy{C zi6@BsRpKuX=~o(!#kJ0Xs*xt8;S0ECo#nnu&34s(ND|&KqFDl5=163?w+g}Q^*8os z@Q3XUdHYT2zCQ7%iEbZHzt-gN_KTraSzFJLj1d|jn z<>kg#%p~}C@fW}z5%^ExO&eH$jUF4&yltxZg6mK4{8n)2wl^9qiEVkQUTW6~Z32(A z%l27dmgCEP`{6?*KqvBl_LW{ZMT&H{o##*w~OhXJpH5p0B5P~j*)-j-7inp zZf`Yj5owUvt=5_0+w1F?;*Rf4x7fC6EwefD<$0xHJij^eSqk&M0Qje=ORrsD{?-=O z8qD$dNtZx<8rJ7ogT$5^ycbYOX?^xIy1KeA5E9-r{>Bi==)>5;{4b*Ng$1O26-nQSe@i>4nn%Es|H{qFC3 z34olv`VW=gU37YMeKy-qJ9P7^$x8P=srbe4r^UYykBj~|>Aw*C8LDYN4OY_P?ky8n zx3O#Gx|V2u$tAtAO)ad~;s$_4Xf6_I3&RQBAal=nFXK&zj{GU%?}V0q9)rUk8Xg_g zEqp!U`20hCt0sr7-Q3M_=SQYN6W^t(#Wc`{h9{YKEO5o-6A=9S_=n*y3VzNX7Y~Yj z18JrB=fN6`#Zf1}mg7&2u9GO?DhbHO%i6k=(}Z5SIumqaTBf zC@X5Nw{G8Z?EBw-x{eyjA9Q}ht@}#+HvOf%J@9MbmyYzG4QiJ$CzIhz{W|W_R6FLm*A_Kor1$1P*WItRs%0NiM|9yQe;O??ANX)HA> zh+PX`=KEH*u+r~CMp!ga-CG%DY#*93$Lo(C=)O4dAHr*2+6wQ+SFhsTbHZ15ejL(# zQ93vLBO1q$@ieRAQ*fxLNH9e@wDP!9GKa}g`IGQ3NBH03KaBn#opq}(j$RShqg1~z z>Nh%+rS)$*dCi>Cc`a=;l369hR}j1=XAaED#!C1ZuwJSFhM!CxA@AN`xBc(U|0uCL-4H2XNCOFMHMw&^wf;>!lHEK$XF z@FZkhD!7fM*!cSk#D5jO4SWXB^o!K+?4BX;&bokU+SY+AuXx(Y*&^7ko+UT1yh^f5 zE5xd7ql~1bW6sPCGgkOL@t5Ij-vj>uXs-{!;)_XqM7j(OtxnhaQ^6b!EEh1X$@@ZD zO&c|>#H@x(Ym&s7Asf%)H|+=eKKw-ei~c-#gZ>qkkEU7ZTD{HPy}ya&yuXu9(5!qz zG5Zy!oh))eEw#y(DN)`Bo+f8jm&@|wVe{0m7;I&4Wl`&8qk2Cj+5R@`x!Wl|TkQV; zuj?sza_aDEns&Wo6{WNiPkWd)P6{M;@v{jeDVf{` z-!9b&UnKs^KM+19{2}n>qoe#lYb{#-(j8XD>K$(6q_(zNq%ny#d#AKFrYkH+h`wtU zMwK1IHcfP&v{se>00iausUO47*;nHyiF6N$+I{wf+6|7m2DK1FZ9U{Sut{;ML2TyM zcpr2cd?w}=x|O7d$&xt=uTCQ-ieFZ#PF%73P}WO#v$gu^eSHm9E($uc$UoqqpB=0| z9eg?XhvJVI_-jYd{xs=YMYg6iYYk5S095ezi99i`#=1m0#5plt*d>xONjzK95#=&& zEs}mR(>^zRCis=`Gg$ETo}q1dZ{jZv+*sdPE!0p>==OmeJ4Q)K5yl&gsqJ64e+(Dk z&&40x2gctQyaA@Zq2pf;{58{jKHePFjAmOu4M9Gk7uui^A%{@0y@ka0aEpe;&{!Tz zc_SNtmcJK#A^08eWA=aW&y0LI7LW1g;opjFWw5jHgj!toSJ6wR2yL5BpHI4uS*)+E zqqvHAp*I-0iP~#-U`QXa_+5*qDs=Gki;YO~yQ|vri*7pUWoK)<$zIpho(6AO%A4m} zTHkl|e=oTa{{X=&JXNLqG4VO^kHp`ETIa<5562Q)_;&IcEMm9t-rL!sj@IJmQ@@DX z!*LzkxqvjO7X&*yh}C|Q{hYYiTFA4;}5a zEe*xgJJxvNXDaYGk%rR1{%HQl{{XeshwQoF-x&B0#U2>B@p|~rOM^>_<+b~rI^NPa z$u7Q1TU{pUSb`@_k|qS@74!-XZYci2OUN zTHH$s(k}E}I?gGdN1h)pRT4lSO_p8A<~a7`uy%jT&yGI{d~NVM;_rz50{H6dO`i8d zm0^3PCimN9rq5s>-7()$+pq(b#nT$l%*8e z)%b#7bkyI5#PD!<&Kz<1bB}7bD!@Z?ENtZ&WZE;k zb0}bNG1uuIL0xQZNKPq`e;aW%U}iy$DDP> zN$dRTwY-x(z_%>>9zw-gvNsXVJwKIN#FjSDET{s>8nTsOep8$r_xe;2$1HQjbgS}t zgae0bx@7;yd( z{hKC1jkD@R=Zx;suR4A;_UFe0|+n<%Prq40p~tR+QoUwAuRp0qF(k zeM$R4UdnzYTisoGb4o0&_k<-B%Z39P+*Mh+XCw}}#eRGK%39X3Y5P0)emz>vAerL0 z9$a$y+X~#uGrMYzPI$)^^>@c>@!}7R^T%N&+)=@AZ4*2yuA)#Fyku@CE4XLnI3$2_ z4n9%+n5}FrJ_+boS2~MZFI^lTj4 zr%wI9$nqnrT53PEM~N&Q9U4!H9vNcuM$v+!LmNUnVH}o^J5-Vohaf8ge%8|UD`)+( z?YuJ4&MsfT^RlsmPbX*glx49tJiLrxjoHZqzds#a=vr2_@%ve~zO}Z#wY2!9;dvuj zHp~)1pu_{F;B&|vk56j*ZU?xw{jzl3>C1RB^sgt7x|P09=6@X5E?}d|m-jzJ7#KAt z>;7lg`cH?_D_I21zXY$a0DoH6xYO<>bdos=?@`7H?b5ShnpA)i&6mzs@vZ4@ZVkG9 znTilFaz9aDn^maqsr9i+#JX*ymeWY{DD(_En%0Z`Q45i{o=NBpQL($YGhwg_56}Mq zuUciWRSOO0KH2(LES|cX$75#FNm4k>=Wubs`gWxIUA^RSTtdXGsl87hboA+2rc6iI z1g~@asx~g50l>yM>@nK1Q9)uWyMr7XSYbnv>&LBT%$sznSe&yaYL(T*`E*mjCqLm- zMf9y@a~zx?Uzh3LyQ$OA!f&bY_w3{0Zw~lt9(Y?+1?=YWCb$_?M+spjsd%nf#)t{q97B=7 zTy*LBN$`4DljFC>MVo@&F4M{p!1=T-JHOMK{N?c%hIPLm=syj-Gox9X)Q?rx@2+DK z2*X0U%*XFB1Lg;=dCoc<*X!ITI=@(#E4GpU0MZ%pnWP};-d*43d2hgP4C#=3MVi9N ziokqGsRQnLi9rNTK=aE50gC_t1Co6)$5?y-)~&o@;;3%rg6b1yN()0_9xh(aK4q4IwvK2+KX5I3)%rHj_pQU}~BEBXS9HZ4Q z&3>0YeL|C3^gku6{67re7&UDHF%$;!CEAh57_*{su2@De4hrqvo=3lNbKvVuKjKqZ z+Ln89q`l0{?n5i2yGp8rBL^Vz!`~*g^?wU|LGT~NOZ`vB+6DHBa%8u=Fx^7Pb~Ymn z3CitfLZFj^K@~UrB${rc5jc?=;2;+x2NcNlctfvcq-c3 z@8YI~rfLw2i%CVnVe&r_rb*bt<~hayHf=3{cUc8;+lRi5#SI1I6Z2tgiYoI<9 zSVNGiz9I1P^#dDqdt!O%+w|*Rq4D}xPuPn`KwDwC)6}kbZMuSy$6Wq3@^|e=r|SC0 z!fiSWOQ~TW+uAq^h9EzCdmJmosUQUz!=?uepq78YaEs&)9=W(==Wxej78OrA{$#cE2=!lb6f)sgeHC_vRmin$41(+vT-D ztffv3^f|^r&O6|mkM@V2J8#+F#&Q6-k4C*YQ<0slPfVV3+OdCY*!A5P;62>hG@fsq$!3GdeWep>O)AGDZjh#S zh9?;gdN0j^Uzg>SllB&S&;J0CKD!sBX8ga*;(R-I6o0Sv>`lPq zqaK+&l6`CS_e{Ks_w6ZetA!w!Qlyq3e5V}r=bHX+^$&r1wdd@n-?SdHt?IYhcA2MJ z+SutjbfjAm9Oe%y>Ll}2gmZ>%psogbSM9&-+wdd6p8&iYH-|nIMSWvytIoQW#CKBt zu2#907}cH4!Uk3fpcTO69y3df@H7=SQWLv#mX^}`U0=v~HX?1PxY=0yBgzn`mlgv` z$~io7*YvK+#yHo@3^Ejcnc}?m&9wrXrj{qiAhZQf9_aY}E4hm1VG68@jKE-Qat1TO z`GtO8RyIDI*>qyV;Cmxn*IG(xQ}_ zb|QAM9;AtP5}_mjbC7Ux^{<|Mb)&;=Ca`kpn+9mv8);G@aNPFJKhA63ro6Ra0!ojc zMj!sV@h^+Za}J5DT|iz9+Fj6D(`jhgV3X!u!IY8Pa*NIaCG}`5qNe| z*DDIhvJHCB51tla(YTL*PT_;w07vnUMU%rn@J(L_ctU%Li&*jzf#vGlj?@ zcsNkm#~ZU=8T(cIW$_NJr1(SOWwJ#bzlinANlnYbuQZ2Cl`bO^v~3!aTcHRGZ8^<; z^}(1&T8yekWl~?E`L7U3MzmX93~%@-o~3br@V~;=a!cjQABiqxXceCbv)a$FoQ!U4 z1As`!Tpla)Pvc&tr(D^eC1p$Gf!W{X^4<~%On(tzeR#)8`@{Cm@m8PW4}_i#b+!WK zH5OZj%YODmx42M1;{^fPj_00h;17x#oO&#iY7h+En+J<01~6m{m~e4`LmqR+EAIJi zS_{BWAh{>65lCh;zV;+;xOe)b`4tj7#c#vo;1 z^jKtOZ!#w?-#8g!Z~*tO$~_h-7I^M};qN5m_sb~9rx?#)e)anc`vFgF4}`VLX)?`q zt})LY64u=ZUU|VHuQ7tJYolJ_~+w44OrORrkOSM&4!t&OC`d^WhBYA z6D_!j+14gtrPHo6-ngHEddVLT^&L`PS^QzHzu^Y4G-`hVALm@Zi9A@+{=!e*xsV7bmYX0&^=~+$HNi_CHv1%W*y{CnKA4Tym;#P&L==wCU zTT1fH1-_1^Ez=s-*IvDgM4s|ZmeFcSKA2{c z8@9x5QYCgO3EGTKGJ99bAGIaL{2v7%veBn&c;&j$Y+0khd`)+25^TsLJF&?eeJd;C zPl0STkBC18^p6x?>RPaq#P@<|Z!cz&2QcY(lOu?f#*xU3gXTb|1dQO~z9u^H7wcwd2Ps|tnYjWRLu_0q;Am;~i41GRa zSLeTgehmC0@MrBy{{RVBg8V;aqg}z_S9uMLDFV$U)%j04RX{w+f};T=Ww6Jdc>8WA zc2#k~Bh$TnzF~ufIVA^l)z4oKT2qbWk4cJAG5HoLKizVq1MEQ`t!T#44$KdJj6Vz- z^P733SvHgMk;kZGT}`~QBnup%u?jMOKk%rYG?vC_ojlmF<|gGMdSnr}bs5h!`HTBO z{?I=V{vG&X;?#UWYh`wlM{KC@7^9lpjjqi*nIhhIr=F;+%Dj%CAJL`NCx$OFH4IlL z9FCt#{OkR!ejj{6_=TY9-T?SNr@hvzGR-EVu3ulZwYr8X%WScMF5`6W#3Dvf5;L3~ zr2Q^YLJp)=O^-7fIVAZHp5XnWJ_qU-x-Y`N9zCCl?etb@wCkB|?XPsW^$kHx21q5g zNp543&@gDH1?7mZ$_6&q(cc{Pj}J$GZDnVsT3KnU6m#j?#+7k!&2qBD@Qo>MF0J5u zmWOLf2@%YuRuW`$UjcZlQ1E}iuLvIi-*}%&)O=klz;C9~EN-DNrMrjwHO18B&@z#b z+fmt=zQCi7XT;HHdS->HS$OAE)b!m-%3&Utqg+jKb2YME7}_~iuH`6WDT#tas2m0P z*NlDCa;j9?t4+&YI@$U8en-OMar38Jo=aAKsr)qkuYLnd;HdR~+DlS86L^B^=-Uqr z=&h?o35o@QL~voS$GZZ<-67Nm$YjbuI;=(E}-*E1&r1ayEUbn#{_a)x)gWBik~$2>%vxF zvsc2;0Q^(&UY+3Y7T);7!VwuP{As4mbw7sny$)2mlTWsW*@RceQAtV>Ea~Sg22~N8 zd>?xF1N%?-qr^Tr(!5FIFB9r_9w5cGho)#6X__R`w2Np&jeIoSItZ*M(-zt(tp&Zx zr<>+VW0^d+V~zV;{3-Z9;xB^HYF_{w#0la3J593Gb!e@YIII^>(qy?G@h!EwbW=1Q zcGU``#EM~=T>v%3TQ-d>Y%ukml#KD4_s9SWF?)Y%ya(b7-4NBwTm-aTf z@Ub*~Q%vw~pQ!3~c2j}&1s2g6B3prx6WPY#ml#}fto)KcHhfpC>kw!*J{N;kzk^4f z2p3Mao*QUxe$5sFJ>0MsK`0w{v?t4HGEi*Ab$$%gVDUz$r!JqUf5JDZ&jVP`b*8MA zBF+MzXSxF7$g8!z(E@9jSh`In^_Vey52mk&io3CmD$e|e(jNmpC~LnF{{Z0|_?7VQ z!&*g@(am#zt4V7FT4LJk`ot}1rud^uNN=9za)I3dPscU+-h(u2Jab8-IX0^2W9w?-{@+2(^M+reC!@H{Gz9#U; z!EcNI02#g^!QuY^6lzx5g`TaeS!w5Ay@&VkSlHe!oBg3;EtV-GwTW)hISdiy!B|<* zw=w-+@#n?gfgiOW!kv5IuC~`c8q&TVYI>?%c$37soR^d8b~aA&*+cedC6aVzxwm_X zV~#L_85Y%2MKT5WjwP+^YSXDkdM?`P+EMxI@;iB9QXjp#KQy$>AI4u0v|oom2z)iD z_#eR@AozWKrwu<$wYpQT>(|eC%W>j6qb0dymK!x&i<@CFhT_$jge*qy*-r)hJNT#I z{{W3T_O0e+tg?o4c7&WZEN^ zMOO>(=C|RkFZQC<^nVlhOInk|z8tl?j@QB(>>eB~b^WzzY%f;!?!?Nmq;XtC&@;4> zTT3OhepkyNFZA#1=kVX*f9#EAr1-bvEuOWg2rn+a*Q{H$g{jt8P>$&@nJuPx{{VQN zdrGhropn?b-W$eIl#mALlvL?%CLj%>AT3NvVvLX)Fotxufb>_85|CzejgUrC8b(QP zuu?kh+-UZeawmOAtWVusWbcUZ8I;c>!P2J5 z3zam~U%-!AtENw|bVdu!U!hi|SXTa13iQ3p_#PE0N@^BmUQFcceNHm}!V1BSvS};e zLoxOM<8w+%x}%|lwq8Crorjgb@%0J(*rQTi#9!;G9i-6`BOS2NsX?GZp5VD zI^*VHk1-%*a%8))4vH#zH_Ld2CrC$F#Hp_3cji@2@Iae^cd4P0NTL+Vx>D=;-_(>N z18DKa__J@A!pc?EO$va)Fa99Y?&;&2u8}KhoBPbHM`l#ut7ZwJ_H@u{+g}IxbC8gT z0r2;Taej%QU-LTP@T>IpN~^KT61sCQvWpliGz}FjGrWsM<&0VZXs|LjuWCQc3Z$NL z=O5t**>goAxgK(irAt@h++&NcSwwSx%tC{FD>Z`uLvD?>%}7C@dS!TuaQ=@Xcd9SL z<(3CI?fiw$S4d7|dp%hDMVLvlr&Od=9^-p+_yb&#-F-_dZ06Pc5id)|NzvJU7E`2t zicni{SxTBZ@A%c1-8Ml_6`wCs4i)I*kS+c7hRGhm!WhoS9m+L?_PIdveLoM|E8?7q zjlX7DQ`VjRXp2}DU;~qV^2E9N7a+IlKs-W^kujqD$6EYeS!xN;IqTF%|L$4aR2d$h zQqB5yuJKqBq2M1mkopU}mvbX5g%Hi%?s&b@F$|VM>l$go|MI?H_H$nWkZw2JRd>)= zLJCIln=;{|(c1WJ8a}_zFiBoyZTG~d5e^SG6ckDw;3d6}kg98;NsKc1PyW`vA3&=j zjPIUns?cMswib>JN`L>s5o267F_-L;eK`h=UQKu79fC4B20f3OQ*_)T@r@w?r?+&C!@5vuF)kA*km?qABr!CkSSb)tl*dSv5uiVx$2NAr6>u&DPl; zJGFBH^{5V`b<2*isg<8`SG^n#f;>;dsL9@I7W%+)p(1#u%=Og*nlo0(e^cHUzzD^U zO!^>c2!lweV@ds4DW5s_v>>pEUi?gul7uDI^JnbEF@JSZemYK0+yIYQ@ruttM|d2R z2jxGol$l=fGRxG=3;5Cqx#mdqxU%by%z_$|JHf`8B+&X*)q&vJb9J|017Hu8eeBf6 z!#i^f4cdNaom_?9(&a`r^vLJ*KBR5w)^Oe@SkFA?;2*&t-C}?03ZhI)>WRawV+(C( zOZq6shut*O#m){MJchsK0zl^sAQSbSB(WG3pY^CZfx3L9X0>uTcTYk>QzCl zlp7ZM;jAdlB~R1V*ESOeD$u$7o;atYReDq6&`njil6rM<*rKI=EkpIY;mR3PkjeP~ z#*dXpM~7cl)9E%E*v(&o$ZpkzM+VqxV0;BgI{CG0R&ZZ#1m%4P!G*nr$S#`hP-&0& z0y-2`{4xS3hO+Pa>b+S=hhR_aYAPG}@JlVnz0Av9APLk64=@`8MOZm+^;On=#-E@) z9hI{0oCK%Q8`S*&XDp(Rmu&=v^n@vgqPRj-vhPHLv{SYX_|Nxgi~rG8IMGVj&xpc=I>xnJRIt?`dKt|Dks0j883`fx*&#lw#YjZn?ke>Ig2O zvvb__$Xu?)h&!&!`1#LsHW87cL>pI8ckouZriKP0Q1+&b-p$ccwFPo{|^haU1z|M{#R_*UqfRbbkn; zbQV8|{SNv^K#81dBE7f+^tbtyJ#7;N`#Y8_yTD$mEg5`zck+p+e(;1V)94l;4+Wz6 zL-4s8GXoqnX!@b6`7DsvCa9WW_ryP06LpuL67A!cC9CJ}p=A8MAN<03%FQWp)ta~q z_mhL??pqTTn+uSxF@9CibOw8`#I+5iS|i^yy*+)&R2me+*UC_T@nJ2K5x4 zY0O^6&KN|$!VM*^zpk6kB;2)J5%^LU!)sze3`mAO!-W5ER*{Ya2U#m5$2TSl`&jI? zH8p04Tx{LfBIx=&2wkqtwh-k`FbEr)Q406G`+gUPr9iRvaMCvxvSZYU;^b5Yuht$r zG&b;K17sDVzLs|`WN|JvB6c+BtF}gxToCMQ9}Gnt6O%a7D@Mml=1ym7SA0Zp1f5RhJpJDv<8Y%w&Nm6&n0?$Co*SP{>~iWWVdqg}^OCJIuOrP7Zz*iw)CR zj=dydn`9}K$;@BSLvki4$=?b=tuV!4)bl<)WyAh8QGC27`$XCMA8jA1(jVh_0JA@` zi;|}8IGmA@`i?s-O|)vi_}8Zuv$4`>I>Z_arVf>>rE>|&*99bn4D$mqu9UJR73 z_)ptacW?=$YhqW~;=ktBW_+p)#8OZ&eyA}`&hE1mhrvob|L7O{*!w4(fO!s;yAl{Z z))OU)FpO5%`vg@)vfB?Zj{4JQ#TJE~s>cbE`ADv3Z@huP)yE-Umzh&jBy_)+*>3+M zXoN?>DDe7Uf>{+Y?4$OM#;IeswfS`&P>eu*CjRXDR=2)?ZJH9x{afIr)k_QVuk=}^ z*uP!z!6A4_$#G^z`LatF6`Ig>=FiRBrKk*{HsPt3ruf(4;4w1gzTixQQkus*WB)xJ z{xCUWE9RQ<)PBGHVCJt!a6w^amqwpNpdS7j_3&6M>j`Oq$8|6w3!`A({}u@Sc4xPn?^jA)vU)MCQr0HG39=Bs?-8}Ns|;TTnUD{K_n}-E zvs)R=%mB* z29O%}N{_VAJl3+e{YtAXcA4~zkFWxBb-1oF%(<1=} zK)r1k{-)dzAGy*8p*3#t&R>xmX3wMCV&2P`|4@%Et@{pYo7NVU7O==2P3_}(YV(FU zN&7kJYTkK);IXNW%<&ukZsRTI_Z7duQ|bD{@kY~)>ioHUB_*Hzp8jCh4bH2I*a&;H zw>xoEKID~TAhJR#<>OePF88AUKEqX8!t8&KeR-&R z?5-JzM-`;+%KjAEXimH&3nFslc;^hgjCQ9E8!h;#tTRL|cm$w^KAV~yEyJh@4j(P^ z8H`ZLn}nJgef#tZ5qh3Krm4;DiaEd1{>UhV<=ot`gO+4A8(xsRwA`k>Bf<|Iv!)G$Mo}CyCnXhSMxb?1LsU)aeQCu94YTT;NKXC3M3%GRvIlM+PW9} z{TRZ0{9OQn-xC~o5*`qwA?o%@Lex0xIkBw0x3*9p5P${i69kCl;A~miX{x=p>_DfH zo?Wz9>pxk@2#VcuRFYz^yy3v$(*zz6;gzc{Smva)^PwBfN;JSEN+KEmqDHXieM8)DLU8RlMmDg_8#XDRHcjN_^@_tUHv4 ztOW}B#RIt3OHQIxh_{S-r)+9C21L?zLyXzZhZN7X{BsVo$3{-bIARhuBjprW$C#e}^IxV<#aNV9Tg(O$kq zw?BElRnB$Gmh?<7sJWaQCp8mVoR~updTl$s%=uvhR z{!=&y$$ub*%G*2mA$XHji*Z5$`+FNtnJ{#S^Oc@n$8(=iPhKNg-iiodrpA*f1&5?r zIKJryJPN4HUnr!!aF9EE;6ci1C_LY#N3%Ju7t};^fJk_H*8=Fl+0dWoYjzPId`kiwgdg}pEUipDRT-|YwZ-s{IK;&dwSNRS z(xKa@Yw{rJ`6@#HB#a8xv^E|Df$@qr)Di8*-CN)g?Ngosied!LM_aN0;*;;FgM%B4 zlo6v;V{c_7SIkcCuJQ3g8_HW*(^%slc)DEX^qYSKMY9VO-|?@cr%HletReQ;7ul4r z9!}&{Pj+WX;KEvg1Y1Q{hPz1_19Ada-9#|9H9b#T-^DZnLbmOk{@4O53*jG=W7H@u zn?RV!t#BoNC2l1P1YSmEE9Fd=)lnGAqr*ANwmhi|uACwJw6^d06>3@@?{`10kV}t; z)@_K=sBQ#^I-w>iB;N(&u{$pryw{r!#qKa4-ut15<)v>JscfHb9?HH^lDKuQE!AB|d z%HRe0$D$h{{gb4YSg8f>*$%58?^ZOnmj+~R1C}0A`YFY&wyDpMs}% zU0wJD!=Q2q;ehj*l-u^7`Y{I+;YG0Z3yr=6`}wXL+VIG4&~34^&-rb61)b>9)2sYh z6-i8AFq?}^7bo7;ya96IXH48(a%D7gH!|;0qeL>@E6fOF!AMwj(nGDieIItH(R~|{ zt$5U@nF?9z@n=ugzvk|K)$N2&;{t6NM*1Yj2Z|u9?*aKAdhx>221ZZewJ(jfG#Xf4^BncwdqD$40L5#y01)1Unk6d%#wG}d$?_V2%WN*dO2_?Z7G^zW&@|VXzO{{2bP-Vp0 zdWTg$Qwq^XKohtgG2@!JxZ8mXd9dE=9rA_O1j1y`b}E>#jqW*7e2?tR-K>ewEUrXc zZhLcPS7yLI5 zXaD0lKgJ)QQ0oGRyOhS#YzrH`L#|e??|<9E?3MrGnH(G4>=&S8!=6mj*Bz-pbJo(I zJioUoij-3f4|E8m7F<+O%(ucZJH3pW{ie|b=9hIcz;G^kmiMK}pQZ(w{ru1n|MhWu zVaTV_yCMT>+>C)dM$aEiba~cP{RFKQsTsubtirlnM^ zNv+gSHZ+y^GguH41Jno z5n=*LpS*x_xaqd)?r0S{OnSe>(HqC20}08xB?3Jc(qTFF!$0w5;0?mOg`p6*a+U0Q zeRBWXT!3h_H1RvhXDca^R4uApDH8JJa$I4m*JtHrrjM*-x+RAPWk38nUpS87`USAJ zmLVG?BB_D$#_1IbeYai~?nd@!>lxM_)mZyy$~ng-`MdIEN8PaS zs9c1S<3EDAvXM8j1kdD$l<>KAh4AR;#%i)F*_p=psMK_=S*RkpH<62g#<>x(Lz?Ew zyTP$myN{Gqme|*Yh<^m+!qUo5gov7_irTEjWE9tU(oR|G6=LJ*H?ZN%1Z?&R$00(P#<`BdC^y_UqSTUN=mqFncD9) zZnoulf;I{hh=dI-XN7Dto{U$gb)?C^HJVtC<&m@g<`j2<_rki^Q2Y|*YDX#0mwADo zY3B&r33^L8q>hZbtIp~~_pCtI#=udfgIAZF!C*t0Rt2aN=%Xn{Nievx6BN#@w7dim( zIDRIS)qu&?tvxeS4P~n6C6%gAZd6lihs_xDrO(!)&ZX3s6UXy>aM0gJApbmMYKOJo$9htP26 z!P_iyJ^Q4*0>R%nG3RC!Y~26mzr+NbZNoFXAwlNo*KbM&?`lFn?BWf;hs&EZI#DB-2$=Q}sGI4K`!zR$L zDulT-L-v>%wP8S;8(D{byf4Vl{Kl?H{hYvxHIJ5<`54F?SrBW5w~;dybj(K=LA*^G zTkguG4>_f>g*%>nlNqnNA6s+!1^atR=eGje*lAx0F z33~W32NP<<;{kZ}D$ybi&-7|x3tISnC2qiMRH$-#l84f={F|`PCza*+muIeb7Mhdu zgWiO-!bl>7qow*V0N~Sd@L~^OxywO1*Bz9>Mk_vFGYpYBrf*^TVu!_NsT6E9^&Yj!w59ylMRf9FD!KlUH|L1tDwL(f zlIpngX38WPHoc1yy8nb*f^l2vHu;w!{lPVhS>%t)@~^l0esvv5pHj9(0Z$3SF)73! z1vjh;<6xp_*_dqTv&|+nQK58R+PXSvtIKARP}TRMHD*)w9oYGf5HqE}h@{Qc>%Ecf zthInIqen0ZR(|gEqK0OeG;G1T$y#$-Jjm}S`hIqa)HP{_F4l7u9&`)vvrOe_UNkmS7dD|8&`ALMLgjpR3&jCw;$qQYkZ zf>EFgT9Lx)2ybVxgKr0>v^Gye-`8i4rM^mi_NbCOd^ED>&qLpT1dlps(29rxD#HX7 zrfHE=VX*ty!a0duko?8Y+w<^PldaD`{f9;r^7bA)qrb@$Y~_=Ie&7~9ZY|jaM$vjhyRW6R^QYMp}7-b-0ZKrJiQOYbnf;N69mS12cF7fR93G6Def^u z>vb2{*nEz!YreEwCT(Akr%EOV+`VY#_KTUhH0`||F$LA<@}3&m4g7m4LSPcj*PI1* z@+}EYTX9Ykx_;()1Ux!h{+=6L^lQdP#Gi?IEA{0UK^v*cQL|;+p@&}&fb}^LyAX;) z93^Hs7_`~^t8sa>`vIoz&0a7O?hk>>i_C7_hQ-F$N)oPqvI&a}XM#H9eOgqkO4^O? zzMM3;85{*_@(6zcP+xSDVi^0|#y`tM_v1_wSPWy_!5mh9*32!wh5jhTI~|HTLPXzd zx-er4@WOdXqX`2t=GKo%ZX#@v9?Jbz`85dl>qRky{U#Gse%)bg3&wWx&(P>64&^N37o@FU-Ml#ZIYD zvR#0fezTj%_vvN6X5ab1jrCPY#iG@|0$XOCW{pS5AJlV&)$tu}%`;WccxSupDJkRZ z0<}Y6<(ecuQk!v5VK;T_lx<8}nX}*DOc=Io+vWeI<4qWNi~6SnYX%Jo*;7ThLz;>L z<{o-v=*m<@KDm#DF}Bg#^yFq&SrhyOe8OQsXA*goGkr3Bq{npDL=xE}rhXME9^v9w zDH!DIwYJ7K<=^tQ=WN_!1$|0~^_|D@Ly6F@DmD+j{3|hruiMF-?0KBwre^D|QF@`i zeCfK5Vbta3_l>q3?3@=yb*O02-J9^}4h1OZ=4rHo^}t&AmI2u-v@VE1$NT$gZ{S&U z=7pNg(>MI4X?!kkP-P!0w+m~!U4gL*5BHANHwq~+w8Hi}@vo+rKru?jU>C+X4vG&B zjHa^2=De?0mV3_J!z{RUt_npoKTN=$|AM+8LDqU&?WoC^DxX}@`%->wexV)}TJB4c zW4l`2UGV1E$3USO>IDY|F)>7FbS4sGZZ@0%Ul+O)3$^GSOl^ZUA_ zs()ZFF4C?lXGJuEv`6juytz+a zDzcc9p?&~mqXDr-2%xV`IuBIod<|kKbQE5x@SJXh(+H9>k?PxhB#()dO_Br}VA=3P z6afs}bXM9hT16tdZ{+&<{8Ik(QUKfryqIrkgl2l%Ssx(zO(PwY`N*?M36CO2v2hZ1 zyJ%qAJxVleHy|P*zkJ6H^@A-3(bZdFpt^_6pMNzbI1q8Yex~mT-`LwnLB6XjzH%Ms zzk_xLSsDNA*AUbd4W{Z;!PjWLYD!jH${(p7L4`1m!DwS6g_jD60}GLMNlNBRi&g0c z{#PxgGTNVbeA2$xF-Oqkd9O2L9aNK1o>s^Rgh{VNTiVE;HT0{bolTZs>eD=!=>)c!i4m}C19M-?Q%CQ##krV*su|8 zlTtOke??$Pvi(`hgGWm&O~)#5mp*2ct40Oi@Dfe%v*BCVLGy~4V?16)^%gZujrlW_ z_UW0MJZa==Oav3X6#3!MV#ew~OYsA$ZTs=2qrT{PZG7$eT)_+SJ&vKEtO`qf_q~e* zLx&`e#M&YaKyRjCte^tsdIN9$=_;Yi$QCQvg0;a(qnTrkm1aZUbLOI!n9NyoG3QK@ zc#f@?n8eK*dYuX={Va@Q&6Uv!af}2T_t`wdjnDe5vLa-%JQH8Kz)fXjZc4DzI=;N~ z;%WqIlVttF9K^X$*1OcEns^u?t{>%;|JJx)d!JPlU5vYQ=0W8eHb zgTErMVl!Ri#p^OzAJ_EFSUNx~K;9lUf^moLX!RlPS=a&Wzo8{;6G4SJI(^EACH3 zM(5A<(qlLH;t43W|CXUx^c?VS9#eMp1&#B6I7^ zAPa}uumfgp8Tgx*eAy$7BlTadHzI7jk%fsW(!Ks=xQUPl*f(W12RFebO*^xJ?2VQe zjBtiu4;ygH9a%p!=g&wMBR(0>{^vkj9QFyan^l3O$wDmg!4ocnS+F)gZzAS%7@EK& z4YMV8D`88$B?Z%p{`p4GmEMFzdgfv&rmpxp8a|V*~L#BFTMuyzaV(kBXD!0566s23m7;l-v zZ`B~IL(g;eqMYC}QjPO=%U*$5`}M(Z?95Hq7RSEC#H8`UTg(I*R?|2@Th|Ct3jCf0 zCYTy*cGEfs)@A7wEa8^lw7?^G$#Z);#H--Cvb+w|wFSDmjPz&GVI9_0K=XeDeS$9K zRHP7~O$&=mF;egs&yrQZ+Pi6WPXsBs!)J+Bt^s$4+zc(_Wt`Tx8t|LyQI?C!;R%o%HT_Deo zsU*qp$U&`&?-6Ln`<=4fQh4HL-`gfqnakMCt2H*XRQJt7RS}<-wwk1a zYFklJua@QqBEh0+^|LfAOXvDC+wixIv-1ZIAvu0vt|>+{IBsEiw23txCJZL!Q zS=sAi7boz9)>wR=nK5bs--cuAqJVTQAoui*^(QF@+doK0F(tC6uTgOrayExu_| z-7srN@l-y$G$Jef-gylBaeaFB*b8=Ur%T570BQJ z;cE5p^m{6gat-_>y;|hBSTf-0v2z3O?Ke}0V8nX2-64gZ)j|;_`1U0v*8=0#CX@KM z*v2Y1K6jGl5UhZpT=Wg7xwy61NK~`3s%|Ikn2X|~=dB4z?(Y(WPaol38qFH)-wU5F z1=QDOlZf0OE01sa1hnnta>#r1M~Mze#k2-#UhKH%0bRPO6oy~OqDyep>$_nX!iWl8zH!XhbNo5QuDD3_j7ri222#QewB@h4sxLy zywmD0cpCqzG2IZJD$w#lX1unkT~BF-&Vzrzo+ZEPh26K%Y9ojNN>dlyNz``mKsqCdeLQe})gqU2c43r(%)Ly7+2dh~PeuViZj`u*Q|#hr2JU zFkdYBSnnygYh6VZanA$9YB*$g>9p28EirlZ4Bx+f1>t-KKvWts>!n!uw(`#+KM*S> zHqbX8hU04PcjZs1s9=mYyE5CTdhptEi2Jm7vs7(k^UT(3Vm7tVI?TfU=Q?Ts1fhV_ zrx8u*xUO>y3kF}wJ@|rOx*Q9s$4f;J_?OaG7oJF~PS-wR+GRHE#8SqP6+|WT(8nXM9y34qdME&_mU*EQmUeR2Ba%!%?t8%3Q|Yd{(nF;!*wvzQHol zcE;A!GehtBcHn($*VI3C>gAf?l3`&|uD@=tEIyLr>FeQfmqEItmRg>} zL~g9pJNvV$TYTdXnD@7?bn?{RZ41tQMVR^5GZ<3cy%>I_be9xjA8dE{|9j^;5;k0I z*d=!vYa3Y{tpZ*@o}M zVZwFMIl8}FJK`pB?ZiC)2-r+(45p>mAB~86Ay;L%LprjYh!42rsyoxPWO-cw+!U-2 zM0gHyEvPynKN8{9``I;xM}SQRm^~VncA$0rBkS+-Lhv`2CARGV8~$H;oHqf2{|LTv z&r4`$BU+FBY`E8YGrEe}pGtR&P>JUf9u5S&!o#mL-z|d_e2Qy^{TTtdk8-VMq%qax zfk8tGss9LsO7Zp81%q_q^WWQ_MU2q!ep&4`Io8mj`Hm2sh0{xGRZYn1#IuDpDzr$A z?@q1-x?sfcKoI^5doQ?1lf|5uqIcMoU8QN}(ZQp65=6-)C~LqU-JJXb_{!m&8!Ue9 zYs~NgF8>E+>T|hoeGmN^e9nWD$C+$fCde8?bg#x$g-Mf6R1|aw36lqO=qL0Ww4OXA zVeg90*|;hRHkD9`05X#YpN`Gs4yIQ8)h2BIXaGenm^q74ZN3!|t)V_q^VI5;Ht|)% zO`i{Q{)1!MOO(&U2DpK}41XcS! zRc!2@N`B}5;npa18Mt?KKf(KEVL%iKR+Z;1?4PAT-ga!p!+chLnoENx;du2~-NlzP zz@%$8RX@c0cE|>xfKkNJkxhJ^+|*rDntl6mh;Wu_FYa;gd!Y9P5ml^sbZ>gHJsxpf zU9Q6KhTua4ZpaV)0i8pzs_iy9chBrFiTgr%N!OuPK^!7CW;W zuxHQTqD9gxLfNOShS#s_2Jtfz4&!l{mlj$mB`io%yvCs?hCmaZIf91#Zlj*zk`)?r;ohfKtD*NBc$&rXx?IyO?IdC%=lb9jB{d zzP4eqLavCUjcs3|E?6z5TYBvMyStqYj>1CvQWgGyLTDkB6W65TBU(9cZJ2zyj^WymChcU0&U~OmE&B%IftY*n;bGfHE-nU+RH-9i|Kgx4?LBQYCP3_{?pIM|U*j z%j{~TZ1Wzc_-&QfSf5epn`Fd(20uV{T&CO3e*Ww?=YexlA2Ndv;#@*f&s0kA>%6@C zuL?%IUq}XJ{sA#F%QCbU)<>@oyVc)??ULq)bqGA1=YC8Zz$3sceW);rrHjA9XT7+9 zvHb9GFZue8rqA!wK1x2P`)k&=tQX8cPTK)H7zoMmnTN@u=d+WK?o1Da0`>n9j7ks3 zZnn|GL}j}}(q+EpAfGfC?%?#X8<=R6EV8@zwnYf{?2lOv-Rd)E*aAm?3RP$Q3te&c z9y={hNgHqQeVL7S)GhKq0rTDeB`+e7r*W5t90HLYAm~j}zCRdnBH}mBl>JyijFOU) zkWwLh0#Z|RY4`|Ai6*i|6Guq}t?a3QBkPoIj~*;cnr-ks12`Ftj>Ec9l$ZUui51ks zFfJK8x%0SB;@;2U3jt}iFB-fF@3*jM;H<{_QTy!^NFsa%!m5$jX&ccKaz-cYWtoMg zyS-AJHzWIR)EUTg$M~i#fy$Hlw^^<+;$Z(a4H#RGT%yv^sA&sjB*ygO*-0AT4AB6-M5XU-m4gf6``K*kQ=M<${89 zZGQQHp)T{s-wl-`Xw?;09%O@eTko3)lDToymV|DkE|i44$M-!#>;a2IuP~J%C@Z9d z4I~Nh$aTt)Fc#NeBi-TpHu;(P*B3k5ql5{0NrHbU@Ri0b{*SheHZ3W}L>bazx(#x* zKd&wg2sNKq(J6h9oxG6~d0{7^LyWHZ)e>kTCI_q>2KnLe`f>Z+hAL?#0~0eVt2(Ui zL3b_HF*y{U+!{<7=^X-da4rr*T0vP&bR21QQ5&0-k0}t!LvN5FEZq*1ODcz!97KhE z4c4nnb`blS1X<2MSJgX{JdZuC+|r)P-|Mm+l;>PqkHv5J-1T~VB9P8ENH+q=Djod% zP)jdnGY;9e-HK0m!h-Sn!gIWq#oRyC&IBhsfiLcI|9_W45?8 zhee~rFxC=C_t2{Bc-{O-(aZDgT&sS z6u8Ib8N{-D`!UD)?HT5H93S7s8P#YNb0lQ@r2(9xK&?ZT{zPtjONp+arDpbYQR`(q zj$XJPs3>7=2%AWP8F%@=`jiw$JbMPZiZ=a65N_4&8bWm(LJ3JmuuLU-wHWw1&iE_Z zFl)h%jhs1AFaHrNXKex^z>OqOanSc+*M>T<;+v){Z|$Qk=hRJJhs!0EjC_4$zTP07 zbr3mIeo%%fjLAvL=7_u{(E8>wP4gULXZ7{DRE+ znkv~Tgn64fUnFQ{@{FVm@M>;*XgXd`(jNdhd??I}P!&zJ39Y&BP?(<&c8I>Z?!gVp z18TC7x(7x@3p&6veAyaoV;1?@o)_Xjv=7zbjDc}1?hB~{;)SP;Mz)bp1;9fi4unrw z%b)8o4T^bVwW`+O$DteSDueuI)s4a*Ep*5Uk^+QhH;$gv{^F8*&&cET;6IOdn7Yl| zze?bZmkvED+ySgR%5;XE@4YX%TgUCyvjNVhRIWO-9nD>gbJSf^lzg2Hf|E8ezi)E> zy78Hp4}|!IBu=V%rUmAQAlUtGU*COG;jwa+No21sDGhfaKe2cG{LNUK5NWJk@g$jUnGumxq_Rt6IG6uZWdpVb)$YI>-=$cNm0W%kVwKjtDcD z_^r0)w?Jo{725?%c!R=&Ht|J0Qms*R$~{6AZ1Nb54apk8)J3Q6LcdH~#-P+ytMjx) zM+TJ~K3zk~HT$ncdTIjA(EU!FV913QFLh60MU7Gu(K)c7f8{82&brHUB<=p&uM?iX z3F^1x25f-OdjB}ZCaaX~6e6;r^7!sYCXiZ*)2rOVhGGI$@qRu zmrqh6e~@)JTLmxm}zL<@J#a9QN&fr6c_|XMu++& z(?dD&FgKS(1CLW%v(e{AjFOTBB+QgwA%kXY-l;YNsD_QgD0i$RLorfWb94Nwgn_-o z_j(B;le4XY_x9(kPx1(KHAz`>$$+KCKXU2=tEsZT=QxUz6p~@gdZzMijzvyw_Go{9 z^Bzn^JR*j-%bJroTD&0Qeer_eWFSaq_L3cTFlzPdxcZ`6PdhCra!xqM#i>10%QV!! z-^QRWiQ$Rnk=QVwdBPuO01@Xqt&d@Hp3s(f_xDuK*LwC8=__=zoHg|0F_laQ6IFZya*Lc4lN;yATt#!~aU1A={s0*@~b8s>nhrsE255hwR2W(IO|cVb#7%_2M|+cn71uos3UQ)QF_y z-|7A-By!DEr-!mi<^l1PZ%tS;^}e07!#S@&pk_z8(jAG)+!jL!m2hJrn~Q(g{zZF` z9-cHqqkSSw;?`KFd+@Wwa6FA_x7{6Dwr=iMHK$6S?@oG~R0#_N-%VkeQH1>plZiO$ z#TAzvK==_qgui2EuVCC~K=31+F>2q7z2n;lO)| zF{m)No6Q#ljJ2UdGqj`1aI}Qg7!RCgd@P^Nkw?|3NZ#*W7Z1us;q68>%U$^gF@?`m zQ_t|mbRat>dB`-!tdF!Y-s4zU@=g1^4}PF-Bel>jBvLicIQ`>dQ5?iqliha3`U(9L zeou4y>lYjXYlJ>cu2JGr0@gsFy+{x0qgkkqqram~` zq}{u_-7>gmkhCqtI$NXSDWyT_Qlg$(2Yl9H_H7JLQ-F2=AIZ<2p<1D!SGz*5QT+?8 z>AOuV1sq;_f30tYJ-PNXiZJ{PBAU?@-a#3{x-GO7S(>jZ z=Qd{6idpR@5xo)D;e_gMbddLaH65;*rdssAazL9M12@})>H5!pt8cA8a@MJFA-0-D zwiNa=s*&0nv!yB8SSyj$Bj2BLPS_)K8Y8zSTut^q&#kUi_(_|a&y<~nSmyEV9hKl+ zLn?%LVa4^9QtGJE&A^Hnsk@2EH*bw0Z690sH1T5A3+>|9P5Hg zA7BwctW!8I5KX>ln&VV&USN=)M@zdTXL~8f4L5*RcoIwHIMlvgMf?VxhAe($x9_o( zE<_L~2?q@}*c@D$$p$)J$Skdv4CLwflP?usWxvfbh@3k><1QUEI(n+rr*!jbp~8u8>02nfMoe;jD=qg}Z3ZaX*aVS%Zb zmI6s_(mqcGWYcl|b}nTh9{U<2xDiZz<%aH#Judz=(1tPH>t|R>iY`0wGm;+FXj~FaWFfqELtD< zIHPerw%I@3MIobII$@ue#y|@8YC9OE*7ZK#Auh?vi-IY*%DnLPEKbQ1lHS*L8Y2w* z9{|HZJijcbh&8w_Z3U*EdEwWzwzkvO-bmUDom$Z#gcTA?<}%4Ev!ciIMw_cX{{T|( z7MJ54F48|6={jeD%O#BOCA>FMN2**wC~I4ojBA?{o;A@sswC_*LUQPsN@vi&-88@KxpXmRfDLm1mZrgTtaFMH_bSzl8cRuN^+$t^lqogsV%_#X|JVLgWYaFB zUC~I&RONRTTocAY;~&nuUjcks__y$NBHtt3`h2t2(!SX)hdCE@=75q{90wWY;3$2B#G%#Dv{{UrU$M~z^ z#IkCU#NjoeC#Uyb_Ve<8BR|7>uf^ZlYvaZL0PJmZ;S+|-#J(5tOwriQYAmk; zTs)*t6sBpel1-380tnq+LPp@V>%Ry5Nf*S68!O+5{t>b9wu|7CvsJOTz56ND6hDahc(~ zw6HIy#rAX(O&M7lC72eF81lwBnHOb!kMKUy+rbxF_M4;lZch$s66Z*UTWMDG8$D7c zhWhGVLOCOvXeN{evY7~VxDF&(!5cXEvo6Keq^B6&Z2RB({%IZ-g|*j*b&ESKTfy+&-8@=^KVrLt$rQ%yTZVZ{%N#0NW}YIB`(K9cJ_q<4 z#TQ?+SBN|_r|Svec;>U7&}e#iHIFQIr>LA3D3 zgAs0U2nVYLIB$7!cuYH;&#uu-z{{UXJsag-E&u)bU2-%pL$BKR- zc!kWGwy$t=)nhwB{{X&m{OgsI!-+fYx&~)GOs8@Eb6%2dCE4a}DwxS6U;sV%6~y?5 z#r_QNy|}pX2Cr#qrbwb2}SoRN(#(LGEeJvZ3xYo??0h%jMUF6=cpr{y(k;9)bA?{LGhXB;rl*UDo#l3U{+neg z5LGx8+gU)sWvi;T@Yj|G@%mNU_%yu(O1akci5A|{&L)~^8=|5NllANebHzS%b3JxE zpW-jXZ9CzIhMQQsK{e#rj?UXS^JMis#A(&f&<;qi%)NVD);vwDTzG?DnXYecn|!jj zbJzjUDvlLL0C8QP#BUtxKM{OYKZ!3?#~wVZSP9}70r^w?fFUYgpYd8k<@fN){aAIScYN<=e=f5pe{!rO1AQXdFfT(=jb`4 zr_~c>v7T?W8*_+eWyNS&_{UtdKQxTPu0g@5n#xx|#C7$mQfcpujy{y#UgmB$*!0a8 z;?|*M`>9-k=y|U4)8gyR@-_h{fsVEFOV~I&f1Nfsr-6n$S1;DJFWFyn?;i*JLXugP z;*h5!7&!X$HTBnrelKd4c8LTxl5yC%{-oFC2Zi;En^qi=iuUb4#nQ(T?{7{`VOq11 z%{mD?AEc0cTb}9{i%>|e5=9`1BaOEM*LTa4`PE%}#=aj$(zOV5+dn3Dmd4s^5+E3+m2Ya3EFdv;1iM*0nRJqfB0Bz_?2eDzau_} zkw|=e&xZ5V&{XKfbw0V4Plr-5Cfemc-MB;l0HH-$?QQVroyu>c{9$4Ea4Y3D@!MmG z1wedy>(2iG)`DcBk@aio9}ccLTkDv}{`3gn$;D>BguDeg{ob*#pYPi@^kZKypNKJ! zy&*Lb_=LSuO1^eJMbP?W{5CfPBw&5IQ5o6lXDV-NpFuyt>xsYAUsy5p7c2chs&DXbTp#MBwQq5A z5A|VQ06r+(A^!kdgY8<8{9C!(hPXdW)$_-&)d_b!octK^Ym7w#NPpOxBmADAe}f)9 zh=0g3W**yH`4e7HpA@7xVJYXo{{XJ9NAXH!JENZm*b0>)@=v+wKk%!(X%Nr$UC{pk zwoXUr4OTu7@gy>sUe0BZCz-IL2HF@dLXZgnkPbR#xrqKS>QNE4<@onM(zW6E@vcM^ zeY!!8;z$1g8h+EDxn_y4JRz!Uc2oFn`U#?oQ-W(IW=0qnF|=739g73?74z@IYkP0n z58$>y^Q&m zatmAmEH-a4S_`nKsOM<$WT2M=phO zGD7~9P4t=2WT_SQ{n=r0{{W9Dq^coC ztgmK|kRY`&4Xi&(oua@a744HyE|?5$l^VO zw$iWWRJg5LT@4ibo-Odw=3OJl`d$1Z1!XIeIQh|+2lKCco8nBU`^YNZtMJD9>RBh#WrE>;V~FOAmc~fh8JCmk>rpGNq)oxS zNv-}Uv}cDty=$Pi__(J5rNI1ag}eAa;>g{jx3)6?a2hsNQ}pB?%nHMs;fIZ_`E54i zAMBxT<(g@}%vk@NbE&M$3x} zgg@;>{{Z1t+ey@INHWIjgWX8}VwW*LRfFn&cmC71-XrkW?G>;1p79x?)o-6twV3jg zLoo#HKB{tzI)XXijQfUxB5HaZR|s+sAp0;3KSN&4@ms*w-x0hSHkWmSb!VH4Mn8FE zQS&H1j=2PV4{GwChZ+^<{3Eg1g)CqmTYta_0RBW*rHsVFuO!m5O2+VmP-(KO+FlY z;EMfLxAB+5e~1477Z<{?!RF|?+zUK@Z_cq?7crkGHz7&duDyvu2h2@=L*D7XXtsE< zjp|3{E84y;c&hGi1?iqEE<~DPwYp}{{IZ==-s1<`DKFMKTkq9 z4*tzQ6?C|C4~d=}({=kxb}bZIg`9T@89W`LKz8T8F<&}sf3e5>6W7H50J+uv9O+?0 ztEq`(ga<>FU?X(^spxxGlxTkwCDpXJZ|7`C=seH&hX?f)wf_JKs+?v207~e1Ix|;i znHsg@@ZAz?pYTop0Qe`Tif&-LeG2B*OKA*|7h~pdG@XU00fKu zhP7Q>c!NyTb*n3(0k#qgsHFlT`^w@-TaCjt=+XGbHW@OCyAO>PWGt#knMFy;q z(6by=db8%F{{VtAe$G~!o}sIFYsZ?6y~d>?OD~@VyosI0M{oFt581D zBjKyx_#=M|ym*4YSf}zo94~+1nSZqwmi%~p zTrYnj?%A>j)zsIQ-2VWJFuX32EIzx#@P zYxnxk<7bGXz+1BT{`L>^u9n;5#;l*~nle3hkLg^`gyOGe_4GGfNc85WzaR5Io84pf zRrt-PT1^(Q;Voh?LCXD#ao_K%ZXT(p1_Y0@#-V(h!ZNe3~v_!bDQ^;g} z=^p*)!#O-RA+wtPr(*c`bD!Qt6Mkd**1fOCi#a&Bw_JC_AL~k&4a%F*{vYs8sBs+^ z@zTHjy>HQ<$fmvfKIwWQi$4V=#2R#pB{tV_wji2TX(fy_tmZ{VI9Uk{!}v#iPYwJj zyRwlX5k-KZcpx66^yk;Le_co7pM$j_-J{tGe$;v16QJ?O|{I zmb>ZUYg5xl_lkM82B*hPSN{MK{{ZAq=jY(R?C-Dm?)fbAJw5Ii46%UwLRB zuwRWD-CpEJZr+WwpVGfp{5pIgZ3mIzxb5wb{{RFiv3`IG>bR~6Wwk0c>dxMu@NN>~ z2-Ej)w9;OBv++0L*X)n4_%}{@?lEy|7{Ho1LY#Nb3uBYkzczj#d^vqEx+;l41ORvq zoDs;zFnaS})@A*Lo~36cjruH*$_lcu;DcYEKN9}{U@s2%()xSv59?oH-bq+xw-Tz8 z+j6>}(vM+UleIlp;uP~LHR9EMAEuv%sQzVqZQxBG!J2&9XN+v_#Fz4sr;7{AUzT)0 zqt6fKZh^OjIVcDup)3wOw@Ur0K0ACXoOoa1^^S`i+KtmisvTa$-Mz{}ffCl~gwdpt zDrJ)j3b7^Gl;Xcxe`!znCwJ`y;j3t`v`s4C#I{;`z6Fwtf)RnseVM$u2^r`&jDUW> z&!5IG0Bib9{nYVFwpaEqBV0o}HNDFDK|lwEeW#FeM?<&;P0#Xg$Q0~ORT$>*#EQYmAU zC?61bCq}aPU|BM`+c>{)^gihJP};t4dK`aZd=O)uHCJ>qXUtAQ%}(F zXN{6}dmbfkB2D0!`(@S&5QJqTLxgnBi;J zz94Hq2Rs8|;m?X54ASm(pB&iO+gNBiMdienbF2)_2_jpIX#z&7?-X*V8_RIRabdmi z{{Z6Gz^{QirRRz~3vX}Z{cg_uK9_&3o1G!7ts{y^=61A-W9Ey6m&lsdF3`+`S55GKdQId*2HDSJM11rQQ!4_<42v2AwVhZ)xT^eM(poT-(Yd8$Qjp z7^H$fF$rDOzArA6X(&l9X07Ynky|Y=wl2d#VQ~b4I9eH}hB=T=46My8k*R1~6w43VqvKD;D?bqYS=2A4m*R(n zck3EJ@b-+299n!b+sUiXdUj1BTQHFw#8Si_NPNp8MY3>vmgp zYU@MYdBkp$-_Z6yh(8OyDf~G2p?~nB!Fqku+4w_O)6(Nr*REGoxwjX1Xl7zI*~I>1 zFxhJiiq^4%FYiOJwWNN-I_0;8^nVU~bn)ki<+J#gWq7(>#)+d(;ypUr@;imMxszLD zf@z|&l2nL@<2LTfH^}=39!dK(d|0@i$Kn~(bzA)d#NH&b)UPfz$Q_$Y0(m8QF4hGM z(BE54G4hCbT0Q>&x^TW|uc5pZ{{RIf)4XT<99aI!zB;f?Y2whYbnPQc(zKmNP`&Xs zyQs<_crNatifClKyOGn+ogtDoXYz_XhmQ`eZ047^lADc`td_U7sk_;3?eaamEebB0 zsfc!OYq$9h@u$PBL-tqj2BD?q&BDz`3!*nHgs{ZftQ^dMVo+t4hq2f(K+d(%Ph0M1y7Y?jmS1#L!nZe2Ade_t+ zA3SB@p9fyc;BSPU3(`D2;J*?0b49n;bXcurON)J1M7q3Nq>kc9;hw_bCy+&`p@%d7 z0I8irZ^z9Rukd&5(fgC* z7C$ko3HvxtZ#Vu&|Iqy3@CW=HPy1u&J|5QXJ|O6RAMsYLd2bv#O~YEXg|(E2f154L z5X~!Ih8qIF8U;T#=K}!#Dr=rF)x2fnom=96iJ-Bz)HR#Si|4h|?PIdEStlg9j@mDh z7_v?yUZj(pl1uzU;X7XgLk-5CaUP&=W65*`7*23vkaM>OqjZz1@x^)a$aj+blhpdx z_n!u3nH1=KeX!Z#@jR9{nv8lqvd?lLwV78@ z5fD;OGUCa6l|*pFZe;<~XYboPQ9F%(goH!|FLj;jN(e8|8s^}mE45d00Ld{WW=DQLQ0 zy1p{-CZ(rox@U*iPHC;u_gKA-+V0MIRmG~n>lL-a$iPKD72z>l5i0yJzXiT7Y9ASH z^y{yTm(qBHLb9?{)%1xYv(lx|Z|vF#BZB4uZYE+wwZvrYc$rX=&GPMhDEPVKPlY<} zjo@E{{wdUSzXJR|y1Kj9bz56osHD_1Xd-xRlUDHK?~YruX6TJ-E~Ao5Ss%$uc@h>M z&l1b(QKa1+AvWK8-D}tN``-TmiYX|~r@B9(---VK7W@VAGs6Be*0iqx+-Xx@OFFKv z9lgAhuAyOj8cKBoWgGpHR#`&`6s%=C6TR?*rkNdtcWrVm^y_tLq-(PNSvRr6B1ok!B;2QCIV!9? zz69fVW!0sC$0=H*+l-ysS4zp>Wo4&9X;d z7);0OG@V$*rF$#&^Yl3|SZ-PS+nzn~GsO+yuK{XaBDQ!E<`hWnjmbd~xS7^Cg9nz~ zSZ-nRnPc7eLjrSODtP2SHwj0~ZQ1=9D?TPgfE_#i`o<&ri4d-)=pHt83YsIG&oMk{$UmwS3fq;N? zGnJJ5)6E2>1r(%X(lJ6nIwm09AYCFYG3jRX2oa?_M)yVzHpavA=Ds@T+!9e}TL6tb*$&zg3$E8GOjR6j+GK2ycb$i%hlfprT%H2iYrm<%Qycwf!Xl#A zPAGfzu21q75M+u^JuN+?z`iAq29aB%puPK2_5QuWnp=D7>9pfc*a|+c6U0kB(0|11 zd~~wJSDEXU?H)!VT?g(;ev=NmcFg7O`!wb2=?^Zxr0F9fabizFOMhLNZUKr@VXvLn zpz|^2iHHJBzFKZwR}-qemMrj388p`~Y3gkB{`O&3R#6l^pI-REy+3ZaI`auEFMcxr zkvv}j?^MGItD$D`-qSsa#;mvVtl!0$NCx>Ac{I1KguXi^awt7y4_<$=K*HME94pIS zFj8?Y5+^+#lY6G}M;}z@eK-R9@2O9^Rs(A-CTRM30*19ndk69><^p)rEJnkB3m{SH z6=&Gp+M)QZGO6S_whcDifl?!r3?P8HZ7!N!aS#=C*|PGAm63L8+kiNBFm_J@l25h^ zM`?i;;2g358G8o(CeDX?=NF~gxM(M zgOy7v38yL!AcD-si^_~rkLAC5n90GS-Xn&uBzFxzXr`e>7PMQSNvN~@U(iDh2NF_= zb-}N!+G`N_Lo*6YrSXaX*$Wr~%N#Tz-bb3NM5>`zgAtn>Rmf|2Du{|#8K74Sy{q-~@3Q=sCa%6Lkn8o{w0V9GWC+?YPC`?yHO5R)~m2>T1 zSb~hvW6_;r&`>ZjPH(*}PX1D_WkR$qJ5sa);v2VgP*bq*P)L|pG*+7=IL9g)UofHb z?FpfiKP9N@ZB|j&4Kgr_GdH)=;fbTRo(JyC`4+HRk^i(^#(^e3L6(Z8ZJ~O|+)xa{ zmkOYY;xFkM({^kqf_7WAvx)uHG*KS^p}g(n*H^(Qv#M?N6clr3Vg-_&GstoJyPC!v z;MFdr1paG7zhgdW5ZQk8NEJpyshxCE+rpU>dR#Wjtt{k+cRIq4_o^*_SXqW&QDHuh zLsu*FA9^iRZiGL@$&oyWYcfvlDChc1lq(E5+uFyIj@$x5J|ma}g3B-q8cWFm`A;=p z67CDP;6%)gkmMNg{0oE0V&NSSP0+L57WxN=X({)1puYEZ)tZ}*zExNp7ec*pQfN^) z5KrYBLv1eh*G51>Fui5l(I>O(II{GN zmpEwXE#So>t3dqTb5S}sX&^FQ&*GYrXB-oM3&0z;1o$!E0(ell26$3;%q`$a(as7T zjzfAqSR&#He;&e*Za_{5Gn2P+=Lq%rsCRNKneDu2x^9tDiH1*+ z#65znh&5AIzcGD%q)ujGxQ`vJK?Ssni`e-DIoSy6z6GGn698&#yUS$ghhM74r{_!3 z1BmnJojd%)HoQriJ?SO8eNicR61$>u_;e7XPYDrVo|0ciGnb6+QT72Uhib3ms$a=i z=k@0P@6NNJKNwde-+V0Or_9Fk+=AAfdoqSA-va(BeI`N!hp@MRv1?m6r?b2)es+ai zRKwpNHn-iMRMoD$BC?y6+U-&Vx|UU?COGi6o3x(E*#kF?4dl{t>-McY3Q&UZ#J)W) z+>d1G+6bf7xw4u~yUu#~F1M4)aE%8P25eG8^9&7`CI-gI;AuHhSb8kUTVOq>ca$iC zWqMGBA>QhyW9t0Jf77x(@n?K8sQwt^cMIqufxzn^zxd0!=*`T#n%T-;esWIO#30Lc z(obrwzEp7)8DY!vpB}=uYY;PH#pHc5URPgNrs1@o;h2|#2m6)3KG4;K;xxo_CFC=r z(Q)2c(8FHTi!-3WrB3X{UBXGzo~GiUs`aYF#+HWu%&P%`3oudfZ+ah0PMxCZKz?s8 zv5N*9=lO?$C>}k76!Ye=1cw8`bwtaO3nWPk<7O@|Lbh|g!lf{?k!EufB<=&_ z@B1Jtn^7H&KnkeZZ#`gnELl+6tjwY-pZiyy#&izjPVj5mS#T>VStcx2meuGJjcH~` z9E|gWAG6<#au5Yh$(q#Fb|T^08a;Fi_}&7`tUr#dU94Kp=0n(QR@MlSCUq@?UbIv< zy}<-~@_!X+3o%lVJgaTC!?aNoNU_rECC*dUzirT+XVXr3%xJTGI&nH~ zmCJ%8Xx6k`dS8d~VtBYO)eVB}%D~J5UD}sO(WKLE>XvY4=d=UeO-n5e-TePn`k;YK z0Zy2Wv-OhNT~>p=F2Mj02R=(zOMPtR&e*w46A-IiN6L( z!juxpnqZjl{SnVH0l%Ol0{mMZGvDtnEC#E-8}eMOgI1wuRU@wS>Tv&OcKc>;f(S4c zf+Q7-{rH3uCzJ|9htq`CSLkyPM|PQ&}W)iq6f_<883TfqBCi(uD!Y)GsKbG8YWoXQq2 zY!YhAVEk0{(9rdGO9io`=_`q$LDQ*sbk++gxsh;l?+d#R_tNVqJPh$jd^rIl9PieN z6R$4v(~m>L^poF{6^(ofO=Nz8w|dC9)+vS`yNew7p;e(~5l(Yl&y%RYzHrhx<8>f? z(D%26moXDU!wlMPrm66rTL3W1P{pC4ki+D%#?C#5;&Q)YB7hLhNk?*_U3!e9zf+bK z1=yE@zN}F8A6ErzS9d`f@)g?sU#B>J*e_t29d(t^*GZuEJFPY6KTC+W^$D(`Q!Rma zLMkr%A#;ww+MhbHzROPztug-@S(11}-FM9=qdqeIM*op))h|y9c801&AtKpP6T8de zwc#hj7i^^c?Q0xrFWf?s3kGf2sy)C%r8t^PJdrM_XT(20;TG_~xugZ1M0 zsn5$88!-KQb{4^*{2}M?Pji4rap`LVplf3a?oM{*hZ?Jdiynu=$@n|DF@pWtpg676 zma5BnOVDs7f$08h+-~=$`sADs9b=-QOG=w*OLX5)M*NNZOHe~&6 zG>VcvOEGiTR(n3m!>4AX~6+`Tn9@uQi6`RN+l8l#5dhRGQ(H^ar} zS#qzvPT7Y8GWjP0oXUO^^L(#PH|uQsiw7zZ5|p#E+f_y(3KAfwH)qcf8g{3--gF>|}i#H(WN9uPRy?DuLWzw%}2n zFzaPcC-|HVdDCCmXEPJ#lmHSe*Dva*PairCy2}6&#Hr7D9K~z?23R+v!J&A@MI7gh z;JFMpPKh($pHC;-JN){nznk;Kp$gfOhFoG?8JRU4u$(<$yT>%=d8o08Z3w`?e zLE*kUd#bgBu~rhtqIN0N?pHJg%Rwbuv;PE}scFT}qAd<7qmrQQJkI3(_oa(PmnV4TQwL~+CNO5jmb zWB9M`$#l4;vlSN-(FY{;sT;tHpb!T$Hfvred{gPXqb79SCVawZ(uMlCBUE#A`1PZX zQziPAdg9GO{mc-dMIZ8cFcK75E&tL4lXd(dL}TBc|LAk*S|t0pbA9=@>}3A1Zw2cu z^(|1$l|JR7Fk8*LvhvG>9>KY$*BI#9drvf-aztNN@uFW)sg+HIhIeszYg2Bf(?%9S z76ZSrs;;}5E1NaTF#4B5=AA+g#Y*)eJ!k3{G>y$zPc$O(mIKuxsg13jT!Yb*3Kxd@ zk7G-g444$Z+KvdUmk?BOm%c}&QS2`dL2i7rkxMGHMdxPMz&vqzqNz?khaeeD2MTN) zjuy?1krEJvQty%6G}=s;aNpsVh}HY|lF9xR^_j5(dt=O1EfJGts>~KNNG3^axSdU09zfzDTVAsdq$uCo)o@B*e~Ax!|Q)uQh7UF z-y+5$#c-GtmPbTi_sTSuEr)bR`?_g0<;$nuJcvHVzuex~T3%#wKok;_9&$gvidRzm zzvt$UA3|BhbF8Y|{KyK*e1dK~`Tt9hc_c1;q(;$fodk`d_XH+9H0Z#X^qB+gNhigj z_LEvWE|o`x@%H*t-zw-clCe>erlFgtId)6<_tUrez%IiUTi>^4Zy&B4zdVn~I@`hP z?2NSzW3qYBuLa{ZbJTQxuU2W5EKguzGe55oKV|O{gMg=jkqPZCnQXmws#Vu|g84?C zrvFWNOa&%dj!W&|x1loOrx^_My2>T=Nmf1IpF9ZG{P z4UuQXeM0}6IZvRD0TJ1E%1#N2Vm0kdTNuq!)5ch|Q6Ij=;-v>P=L>nT9k;dTg+Xm9RS* zusr~aW)zHcy#?4Ot&Kg|F&B?EsenK6F?pM>akdoAaPHxJut7@n2u}hXDm~xYn|HcGaI~$6@rI^A38iFfp<6KP)L;)VF#6)jtv{jS}Yp_S~{qalr2Ytr-(d4JV)H)4Atex2P zLmts@elMtX=ICE*HN1TY_N)D9YVB1eLb;vy?L4gLVM1zPAjD5=vm`0<%iCoxrxV8`L-pE_69cVkln~Zt~NbD|6MP zw%h_bUsd?DewtfKUgx}!toZ@{7+4^i3hL(qmWb$A)yEKKEDR)@s>*cg0nPzl*IBcM zvrUyKYJ0a@-_;VoZ z<3oP_Zo{=G#TOwO%sgMDEY;50v-a7em1Uk%YFi9dR#eEOvQs<7&u*W<9O=(XMI`N% z)$Bb^wE0LoUl_0m88@;@cGlh#FlmQFuGeV{xJaseL-t`Z)Ho8h z0wcNwe2w$k%wYap$`z^QPS1?}oA~eO7O+5Z;YU_dsq&lDCj!T=Mc@&7Uas30|D9$3 z`X7gt65Zd63GXFUkh()B3lWTol|7v)Mu5BpulEeimXZ_wBAEp2F{^Yzu(eHn4u4Cg z3gb@b%lY_gd(yU8dM6;w0^_FidwIK@^bHwJ>pL+iiH}rwQ?_Ym4E#)S{kL^`B6smG zt(@VW1aSGrA>v&o9{ms-eM*i|&AA28t?TRdX{jtTds9C?GZHjcWVqPy*AFYkrHyP2 ze6Yh^!1(b?Or5sd`}!6$Nm|oxuUKovvK!wSHE!p)Sll>rPFIsZQA1$g%w(5FK4*B; zd_HQ#xWPZL3IgIAL>XuIk4!Y%fxBLbzd;Le|6dHD8QEhcz*tq@Z$*TEuK3aK|6>Et}W{~?yWw4sTf<{2K;Al1>Ov+kBm}~IH)x1)+-7VlbF$zX;3+NVr zuVx1Er;nluyIk)twrq&(G%f_osXn_;KHfQ~skrp#UU?r{;(3@(IY*snsqrW8n3}6o zxBnlybq7nv838e%kn2Yw+Z;}8S^uEiHpZu;R`|zv$@$^HR8uzep(CSPO3DSPzd_@G zoNQYj@A5qkxPEVYg@asDxpt^AT68+n7@4o48=Bnh zPIIfF-3_3+i^AvWs+dtE)~ti#?2gX0KrGijR>vVA;@(g^X~*Bs`lqr|=n>r~^1H47 zM9;gmVXJ4dB`RgR4Dtw|C+XpK2;j8dLytUvRbFIMUU-axO`hYINLd13| zyv1|$4(_=jGqmSKZ$MM(v$TFr6h$<821P|{|QrEx%c-ec)4VS^K zV%lWxhZN^UXv(=bTRok|eD_-b+m%_zojsNA-qYwza@GfmBoA-UA!KzacO#!*^~wa{ zWwqBofYz45C}S4NMMVo#{ErW)b^V5K&4;t-S?@sh&smS z=1cc%Dfg0a+1gmPyOC|qBo~(gr2ct2F_$$o*96JIC#o>lu{XR~%^1yFz$1shz5Nxq z`z;;MwgcOYpAvqj*gFAE$WPsP->bCS6o#(6nZ!2qZ*NP=4LAlCXb1&b!eN=XPvGvm zzD)lNg6go+kfhaHzKj$q&$DEW2v2AhlEk><6=^a-E9Z zRAe7In0WA#V*s}RV&7@c@3T6J*lO-=9!X4K85<^Z0t6vX(4oOfbRXJw=Nv4RlPV4= zHqZZlb8X4YlQP5bjO_ekAPTF9qn#KhC*POnYpUy5er8|I@A{XBsq|Q>=4&W|XTu{F z<#waS*;Mx9@EdPD{6Ef$#T6yLV%I}{Thd8cg}SS)nx6|nTVcH{8kHa*hVbOz7SI4c zSh4N7w|?`&G`Ynf_Z1s*;&-`xQD<~}>hO7GfvK5Yh!g-}+A1qD#V4u1|_Yam#Y)8!5 zU@<_<0qL^=Wt|tFLtsB+rpqroE z(A6|>tym|M@}%th(o}2-zvXrU_SjRs-Rx|U0WcUT97j(in6hmO zC|tr^?(p|xz_WO5kvHhe82&*y#tSJzyd2$mRRuYQOLAg?(XMaFIi*%BQ3C;A;!OG3 z#;Eu~dJJXvwYOrFlNe4@MOONm=w>sJi0*(F8AE-44B?@wg1e|y1fAJ@Ha0l$M~*0Nq5Nf`GJZgt{Z269gxXNy%WLbkqaSpU; z5q+#A=x=l@1N=_>E*5`4VV&dgDpM-s?fZuR+PzEF)Ba-E`m1iX($(h@N`{Jlq#A$n zvwt~W&fz-6x*T9#H*ah_x}uzz!wz znpArA{!*91i*ut?_g;81=saFemS!AjZ|tlG?nd$1-89(XKNa+qjz+D`R6Jf?9thVa#&`M(f2VRD3-N-ry6U9c?Ex{anm?{(~c6yJ-cq|Sf#oI9PmsuZWm z=z6j6zf1l)*I%V{GBs0!%w+n`Vf#Qjy<)O4LmF@gCTq0p=SCP z$cg6;CUT2fC`}|X;@KmgJv@2>Al3_I%i(pGE{AbUr%L&YpUKcXiVCT4^@qW5RI8Hf zV3s9w2qQbi5R#WZZBN9(wbf{~>E#wRJ?KSlQE+U{B7yXcP&tOxH5x?NKpxLZl%S6O zQ~rb3$nkWcJ6lj#f^u=pJ>DYf*dqM>mVmo1S}ClA&^94Qh+7NCxaS>tWv z{yeHPVOTd+Y5k^+h<4{*qt4F1S|#>QW8Q&S)y2}|nHl31gkV@crK~HO3JL4s)ub~( zxy0F5zCeQ`8W>@sD>|jf3qsBf>h;;vTUAbxR7Q;*zZ7_B^!tJ_?bG?pD=reyDq zBx(<7C|)(fQ=4KaPxVlwMVDz1Pq&BR7rZ4o%^cS8k{g2T_B5TUYd3R4vr@3M`ddJ( zutfj=SC7q~<;|#IQY~0B%QOX|?20s{U;XPAOD(EZisK~bd`LOuN^Kx4e4kUzTXjWO znbOCwpC5SkC*ZB+#&L^|EAwt1@b9@RHSPnNB`(KUKA}wGM*`)%SpQOQt87+7M{L@O zjPagC^6%tliAn;P*tnNUADK$=qu1h176f(c33Kp%#_$Gj#?dk}1+wH9d3&!I9js2d zD4l&tgpZkiDf^BFh?Vbw$?Fx6qvUQF zS7`!IqaBt>TXw6{qcx_lnbW_X$(eLFHZkfKy0TO)7bTI*eor5bSB`2baqF60`R{!q z6FVzp_xS6@b!o)f9pY4IMGr%2_`J}sq3mv57I_LZlgYkckk6?yV#1umHTwb@5?0}1 zeofJ`+NFjoYP1>YCkUFlrNP7@Prh2jL;Z`S;rG=7w#n~)^<>&PeIX+aybB*fFn$bJ zPf#TXi%fPaOj-kCR5ZU;dGHQJl_n2E1q=xath~uEjHZL*A#6PC9H6frj42g*lWGFC zOUV-*=}9-)Nbg9WfI2?>NYCU}1@}ple|?qh!qLoGEHFa;9y&b)N8*57iIw(BSzG!@ z>UFxd)n@ksYNJ%S>n^J+Q0MO~J>n!fl=M7$;oy_Hp6u0=eruw$<1g(7>#p;!4N!%c zN>iovv8RsuB1?a!{Tbh!Fd7}jrd^cVJxqG&5WODDgR*`bkdER)8uX3oA9n$1I50;6 zG)OljkRDO)lirU~f!aYx&lf#b6gab4>TCJvB*^N(YToXQOG$+>PGsZc)5jPtyKW%0 zF-{p1j8(wk?1dH`>0TD^dM#5#RkaHzD$34P*SFawJO9|teHgbTullh~Wl*{{O3^U9 z&}HfK&h&I+7G&l(UigFW=I5#_;7@Y~)IjdqA>~Z3pW;FI9Kh18Ic3OpK={DdYAH%= z?%-Vk^~Za$A865P#1FWhAULaP6NUY}V9lZL)p@Nt4Q5L|q$C-dKSL7)ugM8DK&h5{ zEu6?Ce$Orj(gd9XZ60C`EC}+wg){ZJW~COX*As$5;4&cRIPGpYdHd_q0GpY1-vawA z&+vpY2jj-5^1ZCUY%o!yrj=ZMx<_A)smUVeV=hX>a~+aL)mfzK`nH}dg&uqGdjWc= z(!N9YeFfCKS%pzo`jgY%&C2L;`bdSAY@XRc8|MEI0siw2Xa~2z(s$ewXBw8|BlyXj zFOoYQfsm_(n*``;S$^$Sf<#oiZ`EsLjDIHIVTj?Jyd$mz%p5pYc_VNgjawrM1%FBW3AHT=oLPx2VC|KItk$( z)9~Ee@V=6c0ux{QQmBM6WYyq+|TR$QdXjLVa2TJ>sgEjy@w~&@H736=o9yyveHkU zw*W)QYIS-$DeiLKyS`0Zjurg>Zu|qA`b0{vrRo3q+~@uSV8w{_V6ywKCBmyl$70U+ z<)pN$Jys>^k6Dt(I)8$3c&?qrqPJmQ9nxO1oO2XA;W7hn={jk^v zyI@|QLS#uz`I4&bM18OfZcM~biLYoKQ`CH#*^J=qm_;>c?D?kpgygli=I@Lm1u@)Q z2mGu1QT#Y1G^~4iLLm{YRM9Q_Gf@1M>Gpg(T^|@_`2S6d@o^mo0fBDS^;XYz8O2Kj zzHUDx(pgkWIzqxjEY^=%IP!A^YNUUJymh0AQVh;{6!*a|zIVR!>-1SU7&+E+3wYp2 z`TNi>i%*yIfTX?YUAouCW+ea6A6^I4nS(lyw!t;?Enq>w+fC)X5DCW!lpa8TwBWl? z$FU8tj5y@*c)!m%HgHiuuG1825C?&yK5=#LROJPVtl34D1QWci+cW;4D%H(Vn5GbW zE+q-uOt{#dGYuC&Zp><2<_E{)L$m(Y-qFxlfNSUU_IRZ{;atOJ-G6BW z=tnCVZHmdN_z}SBf7qgPST`KQF{yA4W;Eq_!pCTtP~MyoudPMf*@yZzZWiFt+OQOs zdPF68Rg;mRdycpT75r6+T5ixk?aA81V$WI?a2XztWkD5KMXEEp^8BhfF< zMRHSEu_vVIv-0Vx*3k4wJ0qD^nC8_*_s~`vQBUPM9Sc(v_*A%m=9|j|$fg>!S_fpZ z_Sdk-6VIx;CLBHV+dMv2Gs97ptOm57ns#>F*|r3e`$LV-oDIY4>d0>wJ@4F#>rOUm z%vgVZwwCsBPetxAEUun5*_8|vbVP-3RaKSTd-DDy@RvI;qEo=o2->6M%b-WVZ=#kh zYds`1-B{qQLxnn-09GO00|lj=B&kLfUrCm;L9hrio-IO}`}VkZmqnD4|!_;}Ip zs;M=&AjY-=Uh9&xI*;voZ}_MD)@GsN~S;C^ze83<3Jh7}kd{3tIl z5hXb`cj=7#*z6+X1|B9T(qDMr9RDA2Wi>!{{fUyJQW>AST&U{6w3_fpeBVdrk7u&6 z21@311+?QS%p$|1TqUI!Ol!v&e!Fh0q4othpu?xKUSNp}AcYyw>GB3sj^}$k`%qN=rHxWl? zCd-~^1SvkklgK(UnQS{=e-O{1BV(|ee-N{JDAD6r8XVw;RmHF(v{1Kz$Oh|ie$V|S zQKGIqF$yq2YWo^Tdy(+)dxH@Iy~U?l8&xUX{mpH&yQLZGTEFp`LBKl?e;;6mR-8YS zC&hGv>CKIMw_^O&R3Bw}E7xkUE4)~K{H$fi{T{4ImIV7MXxg|mtYoGkPN}lmNfaBW zc(hDw@{4kuD@%3NJASb}>}l9Ch1zjEWE&0$5Jv%fVjc%PU(J>07oQ)@2vH_{$V?SH zptk3ivyoy(9*ck3O&eT(*RD;Oy{$fP{>TThyhKILp?VJ5*M_#;>}~r7inRd2&Ucy}QB_$LMik>He)B zbpSIHo`6El7SvWA4S5(&Nca{o5y(hHv^_~v?XaqgVbBx$6q}V}aDD=Uw*eQnkuqgo zF)YO0)90X{GpPMS{8A7we$6tw2hUme^TOcM=OE81$0?C1!;qO*r467@NB!`hHU7u zetXj9kIRle@=i3H!D{@4PV3*FQTo8jf|&7(;0Bf=#?lC!8nPnL_*7|fyT(82^SXbUD#otUWC?P_Uxv|T+!X^SOc;A(C72u!(H?V zVIM*z!|GW>=#%`wru%I&Knyo{fF6BuD5#u1XPFE7HUL+tI&((aw<#!sFD|c&f}CIP zKI%E0*7*iKTsdjEu@O83qK3Lie+Ib?lH)^lV29+Wz7x-~5BbN0|Gy7!BN+9bJW`v_ z(v{4?+(c5}GjCJ%;TNsPa?3UAOyoZsEihzdsZq>0f zvJE)%2#y#Fuk8diISb(@C~#d>k@8|b#6izz_&PiNpt|6}95_mc{PC;3bTEZHqg2XK zrWn8S1RH+Am^Jr?=P3WK0x_T}V;^nD;;Du6ie;_uT_ZI__s{8Jk*UNZo>$P!ixs`X zhFbuv8Q*SzOb9Ol?OgYN%RI{ip{q=wk;ZRxIL>RvEcl=}Jt(Ii=x}>=$#MUn)h-gx z0){`VDvforw#c`8)9;s;k5zXxu0{5Y^fpCQJIiVp4I%yx-Z8uHKPcEIP(5Ewqd_3r&M7RuQLE z|EV@W5>08vUN2!B@CCZkwut}cFP%U9x(iX1uzL-n`4e|~-~X(_s(*aIU6{NCR16hr zyahDa#eA3HL>a{K58eXu>}wNnVV|Z-;Ei^X^KnS5B*J!ZJ46UP_6Uxn z_STAZPC;6_dF=`I+v&OZ3%o=b^UXk1GzTdgM)Yt`P8kjlqY6K|X__;--8!QUX$p}?~V;BWl{AR~@_m{HDg0)Gn-#7ts= z|81lj=Kmlm*>QKHe|_eP?@$%hl=)eX+g}|4$1DRqZ>DP;gHpIK)90oAF`s%5t}D5A zrEdY~52*y_Z}l5@u%`Bn4{}RS%hNULUMH5G!cr^cdBDj(csJb+dGhzort{IfADn!X z*%AUiU>S&YRWDZo^wbSKyYga9?RqBP=CwVgXr`2Y8om`yCXOJe=l=VnOs#xY316#6 zql>5Hr)OrE)Y<&_ui=Z|l<&AZ=-+VY5wAFu!v12Tzs3~Y-0nXy{!cjFF80#bgKUxVK#RfkjH@|a!i)kH#MJ%wuTrejWa@4X@^|$t(JK+fG66kg!ot$nK!Rb?S>BIu}Xsnev$YV@LQhU;X z3wW(@3n0=Dy#>f2HXPI?cGS%>w>*4!mEhWEqm%;yw}3GXNv11=X=5E06u^q6cBYGz zB`PrIUH8r|Sx9yp+;}F-cnQX+*S{VIkAK4ysy>hz+kCgXQc&b5R-X_O5O~LYJ2$a7 z-vUQt{+Zqm5yfo1nBlZrfNHSQQG^b?YUsldwX5J`@CfJ-e%JO7ruXi8nhr*<^h(rD z$umRdHK$XcRpu(P$qH7V?~mHK(X{kLeS1(-XuqAr#`G^0f{k#carjEp?P_JZ)j$~5 zu3K#812t|8Ke|&b;mGMVT2-640R|TOr^71mAju_0TE+w7c6zc_+Lu|deJk8Z=aT?^ zjF`*3U9UsCk~2Zo&wcOvSePFsf^<3C>y*+y< zD65N%=}O# zSHCk$@#w*BqFT8fBQW#n9%K0c2HoN>E-bI7qmZ@CszTURVp)a z=p<>Om^Ecj=F0v0O@crZSBpq)CZah&Z-{{gT{fUCTbYT9KnCT9&QKHVKX-4PX>eA;HVHBr0HMP=UV{TepX!0 zUz0_|cE8tY3SV2D{E&c+L9(LqIdo|uDTCUb%(@ZOP#tCGer*>kMyj|T*xW>SLBgoU zXy$wQ1i8eny0mtG>7o6rCx(r$5K#h*y(6BO{4!*K$)7z~5Nt8|hP+psGHCFx4@qBZ zezZId&In_%Zc^oV&wiSf6CK!?*SPo3*VfQ`0XE89U`^3(!{qVY)Jn>n<0b;?ykxab z9^T1?d(eT>YN(32Y{S|`c;?bt*aY&Kze%^ShC5i-aTA5l=@{Mfdh&_R^_U8hUvKKC zVG8jpYiU1qWpOTMgu?aZS9Xgv5Z_M*Q&s}WJi1;rk3FZR*CNN%3M(V!o^&D(xe-+&fz@TR?P==fdaklwc5oV<6vJWa&e-VB*> zSWm>&zEIW-D)W)JSh=~&C?8jXgQzibXr}%wQ~BqA&lWr<&!9x}^5r~W4PdUD=)YMu zcI7R7hxVb&C&joPwSfE#I7B-HPmJlP*fr-xYlo9Z$y%{gCzO~#-XoYCiJT!`==w{_ zA$GTR3oBo)I~Ou0;eM1ujMs)b-8cxe8w3W`wiV%@<@sDD>!rSUzx7a-b5(%{-k(>R zb>i+q_5odMx_khyx<0%y&D?UK&~$<7fasvBNNoaR!aB@7)cE?lM49hxXn{hSN;?NO zcazH_twjE)0#id_Tf@7({%*X?uH8)*mefKA)Pd`7) z=b1$Mq|LX1KEYR$?&D7{_%I~`>?t<_f1bCfEvhxOSPcHres+2WdxW;0nP*Lqoq5ig zt#Xs!{$6Y{acKLw?>YBHYGQDQY2POJ!6$|;*mweleLGwhw6-z_M9SD-^W3B!4QGyU ze=w}ni>Bt^5&>XzzE^9J35|`y$!-C*;Mh(P3`-S;sXOS&lwi9G=%9b?kV(5SdfGzv z@^ajq;rrV!#RX8o-*<}J2JbFGj5`+TQ`XBq1;28iVy%X|PRSU2@U%elsq5=&C*GslYd|cVr=}+m}vY=xpKEv8>p83FrQEVEtg^ zo9*P9u}Heo)e!tdyh^~BvhD=zePxQ*JP3N?GrSfu=4odi>=n%3TflM=nxNG}qjkF4 zP)|ptRt}j?Ru%uz@8VsT6Z=K2YkeMGEf@nuDe{Y~fr8r|VEZ5{eos=B-aM)n^rNbd z#*B~g4po_x-Mpq|6+fNddGok#AFXXOdc%my5-NjGL0`h+VaX^m04+wl@WF9=BfLxiK3E)%{{SurUdNAm`@>TBKW5*xr@}jwS%_EBi-y2l2?6Pi!vuEr z&lUA&>_PiDd^Y&G`$l+6;dhRVrrP@U-V5EbD>L;k8liYpZ!5Hni~@H2z*qHAAH!eR zL*lQ-4;22+J{b64Yoqw1!1hUf{i_{>QAr!w$d7Ke_d)M20*48>H#i{iJ5Uy zjaWT@;m=Zr2|+d6dmrba`+I1%ItT4h<2!3}g-v?bw{3cC3$z({ow|fn_lPtt zL&h2gsM>jtZi(T$JGb)*`Ju6j$`%6|%M&8-c*c3+ziHt5k(CM6zMPNovGN>433Ec4 z-N}9$pIv{!EcEM!)BJC!D9@WNnQorUg6dD#a00%T@I=ghGtGGs!uhu@GuH~yn`5IkfG2K83XwCQmzP-=kvn}_H3lHC< z{{XLe=9_8_{{UMa7pvJOpYXQtQMN~x5py=Fa;kbq9;mWl4uj;z3HtGx`6ohUO;67( zFeH$k`TgMNd-cgVue5wn_b>2kSTFpP2e^v}j#3b(ktx`H{G zLr=Iz8xUlWxEppL`P{Prp;1c{zy`l#@b+m`l5WSv@f|lRc8Waz08(G{`+(g{j(;aL z?jHodXK#x?v`387!5<4WYmHX%{I;9R8zZ+z=_SOc;mo7uA+0eZdY7dAsFR>mj~{~!oR5h0D<4Lm%;DZ-@;a& z4ES@UTj^STsLz!UJEVMa^1Ef_ke*AqEKelSkF296uc^_6gR(y-KVrZ5BX5De6bmmM z{AgIbPvSU&OB`~pblW*l=X4OrGc1aFOD}PhNcvaVU+_^+gFYAWpX@*J13kh#0S+zi8ju_u#MW(crV<--`OwT2-@UE#OdOy1IVR z+gqkyM)knj21y_a{!71YkN7K(#oyX;;^X1}0K>(b!oCo?CK)Z@m@Vz%mdE;4$`Xqk zjBbK2lOK9VQdYb;*PTiGpEJ>nc^atC)z1Qd!A7(_XW$ovbuB{nTi+2jnQd*Wya)uw z?%4z~nD>?2=WXBTHWy<8rI?I(hP(So{6+YT{{Y#rzxE!NDOLL|t1xy};4IVd&Hn1` zPhG;loc(jfUN!KBvo49}{hC`RXiwRuSyXv!RN>H-VVv{cy|dxZ?M?AV!wVJ7^TDjz z36&ZPmj3`q+6ZIi6e`>fHxS<7b*`A;;QkkLinUpNoe#7AAzXYx@Zaq7;9rKH5xmoR zq3eDjHf6CQ3n^rbx-7tue|@olILZ|%xiUx3e{7t8tQ|*c_dkuF9=s>x(1Hlg zJJtoR&EcdcZW|>)Cy~blf&PCAVQ0y1E(o3!0U0)m0WO=4dlFdAZ zX&jZ?xU=)W9m&u2`wQVtp>e2Q&8plpd7Ac>pzCa%klg9f+PM1pmQ9h=AFX^>EU}`j zw>eB6RYpno=a1)KV0mqr~(g z{?d~F0LfeZ56Jv*!8-geiFVdJviqd3_+0v86NDREpstPxbo-4Zr)!@s@+lQW3^SvXr<)Ma1~LGG8ABaaqC~`d!+Pe{{TE`;#HhY zt9|C$XyDH6t@)5^yi=Q-fl z%73ejRG5-MS zp<;~!oOU_)uj0tkNdDN3R*Ma)U9e@5$<9YS_4W0t7ZzGxr)ZFBR#05Ta!8gWa1YRf z^`v0M$WgeH(0}!-QX~k97m@4R{P(RAu_|qB%}p2K7MrMO&*E)A!I59s!7PwG@aZda z3d<(KnZI`=NKZd5 z1~HoZ!~P0IqQ~NY*(=6+JerEN=8^rCu1#n|$1>a7YLQ4LkV*kDG=Yvs@%`)&O?mH^ zpH->q#*ky{ioJTaIdvjhR z32bkhs~ntvht|D392!lYMlPh(t#i`teky!av|=p0Y2v6$V<9|6tSG?xUJt^%?HBfr z{iHO|2AlB{#fk?(F2Acy$G4kw_4B3TUdv-OzMB43%f%wX{1B2dkf#K5hQa6ZuicLk z{>>kL$Y`@zQ*4)LX{8sTrx6BHWbsW7t=ZaEu?^|*H-M_a9d_TqC z5K4Cte8_Zn9D485TE4mX@%tkF&cCxpvG8v5#X4=@iL{>=>(Y2@THC8#*qK{Zxwo51 zy^cspF}0nOyU7e;7USmg7!?M;HNR*bFT)=WzAyOe!+sIc=g_o|4eMH#oo{1#eD|`V z>9aklKWn?#@Aj93&mWj@t1`#Al|vYfDm51@SKxKYR*t;epF>6acK+HjIxL?OZzmw< z_u5Z}AV z!8yJr_*YB#eW84G)3uL?y1XhQeJfS8krwHr-eH2mMa;;DBMyAm!NFbt^l#e-_CV0Q zRr^2Qd`I|Y;Y~Bc-aq(o<}VfLdKIUU4x?b=KEBzl9ZUA__@7~O z3crGW7S6X;a9o4`00^DTc=J<`Je^`Je8A(=iugiXgf@bFsaC;O2P#KUK^;LHf+~L% zNb4{hi=w_ieaHr+GsxqbnjP85qtpUwQlo`1SFJ<1UMLu6Re`oy*wT${>4* zz9C;l7?)^s9A9bDWHPd=4ab1F9PY>;ik5LT?}a13L?%m3W6EMXLw9846YONQ827K& z{{Z+W7sXv7Uk=~=3)Jxi{8P`W>FiDg#8Ug2tMqYc<2^oXXZxOhoSFP<;;-6s;&1Jnf3IoUAME|0_`6EA zu@e6PX+E!i;oU`NxNW{q+00=Iq)WU$^bB2wI0nB;yh*E#2T#OgeWrYfy@z-FJA2ok zcvHg<;tS351NK;sWp7e?C_bmZpy$%PDtRs%GUsu*%N+i-wMhKu{hK^1`&``kvhT$| zw04Q(Ys~<#lGjhsA@J;w-P}sf(;LWct|0#aMUUlV5Xu2v;BcTBG7_LgWJt@1TZ$qLyLs=zwFUS1P6ukJM ztJ|Ec{wTEryq*xammh>WjJfX$~z zI5m~4c+)}f&ZDI1dhVi@S32$4vD4#`%A1RoiRUp#*teG(z7J(JgUKm9&0(KP{`3!< z?0!9X{o;kD_=RAsRd@ZTz+Ni08OJ9qkF*}RJdTyqTYk_!GJ^p4>%xz_fNnHxe$(`l z*pXiG;y)Pao(=H*--^6fsivK#*v4kKy10;}QAP*_or%B$JetwcJXvF{T;Evf8iL(T zrOqv{BZ@-J1jaR#Mtfi1cxzhNCR=TIB_2hWOAGBYKp~9aSd_0-D z{`P%N-~RwcT33Ci{B`j(r3{`Y_-8h8pD)BM8Ryf@w?q0@dt>4#H7V~cY^O5Gr_c6l zh3Dj#%Skqzj31HI@sZ9t)&BrIxZ5Hj&-al}^A(ff_0nI5{1T(YaoSM)f8Z7L{{W8q zm6!+Zeh;`m^y%VDc|RUwABB28jq&fqmkgrb&rOuC{P5RokL8zI;i0$F9Y>vKY}xgO zGyK-IZS=1U^^;7pAP%i>7xODwe`0cM?r5``ZG0bl{{V(QfzZA`c!*Pf9H;; zYaskFHG0mK`$&94G3F~>O;@KAMC0_7*T->aUJ7zmw0jaqQTBNF`~c#upAGme&-{U` z`Sgen<%;K)R~NecSy9cYzp#(B5A7rI7%3#`N&x2xyZLUcxc>lZZym{aH0wK!M&{vx zA}FnzM>|GN6i1VR$>XJbZT|oW&wyk_nhh${t8{4dgWH0wil=em4+IucnsT8hf|5$7 zr?b~QvT1#mbVoI#)(6~8`%U~)XIPpIU*_Zo(Mur^{8k-VaH1=2QOw zkH#zF3!e!1Wq62Q!o&V~-(5yW(`=&^&QIXoKg?#e)b-nA{pfYQMl+!w=pg;1eki~driKz6kUYp@Ly^xpb;q$d&uYuQ{jxRP3V$bAlEN10^Cm|g z=^-Djd=DpsF6Drr@n?)sV;?7pH9iM#y)%9lT|6h^G{A$$-Zo5e{{SKTr~d%Z_hz+u zHY>U_mSuzO_#dFw-?uHFmG+B?^v^7Do#jSPPx)!qnIHTVAHYc`m2s+Qp}KQ+6z9KI zuYy~{9ypapm+>pcaTVYn?FeS$)A!cTShxQG4!$N{$K)@@9~#1h=KyGO_5T2_+FSIY z<#@h{KbbEbf$DyqX`i=Wgf$!+DYWZ=bN;66w?UK0-OzG<1#a7Z+rA39Vk4fxkD%00 zpVR|ikjLP+#6}E@@sGu1FvcX({3$Ly^77KY5xGVwuN}A@Iw@U_m1*5{V`oEAGF?!F~G8u zceK&B_*dZUU$SnQa>i8gJ(a-?mNIx-!?F^6{JU83`c|rb%M-)$+IW*pUqXBX4hQ|-YW$9{%7wkx9u6FKO)NGKFp{28re_U6HI&svbiVNulU#CJATdH zJw;T~yl17`u>K+8$kgN0G2W$P>OZqL?JU+ZuZO-VXtwjRx0Gh^?cTuH`FD95x;8V^ zt`DV0_H}N?e_Fv_+~1k~5?lOz(hKdD%JMKek{A4IO#F55?0S`GESBmNmT1!Q=H?lpp594=ERgPvkb$w# zHG2e~w{Pu#Zvw+@`ZwXYGk$sRnNuEyBmOnPsrCU`BcSu&+4xub%$^;J)7wykYUD;XlEziQf_DhUN5) zPX7Q&Nv-YHIT{^HPZz=?<&T&d?2z{9*R6Y8OWVdR=S=? z40z9!W|)P5!zrgP=1X+1(Z0<7ZZzF?&%(YFOPw=HYu#f~4kEc3-iJO~sNAfD4=u+h z)Dc_O+V_jCt)sWMzMd%KP^yC9e4q>g_Xk16TljHn9m>ID;yEr17kEf6Z5}0(+_Nx2 zEOHO^WTS(zO8`MXDaiJVTh9$aZ5$9jq!APyU}mkO-MX#Zu*V-Ux^aj z%^U(IbvEo|;URSao-lstU91?BUf{-p zKHck;+!=Ghu0O+GCiqd{YkBm&BU8ImsNO&BE{wA{niwKRR0L%Zs9a|X&$|bL2Vddu ziCzKMyjNx6+ihhfzn*4TZQMw&Cz5j}!0Iv(1Dqb!EnIO<+Mkd9JJhfAaVDh_2|SH1 zX=5d@Gabd_dLEeL*VI?>*ZW@hR?YlNr0IzviQR9@BQghfh(#C*PbBb98T_mI`~9I! zj-T-BU%X=8WI6@&Ai=?7J=!P-7|vVNSH$13H^9FSe$c-XzBGIo)Yt6k;_rs@>CsHN z-wo3021`kzAU4S&o<(5$NCz9b3~^&I%M1Jd->!!?GAhk8@~1`kL-8u(!58r#RI8&N-y#z_)Q&2EBC!ZRKesc`sO`$xea@J?@vH@~$10K>0H` z^hvyVrP=E#G-chbEiWRPP$x;2**y4#yNM%NO7gp8Y~X&iXuq>u`oH`WiYMObbVV@nnG!JmeU(^HSPV>wycjPpKp4N3&@EaMmfP#xX8eA zJ{tYKe`1e=-?94qK7-*Fk>#Rkn(eLq)bdYq*Eg10f%2wu*Ak*Jjkb`Asz*V%SVWKWCqdUktt{Y1g(^UJTUqS$sbg?w)MP)8X+P!_1076f#^yN`^_B%mkgN%Zwh^ z{tItq74O2Y59%!-neH{sV@`3oSe3dETqrnL+@E(H2?MQo_*~k&@ljK$d-U_`_Zmu< zytME6Cci(x`)B?L_hF|&`yx#=8d_QXyTy-j7*t5h$}LwLb{M8+Mgt@hjB}2a@A@C@ zOX0tW{xolgn&sV!d_uLcx{0k(AAEL(#9YGruM%Ws^VELq&VFnXfc5bI0NJ0#+9&L@ z`w#eHe~Ti0HWl$WyoyGJ2 zVJ?4>k?GC#`TtZv9kaIED{GB9vg=-=5Peh}II z-yamMehl2nsOXnZZKFo_D)~vF(xo%Nrs6wiC1s49g~l5yNa^uFxVgCh0D^0H8&;j9 zNATapNnPY7ZKy*`TWbLEo=F6#1n2IY^B5{#`}uxI_4#9dU6X&Bk@dcl;lHzf+dsA6 zgy6STe-Zdqt~ghWF%}4`yr`c%F&T1w0UTH42mBCEQ(6B2Yi$|=0=BE+%b_C4<(YR) z3~n-oqdUGrPSzx6oaVo9G^-mKf8ea25;R0G%sfT#{{Za(4=u}Xw}}osw}9Ym0k-<` zJwF3K;EI=N;r{^JufVnvyn)^sEZJl%1{TUtMmEZrC3BJp&wg`XLqS@c;Fq7{f5zvQ z;dnPL%l`mL{{Vn+f3dyVcrW(*(JbKE581q5C4glTZVd*dBtPAeSD{hC91(&tYx zXZtXGNbsNh6idf{v>p0bj|}*aOg0vwXSaKiBc;Ai+0~(R8{%+!b~{gRcq##(!Qnt0D_un(RhF3uCVe$1fOE@E~aEzRb+_cQ65hDRnfOF7zdFdj#X&T^o+*9r%|&Up0)iWz|>Vts;r;#AD(e8CDX>z zivDN$A7+2SJA4P@Z}?SSBLhg7ldnq4fW54uU89^5GuWPny))q_gM41U6mBGr!e?yE z3XElmnCHGT$2Ix``vB?oRv!w)>YiM8{vp&GC4Ta)ijHzR4F3T2>!J7?;rEl`E!6FT zu!*;xGIK0|9-gAV49DZITDAO-(Qq|?a|7~=_LlHBj3Co|9Sdoagjp1TaCuaXc<1rQ zHRNBn-@{)TP4IrlRhLhZMxU(4C2kH@;T;p9{_~3coc*f&DRXnCcs}6}6-I(WG0Q1f z6|sYyj!#S;c@=~EQ}|BH#6Pp{xp8s<^6hPJqXAX0EwJuzc+be$&!uzac;_0_`&{YA z&zhCIkILVN{txkde+_;cYgXEH#s#+1)W`tF*`c*YC!U$f&%I-ObMP08ZY_LYZ>HEx zZWmY4m?0SDUdSsP_T=+luAUX}HMWcJtKsj4XF%+c*++n&WT>=|<#_(^7_X2&X^)Oy z4Q>AbXf0dd98sINH5-VNRJ^sA#PBq6MVo7BB4EofC^xonncBZTcKs$@8kmeqjTLvV z-E+mMii(A#c=znD`w@Ig__5*PY4HUn@V=il^V~(4*ZV?v+BqVTp^1wuDC|_M)2Yr5 z*q9Y+{;dB1;GQ4wO&^4Q0?`}7{ul6-m4=yrZ!NQ3PY{;jZlyqN?>^BeGBokbiHFbJ zET9EAuO9yZf_wZK(zV|W!{eQH+w7Vxx+}#KGd!%TfE38wvtt=%C*Hbm+avx9SMZDW zS6RLvcxE=$bz4kA)_QOY9lH~RS?Bq%?At(%1Iw2CyKC;|qlSZwJ|=L*O0&O1w$!zl z{3{IWdKT5KgNuP903#?!kTE?1uppD^UxZ(_zx)=5!=Ddysq`P&n%X}UUXo&MdPv>$ zh#MS;9dIt?AMCQkJGmf=`M={Y?N_aS);==1y#1OK6@yIPYtA3RHzC zxs65+3uIsqI(YWy$u*&quTCz|XXnSn4~m}=zi1zbY2uHHn%%~)sp?Y24A+-T8NxfL z3ZX)xMug>KMN}Pjf=NDQ;w?4wJzn!fcie3!mJH(?j8ZaZ9{Y1ubgQO=P=@V?`m(Zo zy?#O;Bl51R;*zv}KGt~!B)__FeV$U|^kH8|6=?HEL~=@_l7zXbI{H@GRUxB78wUzh=bGl47@3bF1n2yJ8t#NT9({Q`n=oEZWMsHe zk&I)EAMpOQqL*Z*0NUM8Vd=(yt#gSGPy!HgI3VzS{{RZTX>BFOT?XNdp8R*u82Zzc zY-jCd+}>N(Ron>~$in`$GhN$($s{-V=~(KrE11)OdI9}AQ=0|MZbt_nkEIbyskElH zXG3RvViGbCSAcVj^XNaFPHz%)<91J6dVhs;`^;dgW802+t(AZv+QpIZ7;s0*eSe{) zD0Lk+x-n$9WC07F*cs2$iu&8&mZJsN!yP(ng$8Xq#d?mN0R!e(wGAHIP+(77G?s3A z0zm3(-$i_MLucQ9}XN%;Y!JaEir}GAzt9VmUfOXpUw>P>( z&-ll1ih1evue0#;8TEYc30nUEZY%G0{ZErqrg~bwA6Bw32GZ#+i28h;y{|uOt1mB?I9% zfILwwd(0Znr=-Y#y0bto*ViQZeL5QS=wrd_T&L|x1X{1`hp9;FttN}&ogVRXfwpya;LcF zl2>I@j;6T%HtFm#P!~?)IM2WN>s@SP&xA4OI6Z6l0#RuH071pym)T zABX<{TB`YM&5!>8SEV`B!s1-?Jo|V506nTe{UiSXf^FYTsD98F-V9r*Ek}wxBjODf zKPif{T*(wS7R5;UgR5IHUA%+HBEMJlEidCQ$NvD?20M?8*OyQL`9KE0_>WuoVXx?V z{iV`H6pN}d$8iFK0Elcz`Cb{?KFQ1_;^n> zjp3sp@v+VbU^BPi&yPPGz8GndcxS*qD8JHdZ032Pwui_lk0r#HZGj|DyZs_plm;vV zF$3f~Yrd5!J4Oui>td;?UP$&UZ`sb@{uGbGkB-nLrS>lr>sA)p{Gu5a+Sg3h^@p_6 zZf&j}F&COGpp|YS%#4#s1C>;4Ke_2X4!Q9+k2IeF_#egoK5q*6dtUJmhjiZ!e{7+- z(|k?f>vzA?;nO6ZA*V+j)CjU$%+`q3&Kff#0)>7Ri{kgiHt@=LGHrVJ=<#Tf_;xEV zH~k(xHr3W!c#&i^cvk(!77-4OZLj`VGbH-K=)D z7M7Nx?@@{1zPpy*2xE@od#IeO(##yU@a^X|@b&ut0H5X*vGk*VXQA~Tv+%3L9xM2v zZSbGQe-S)Sf28RD01@deoj>Xw&<2(gml3z?#lDaP34MqHw@ z7jK>{emMC0+UfNr)I`@e5_o#zYndR8?kBkLvu@JvCY1crPaXoxD`n?ZQ6V_ZP4N@r z-;6#h>J}QWieu94f3u>vhSJYQuuV3`54Fy2uAVD&X$X?yY)L!3j?Um7002}lvr^@2 zPwU7k<}g2^e+hoo+E0%BF{b$I!+)~hi?t0aQH?JwudS>+KRk0L?4+?e-2z5eDns}buJOQHF_&ZM1?=-D;Bo|iz-A?us&QQELQg28Ry9JAa zNn#i9+u$GV&HGFK%^Dou82DMNS{)vFjNjSX&7a%tAa^9oC9%)Gaa>o6ncu{7OuuqSt(iaFHu2;9DtncR8%9fb#A_1a6m$Vb z6-QtI01rV@c+ME(@kPy?KXT0=wp^T_-9n1Q{{Xn@C}I9o#1pK=B-_Cj=MI0Z1XUw1T9A z#`r2(*?dP~Y*fp0;jLX_R_Aok#+PxAu5Hb7UM%p`zCP1n)86szY}P?LstmM+e(xk; zU>-X2&uYS)Ro6DhW2t3x_TTnF{jD_L+fHe;%gCeBJX>ap*LGj>!R^Na;?Vy95@VSm z1j!SU4p5`F>PDZUS?LyW>9z}q;vM?2Jz0;b>tD)0g{-Xn6%CqrL_LF8vdavx$jLHH z20Y;^km5}L02n#v9V_)a;II4?bH-XVoH{?oEkFJeSX1Tub*YZuPztyJ$c?t%bJs1H zSo#xPFB=|iTWE7s!gDLZ{ExnVDA`M=d}jDn;$RBL{i&#FGO+2k`o-M=`pF0YdeX)ZwFt) z=0O1|r+9)ig5o7USRgFr*&KZ630=i_ud^;b9q3o%Ph0IJB^p-mu?9x}07u;sfxNsN zu3}>zf4E5KYY2Q4_-h@H_C$UjwvOCe+1ZGdT~u4?&SbNQ0K??Ba#|t$2c;D-@{_&G zjy|1~WgWlI{Iot>Zx;MYxqHtHU0p$V_YnBP!)48+FBrSg=1DAzCeW-J*@%@JA^0FE zs#d}>gTg11R zI;qM}ZXAbG#`QVCJbFck!T$gOX+9xe66to5+ug@4{Lz^1WmQJhh6XM6gd3TzGAQ=go}A4)|s#I6iEOK}-xQp&Wyjcw5Ge z@gB>=mbZ|_Y-7onjaV z4C*$5PQ@En0>(aNnwf_Ks{{T_8TD6{m;ajQ2z|?LudnT4}4%d*|L|2^W zmN8(SaM=fuUTvy)+UCPp(mo;THYE`>ja09fl@}Q_3FBOkRSvAk?^9@*SHpbTf{VUv@_PBEI|^xuTK4xOiI8Z@`p*OrTyI&F8Ud)3|)i1SJAoAlX4x*r3LSOF`EtwSX!LgiygC54Bvv2y-{s~gVQ;wh4 zU-$+eguW!{aoK3T8Pe=8u5yh8gv<7sp-8m`(~G-p4JcPq@;4hJ#&T-kh5jpO{w&k3 zH49rilz6mzeReno9p<#T6Kn~L4>UXsjGdUTBpO{m;eYl9yJg}H16#SYxU{>}WpW{j zmTO%~Iv#jYR`i{8tGmM)SmwUNxYerEDoD$jG%cI-)f%i7a;uR zCYxd$3?hu=l4_|^sTQxXmL{zxn~whg@Jz1^`2PUI9yRe_gzvPdW|#gFO%nR^PPvL? zlF-8&+C0d?NG&NcAXB&G*&sVf<`www;1!J|oJ|ZfYH6iMJf=9{Gf8=KV5Q_@7ChWr zG+|rjCP=vX_-BPa23BXwt>@lh-n_ z;4c+*J__00cxT0b4s~1TZ~Q6ZTZ_B6w7ZK@{*5jBJl9#7WZdiahVx;&Bbz873Y2g_`4T|JUa%D@kV?5y+Qm-tZ3hC`#VV*BwF(6mVSJwp%*`EwN(e^ zG3HO1QP@@Z!|*d%@#lwpHSqA<+}@?{hPA&2>blFtz2djj^!Q>olB$vOG}h=sgN^Jm zLV|0i@vrRZ;vW@0xfYS)q_VWtwL85|J6SCrSYeiUYy>iu6E6Af?ks%Nmw*;|P%i8} zDf>j)iW>G2ryIRq{{SPk_!#QJauELz$`?bCz0$Ufzx;V zB$|!3r~a_H8MmG(aCZFSWA{q@-uvYcIO~Jcui;fq%HICxC0SE*wLOj-!b~hI{Qd_I(myoT%mvhL8h>T|dNrpHt z)p4JER&C~qHOi&@fWJmwpiOlE+2jKqd4%s4ns*aE93g)j8|b#E+mi+7Fy z!a0rn%H(ns7>FtNN#v4q+OveD;~7b6(!Z$^NlH;p={IjqhkFK|;r{94*0n{OuTg{V zUV8d2t8HrzhhwI}HJ!Y_yJx5;tB zPjPe_7_HD3d1aN)$g9qGF~INIuKJnIIv5_OY^Rq#{z0#2M{oRes zmhtia;wk)V`VZ*sn6Is3aQzyK`>wxKejoIR%Rks~wfe`IKb@NUtang3TYwk%xW#)v z{1nqqZx#Ol!8f$e6x-~M<4V-LJu*!335-JONi?}x6~Bnbbjy*38Q_D0JUU{0z*OLa zUt4^1w2Q}I@JnAFM|hrex>twq?~rf`$)e2_{A>vX22U$0aBxL`LHMhJ_PjZWw@A15 zCjS6K`Pag%!BOHIJ^uijEAMvwPv)M>;p{KtTWi0Eaq1e5lP%K2Yc{Ga?QSO#sxvLl z#}y(h%_B)XK4G;&L(YB#BCBu3)eJE$f5I!hYL8s1plG8k-=rg8_B$DrKa zMz@g*iB?b?I!b|9Hz0sWAReF|Yy7dyojFeR;-%_;dSWS4l-sfY)%`3QKapyHYW_5h zqnAvVeXoaa_kYB;GKL)4y}~Rrf;WX5v-4!J-CtHo@yo!5FnZU{r{RC>(e^9Ywe2s!FRN(UIK9*iz87#-k^Pv`sI;O?efxS7tjKS*@k=XPQHABSQqS6pmO7cp!{O9~-ms z^-^~_CX+say!hqtlqsI`#4y@~KwRBHb!=1*?+NYG1F_E)$7(;c$L!Um$sVbwc=N-n z<*<;d-ayw5MgS4Sq|GFa_fZj9n2@RoAXmhHv|sH*@JIGZp5MVA7Qoast?6}h;lBrX zgH{@{M%K~@@v`$l|3{iXCx2jTXks(d`qwVQos zOR}~8-oDqQg7#f9^5;&}C!baGm8FX2-V|68CAZA1j3xz5b<)93QRYaA)r@yOm;JLJ zQShh3xpdDFBWc(AwwN8)^GI>JjT&yagr!y0!0}Lat})U=l!0(FnE*UcaQ!i zc*Da;8vg*p{{RX6N8(5esbyP@7g5sgqB%y5$04#+*N?!D%kSBPjTyL(B#}T^Vp!r%h>KsK-vD5T#hKSL zch`Im7ux(YquTfkMGW?`#(|SpxEG|sJXY)nohz>9iIza3MUmB%kCpx__@4XW-@sql zTjDQ)<@+u7hIHQ$+gM8)C`g-2)-B9&Za^JCA1aTOge|qW1ae=ptg&mqvw!U?V*+{m zJRzm(<&{e+i#<=wE%K0mi#c59xa4QhHSZaCd&9r6*X-@%ePZ?lKZZPQugN4q;qy`$ zH8^kMZzg7q#^DYTnYM1m)&OLFWbmHOPB4wt-Tv#_@7u`rBNd`uKg!4JrMK+^x+khIRF!E7hpUN`;<>1{r} z@E^chge=5d_};-}Ner!+?zDI%2lu?LSw}mH_375S&l>*#!9c&@m_8El{=H=0G(J1< zSHwB>?MKB2O>3=7?Bi036_yB+(${mVw0lpJa$YmJ%!FXqns}4`3jO;J-s#!~ng0L^ z(^K)rhpOuqL&K0=Sy@LNnp@hzZ5-DTYL_#zN~+i`95P4{fIwo)US<~sjg5BUO|;+T zd-VRSC~_+$-Tq7R)c23t)525u$M!n-SMZMN=`0V4qGGoJ8c5-e`%+IS{z6L-8)T{! z3=@XNN%mjaSHRvR_*dd@ie3%z9CAEXKN7Siv%7nCjvI)+&24SI+&e~0VX_E`+ylmP zabKN3x99B%;~iJv?}7d$_)|sx%7aMLMa7k!g#Q3&cun4;6qcyUwy>mfDaOE?)RoHZ z00Z-v#J~6|@B9=i;}6EM@P|Otv@1Ig4|s;($a_0mi6^BqSx@$)-v~bT$Q~2PtmW0KL~C=Vx14iAGHt14I@<3B|jDCx`l2e z0WLIsMPA8n7A1!2M^*FLk~TY=Xi&U^UOVxp;GTow4+{7z{t3zOf5g@vC)WNe_^Rv0 zaB3Gyki)0iM--F9tM(VVc|68Ii5sdrp?8nviPe7@KWPu!i~b59@&5qfB)$~*mE!o< zMY+DzVV=iNwXlN9>f=tl@`9Nmv5r?3lOPK5vJ%Vl7C8&~v*JBd_LsT5)2^<3TdCXJ z>6TDw)>GTwPYl+UHpTplSSE?mSYS=>vN+ih12U)qh(6W>g(^CF%FXqA{u*sz;xjl? zsGUcCx^3mZXLI}G@h`v)XTo2%H-`TJY9A14u}5dDXdm#2%VRQJM$yR)rNqYSN$%6i zF|!~=jHo#v@6HtdVE7yMEB%Q-V1J7K8TkFH{BhEoR?&6XCN}q%x;>S=R`avPJd7g0 zX^~-uR${=6Dx8dDSMph`d=>bQ;$N~~{6f{G)Q+L%6gr&Ec{@g%9ofFn(#m7qkN z_ICptx_|8ZcV(u>ZDD`*U988;w~V45bHGxguRpDNGb`~mTo;T`qfv!z{lW*Z4nbh)hOY2viJb_*TSSsVqLF~8+pm?n7dg)zLBaR$U!ng1v7f=aFAo0DeiiYZipy}89vIhzu(XWQ zi0y3SK*0vpQVZk)36K(0jhH)E;rcQC@uOYU zpG~;Y?e*Pe_gb~LyOI+zwwCnEiKBw*=gN{clm< zoy+SO`Z8S`KCu0SJTq;hd<4>MY+?}ot5MeG7$ktp91(Cy&$m5&x>ut9&2JxwH5=~} zTYzD|)1$jiGqlL^IUd*{hv8davDb#LZGH)8jg@tVUlFqq*f=-QqMmV_Z0GzdhW`M9 zbzHWo@TXEY;G4Z3S#0MAs97YqxIy&^C?8Q@&-l8$)2}~2)t{zepDZA}zeBG5p)^}v zX79inMdI#`Rf!lLF`2Ef+3UthA4=zcXfFfm`WBZpm~GYI3!%GH`kv zSGN3j(%gJP@P3;rH-G&!yyFV zfsVZ^@rT8Mr152^h`c^77+c66afQ^gGjC?hfk9_t#hH&eEKgHkpdYo@jQl_1UmjWb z6Gvw@eiN5bicOeUzR`IkPVuXcz2$jkH|!sB{{RWEg*Dr2w03PiHIPY>lgM5>_pjPG zIeRFnTFu<~%yd)i*(&1;ykb>n;Kr~I%EkCm~nAD zZ7uLJO0oX{t5CVzbI@kL8vg)kAJ|jkm%?uv*!)KEriC7(pxj-UG~3uOEwvGwS-*!GH;LraZax-Au6T1&j!R8KUliY$X)UE5T!HOuqmnX( z3w*6{#|O6_-ZKi+-0ySGok+@;B0mE@IOtaQzAVae;xF;bwTQE@hh4JgD8-l}8~|o)miEaa|vZThB{bND8uB z+LGA*BM4vplc=wvqZX;Ox3~5Ao~+-zk44k`Yo}TtCf8ZI0~i>Iw+s=}jP@PBD(Is4 znJ1iWrq-mKwm^ zc29{GvM@2~!8Wc57P0^j(*)pq_NvFn_F(K9ylws5+OqT5kCc3*e!XkZ&xF6TT;AGR z?FlE|*a=*n-1a>EMk$9%@fnOkZEh67oS6!-^vedzW4HsqK~WqaHGez zq=?R~X1j6<{g|l7p(l~gPM-Cz{{RaH!R;frYrQobw()W0GMN_}e5VBYd>@-|8-c*i z4R<%+1^iQU;uru~K&HR6PZCXUqsucO+d6rQhDiLxV$gx$K4D7S8HN{%uK+DrQTi;;N8Nadx~G_u$j3`!A? zs{a6mOx`Zj`EjmkIUIAfkM#WUUoH5K#9Ay9MJm4i@i5)<<}xr!^#H2?4}1~W*QWSm zNbtm(bU$c?<#{k$dE3u$xb5GQ^sb3vZFZmG{{RHn6JDJvYHs?TuzXi!*ek4P*-{TB zagp>j(T|9X!~R2B6Db==X6@V_dVMj0`tn*nkKk)aXBU=nvqnS42x3QW=MB%OsC9wh zyXhjH+ed|68CiF)$}!a(1M`FVS05sjxmtd<{{Vt;EZURk&hppdHQtwX9-*Uax+Sd9 z9LDg^<+A#bwSiJc8T79I0O8+^{CMrE+jv#fs_?0IA0EBiQ^u}gniFi$esRZz#bjjdwIW_jD>_^~RD=&(Wd^V44 z(s;{7@eYM|FC!xJM!b!%`xpxA zv@Iw85^oFm&%xIpb6W78wPbPJyaCt$06?#j@goZB;8YGdCrTfe`)FPUpU+6#Ik?i zY7KT8J;7NV0mF0Cum1pF^RM%Yr7PVt{V9aq?sfZt%KLH6RGLQwZ2;~eJ7AVL10;X} z$m&2HNdl!3ZtO;W>8#yEv5F-mkY!BqjE;Y`W+LKN@kVXQ2~($DNn)?XYhm+S+hep`57%dlcjG&ozO6Yw;55 z?HVgcaO3AIC?IjhOKl_57_VqCG>5MPpg-2F!n-Bp;|HAft?A;Fb>&79qs^tyo%I{f zh}vz@isMI>!X`nASeP(8X9b5}%z9Q_z9R9M!b{=%F-7YOu0eo-J?VU2bq&`zHH>KJ~i{f;#Znu7bzKdYew7=SS2CLxbhUpywa$ zxF4^6wdz)O&$#2RK*8ysTzC9x`a%28ArQ#@l@ybn_)*W-ib_yx;WUJuuFgU)5MR%2 zZY{Li)^b?M8$_w)fZs37WW(-JyNqo=DfO=Q+QNSq>i7DLx0+6dl1|bf*0nop4a)3D z1I%I%2OWC#t(`N#-YV79OJ%3XRk8yx3JyPn6V#7ElUh2LfVF)SOMCrd<|}70mq=BM zJ08H`;1lVReXA~bBdK#Z=x{pzi>&xVQf(i^R;Jo@9%2zBb44so_a%mCT1cgh`#fyJ zvBLtQ4KGk8aTIy^un*=bHG2YdG9m>cNet1b7*O(&<`6p<>T%VEPdwCK8q?*PQz_09 z_020^QWUIvr@^~;?>;Q}e#YSJg7)THIekjrTTg9_`tFohg?Kx~zAjG=SUvM9+?#lW z>c}{gV(;UOVYAY`cfqFXNb#11tVVX5T~@;3y^<@ao%#1bMr)h8@OABqLFekqeBnK9dRVE#uxrh3<*_+}r9 zTCSmOr)bt~d4GBXTiMy#y!R3*0k;UF4*PINJP%xOYbX0I!p#CX=mG2bRV(iiT_&yl zji+5qksCObg0WD_S(vF%c>sZcayT4k6iW)D(^6GgHhoJMg8n<{R%7k{2JsS?$Zgsl zqDLN~U?T&zPc_JD9y0ia;6-giQ}E69jT(`@TdgMY%p7&ZtrU3AuWaVH%WXR3S^ofS z2_}UX<;R*)bBq!IY?GeEW8bwm`%2?Pn%BkxcDV8`0zJHwJI3Rq0;RAC0FjSl*1X!d zgtU@9OgvrpJu_7Ot+jm#qq*?Mi|4nul>-RQqk9v^-3Vn_(;W0T8LqEM{k*(J);7~O z#A~PskVQOgtlXDelA+KUNg+-dhxamb#bpg&LAruF$f26&c>z_X7(zzwp;({940@X5 zd|9FRf5bL}NqZEzNeaJ}A|Wf~^*fYy_BqCK1$ZwT3);-|V@^v}&rY%Zzy2|qt)PSA zN0k(-D#>vsuOmc{5g-EIX&^WNrc<2au1Eg>1rhlA7VIyME=adgA~DnmGa<+NpvAJ} zpSni_n)$b1@V=R8C9BD!+eaPDO&CRn5?x~=QNU4^05=WyvT#s8)D_ zosKsl5)d(;UNR3gV0a_Knl;qAW$u$@BQ7_(#Ee1Y1G}7hjzKkUq;}?i*UY+iTc!6e z@;^%L{{Y~lzqBA--|(4CTc!(H5O8t-06wIHTXui&QXh}gMJxXR!eYzhjmL4*@qyHH zXff&uugqldhlPv_aJE*;yBBc~N1i{t=L^U6^)=e)zHf#uW7a%A(OX=?fufoR5$LS1z@KXN(i!f;MYZsn0u?uj(Lb5iNcXixZyrHlz3FvtD zs#d@7R6mPaw9LL2@iv{RtY8=NBCwS6(1k?K)6^4;j@9xw{iQ!>gn});Hq~NKrEr%D z+ptaxDjX_Jv>yU0N`2TMK5#{qj^F&bRb`_$YVn3$0&UXpl>$%W-=m zLa223lx9*8WyHLE#CABZ%_;RJm1B&<5>EHanO$ME;Y_t1Dc@59<>*dUuy zX(N#@Y;5L+b@R)tvfRrX&KfvWqDHK!H#f>ysjoNHJTu{Byq0^bJu3W6!zpVCNK}7x zWmJ#A9D3Go8CET)CMQZSc(1tqe6#-mg2Q}aX%Q}TO$Y*TSXtZpR;?27l+rxSjGLi`UHO@N!0C-*F@~bd^!Dl`zNZ|*CbUAq4 zxJPoM{{TwAt$sr29u4?Mq-*J{c(=p<0B>u!67tytT_wAw36>u&ZLvPqRXf)pEY1($2wn)*#Ik!pfBuJ#1Ao50z>i=qY^e}nWmAJof`2PU^00jj2)B8uo7LV~?SGsK?2U!M@ zr&}eKoLvbkD?pOF&ch=fe6j#SvZ}DneD8JfD^ZzbisQjw3!Y_g3c>L2MuIrbc_vl` zijP3NcP6|KT)ex|{6#dY9Cq;D{PEjG9wCe70hR8uhQ;H^DSeK(GK?m5HFju6P?1 zE;+9o)wDfQO;YAd4Qo&kG_GUvthEM@VPm&pMcP*#3h+lxEB3SC_xuv$_R09uajN_l z@urigXnzbm2jdN5(j7|k?25K(_llPbr9fk8Z{@mEZ}*Ir%Oq{{qsH;K=)9lsZUi>+ zHNKtkw_ZzhC1PLfeLUd@3NkP_9)J&O{{Sbkd7UKvoYmSt(`fMPtNX=$Pyg2Y55^xA z{{U$31biFU{w{czS-zIvOPbmRwl{WuZNzfV6g$IDq}&3k&yXK*IO7%gi~C>y0Ksei zIcS=zd?)w=uU%QC#hYo`#^bE`n(~*S@xyq;{eYBtOOAm~HwFkz%Bxo-eg>-Fhc$*2GDcCC%FDysu{0TMsEQ-W5bo{!t%rMAIiAn zLJ8d?iRN{t?wyaAJ~jLo)4mS;2Dj97l(xOPHqlOta}&CkzPOmMCET+QEDUkb`gHU! z+4jy2Ti~~WHTjk(Zml=n812zwjCq1t2g{6r1Q-CE^cCv=0Jm0{w%@a?mkF6Bu(QxD zvN|bPqI~;q5)sF!73JO(bD;Pq!}gkFSXeYfvz;o2s3x;eWzwNW{`XZKFnzARcUz?(*Y|9N>9|UoAi!mt)$#NB;nVx_n%=w)lB> z;XMvtJ4^Uv)|P7V;3d|eZ{wR&pFHFVK#nkZ9!3Uo1!a-ajND@_uXavhUB$*LbHn4c z*Jb!6;H^Kz0%V56N!e&8V}6h8mFLj&>uomo zUb~;gdb}TJn)?C^d~!C{jv^g?Z4S$!qaJf zFSOT7ur|IG@kPi`tMY|kB&lp}JB}Nig}?&5dOr^t6g+Fgaf8M^&3$kCJ6M}&ylHnM z61snbwM0Rl7tb;09+_fE_v>7Esq;ajvj;zT{J`-Kge3S+^=Gv`td@CYN&~ZZONeKhUNpxEU}p`|FiI zGUWYMUtRr9s+W=D;$hE-gpS|#LAKOxeh*!ww^N9skHjG(SqcDT)#fRJI%Q)YO1JwY z_(gm#Yw=Ff0Nz*pBoZWLv%3P-0ObAbGZCJ8V!N-|TF>m?2dB3Yh23o=fDU=OzPe@n zNT+-j)#ii4{ye;s49l%vM;YyinNTtI0OZ%@Ro$ao*Y!U{gM877>|*}Y{wae`_}$?h zD$E0QdeFRMvM-!~x%^PzcO%eOg8th&uCd^chB_a|b>X}@s0*ujpM{oxvRuN3PUL>@ zFdm>+q4@7YZyEm9o)On|35VFMRtX7W0hz?pu=*}Q#d){<74K8E)BgZunJr5ymhlCJ zw$&h#rMm&x08L?&r7T1u`m@o-CZQC&ey8(aZ+UQv7V6>dWKcuRA>8u0<=xozXKb?` z?0srfkqQX6a{PU9{yl4&f@vg_f_+Z{w{4q!>`Ff9$;N%S=D%P{+aEnA%-YW3g_&p#@2=S%k89#xeJC*NlD@YvH`f2ZyiBzcW10_5T268y}Ww z`t$F$kPuJEe;zC7FrNxMyj)V7Na#K(TJE{j5P~GQ@VxGGoRx}bNXOGXtKeUW`jy6o ze(?{6D2Iov+ zB*^uR$~=y6_Y@Pfu&cjAwS^nJ(uCh?)%q=xye=2OVz z9y))GdI!S&7HPaUZc=l(ZR2qapgKD;spWCb2N>=$D;#Ad3VgRbY;5l}QpciPTwjgQ zrr2NZoPgwDV1gLq@$F7+A>m)P&vxL-m?0fF8S2U~dh$7^>V6-*A>`CFAbncC%tEUZebZDHhUFSBoX!L#dyu>smW4zS{;qFz810Zg_Z5j znzj~^GDw#4Oj`%a$~(&MYOrJlI?D$VzGdT%8ZGYBC0dRz@6!7)>gIdxOV zPPqK@UrGEw_&MUc&kb41mdl-k{bLYvM?DGS`t+`LCAqiNH4EF9w`TL91rdmBItU0oqb-jD zf7#Q;I9rJ&wX#^UNGKe)P;-(x@znlxZ%p_bBHhFioOv(Xc(0XAHxZ8 zeTV1m7qSs>6ZitF9>dhv%Kre`&)_eK7XB%ih*v<@to1i1qQ_x>71<{l{s^;LVJb>| z$?kgCYH^EJKI!;lq>l~wKEuKn5_yv7h}u)R<1%T|HJj((bSFNBy+Swv991tBXi|7{ z;;)Z0XoYj?pIgiKE)TDRnHCtU7`&AeJ6|vf{W;QaP@Z!Fq&xUyHPD zMVn~1)NJHpKf1G~e@xf2nbP*yYP5fvEq&>uz{@MTIGR2Yk`OkM@G*(F=Nzf)U0gPz*C9_V**|~-`PXmpD@u>UUl=@V;ozZ7uZeYqRUHBw z`Q1n0tOwy-*Y4SVLC8O?f0vadD7!QLNRmz6bu1&usq+#D>+k&PIi(p^kZ#&@v~kGq zob;(9LRW!$xdK*>4Bi4Bjzj3#ZOjjoeic58jfIvV$FT;w~FK%NB>ce2jJOS^M)Z?{aQQTW2=DC*1LBBOiH8cH57q9%eZ{xUNP=Y1qj-7Itmy z#PUhbPp*5`-j#nGa)>V?6Gjf>l~UR3)Pe{-2t7eG`7f!Qr)Oi*qSZbd>NfAE>J!~V z8;&HB!Z{ogI~e3{hu8zy=BLthe}>l9BE@_`6wGt6rP6LzUP<7bxES@w&3T!&f=OOz z(8jLCl~3@3asc)nt4_kwF@YN#1CD)r^sTAk`IWBHF`SjpRM7MvgStChNpq^*YA(v4 zD_A;&BP5Zyj;Dj|Ry8YsgZD17EZ4{s5whCRVg%#9_Y3^JJ?qS6g%$S}JQ}MrC_6#? ztEM=6YTGmB@;xroRQOw`TX`|)mlto6-fhgNnLqBSUIliuy8WmA2lxA%GM2d7`HJtEX2yLkkFZQvGFY~*$19)5zkBZQAN;=dRE zWYyJZdLPD59{er%kKs#e4+DHQ(>xDx49zsxI%!h#CzQ$LHXw_DNN{p_QN?gc;Jq5! z(hIK+NpUPvj7ZmBQ({h|X^Bt)x2QQgvx9;F-j4obr+tpN+BxFk|Eoa5yReKU&6 z_|vb&55{j5MQRmQwI4Zgk&$jH&M-&g zUS;ue#^(_lp@n)H2t!egF zdTbHfBHdgD7Vwt`<#!CtnOJr5*DQG=u>3!z_(w_caJAJXI*r%a!^I*YSVJSanBv?lf37)ZFlKAzdH4Dl3j%c<%5 zu9h7)yvh{ew(znp4_?N&XOEQAjn7(+87uG@&T>FjOY!>UOeA}&TU2^jBDY5qU)7L^%kBTJB@ z0J(JIB#u+BUU;aq?;l**xJj(n$$iRGdovx~N!^g$GlTt2d37fy?$1V&QP}nG0m-Xe zXjcCK+48_(xGf?@adKj1+ww>eRY}J2p1kw}oY!w*qUz<7`&v}Fc-tM%sNM8u8z#4`!9 zjHGQcHd}_nk3v1oc$k*losQ_ssp*N~aU>6Gcx|oXVA)%E@WdXuV~qDc=DvFHOX;tD zHkYbfMlVq#d`geHH$~Yha8z~LdFl>Ddb|8cidHtTTS>bBysq)>3*QK=U5+~i{A=ew z7wFoiyW_jLw3!U|8lm6iso22nTx1de4TIOy1m=t_Hzwl8R(z>6bsjD&9=0#^#YRww z#HL$oMt)#WmN-=)^I0A%)?kV#G#e(03rk$ENQT2R5zMmys$KE?O`LWDxVx<{SnzA4 zmQzRj*yM&)Mpp{XyIoiV&PPMo_c*N`cjBCSrhs%=?1NmEj5Wp-F2u&%0hS~HGn0z$ zbe_nCJFBt=WMv9@Cy;ph)vJ9$p<(1c*7=ujaxvUv{{Yq6xj1!Iia#%$XZdIR<21#- zXOUU}*xU|E{{Wm*RHP18JtE&!yu6Vf;qvhfrByj1ZF5z=k|>!HNt#6SoT)^R zE1%uq1IZ*3d)GaGaSYaS!5gu85#t+h2o9xkGoE?+S4KQqFEvX)2Wn{?mYR)~hU~_M z;yGPD&*wnz$Ro-eeb(oWYF$QKZB4`%H;81?g2oJrL3k9DQmveAOnaTBa1IHqD$kcj zIJ+}X<2h^ZjC!|-*5D)_CbZIZxZSgrj^|0V$N&S@Sfn`a#QNsANZ~@krkPa;-Ie6< zMo!+m8tFbHX~<*nCy1>GTYH}dY1(opm}EQjd&}!d2I2v72bKxPrE&8pg4cc8l;5^cEZespP^7G*9>*X6Ij)u)T@WPmUhj%!A}Hf$ zD&@{{O8IOy$BZy8r;&{FUVWuWbv4eWn-^kSmIH1`GNMRNPgXd|>CjX+@lO+PV9a>P z!RzQnU)9{5?jzCfbsrB1ZS=iP%I*eSdDF!*xRPYOjo-Od@lvcLh z9K5`q*2(3PIIp3FTs)-<9nh8pKG04{3ywJ^yu;79U7}cvhaEm|)4frG>S!*~X|0+_ zM(>n@I)Vp5*wjx46}g>Bw2xcWHH)2IHMP_(W3-AF*&56PEK$kxx0f0#NOrP};NS!I zahl|8?B%$QJ$<8@Ar2*PBr0ua$R}&c%Bk3Mz`nNNgPo**TFp~y zL}IF6;xxQ>;!R892Cn`p)MFOL=xt&$QJydrm}e)hGNXWc3|Bv<+g|9m>~x(%A{iPJ zHM6pV<_s`WS3UNV!Ov`ST<`X++>*7*f~<^LQ}{vP6O4O)KJ|X;^HH~UxxSg^lZIz1 zsmKG6r_-lT&b3szVxlQcJy_e_PgaqNyz(qy>;rJ>J09fvoRWR(kMSMV^Xv9kSF=b^ zD2?|?xP0iq93FmRFiv>D6{o1`Uun9Q?^2me&gMrfLgcqO;~4xaj@R|A6k9EXmryOk z&l19hRP!I_0PS3oe(~UQ*NW=HQ+LrE?X#qU;l9hcTlZnHv|~BOM;XsS>Ds>3@D8(U z2ZBBt>RNJ2f;c=wr`!qKb3E4ijCVklOB-2jWd#^WNCSbK=dVoh zj->r->purcV15tjQP{MSOJm~m9PJ?56kq8Zh(J|N()LO+OJwAOj0*i9!t7VF&v5Pa zZGG`;^*%eqOh2{BaS>e={^ptYJ&n>ThE@enPr|;|{gf^~)#D4z8X{C`T1Dhp9YZSR zeR%{NSLf!Da$ek=BwrjnKWKPMsan*I-@J_T{{W8kukB6c+aPH$@d5M~EirBt;BzSPJ|g zi~b8G@Rrgwwby@Ttx_xKfJ=mn##c=m%Dgy6@=jDXKt08Ok=$99(8K1KiVfLDa!YQK zeb4ouhqEVFFQHZMC`JA0AOF|f)7ol)`$GHz_ zVbJp*mG+i7AA4yBf)C>7#b1irpTUn9*lJ%3bvdoIXuV^aD1s-pwg0!@0@Dl&E5`WEVP;i8(<_AM9o$o;0gJ>q*` z6!>$;8lIPbWis4b+*rC>%M_`|bY)V(f$yGc3rGE}ziO=#?I7^)#IF|Gpu$HKI@S8G z-T7BO2<=(fEqq?pPG9+7*S|4XRZ$y-!T3 zTpvJAde^JQ`4& z-3GdEHKv|KwsuU%129DX6&S7m01o_C_+M?}&1TwNe$>6Iz|0Z+#zpz|{Hx9fARhk! zTKHS`Oo9AA@Ymu^#lFEB=r+ufLUM=glU+%)9mhOi9&w(S0=(0}Wk2B}@eY1f3vUvE z#}WC!ab7IxMe`-Hb~r1+PIhPN`}}_RL2VzKF0u&j-b}xqLjM3Nttagj@NVQ!r^l~E zWtJCs5XCaH1M-jt%#a;`&rWe)nyuuB%&3_NqnzV8;C(4HEfV8j@xO+l(+1nijeAJ4 zP=4!uvi2BuvBAJ4z$5}jO9gCT#Aroo#SAoCvHLmue|XQp`p3hs5qKj@)!{mt_=Y<{ zZkw{_PqI~(FiMUP43pCrMdhX4!Los_u39**BbcH>hjWt4w+I>WovO`%es?rZF;_dG6&po9r@8+C z!AO29cvHZiwKs~sF~m|<_-?u`k!d9EtqS;yRaLjsfk$wI>@Z6$?BrpB08asH@RRnw z@eYOJ&)M(9o)ywHYb|Q`Q)@_JSZ*VlN0w{oqDcJ~`AL6IR zAB=t=hHJ|!eSXVD(QJq+w>LU{g|(Cr!ginCw8X2p$|lxk!B@vu;NJ&o8V-y`zjC*_ zwe*d7sNAmLCcB%NSyhV_j1jgZ&Js0L906Y(_?!0G_*vo)iI3v{02OIEgIHPL>KB?O zkzgXqUFsJOX1ivZWLFItCKlkvCXsMU5Hht-_$hyZE$-gOL+~!CJgUSWw%^*qxgNex zo<}`#oK`e&wVYIK&{(I>IWzQb%SE?WSpXS0&N}hwU4^xj7%WFl0sjC#_4y~M{{X>B zynL3hOQZN7N3$0(msgth>hEq2ItZW#^8&iB2Y%7t@K7I$nk3ry!;J$>coF{qbS(6R zV;7bMkn4dFsE=e)_gtqx$$D_;3w@G{w(okwSRGAW#OGEeB0^6MJ?v7G)`4i zqejf3GB&9yMtH?@*1~(KsV!~!o{k?cs-)9Re2?2Jtu5_5S)0PJD7cApDOkY9(0O7y z8l(F~d`$RJWgH$E*L+W-$1U#tkUj0Uobp8~Iy6AOe8}BHh8(Up0tm0=uH#Cd#NQqu z{?-2gO^)YW^5ZuQW+9D8 zovZF?WRY2P>N#~s%g(b{$Wu$X{Wkv3_BZ-R?C);!TrQ(=3V3BwTX!KRmJ2n!Vyt-! zBbNH-J?gK(PabJHr^5Y4;_pg{Enx8-@<_@@`by7yt(h~~Lv15(J9*A)xcF0Mx=+F= zbeI$<7rJ5&yc>Nc5J(=uv5&^SS^b|i>lyw9Ug;Jme68ZE>uZ9%?Pt_P%2kF#28ELZ zcgX4uejST#!fkbz`Jbj?*YA?@I?sxKwMB=Ae``Gxz;-?ux0RCKH#0P$cH%3kM+*_- z<^J`2vHt)CXZY!BjZhG z%fuhIjl9sGHEm#y(oaD!vYIyU*`{7A%Rk_yS44a@@KV1dYm-8A#tKx|YdlaY0X<12tq>swZj zjb0PRLk#xq*#19_e!S0;J^SJD-KX6~aCS6qdEn$Q&1m?7;s&*uRB))-Zv72#9vRkQ z({85o%K~}_iQn-HNw$n- zf8iX~?T@zTY~%`0)DkQ6Bjd;?#2P&E43^OBuumMRoOADAr2Z0h0n9Be%6&kju~`CmnY2alPflHhan{{RXwa{cnZ^||5FmcQ3?%V}|rJN)LnUstqvWPw}&3}9q)oORE= zdhVSA{{X_6wV6|ke-K{J!9f;!_5vAy}a=1 zN~0T#Bn-pUjDmAqoPV_E!w7+b*TRNA{{Seq9sNaje-nNW=sG8cEzFV`lHr{Jke%ZS z8w8Gruf2SPJ{|abPVlwe-Qn|ZL{dnAF#)po$#c8wVzIe3C`uv5ShjLO;XvpB{7E(Ubog%#{J)DnZnA=lasIy( z=sk1Cx(|%?`L&M^*e;I*R`J5{DN-5Lv%lmDFhR#m``6VU2L3DAX#NvACH0xS+cOe( zg~m^*1ob_u;13CHYrDHEhGyRuLm&1*#(jDYde_sQ1QypYI?EQ~oGSn_ILA(y_pU5% zRZUOWwVRDFUf~rQz z7!|{eXFEqA^IizHP&9y;l$>=cGmlK-yKN%g*K40CK^Q-DaqEsN&Bo<4X;W=2OsHa% znpBFT{LGcp|fl_OGR$wv6!9)K5px29mQ0Hm&JzL5y@jpj?BWp72pB#K` zuZ`YTuXUyBap!t5aaYH3h6?F%-sGG+CT z4`@1(ZiU`UQ*PZlpY&{ZCcbvI(Uw1+DP0`kec(spG5J^djl>ugOC4I1`!bUIn@9SA zk>mZo28D0tgkRqj&bBzmNXX;3>6}%URshI=ouIcI9y)M%tQc)I2-D@c$j?GC$@+f3 z(z+`hGg_UN5h@m7LV~26o}Rp)Ok%ueNwd~fdmjG);r{@HdOo$GuZZn@VQRK7e`lt7 zvS}L8D|>z$?AGt(+02Uam0-AbMk4{vMtWUK;J1aeJ1e{GZ^u?PvD#|$XcIH&`ud3V zOL&a(*}in{B}m5dr=pIgzC^t6Hm#~ds0r_85$X*HnFD~092|&9Bbdn~k=&DA){EiW z{WikqQn|jG@@u)x% zae{xc_0>FkHl7L1SYHSDJya}SG}7hcf%Xkte!pP<0QFZ3rdiwF?vu^gx3S0L-mVQf zhbloU?@d!n`u_lcWa`EAI>|ga;mcV#@jjgDG52kCFns71IP6KsHC(HqlWU?n$ow~;OND^;wP*0>!PiVSc<)Lbat(&HkUR9S#dkVy!tVjXpXq-Pw54Kr15MW(uhUQC z>s&h7L2Jq?{c%vv>keEVM?dHP0Iywd3m2}rJU_CR`*MU!Pi`;Mz zYT^7%3|gYLn{wx4;79{~@CZ8yIr&dU801yLgd+9*Kgfkwx<1p?{s-D=S623I;^-xo z>rvEn$RlkNUX06mq^Xkf01bf)BnX9=6M_fIO?;iJKA>c2nXz@f;0t zD?5FH1L7HJ{D z<&@_jd;0^^nnhGRf-G-oB~4=b`%x| zfO#XPYsG#i_@2Pr!48e#Uko+6#;I&?tZ%M^62r_ylwTsB?`M}yN2RP%N zm^G4q#$47mR(f3d=06$h_PRv3-|&KXO5zI{79n+QrQi85`HEc;ifTk|Dj499cJqJ% ztPM-X{u;W}oBJogeh`8;MPx~|+sRk~pW_;eZUl7sMmZeU?0@W~`yuOpwEqCY{{WAF z4Xmu%<502Ed@-%)M4u`-wOcEj`NSzAVU_M-FKsIWg07<+5nq)4EAXDX2iWynI|=nm z0lB=JgnzW!5`JWIF)I2TfcdK3u_)+738hDQ9z#bg2mQ6<-vjsol&*04 z9r64*);jj-QA6=YNm1^k_~+dEnVRLush^kHY#UlF%!Nj)!F}jgq?MgFU-TcFiefCFJumc;RqKq47t<15DK8 z)in78*0UgNkl~fNz#G&t3IWOK*l}F$w{3r>cxy_xy0MzkkuHgLQl?2KaCVKuB!ygl zHTEdhG(BF@-%PZ+v>@5Rb8!sO$m;`mG|f`t!pd~G zg-_oMB*Eh&a)1v{$FF+yDWxr0g-LSkbm`)F^l2uukHWqZ)`YGIlf=3*>enfS+C*~; zm{K^-0SE!-ob!R2{ymO%+b@8=8%Klx04)3>nfB-HhxM*rS)ye|h_>=Ra85@A;~(Qu z=WtYzu_NWiK<}PC{rVZ0%3=bug2U48Ta0M~q9 z5h3#P{{RRt!;Rba>>dxa-M1OsS)_IL>zwn9S1PJqNKjiG4y5~Z>rweqZYWiXqVbXU zK<$%RwHY^bzT*X6Pjk7l@y+eU%g1Hl4~LR$LgyY3)0ikx^Dzf@037EPJ+H*6VvXki z0E9!~^}9p_h=;+NS$QzqSVqPcRVqGzpBY{hlTY}428A}Y{h2nE{k5p-LQ89FDdZ5L zEfHY;V@VPtuF}fR=NxTP_^xe}U-7;6blWwR?JWRU;Y5l2n0Ve$kX_GLBbFyPsi!!p zS}Mi4O2=5AA3RxPkv^5-?+IE;H*fO%FQRRHpOl3*e=Zk;lG!|hI#u0A_KEnHG-~2M z4S}&7o({MY2zew zT=`JA-q{V*bQnJW0O4A+o~)NvOGbNz-^cHbx_yPM{mbe0_WF!ob)>_?o*z|_1_3d% z>1+hZ48iZ?% z0MhCgwi2-9o>FuNwg*99J3}~?N}b{eQ{*;d&J)`Zgb*Qy_#!K)%{{Zl{=#ttM z$+0Cfx+JuW8ovpHOnt49<5qslq<~a(g3o%s$kMxfN zI%=C$9hIH$+Q<2?n$fB4`Jk@TR!hClvA^J9aIKee>Pa;@>KC2^hVo_%BLWHTYtf4zieOGZ&2~ChqO-!Ur*xi82CCH>npU= z8*Z5l*WY9_!8PzDWiZ@YI?659Og;wThOg%`>-LEFpFPZzMI=!xv0#d_5TKlZ36PQp zPI<5MGmf%~c+A?pdRB36>8`g)zsBeKdBD|b(aEsXaWQIYHfgIhtGD4}|Iq$>zu>O_ z00g`-`#XQZKzvW|_u=$5R{kGNCquf^zq9Vr^4e&pv(K3nzGJ@EWNa*f7-N-HDo^7V zhzd5hbnE*g28yk!^gkyP#+Qat4uabljzzQcGISg<|1RZc+Orh7jOUu z1317H_|4*&Wd7W{+B3FNMhCFx{A=hk=``D9W(ip|taEpH0hPx%CjeKv_*i&HTD7>< zd`GUXjeG%x0sv(|n!i|G-IiC3D@=wN7BqZ*?Bs4Z-P~isC5@z9BOVR_C)fOI*)=bO zdY!zJ7&QxYhC6?@O7a&zMY}A9H#=08XH+CAf=3zaUbGsLc4wP)qCZlu`!JOL?Tc+YWZ-Tj5OQngj}Gf;XRT^?uQY12>M>cq@)Qlp zBL)MKa?A(Qy?vYDTQ$)C0Ana&geps`_{rpEM$Tfgw2H_^2022=&JH&No^inZ^`FC9 z^!Aswnt1bM)HM+-7%QEo*CW#fdHUd9gWS8$Ne9~MgGhzH2qgm4}iyHI(5n`fB_)4 zn#unF0?)X)U)j5y_O!WK!v5Eq?T3uMA^a?w8;K;EV)whkjic=s$s&+?um(OdIl<^o zYxdK_zCG|3o#8(e_>1D-hd<#l@V=93l0K1y-!xuQ5)?@2qDW>@D&^A*2h5~qzYqQ; zXfG%27x3@H5H{E}Z9BvE#1YApnPfcje)#Ly=j;2q@Gs%FhW;%0s^j4&iJ+EkAH-L2 z>DS2wjSQyV<=o68mOM0P%2ER^2+sr%E9LXMaz;Ky(sGoOXW}>QY4ImW__gsP#2z;A z?ul*TZ4bz_u+p@fL{T1{r&vU=!3kK-#*uz$BxO9aY|8`;eAD2Zdc405HT&-kB8$_0 z?HtVBSVXsq%ru3YkgC%j22M`^n)@&Q3OV5YH^YCn-;6vd;Cl$IbUPhu!`fYqtO^n< zSOQtwBpBn8W0AX(N%h5A{{Vu1`~}m$XD;sG+w8a?EgkQ=AUq3dhiV5wG~O#8T8eh~aF_$~Wn=wAkY7=5D4O42QKYm1q$?j^i`w%i$}l2on$m7C6KOj}zHPI18G{Giuf4z*Q9 zbK9BU^Jl4_<+*ii#%}_gXe6zD_E)~ITc395f3pX`T?b~+{G zo=ct1jV7ls7OJdN0}90V7&%dr4Smb-7sOu*^mMk+zh*xYHTCA0@=Dh*w2@v-1K>1` zZqTLVTXz);Bu(Xp2P6!S=I_K_Hu1KtrP@hzs86cf`FnoPfBWeXT<*fV<;dW2OJjl4 z6_w$SjvhboKD%Y&F9Y6BVRff}$Gp)wNuwMFQ0vGC7$9{R?lL*6<+Uot^O4_#tB1or zT58unY5ZUNS^P+X`tIw;-xD=|4r%&D_0^B|TzZ7}#LRLdX_DN>5y?QSaXO9(3hS2@ z`+fTZd~p4RzimH(&G1k5q0sbei_57Zv4pjxk;#83U}B2(mCDYhU|JcO)<~Fwa7b$Y zBK&*foqOUwuRf)&%_O(il0C$?5;-PQA>PHw8?sxHNjr~RoEr8Y4g6#AH^FTWNVo7s z7@B#DLE#H+aO2xz{8i!N|pP(Bd4ziu#=2xZbzl*5bzSrUtBjwH0Y3edqB< z<36L|Z-;k&5AgGOch_3=<*A)P-2^acaHFb`kR{v-6(o2IW9A_X7bI-~+6@&4MQna$WvqqQq+NQ7K%|%oXoTZ$$*33s3 zAxi*p`16|g@7aDUXmp((R2yQ{HC@e~=j=@5KA$sZ>TATzprM8LR`NU?Kk>Efd>!FE zZch+?*nS|_LM&x3HBqq<){?<7BGvRn5$q{PTHv^yoU&-Cfj zHN(SS@3j7ZlReDV${!>04$d|gDC3g6fsbE*{a7exIF&=pKASWqvM$;h;<=hbp&9K-Yl8VLKWA52iChE4C*G~tmR0@5Ovu`#@+PEI=}u9tAM3g2QH7-M(D--9P#r04ATF;VR_UGy+sXXv(7Ydg zE%(7aO5RPxSa^oU;n)wlw-#4$jyTWF7#Qkn$$VpWbs2^F^O*`S`=LfZmTTMo6X{aw z9|SyfiP8(50(K{iX7YFe&;7Npa--#xdG<{ntvIJm@|@+Ti6hc&q@K@ojSw=g%eO5U z+zHPkIPKG}GheuxP?fw%s%h*;&oqr0UBl*cox6F?bCHjweiwgbT`rkFl^c@qN}&*C zi?T4m1JrcK;a}D-z+3+S*%#o&gM3Q;p>8j=PZdb8m~=Z%*(*5Oz=%1NJ>pBKI!_?uSnkM`A`m2*9=nRFWBWQ>4{%E^<^x6DBK zK_HQwSHaT!8TgaqX{YdCgS|LgoM-yB_{skO z1wr^w^Iz$M;#mAQknEyt>~WVztH&X1vW46oQ!Fvg;mP;nzL)SD2=y|IyFeRroP(3o@)h=Znzd-N z^XhYys5rCLjB0?KXXVH^$Q0dwmC3(N$T6h2k-5rLb z<1IapaQBkwTAXS;f!ZJEBy`dFA(L!lw$R9a$or~f2sU0>F^^jNoA%7nq`vTv!%ct78*LxNx^#`)JeL+XaWB(hbLN_sGApWwwaI#}P}N>M@1` z(?48v>BT0iW|o%-;#HW)q5e_4flnmsWWm0SkuI)U`f zZ5TFi%A!o>G|AFZBqVXcuFp=gjpZy4JAR*qS%T8uF}KT7K9wwxK^OxV9+lZk4;1dq zr;2YxYQqE&9C5+?KT4YBNJPIjHxZl?j{gA9is9a8y1FNJNAUjuO3qt!jSgLy^yeKv&S(q43aeZ!2Mrq2CS6vRTxxY?1^sE$(WI{bbALrZg6|b*^GZ7wDLBPrM z{{TH}2G&EnYkZ{f>G)HpE32}R?0T)tQu#CV5?jRiJZCF|^yD1ZjeJLO<=9$m1hD zayuT?D2Y|@GlTvWhi$4|#HA;QFa!8GAe??bQBxgy*C);lho`oC@$Er(IvZPcJBc57 zW09Z7^x~|2j^0)g%!=T)04ttJ^r}`Gor^)1U>F=6=xwO+v6v$<0^J);{?OmI2a5F%4R{pk z_Ffy&%yDaa{;d>~L1^+PnH98gM#}eBav=}o2SAY#B$6m-)=%im!9Va#Uw|L7pTVz) zo+I##6KlRN)O;PRX^pGi1&GIQC8Vt+7IyJ|?%5_~UonAcWD0@gV2TG-{{RHb(LNsj z&wubte*k#z#8*&gx@Gr<+s8Wn{mbo+FYPGKqj5a4G5e6f%8Qfo#)_i=0bh1#8l>M5 zei$yVtLf5dr^Fgm^9wou0M|ne<-3?;oOBZi-F(#?E0Um)GIsG>#~kk)oK(YMCh6fR z)#S3%pO#wlJ>BhlEfTfUdbLjmp%)n~PxHmH_?x8bT0N$zq-b{b(Op}l(UWmBp%Pfb zF2!K0k(}g?dYY|k@h4x>BR2jXiqga7+r9`_%+Gc%M=XE5LC0V-UOV8FlGDLDC6(av zWQR?(jnwvZffa$re2iB~kaFrh`QwWJ08Z5ib2~HVr&C=AYMR!st6eSjv2`WP=%fiG zY_g6xUchwVV>QldH}|(zl0|hp&bZnYq+*!QOcGZEo-vBIaS~i9Q`4um2Q7 zc91epLJuUL!_vA`64>XfQQpRfhcyXreg*tM(v*fxFHrD}{Czt#27C_8+aHkv&y!QV98qT%35lqrT%7kMZ zK>!a_Vks*%O;@!hQVpeUUQbd^{0utXHOR7yQFZQKbcdi!$X;#nP z`Eir=>-Ddv{{Ukj+W!E=pRt$4E6<9)5YrB;b9ZGOs86-6p^wUx%B&f!u9cO8x;m5x z4Y^rJ!Q{rqtEDAJ;^<9S$wjzseepm15*uH(wYt@{EnCHUy`7>w@?2PWTG~r@hyvbZ zWwn_aKvj2)0>EP`tU#`YFZd+4iY=~h^!qjVtY+d1r?K$%h?r8VD#zwcbtVB;SIBOJ zZfg1d@BRwY@mlb@zJsjE48CA!{{Z1Qzk(+7Nof^gw9(>;Rf#_$DyRnl0mXB-zwlG< z99}~t&*1yXT1WE!>w}cYQYf5;voDx8YZ|Lt`gCqqaL%jgF~#W2{^Fw%<>-bh4T^XwA0!Ld(GO zQTHovBP4iG6H%6Z7fLBY;Q_4n^xV@={2?Gr|mFxuTjlc;45JhC@# z$`i0)jl-zpb`ERPXHm^Jmo>+jgByw50Knw)_zc&o{28&g@dw1ap9)#RBA3LT8rSqV z)k`*7T_)z>79^9FYfy4H&M+}vW2nInldFwB=PPj#F-wkDdXh8g`F87G!TU0_Rv)zQ zfG;lJF{Zf;5-vAnUcoh%#vtK;7Zm!ZoXntq{k9#ZF7LP<8#x`64Y zZW(K2AY1{PhIA$><$eHMYW@!JhL?Er{gQnu-UzNFJZ(s$@@8D~%k5+XugzaF{94sw z@eZLO180=(+gI+L$ACKHt~zw|&3^gguN+p4>E#q276N8B*EU0zf;5KK1wm%qKlj z{Sfd;KYLUE(fmXI0D|G^I+d60y=gu7hc3J<_udTACl+@l%QD9`{3Xylah-&w&;kr# zj=8VF{{Rt0vFle%q?TtS1s;H4lb_DNs*m_M^Wh(ZygTtb;Mc|92x>Qzr-?ixszW87 zrD)c7mhGl$Fa=4XW^JVXv4&UWJ907zHT)KN@Q%4_sj=T|=gXDQpOsh;dG$sL+pF(S z*~0eZYkn(9Euxm%?@hL|Stf8Kj%&-<6~f~rtcEntzay^>bN$4xy^gHvjA30$8$C&U zd24&(fA}a+_uiVerr%XN~@$5w|E^P59nkTbm zN#kf?XAF`^vM4-`N}i{=ufsnB>y4>@!ACWJ6g#thlU~&29$+ABwcQ8(^O#3&csZ}% zuh>&fT_ePn^Ef0;CB>q?F_&9KY>bLo@ogZbB_*Cb-kR|i%TtvIfa@aR&|JT+^scwW;%@jbP~L^_z|h%WUH z*Bi2>eVBvC2a5e6_$mJY1kBMsAn4Zm<@LkEZE!cNueF?m$lL;eGt=e#{XC!HuY#kO z#M(!Obcp2CE-oZMvGcx0W5z~!Dm{1ulfbX&&%k~K)O;V{co$NFM3NZyPUx;^@r!Z;b~q4GZ@{u}=Q!5Y3b!|;;t;uW8ZG^-2k zHpR7D%_i#FK=4>btlRwbc2Ofn3v4UNINUmyd^Pa?vEc19!g6YM?V&%4FSP4BXOsw@ z{@JHVgs=d9WMGV4c80=}ivIvW$$kL-&i*O*asL1acY$=fEi%hk(+#}y-!T6GNVJ)M zc_p)}ATH{}6+b7p75p6hVDS&fEkFJW0pZVq{w4m>)BH7|>*5U$Ox5gu%8jN*k_aws zT1#}6NGE%DWS?_J?4P@AgI>m4nLJ%d!c$UdUqkcU^8~0;=BE~x%|4%Zr*o(MvHVk{ z_(#TH3~ViCOLINWu8ngs{n)qF^$1$&So8q8Cew}^10ZKVUwjpg_eA(xq+LiFH;wLY z!5@4GwAk`^&nm*dIlthk0BX7orh_KKHRYAM!zug8EXMiRA5H3`IP~?e(0_wkrmNyl z*`GnyS_5UM-Rau!c$){xkgwSWdtfs0UY21QEEOjDwti*p}6YPp&ps*kzCEjxi*L6yS)lX z1ZekGTB=AJaLd7Jn?`*VH)pnLZ`&4UkHh+CfU*O5c*VLE`JrGl>B;A{c|5Y6SXtWV z6Pr3<>OTW6ZY20`@gqlzA%>A*sEqV0 zVXIm*{!1|;qL;!tmCwRmS6S7fonFT0N|Gm$3ahQ#Tp>7M4?v}TLC>K(-vaGG()@pG z8W3jiZmduJv69Yg{{Z8a?N@)fZhExNoE=vv@-e;*ONF}^nF~BpDZw}jQGxs`zMscB zwyWYB+ljR~p6wjMH#^GVV;KPp9y8k?DvI#SJxb=wQ9;c5T*A<>ZP8pt zVU>3rWf;2d9Pd+KuV1i_?Azdf2mBb({98Su&8ccJ`P00LHzVYYsxiO=p#5{reQo3K z1NeG)qq}=poCQ0}s3$n;PX~edSKwKnh;QpIj3BJEx&1el_-7g6qgJf7XsQ1I1kLzY z`$hiRpB~f18uyGfNPIVCZ{;dq`4;Zi5+)jH*2X(^p5e&c?h+`@LkRbbp6C7wA^!jb zkk@<>r1;BCmfme%eQ!>dXmx@MJ0JbZi|@jv?m zLWThxhtGYI>~)P-=JMiE^K;Hg7|nk}{wuKm0EM6M-ttX(%(7cdh8B}8wI74Y9ZH&5 zZ0a)o>|<#ye&fsH9v*mkC^noLx1HXJ{{Wf(GL}K@@2qd9%wV!P3^H;?ag2l4uNn3j zuc7=ebM{XVnB?55<+G4TI6335;hOY6_$ZISo1fX!_Q~Z2T2^(?DIqCVwYa!TTB1rTnd)b@kUz+;Cy5nTpvR#Ab@l6Bli`ID+Nwj_sUH1%=ltTibDCD5 z+C1zG*R@Rdp9d^$GD@w2r;<7x`ucyKD;xHfwvDtMBJIb{w-PV?^&4^5{hHbEm8w13 zxl{6bc0QngkL6ST(fV}r{5i3>kAjymg5IEpUcZm&UkOFGiHbgwGD+O??}K+H4~ABY zoxWGZQZPHmdEs{-To<$%_gebyG%e0O>*Ifc(@*~Z2tSK$E}P`jb$M?zJli zGPk`zji+XbrIr!wTk(l0em?+^|$fN(UYIyy3nL-eKT$k z;a?2fqK}n$!R~Wkd;ZbT$94NR>eEW0zq33?q20%jczd+GuqTdr5&`)0#e55B?J}b; zx4+l)>0iYDFyWm(Agy=5EB^q=QT@T-<|S3(>J4;qU->it05eiG+(9G%0Iyrt(TC{0 z2LR{Oxc9943t3z%IvjeR$C~f-dpK|;Bax4%;w$p`Mecr_D%Wp9+Cmj@ zIM3xz`2hLIz#)S-)Sx0gXpf&Uiomy5?@~qcSp{GtipGdzWTX$AQSIEkBzyj85XX1oirJT$02# zb|r0%W{??5ugq{det(@c;~g`=8T_jc%`E(NAbMx5NNz++=8u>WjCA1R@IIA;cQ=m4 zl=^kqkM~KOjE;HsHHik9seQj=MgSf6ckNwerO~*vjrqw@yKwK*@~B~Ej_ejcdyMSnu!c?6(vX z$Ro}(f`2ciK^)H;Y$rJ3M;I9Ek4m`JcCrSVF%jL!R>l!_C?hyfKhNh_+O4`@cy97J zzUm^%$DRaktWSP}l6zp+Lw9gi@xj30F(cpC-xaap9TmJ+;%Iy&GrO_8qRagX!ZS2WSI8GhD4vKA+C#~ZzR z^It-K%pU`j_LKO_W$-@J#a12@)^+e9(I?gI<(k6w{dd3EXPO2NXC&yq=<}GSjid%A zRc4ES&lacm;g3Pzx2MqO(ym+FYx;bvsQ6A{YpdJHml}1>aA3TFgtn86gUmCeat;qG z(DbiAFokJQoN)5xn@-KEr200xuIFYROPMKbe#2jX!3X~U;G|aa$@X0z!IxtshKt1P zyN|GwO+)m^74b*yG5Z02)jzX8ho+DAiSQ-ohqP@>eSvkj9t-U)rn*lkC)+Ju#6*|c zpJ_-7z7Ycw0si)XXMc1Hj)Nv|+Xn8fZ2e%BCjM6O3$S=~mm!EpqGYsD;V3c4^P5Ji8SI4`CL5#TZM!{(T3a!`{} zQBsVPPR`BAtE+WK)BgZuQ_@jq>Er_$$Qvf`&V-*Fx1a z>Gc?#<91PPrAHXgQHuR^mfq7=np-Bsme+ye_A$<-ebg?97HK5XZ{~(r+0bsbyM%u6KSdhe?Yw;d3$|%bS@z@P%s`7Dv z-K!NUe{+PQ_0mbMhoKp}*`Emh(F0D@e`T-PTlN+3*;uT8E9#yc&~*q`fZiVP-JZ7Ls>#_Sj{%AeagZWGO#^!%}fl0)beDL;@LSMzK8A^b$K{iOc@YMgl5$5Uo+~+Y`{M_daUfy_dXv|$Cc1mM43XiwXFWKqdzqPH_C3exTEaIml)m!+ z0Dxh)jXZA%U>f7VJ}S1!E4L=rImaaMGX^uzX0Y{bD^bxkc{Cpu>DM|=qi-O$Yb)zX ztnQ*`*by4mc;lH_yvX(fnLc7*9qXT7@ZZDhr|^!oWgH5+o~@$mR?5u81s57s+D9HU zv=YQK@z)F5zq=nDe$!vGwfBu|ej9k2?!x!R+NXktjN`JBAooqBE|ng)_Jnp)5By9t z*vbIg_r?eq8LvMTiuQBS9oT#$lrJOrI`D_V4lc4Ex?V?~XFFm4Cazwk{z*<(okslRQ10sJHQz2WU`ybV66vG|r` zw$*GSj^0JOwzjsC{@Mk5Ic_x=L=m&e3be3KZqh7)qd(Tw$L(qRIDAd;?}>gld=2=4 zp{Z|UV^SR(YTX%P9%jc9Y5xGUkHF0f_Ji^7 z!HoyTx^IW%@CS>$GvaM+{?Tr)E|;n`=B{A3X-P?0^&8kAxI_|4k=&A^H<4u=vd2lL zk~<@Vrk&CJNPJ@WJL4~e`u3(@PrZK#&Ejo)L(z5CwYi5+)Q*dLG!B;c7cs}?%?cnA zsl%387zPT=JVCDQl#x3x-q=)-r$62Q0DIcMrGNM;myCWC_}lhU&^!%utfU?!_}zt{Ia?}YBDH8J50LVQ*l zJ(&a?Q79H!vh&v+38~ zzP7sfGx2lc#+h=XO8)?aGEEA=>DEy^UuA|{Mv2VP#*w=}oFq{vBgtUWKHEn~z@HRZb*4gn>eR#476l3S@YPXwyUk7wcSdqRfIAb?v% z92WYWtGNq;?9wu`O7b&1HcK2~N1OO&OEtb}HFz!&V|+Yz>>(<=3&$i_l`Y=g@&N@&P`SI%BcJ1MyvDB_&z-~r-&Afki9<}qoiFBE*nN6oh1Q2t_=f@-7zNh$w z;7vzW*1TJHVKhqGCx|smwpLPPWW2a(1ZcsOFEWPZTQ~r9&3JaVEK)`wn2teEr>`TE zUrXYBTGPy-h^X%w)28F;%D-ElmxaGqd0kpmRh(+nQuXJ5rH`8RX-<5QsV&5;k;b91 zy`222Hym}z=L3RI9EYC)_}z(YS&Z|8e{25$#aGcj4EP^6#LY`c@MnQ^skOfpc$VRG ztv1pH^Db^Ku1Q3WFvU@LB(svK9ATZ=V^(4J^dInV7yJ}YNr5!BZvg{rqA#0Ul%J4o z=Wdsb@!O9|{Q2YH-I4b-@Cu!sNpH1}|I+;5{{VvC_$ynm_*?LI#KgVLuABX}qKS;H zIv2Zw*HA?B9htv&w#>M|!N}+<`IzxpAKED{GrBb0yO2o8Ba>g&pZpcC;hOk|_9wRZ ziM8f`5BQ@_nn{*9FtOhx+H0=nU7!ZIM&RI(2U`A3JXahNt)znhlx1Q#2cA2188z); zDMk&bnJKwZyExlDR^vkP4W_#ahn~(vofjt_Vr7#!$3_70UeVz{6364O9BF>jS@;{m`P?pb9WqeFAGl|NRv2IiU=^1H0toi6T{Ni5Poc)*+dpi-;Ha9= ze~Q{wqqy?4Uk+Q_BA$yH3x_;$^5>u*cb{7Pi|_`c6k0PRqiP8PDQxF+J76!d8P8v1 z&3=ym0KrXl@v3}f*I;Bj?5qp`oDfIZ;Z_H^Ic%QX*X5^%?$uTeIr&k%$N=c&cB_2> zI3HT^AvnEz8ek|lCcKM2C)JkvIjw{uFv>YDatmNFzyNkW-RtY`*uz_cQ`P4F&<(ab zjTRe%s!4wh;lWQm(_Zg*ASU8@JVan)vqqO)FtKI8=w4aQ1`5$Zfy3D!2 z>vO6)dymGdeS?+i^1Ly^RD?hTd*HUCKP{*#zjZy+fPem)+f!4ie{t21m z;o*M?e${^-V+^p`_*+nt70z&CXWNdQ*+*XAO8AT8uDK_ zc$~H}2*Cr>8Ly`Q0AZ~X^HKi*f_(g8@Xnthis!|)-`Mdwjm?|AN6TZka_+)L#EgvB zURj1w!8vz!{EuS?Tm7O_?5=)X_#5G_udjS$@Sno{G{(Awk!kATv#|+-?NYOlGqyOv zcEHXD9YubR{8Ik_f^B%yM)0+d#Sejc{F?J#tKMDM-&-UyvZrH1)aoh462|UNc>0!{R)56QsTx@m0Q+a6+ta65hbjx${sf z@Z=}~un*&3ufHF>KjUpX;irjw6XB_EwHqyOLAzP3{?O4{+%Z8oS)<*yS7{MSsg75YMZt;o z43=QO%csQe4A}TT{tBn#{{RYUw=qu__NKF{OvvH)-(ACvtVS{A$0A0N@wG9>HS(Mp zM!fU9L-tORQQbA~^1a@je^bKo8xc;PSsj~ur}l2Ht!~{PYdaq^f5B399V%~$z8>)1 zv+hf%^zSV*$SnoqjQ8Y{IPPopL%=gyXj6U-h0Ik zclJvh8|kBmBR@MRBzpe<`m4JC0D_XuuJ|A0&4!h3f=xJRmN3erDdtTGU|f{|hB1^J z=b#wiSI7|QI?lDDTKI=X(yp$O@XR6+Li4}wT%&F=D+S8~jl^ditMy!}g2YgTTiWRO z{AMrN&BZI8qwykZFBAAN^vw!Yy0{ZU;TM+u+XBb_`OSI9!wZiSct6E9)6WBb?71T! zH_VI|9;Z0t(z-tf{66@(sq67+HW~%>t4jMCf3q{Hos2@Vs}}jOjC=E6M0^tXL*oyK zz9G^e_^UtsBbJ8sRqbu9+UELD=-YRyt0Xao$IQW)^(wgM+=BKr+!mJ+Y3NbB<+g1x`uKfw7Bh1I+KX}qUOZ}@YpGMO> zU!>eFKeaUrEkX^%oyi+Qt{1jYiZ(y#QL!C>B%FXp;D4=s{qS=^(eA9E@g2iN zv6YTiG7!6+aK}08jAI=St$ZWk`K%&sJ66=;l6YhCB)N(rL(K?ed16dphLHm*k;o(v zd)M`Iu7ANg{{Uhyj6Vb5@gKvxGo@U3uSS;RMzYgyZbgiy6&C_XV-Cs^Rb?%>;FjYg zaq&EV#1t@4rB4xiO8TXB^VJ`!cx%HI@$RimJ6DCSo7brK%uwXI@U_aJDk z5*R}Rx8|1SL|k+Eb+4ZP0BFDXCQrfd*~j3ghyEb^IhNuLF6&p*#=mcQ9kt%qo+nFL zVYq01)fij0L@2We+&SE>!LP-?ik}Fy+g}rTpYV{|1$X%pWq8J1=c42d!vp3Yk2U$% z4e(Z3kCd?<(o#*nmi#sR&)aieE6uQ!<44&jw3l1{I(|p=ZSdFr3NfI3Ay_^!Xrk71 zxK~Lm6I6!ULjyBMBr-`G61&$0ii3ay07&Qd$M#kK0E34=WWS6a5uf31rQzLIO23lQ zX-$@k=IgHM1Vprv&VT}_xX+r%#Dld?4nL32*<=0*)usN?p9HnPh_~~+8m+dh)>;L< zsD-WWCAE!R!xJBv&2c_$*92`K5H}k7L-uj~iBsX1?H8l`Gtj(LH9s3&+ka~7x}KR0 z-JG5c(rt;7<{OzMX!EIE#OZEhDyG;-TWDjK`Wzn!Wv$K;s_vbiPxCz7Mn5sednbvc zlq9a2Z|}F|qw+o}{{VuLd}{Dd?MLy$#J?N7J2lOv#G2=yEtaKc_B)nKp&UrS85`!= z8oY=BDW90B;=WtZ`M$T$U9tNUz+X=I{cE!L+u_M$_;m-3wb)usSHxP2>mO^oiH+H^ znc5p@q`Q^b?iGL%vA_kuU|;W7C*i2Un$LGopkR82BLf|I>F#UxtRz%$@q{IH9TW0e zeuwh*c?Aq*Sfy=V{{VUIRyNVSp_Pt8u?Ibldkpi%dS`>8UST7!U^)!f85|95BSd&) zB}numIR}jK+*fq48Et~3eoIUrl=(3WqYM>(&9Gz~Hqw^^8Bh|V#e(!Wo>FIdMf z!H*Up8OEL^1KvBB7=J4K+0&(1p$m+4ALkYPjpL;xvv}0D@Q>iy{SWM40;(_UM@fB| z%kfcvsjC`+&NI#k{{SMjY(hj2m_ml`PCp@B^q0#R6A_ipIO=~K)=lQJiy-?(|3H zv0>$dDsNC(bB-~Qj-(E?$Xm1*_qWis+!o(qS&r#gsCJ0$D2E)gpSzr7S3K(5Qm9f- zM2-8cNMmZSP;s81)&%|`m95q&r*j@M6!XuxJ@MYF_-jwR@sEhC{5NLbXOi$TtGH`E0a}dg-m~-h3Hy zxQV3Tx!f_1o3p?i)c!EgWAMhWG&)7#)oht}+g-#%M=u`B($T8OCcCwXveZ zNoZAT=|c}Roa2sam)cxhGN58lB#QR`026#I@T49O(fmc>&0;P3jn%chlHFXQ!&i=Y;$* z;ZbFK;cK<>^(ALZV|atI6MABH=%Qc z{b;+%$Rd3~s`;#+-{u&5y4XNXm5dCxQOP?K1Rdb(5ir;l`-|)8(tIP4=lJr~W#M!+ z-=f|^7vzWbyZ;u#w#XZo<--;ZPYuq3lInsA1>$c`Kje4@I&pFFWYi-%gs^ z0ie1!>mEX;WyY;IUo-rw%|v63Awj(-a&!^G#kOg$vnASbSU#kZbi6k}sJFVW80oXRd%u>sT45nrI`G+xYk;AOfc%=^hT=pTHv`dqo`U%{=+cy z>wtW+g=jn37jkr9hY6+NEBSj$rVg0Bw&~14hTW{f;*JvMdhP(!pBw8Mv){2tG5d}r zShSrz@qZQ%X^vpr2m%^(RxamYUR54gp`+JXBkDj4QWt#fNwS!=RYsdSjap%s;Y!;p zL0}rY>P;Gl!cZ8`x6i43RCJj=u0&Tx8(iUk9Y74`D7q`ZSLWclLM<$}_Dm_vbvXS^ zng6_fC9I{}yt!1tW(wX&+g%y4@-%>GXoK}Df*Ib&8cr+M*FlmkzgYaKDoQ?aQhsoW zFwc%-)}3ErGc}0rA&45bngnmC?6$o931q`EpxA+FYtAvAsj#PQ0)-|5RJO~{(?_@F zgo&0HTOA;+vJ8jbS_mBxjWuU1lRIS9M==ltfrUwiu)LjGGHYUC$wvO!LFkaK*iLw) z9acCLa?nsjT6Ld(6R+&fLGo$5NP}V2>1+vAv0fcCyc_FGMrlT}D#w0veunQuov8y)A2oIsDlAB3|x zq0l2A1+=6Cb{(UJ_UdINXwwsmfpVRg4Cn75foGg6L*aV0iDP;Z{RQj_HL3DCc-&O4 z$P~}-;fPOg8*>M+X}7olO~dV-X}uX$(5aEoj}`WkPs$8q+sh_)kqXIQTKr@o%#&A7 zdCTHGfHRazqVg$Ed-Jb7E5qrCUFFst-uwJ=dnNlt{nS16x7y3CfNM9cK0g&`^mYI} z=HAiW^X;Q>EM@S$ztz44^?d~9uO8Z;%wUBZP|?;?!oy7mM_Z8CB3ONjb^3EUxh;a& zZxVuW@Qcga2#_`GFKkt#XOv-Jy_ZECGruksGJW38swR2|_}nn=p@tuSCt3pJ6)onf80x{3Nu6K~Lt}!3omktWWK3zkQ*=ieOw6AIEYFoyS z4)T5|dO5QUrc-}q`(2eVyT+owWl|7!GxI|=LoctO$_0YJ(cJ+gW2tj`(`Qlw^M>(O z_R?b*WPS;EDj;L0OG$P6b82aEp06Shlz9fmD!)7pYrL|91l)V#|3Q5A(e( z{F>*T=&b~-wgjR7e(lxc0&^Y%*`d<6a3Hz2#`;R{8&agARS{GxQPqgCyD`AzC=}*u zXXVZ=$bDP7sZ=OVWbrL(?3omFhqX5c>Ap^Wn6?HA12fW~=1scxQ7PWYzwRRiX2lS8n|D{MDnPq##+AXVGa97akF~_g7>fZy?4Ywe={GzUY z7Krctb56Ts*0D|>I8)TMJ@i|q)p+4uVqKx?Z5I9PDrkNK&_7j>m(TKh4TfRA17M$V z^-8|{&H(FlbQ1847tOMBrAf1`kxQ%Ul8bV)Vj^^L5bs*EIEVAw-y9)%O=Cj{zC&hd^rY;qMvlx^=1dq^X{F&xl;Ci5>i*yav5H203p-Rg^Ah1+Y7gV=tP}dt_ z@1zaZ!zEN7R1M9!(3d_F9$|xq()xCkJKkmqd(K{*yz-0OFR3^8kC0@18fKpleHC=?8rH#D#+Sprp z7@lh*?e)VZVTnqx;4}DE^+2tlMsMF^d7C z^wxI{X7Zp^7(CRCYEu6S!$#bj2TRCZ-Rm#9vg4a-m+R_+{!zwQh~ z&KXZYx9U^Y@eR^v*Co1#pA1I(ae9?ivx}S6-3tz-Ibaub)9ORl#KgQbJNMY^(o$NfZ4g{@nHsq+v zOBot`{DQYK7CaKqdQ1(RiE>G)CK{=;3G+Udoe*Z`o@f(uew%WnwUhTf!y{6T+K$Yv z*{XYkV->|yJ6*r>6vMiPU%A@+LW3exkwjWqst5AwO|%YA65HSd*ZO9MZwdsqdu$6I zQC73flL{ry~_Ie7cm}N235U=O( z*8FKV2&x#TWfgUkC;QHl$SGoMGVvD^+%MJ=V=9@bXPt6seE4%O1#7Sqb65>n|5+x45=WL92rIu5^d z6rZ6h3x{j-4&u6T2T*Rky~Q^7LCc*y?0)X zFKRH6McwJ1`Rj1{JujM7MZUH68T~~`m&ugV=2K$6?5pzlM~g$bxIaKnG(iS8D5}lp zr!6fPvqPN;|2{ZYb~R>sm_*FHx}?v|;!`Fm83=@~9Omg4$QZwM<}Ug5TJ73@h5c^o zu;V4v8l~8)F<&{rO5Ud9QGrPW(PM11CM{#x-% z#~Hxv4rwn0#yegaW1pk@v)0LOq9mEE*juK&?nXJcO z$?lv$H@+UJ5e_a7vv~;T=R`FhD)ne zsW=6p-PDr3rLVLtKt25K_w&u*lg!T#>av?E2Xni*o;1ei4&4Fv=ME59O4jZekbSJ_ zp3sl81v_T2UC-M%*2Cbqk{yYp zp@FGO{fo-4Si7H3p78SL_d1p?5XTv@O1`rE{9w#AAsg$fHw|wfINdW9nn7|7FY;=Y zGUEwP3XJ*Q0m^nxD~T~_g`(vJLo|rxUaCJ_Hxm!4aQJ%RseNwq@#F?mzY5}n4qZ%4 zhM0T%DU_6IgqpZ1{*Wm#8j&N+|J$4!zXLqvbGAXz1Ucs!aLk^oDI6`E2Uy1aRVIy6 zzUj(xll>>Ux(WbFj-O{;ej9eL`Yp$^8MI)`zfvSCek3_J(?N_D_T`UUWoEMs<58nk z%)Z(ob7ft~_HhymLq5&#rlI>RX5)$&uJ_f})Q;S@R^eF+P}m8n^K*Xa9j-3Q_q1Ua zD_1Cw|9Lf{Z3g;=U5dR?H{nt zg9fxQ7ORSZZBLw{z(EcGh@)8hM2N&A_& z&zXADAb_;n7w0fInTM7c^6F^qaX&So#_{vB~7tVR(R z;=kWZ1f0asOQKpo`G_4xubX_l@S%W|=PmB1GvD?KfJG{%q_tHrrA);RnjA^U``&)O9$PP^|PM<>bJZmXH2fPX8r5v%1)fPm^<@JFj%Z zY^~}8pJVK3PK3l#YB;J_Q|J|l7pR+&>W9q|%#ah_Bgj*oZn#3gQnz?$YM&~}PslNd zunmTODlLyLnmpDR;e;@1|5BoS7}J?=7DqNFtGiRKaU%ltpMXA2ALv=3t~Em1`4+B* zDO#}cx~XozS{5G|k(Cij$HZS$O-jRVUPCpaPOc%*S)4>svwRA+q^>G!AEKf&k1XY? zzKK>n5A4Dl6-LA{(3G!3BFnT4R}AZoN`45u@3rLp#SS=pPWC`XSw_HA@f!YGORFJ# z9uYxX@2>H2&l!2Sj%!ErYi0gi<&T}oiwq8!+$rUK^T9obp3~>N_QT5!~sWWyJMtleLxONTg=`Ked_=mtc(8+U{@KmER)*Xf(!Ow+gtftdhwUq{OtmXMB!)B>Q|>EQp!OG;G7IX zc%}@)r7q^?#u=+QourvDlI8*CzT${o=F~Eyd(HMFwnlqFpG@>n;zcAb3T96pF@+VK z5@C%noC|iq@@=e8*`n+k$LALe42Hd&SfO)5v5`+t^gL(({>KHu1CJhKsd)7603kc; z@aQ%@A?ZX@L;tGQP|}YdXE?tsKO=au)!htukh%IG(8Py~%CITpOXKn#V3jq;b=mBQ z`z^*u!w)$O*Qp2}fY-md2y49q5a74Y8tCw|&rwQP;1Sr|8{;IiF~RaJq1R(lE|6

edU?9+ZAT1RZl3u3sZ zQ5`g4k(Q?ARZ5jeiKZX(MC156{3mNfwkSB{{z#}zMFdr_pd&j-ImFb{d@v&EZhEhX_!m<@r_W3@w8La-`|#)9 zzIM(K8Vo1J;G=e`@OR>7<_s~3`^LBVPza9#swgY}Wl-j4U=IVWF}gaM0vOgTqz^Bf zhFt0WgUDCf*kBQ-);5taYee|H|GqpVScj89Rj16R9dgIN2;mR$EG!ur|Cua6kp6n~ z?p=|4vg=7x=MI`kbD~2SD>VHE%DTD`YyO0$|N4Y3ud1anMUY@5LL*V7m6n@?xlQ1O zi#Y4JM)wnYW}%BnOpYi2qeLkg!Dq&|-I2V(*;fPX=*n)_jh8b}lagWHi9V-t;TqK! z5AcRWeWbI!EG?2o{a5fmeQ(}vtclAmxl(5@9bBLO;w9F`h(-*UGGmhRvJ5O}DLQs1 zue(*1YnfoLP8(l+qohxZa%3XdC_J7&zKET)!kp$Wc>nB%2zXWeSFP-XzZcKDO;Jn$ zCLL>kwwg4?Q#{#bRqPF42WBFnK&#ODRz*jq{Tva*(d9D>)n2OwYM1 zls7o$O0fKm6Ic!3Z1R@rN%7-~pLKrmd{)*e=BDqei-hVwIpT@aF-CIC^;#RN8OG>{ zD<;2byCG#IG27#kP))xBxT25ymw*~f7)WpW;Vt}Ii*rc50kv1sOBTtTsy@%>^j!Y?OY9F9oIp>@oS#I zD=v@4DOLn&OpiQsDtw>r{K>eIT zwsNTQK4qd*$>)E6m@YdOww$#}v2&AOE_WAJp=I@MJSN`7T4ry<--9gRG{)ZW3xCwo z?9YXYa<(Lmw2apI!3i?=rFWT^qxQIQZB>HyI!{T**=moN0Xyq|i9?7Nh6*~`-ka$- zl`wY3WQ$*`r8D-EcJuR6QpULXZrvVhaY_9lS)g}uWqLDuEDT8I&DwdfLfA&`^(M@z ze3`_b)96zFGiBW#UXSpHEd#3;mmPHe*iEK@Xj~tt79UOub7rNo1JybAWC>}((d9YF zRW#pu2t(qY7=&S%y{q&}-kJ*E#^YP082`3u42&Jf3z1Bl{5*36WlLA6hH*q@(o#h>nA_E89pS+lyDT3W=`v2M>9QqG109hXlu z+tGeo2Lx6Q97h4)U=XFs^evdcvZej%{;$9JzMrJ=_I~}Q(^nP5`DESw({2J1lD z2;o-oBf?3?VWK?=k~&s%_W>>NoPp>Avl^uEuX6LmfQC6VD5NQg{;-yzw&<)QJ9P>r zb9KHwd#o)hSWt`qk+WY%D&X|#Vs?PjPLjz$&}OT0wa_t_7i^6V+s^ZKs*UgAuIQZZ zD+}JhA1PzroAItuXO)ldO@j?w_xXkyOD9>IKLpNb^UkaF#x zLYE|TCt-?C`sVVYa&%u_!7k^0vDFu--3`cYv=nPNj^z_1YD7~vR2Phqzf1LfiRqWw z{6yIC2jlA9QW^BcL=)TZ51chwIqr_p*ax%W#tdUqQqc>Yji=P$H>OjEUCu_$^4Xx( zcWxkt>)|z)G_pX{zWjLL9pIbePyG{L#t)sc*A88m)VF?Tp1+5|)N1E3;KePREza#) zc3it>&E7*h@n-T4z&`mbQ2P!1m65f z;HW#mSKso!#mON!Y~;Uw(3nI;&RX3ls8@zxDmHOz<-wfGI+t`@c##WaNFo1)TWpGY z4;^sj*7pn)>J@_n)mu6U7R2RRlxVgEkisN!zP&w{4!1KLGov8dNTWXFO5~RYr8_{4 z2#No%648faS}Gd=N84t)V?!9p=sGJf|tp^rysH(}P_!SAhJ^3Tyae~mfLf|Eh37L9rI7hIOoO#tve;F0KQQ!OX z_iwk@5Oq`Jc+tGLR8?6gb3sfd)7eQf%(j_Q(&g`u{tKgQyPtNBrQSsg3KJr)L>_TO zZW%R^28wa;9|-CgfnJXhO3(ol{{fjNJPf3{V84_@&`%B~jG34x3Iq!r)|#avp2xmhvH2gPd39LR!VX|8-%i22M2Ek zo_{I({o90Yc||nh=*v9kH>6LT5i>FA(t`B^8DHxbQFM6r&5OpV@=K*tz_+~HjoVAc zOX!F=7pg+9H@*FKEDPT#^-nlZyUaE!>hDshW_}d{=G({T@G?Gb`?fNRH7HM+^W9uIW7>JM|@=W{*bF%|{gdM_2e`=inHv457NfLT*KP zcZZ}u3(5OwCo`JrkSmV)20^JHU%|~2o?$Gw%*Y=2X1bma_^GKeU2~$%G5PZ|(%J93 zDhD*8e0!=g1Kmqy_{z=F=FRHD#B30Bd?)-G@HOK{?XC%R z6yztnICovgfed2TPK3H2x!kDzZi55*n=i{~!S2T)h+r*;Lu~Sslc2}(<77gM)1t`O zFnR|04I(GSjq$k@{6shNG~|DuTzVT^$K7D8>fGKAt7MZczZ;2?&#;oSFkPbt_pzT1 zF_$v0&1tfsh-8Ge!sGMvo#(TcG4bIGoxTc<_H0oQ|97VU5n3Amh{N~Fp_5g^ zaO@da^k<&L6Z`?2Wx%T}U>_K+^ z9iUv#q4I?R%V=%84;>fNweQWGM)ALf^xpC(BQYg^i5PvJe1qM?Zz?s_eL9&=-uQw% zPIt;QU^3v%44)Q z@Ni=C5Z{pADCchdA;&}-ry(2TKDS&4?2XMI^=(bpU()%+^0?~kdMB@N)XHM%(|U5k zEc7kL1WmNT8Yf&C3VU=WwL<9~Z1Szk%FH5AI_8138N09@<@#%n4>CI%pF@e^kRbqE$7kgNFl;+Z6qa_tu5!;-oVEerc#{OJ(v26ITb2o-|m3 z1nvM`a9FKgSepn+wU@Qt0}FBejVZd`>AC)NBshDmoBSr}ONqu~ClCB@gTt}tzQ>sd z)QhmLkD%2eFjW98RH^nh9A>U$GmYc1ug6iH`da8vp3!dlB(Ua$XUMw z9GI;-Qv@KuECKjXd30qDh|&~T=?o^e99>48td~XO~0U_Hq?8pFfcO zbPB4orc?(aH!-zM+7*&7>0w@KZl9hT)XxvJ$fk1QOZWTA){~3xaO!slz(@>zaSn1` z&52kcJ&Q&}1*`Z2{Z)?jYHBBn?brp{duMA2r_E14r5TRuYzQ)E2XtGqmZx)JnPl(d z`{1mBMH4zTs!WWcU+5nuGCK&w%D3n^sglTO8MjANP=(F?7+-8O3c_)S2}kNp|`0s zp~jQxMk$d`Gb}xlNy<##p=+rcAp@jp!WwDRTP8R8xWGf87_5sDC}|AL?BKw>TuJUqkOLqg7iBN77r-=?KBd*t zT;l<+N%V2z=Qn%We=@+{_l!G95^x7-whp-imlU&FidaF(X<%O70pg{7%DszqQT@LfQyU+jDBGo`yN`HJGBpk<@m4lELy9vO}-2v$9HCX?d3Zb_)Md6eljO0|_$-FOu`fR3! z8ybS<%Pm9S&sKBjHdOz}Pl6N>SLQ6!gGwNk7_kl9qp;OzN3lNL;i=02!D;V1K*yGS zWge{S;s1X5MKxV8BOG1%Y+;mFf$J2ids3<`#}pY%mg_!SxiGHmmtPoOk)$_{)A-*P zD{-){cTlODcizG4(jeONjY>?BpAob6`lqQNW7(oV-1?n5J(f~`IwIdGA7D8UH0KX_Xn8;Ku&5m_N!6UzNEM zP>6V}z=lm73e@-8uMp)RG{jtACz9viwv7>r4(Oi)tr*3FDo8Klzdr1S<)YZ%(qK>XEd0RRoN;Gd1a+0_OE@20d z`yQs;mIiP^xzM1#mB=bscLu6GGe~ZomDOOl&~D%E+4~`v^>v6}CQr&k&~s;<#To*$ zcu({kmMIo()a|S4ZE?Yc;aSxPzMyFPHX!w%h*Vvq7&m$Cf_$-&JlDGbp9z;wL}Po{ zc1+SeKIt&kH|j%VOi0&dC5D_?he04Dk4J zjZ~xN!d^0fi`SG!r}DM_ttcjW4Hil>+d+x}-AH5dHPCut0jze{b)qfxhtq}ug}?T) zpHCAOmM>*I!oq6}(tb9^^)nx{b%z#Odkw8Kc6JEWJo4}_SS%y;tcwWK|C0@Gi)dky z**~3=zs(O|RF#x6vKOP|$ZJq`e)LeLP*;qed%y0R(p3wK5@9YXd;mDZ1;R|;FVAg!)?=|w$AC(cyeqZ`*?#8*MTCQ!))eEXr#p+H0oB7s0O=YE%@pVrB&JNv` zO~C8np)Y4rBtFjy<4;*fF?V?_nC!h(i#h#9ukdJ)Ckms{Pm|slE@G7P$o@kSt}BKy zoK1swwTbzy0`VQdj~R0CCN$v1bepmlYS#Jb(xaob*4b6BcfUmCOKG%{H6J}xR~J-w zPlSZr762dZXTQkM#U!mYh96viAoqf`chi}FP4;n7l2QpBG~T=*O1csC>8a^=nI)%H zGyQax)Od2L4BoN~&`R9dC+hVs6ES%CII|qA;g=!`7J=!y7+UAMfy^TdKfNpmzJA}O zv}cJb$R&gArY%eH!sO?oiwY%Av{*sndo7#?W(!CcbF^3Pg!ub<=d{q{5$oOb1vv@k59F4$uY<64 z+1dW2gW0>-ij&-NMQVNT4w7&N9iDI$P2~~{!+zT~ixWXNMxE0buq-cLh0@xe zGPiyvFOog)3jpr3)^iQq`pKa|;cbfR8Heg~eM7~ZC8>%2`D1FFy6JtgE*~HcW6RpT zTGaX#iww89_w22ra_!ue6S>TlMtdo`tRm{(qRjr?Lpm#u_Mf}Sk3KQ=QxmO_bXB=c zawG#u{8R6i4dq66rkW+W$KqYji7kdHd{=|iT<6fdx6*GA3`!P6?e>l$R zycysNlR-!GCl}3DMln=uKJrucnJ7Ao823IG!>O9ZXYAWneA!JL7yG-$`pndEzEur7 zBdJK4nWDy$_qlz}_W-+*{w(n6gHML+#>=R$6M|aO4wg;yHd{kQmwxH{$KHtD3)?HGGde?|8eMt#^5sAXmdDMaDf~mM z>+d~c^({&sS1U$N_a=JW=l>#8bC#R|80R&w&NpExFcKiWoq(+*XJ$piEKhqJ-L|ro z4ezNcyXD}KL0Tlo38bdNl|es1iBH3sYpr>@^pN{s{QLF{1yn$+-C7Pw4|79Cp&WH# z-Rszd9)?gIfQQt78!_qr{mssHPPIm_(yXph?O5BG0h&I8=l5{0?4?crJ`t-jewA>g zZA_;`T=0hR-B;h&bo7AhIr=p?^=^7VA%Bu5sb`~LY~gTN=-3RgqGpUQsU?eYUjSd! zcCpr}R8c^mg1~pmc)6I{Qn<|>ARNvFWZ6qsZzekgX~vo-Y?#!9@Y9Fsy9~#t61|d# zy?|4Ltm7G>oap3%?wRl9eK98{b~P&R&9{*s>yj<$hF$0cu8iVB7;vlBZDB@!Hb_Sv?B)!JT;<$+3K)T)RVH^G@;VLGp{Xbvo#?e`vZc+ues~{*W7#$FLfYO)WSD)Uxe~xmm{z4bK&S-jqXy>VS`M)y!E$cub^GCA zoxnix{GXRPb?J6|J+0MoY!7+;OuTJmN4@6l~csGxZ=NBj6~ z#H2#F@7IB=y4!r1*)h@vN8Eg4^mh-(AB{liwwEwVGDCcaY)W?JH{_er*dMbs)&5x= zX5{=^%htbT5OoKT1EbX7NL|nqjGy|%h6P{YS@#_P(d3|VviLULKzg<8Uk!OGL?H4R zpb4ON3_g5u!;8hg=eh6z1TBadC@Sk*+BrC-zehqTG85WcovfPSxd90=PkeCst!9U? zwaGbxTB%7HGUIgz2;0S6LA{t=PP*p4>_LcX_u6pI9t)0IIHeX`yV*J@p5>K4(5j_z z4yxwi3UQ|~VUQ}Y`&FOt?qlhyXzzAgs)Vr z;Ubq!*VVl`J$^E&SCuC=8?G@`6~&@A+4A>ha-q(jtGo2c2JKsU>bev6upVMTx)WJ; z571iFA_UF~d_^)(>rs)F&ugmywBu)x(El>X!Fhay@|&x`^|6vGWUbPuF<5_*bzn9I zXw@KMHZs3HswBhM(d0YdsCZ9Zl5tJHr!kA?314{r{7lL!QeZCSdM+zd?zWf$o4OrL zWQ5cX?l^>x96}#i)NZWwwJZE%<+V@oylE9S?~1l)>Pf|GhrRAb%C|+~Breov6I2G0 zIqH-~yvVTV^U6Kg8m?uoLlCnR(D|xiW(zq0PblhL2p_K{@0>e*V`c`CX(J=-7j@xR zzt>WMv%{gCLjTlbM0HrFuBi>4@ICx?)6iovrjPt(B>lh#v?M zmGicLv~{A2izMsIng6a+@ODirZ`f?n%4k~6nF}B9V!1V7oYx4-|By=&-JSchjy_ za^&xI@~{K8=?dY&?dC*x=8!6ydi@dmLTn}>L6XzRC5*85m z6R_QR7AKu!j48Z69G1`*s8aYk&Rc<{2RsGl%Ea?0X3F_6_YZaeM!}5cgy9j(FKjJv zWAR<-$y$0?U*YAGhA=axL}z)@CGxCRI0pXNJ#Q>n7voZ@+tI-1d9cuOy@X zNvMnsX*daxc=uj&=eHK@k+pQa0hS?u919-DjFgasbCJ3xfO((_N{0cjFyTs;NLIs{ z{FUrb=OaRyDndxYEL6=OQuHQVzp6fLbJ>S)*(=tZA9R@hRm$VM(mMG2dO=n^&~z9n zJ|?CIYIuX;TInT!05!bLSx0;Ilym#jsy4O#;1v^lx3^~VIB2WT<0W-WE;ce0Kt>4J zji*%huqvTH+B~t=Napxg5d4iO?>Zg#3BLNBwJ|y8pa;zf4hK^ng#hu;#(UOjxa~Bk z=T8&LfK5vB#ElYTj+|GN47i5#))L-Jlg0j;F1ACLzh?C59COV;7vpz=d#@ej)d z`}RdgIWUY2;?SAw6bgLvx{!gvjYnhw_WI4EJVhL@`|ovVuFlImuNr^8SwZ%HcKLMuqNK*9(GKyrJ9U zvnhZop^Bq8?AUc)a#HHc+3;EhN9H+B_MO}T9$iqcbm>f2*L^-W9!5>CZCs1YQo08D z_N(I}?f}wYri1D8=(IF;sScgzVO#As;lGEho2A{$hX+eHsJl>G+(6=HRRT!`- z%E58%m~w$cYSaA0$fx?lco>Mg_1#IXIoV-eBp_xL4W4U?am%892BVT@+MRLF9w_*i z@XPLPJ`+mO+4v41xqqfZ;;n&CfRNTpG1wPeScnjPC~29ks4`iPhSsRmgqSi z&QIH8gPWgOU0y}S%Vw%YW_FTZPdbKd=1ei9G8ghh?vR5+!^$OQ;OnFK=TzUMToJqA z%p6psh!n>P>qpAqxqu+WB?R9DE723 z2ChGB|NC;04lfFbr=Ghgw|`T{cvDDyofGW;g5wTQ{aPmq`4bGa!YRtR{}ywCYJc?QNvh*f@7~ z+2&SV7Ca&Ye8*Tyw|WQ2)H|i&_WAe5M3g{6_ zpjUXsYdNNn-Z$(Y3(_o^=_n+<`XN(TXSAH^OkF8fXsz+3OEgDXH@6f1&sY1|xcO^V zs+JjDW=bvYoHl{bL8euzDJ)KBXKnXi4qs#;&Ch}NsJCNV?E6qY=zJC`O+n6bb$RVI>Z?j#IFC3?^sL@j zT|cH3CMcTaT6n&xK>1S2dzXO|^!OiCbuG)e$CF~8;TF|u1V6VjR0eb(ufj`YB(CSa zgCT-Q4(ha(X)BabNUvk{>i48$%dInVJ6D(osG>$ z4p$|B_@G&~0D=XV+_`Muc;Oq8@53Q*GvF;gV0^x@++wHwJvkxMzGy6iuhB`-HSqZM ziM^d2d#C4vZ%VA;n8#}l9fP$;6uw0}_(ao&og>kG+8rl?Q1%f-UWEjPS#8<`j}iLa0b(IWi^3^Gk`1b_ zIK)hIHg&m_okvCIUiC0~nZ>KO^R%HnjxrqA{Ukg>V>)Y|ef#i8LHSvpw)mKwFUr-_ z;aK?VD@`wp99-4;uE}=k>XMVAfTeEy8JJTq4(;)qHAm-^8%MP}$5@yC3lLO$U`Z_ z+CA4~+^%khhn%k14$Pq{^RRTEJ7$D!z9oN@Y2pVgQu$&#se(LD&$Zthlx%MZap^}7apKc0_6^?TZU!eTG*^h2DCrP+5{z@tvn&B-LybYe(D$;{>3%VB6ZE{Xpa&Lz=_Ca_UbwsBr z@pv1a9YYxdVUAUCe=g~pziUciL=My&ldXgf{sgcPpA~xZU%CSdA!XInFD2^RQibf_ z{5foBY4ue6hmKPAVU-G)y93neX54V#hL^=}e^#<9Z=?ECIc90bx(H?q1t{z;x~hEA z_msw6e9uI1E{%9v8HR8)S-IGPNUW|8|GA9D=Qzksb6R1xk3oR7-Ahj>Q(!9|!1eZj z!{2UL{c>{oeh1TS1eVsf_6g+|G;LH{BY{Qh3A#{U<-yHfqR4*na!j<_f6E1T{|8n; zslNa;7s^VBhZ)aI_3A7ABKjiudh)Iv{?Wun)p0MIUHKM}`}LQaX!#8H9^Fnz^fdeh zru-i92BkUp$>QBh!*Oq*8H9v;4NEbe>X9vGHKT7l~ zAK2sm3B9k}=fZ!t$AfhBAb#gw@TR3>Fg<>K`ivO=0KNr&8neK%25zSy=>>;0&C8mQ&X3fPw@Vk+5NiqX#R+NC;I~a$?zY*%N`CBKSTaMN#QDoe~ zi(A~41QUP(1E+faa%`{Ud+0B(8Lkoul1GY0EUc)(m=I15K*7l5A9G%l{h%k;<kaC>L9bAJ^)AES6XR?+NruMAje*H5J)+}kyUtZXNW?&veJg!|5(SSLJy zIXI&WgROlU9c*l41t#=9)z&}Yo*%S_!M$4F#s2^nJ`vn$Iv$vO`@6@JMYx6qj1~^Y z()Qtsh9I0N=buwicyGeL2sLjIM{nZ27fow(9ICH%X>REpq=qgDLxUhqq@KWf*T&jj zwcx!r`89tC_)ALDCx#GtMY)hjfbNwfFv8ImIQbM1y#o~w+v`@^Hi#p+xMYb- zg!2R4I;${^Q1F|ZXvxn9CbGq0Yf1a(W)D5XMw5)2yX*NLaq(}!-w$lOad?_0g{DDe zk>y7noC>8$I3xFdob{~V4aMP|I@vV6DhTXlea1rsNeBdUl2k9C1Kz#E;}jZCh3&NM zS5~&Mn^n2Ce>)L5P4NMZsAR@6*zQRL)BY`ZXTV+w@q9iT@cpvN?PCSh%QCF2428iU zU=X-a2N)dkPfpA{5{g#T^K0hNPRQ}SUtSjW{{UdJm|Qs<7_ls?_@1Ypy))LYY5L}! z;2#9N<&3W$x2}lP$*5lG%OlH%r1E)`}O0iTnSIlu=wuV_z$J|<~rjrDCES~SdTZc8k# ze}^GQmOAcY4iE62wS?ytE>`tDIyZ6H`HNk$`!|Wa$j8e(V0FP>Ffwt-Bym@x@r*xZ zTOD%seCW1pc@9}bez?yV7&+&GiasYntN3SAw}$Abc>KjBSs5fq$Rw!*@Im7^>zr51 zx~{u>uWGkCyP%9N3ImKP^}#(49ZhX48$m6M6bmaLD)PIJ$^j3D>57i+FGcEq6 z?}8b2%O#sDXZ{Aw?0v;>KelhhtJm=7{3{;~%wv1zYyCx=_~D9O&_jWd^SCmenex}M zHS^!Vj~vC}Xs#yl-NDoBp^>G8x{}QD2!kw9s4nD)!wdpD`qAUvM&HI>G}OFI7C{B| z%QdRX0y102h~id2d#K4Bi9YrE_8&W?hvArDVK05kN$aYO+`k*8=B|EohT+=yt|*=| zv~5ZeO+JoxNqX5``lNh&WBtD*f@@&pHyOvuMty$1mAo~d7Q{TI$P32|F~{Rx(|2VJ z!ZouD0CT?sAdkR;Guw*e+QC_iNF&@&IZku$&3=0t5qrq}PP4PLl0W~|`)~Gn)^BxR z5()fBqG>HOjbcX*iTk43MdD#N`9T8&E;G%4ICr1$OJ9SZv{i3n-4Y1j8CE|w@AiFv&szN5_>-%& zzAX5Wb-Q$TdWf`P)8&RsczXLZOaS-mT=go=*)~QgB~9G;J4*eY{B5iFrfa!wZ7teS zB)eIi*avnX{G*%(0P|WG-?B%HZ;BVztYA1G;t8K8rU?wVAO5QP!@;_O%Y7!LC}mWK zX~5@_a5(FpYtpk%TS%3QC@y(E zm>Ko!{VO`k;6jRJJ4WAghCFfH;F|1p>NwiwUs;^AJ{I^>`#$*7LjAfv9sE1dP2Y%b z7f-mmMObptBS$P~WHAD%8u{5Q_*KXR@&$iXKM%iVj}3TA={#le0WI~NV%gH--ZBK1 z){;iJ4x#>8B}1LE5ryibJl4xm6x&+QPr+)`7Vp zBMe=DI4;DR_I+fv)!mksn|9qwOq+rK09P9BY!E>N@G>~{HTnK!n8H7n|@N04$; zjat7E$#}oTXG)1K?unA-QMt(=ssi1}>PQ@W*UmcWxbYG^uuUS$0d*t;w;9fJ!NA6F zKU(#V9@<%IS5G$bB0%b{fihQi0LjS#bMo}(HQ}0;k9(xT*S5p$5Qjn{$r1oMFkPV; zbH{K_dY+t~)y-dX>7h@TRAFgf5M;B|WbmhoBR1Djg3=IkzA^^ZLAi@?0Y2FPXNtY! z?GEEvw3l1b<}l8VWoHUvKQK52PdNEIWYcyFbA)?tE8Uv$q? z3t8Vy&fnmN#-;J8x$swrNVf3}in_c{5*aR|+nk~n0AoKeU~`<4&3k^8;h(bHz@^mM z+mR%5OasiXkGUZjU8f{^4*UxI_Why!2demc#2SCaF9XRfwcvgJd`w$r!?ch>?ZUPJ zIoq`0jB{UA{1o`(CyumRYabZH_6=G%%xu^nXS&( zp6UGUWA|?Yb8K?r96kym4u~iVo=-FhknNLnw5WNm0LWN7~?S0FUEO z{t8Fo?R&$&4D{a)YSxomyX$V35z3`rIU%*Uz;!&S9*3dDe|-0|-KLQgQ!J6(TPS2M za7Y{+5EK#L*1s-4;HqD+*M+}qkJ;B(@lK4;>HanFwY-{@yt#rHH3J-Hb-m1vQwL!o zBxf5AGnL3cq2(EmCMq&-ME?M> za|u#<0}@I(^zB|1`#Q60zAx7NM|}te=T*~*i#xVA-(~y=Jm4Hx(Z8|Yk8^3@{Yu*f zo);0wTOeo4VtVxZ)#1OgHjk>yXW|V=TQRnSSsPdoav?moT;QoS_4vw=l}tmwW8yHh z2u8A!oS$Q9r(lJ3l`0)-)pGZ1dx&0s;MWT0O#KxwfxZN-wk|8Z*}CZqJdyv zEGsE-lvPr4c>sZt*jM!-Z62d_`zQQI@fE`Dd#2Z>kdmBex`JXK7{u}W= zhSN(pidg0(8G$8mM{(Gnem^Squi0x%TTLV4Pl_*5MYfyaw6=ZOW&Z$8zqbS5{#X&m zsjd^^cD>~3QP@VxUVO80_d@fMe-Hk>dS~qYt!cV{?Ee7qZfn=e%Vnd+pmJH(d+7!- z&fUnlJ%=ZOUtNiurG`%1w7(O|!bL`_?2|q^)-N?1t5&(xgD;q>#N?7mJm)+DbI^Vj zx8Vy^eMZ${VU)Fb2rP1UzR`h>2*>1eSRN#W;Z?VXX-&h7gUK1{4m$o--Dqen^;u*^ zIk%1*WyVJcnQoq?zdHI%M=FKlDl)Y>KIiMt?5W}lKMQylOz?i61lF(PFB57JyB1cG z=EF+xrl2EPK<<}%jE)o#6C)}QC-INNT7)`X-jS$EN_lfw&gYC3Mu_+JT>cgMS?~*5 zvD3aFd=b+%tElbZfqY4+NhGIaYBhMZ0H<>h2IaR!Ve7WPJUlmjqj-Ma((-t|*E?E6 zw4RZ-mZ#-jK|Qj0;NunIWl?_GT5h%b*sk<{*Hh^~jNTuUN%*be>)p}rZF^Oc-ZO)| zOM5hk+3W(a$6en_`C3@s;!@W^kdjUhW88Xs*J(DpHRS47l_NX4V~#P8L0K;Y%61mm zSd3#l5%^cVho{M*&4{ZRJEUV<;SZD;-~qb_u{h*($7~+Fiv9Ebg#Q5Gqy*Nh9QwFUcAO z8@Idk82ZYI>PWSUf#YgW@FqCJ~M)wJ=r86<$+4>kPJ!!2R+8Y#zKYkr6N)8g*{ zgp0(D`qUk;^)ULb*B)2h1smAlFSYFGf-N+$jC9LmZWiibj0a2Zw!yqxUDidfX(MH=-BkISiWVc^LYHT?ZEug8kNIkmL@_o_qu`a z?Ny=i2BQ_N-J45@Z^Qy+Dvh7B$>v5?nM+1PG08?<>Pog(0CP9mrMz|~;_`nj)d>ht zkXW_=1y2LMNcI)Wi>+Do=`}*i*4b2NE}6@62F>D5K;VViJDk_E3AeH2)WX#0Yc-_9aAjMaCdOdr+?FA+!7HAm z*Wq+pvX^CN4#9Gg zIo>?R?UepZ%P%0SD{=nI1IOiGlb;=+8gIwH7iq+)+pOQe0Q8pXX#nT_mIVE4^*Sdi zq^aiz`B&y2?P$qo`%rkrAi|{AsVF35;q7hQey^JTcKSuoUsA%<{_|gYzvzEWeHrmB z;<1!(_G2%)R{sFok2GtaEkW(i9qEzWE6j|gkZ#?9$3dKrsUNAXbV%6C4o_SjDrl~M zdKs979XZJ9U&-FhTSNN8+q1KK{{Xdo&75}HcJ%52{{S8;{BrN`w9?2nkl7sb)MGWu z0yl3%xPCpl@$Xi=`3HpBTaTH62ODxe_74M|JA3n4P73x%R3|5QBQ#t{#}aa+J^uiuBU~I{F%5&?Bl;YFpL*=} zea;tqom_XTEy;{v0)A19XO4RHKjc?t+Qq%kfbI0DoGrz@?4eM$SgRpB!0Wd>eQU@3 z)scYYwn-y7;C)YTQPM=rDNB}h_sos{W%1HO%wt- zcVu9LkPdjqVc!+!dX>y`Ur8ift2Q?S+Zh$6JSA&!;ix=I9P%s9>?Mq_+BUHqah&mk zTwIf=Vi1p)IOE?RU&5UzM%ohO)~3``v2Ct#j(~B=9Gr2^KEAc9q1>`-4A32kjm3K~ z2h{$x$qCu86y?eK;9y`6ellvzH~#=(mOFxYEL4x;`sc4+pXWCyT{Le(rKPFuGL$jR z6o(`NRE_{E{vxYsm&R?X+?CGEX8?Ni{{TIzrM=qA8c1*fz&RXo)baf*Elk$>zUB;K zkK_Z{cpZCpz{Pn{hemr1^*t3X7ib%?p8R&>{F?NeJE*6$REju=jB&XE#ya|Q-!(IP4tnQVx(Gy7WWtU=ZZgG_uIUj&Or9`0mBT6+D_bhmx3tQbL zSB5bg*-9?BP&Y+55y_l-N)d_Ae&pAmG|3v}I^#b4jsX7v3iRv2YS&O%U1VF_m$A7Z z6e|_L*|=vPazc)Ao)^7%^P8PE?CH9`Be;d0Ig00Rn;9y=b>NUlKT4?5x+0}bZqG`# zR@H1YD^n}-)|9%ZoqGgV)@$XL`#wudfJCo` zWmY^BjDSwu8u|N3x{l@;V~w~O8*_{n3RrR9Bbw=i?GCM=pkT$dYan}-K{A%e&VE(N z{3%X_^tr38q3T{K_>FHri?vDSwb(zjFNyNy45&Q$eo)Myupe|WIOYM_9|MtqNC5Qb`POajqY?2%>nyw(uVoH%wN%R{IO)hghCr@4FPbJPySW($ zr?z`^`qxA$MmrvIsTHz41qKvt83!E>K^65s?1k}<;UBo+dn zJg>RNG4$YL>0CLsQ%@U*o))$FW}0?wJ3aMUuaVJ18_6zYkL!=a-|%w%we8gF;(vm2 zMg*TH*t|xP%IbO+7Zxxgxjjbxqx;6Z-}Zz50E3RcE9+hhy3&7VABQ&H4%DShpW6E6 z@@khhg}Cz|vA2mW*~joavz12qj7|pD{#f*lUU_xrH%uL#F^UipUXNu~z8>w2x z^}x!sT=9ZRoRi$=(!U17{TH|YsN8B=uCF`aUf*4@mg4H>bGlikkn++w>UaQQR4Rp02);KFEN($OcE{z-dG)Tf z3)w8Reads`NO?1-oXydssNeHrXS^ zo*}n(O%jOjE*Xmd0IHCXagIk!{{WHeT>LZKGARUf7y&@&KO<6ETi(m8c!x;T$%1Vc zN7OH*L52oPDAf5}5(e%3uqPPK4r_q5*RCKV<uxZOBTDaRaeJCDcl z=AW{WKHe{8cD4?(k_h?p)E*8GPp@k9zYD#_jelq2ySSh1I#u<*+F3w5LpK2X3~uAN z$5UTC>DvDQm8gVuZz!Gt$0Xwz74>(*S#(bsX+9zF1f@*c)tbv{7?s^D8@@#Z<98vk z+$r?0BNsu#Ssi$JsXY%z`2D8aHLN}+fgNrURymcC(6W$xwk3wqpSnnI?)q2Ao;j4=2*V`xlsbETC=1 zNI4{aCcdEfcj24Q3Vc@n$+(&~xv|qs(jBHniRWZcp+Q5vKp>oqWbs~Y@NdFn#J>?V z%P|SKv$m0MF390TP=e!e>GMgkK>jT7I^)xR8tTyNUlM#@;#WJ2vd0i^ym^uXw?5H~ zj`-rT#Z+=~NY0#HuFiYnvfp^4;}3`Y4{+j9a`w@Y8kNFJA!!d*{{WV1NIAzI)%LN! zzqSl*Zs#2VY{VM_ILQ%Y;Ck_2AS8oQ{jIcQv1DTa8^GbQ9hAg@oMh#@XO7kN?2QaZ zb^{a0$9#9LJX*A27ue{h8{MBge$>7$gG=~RCZBV6FWNOL%V?sFiockVxSC=26fO}- z&PSj;*XJGHsV1Jncx2lv?jRnZbC&wo+rPF=$ZaFTI&!97ORK3{2N_j~SNXks2dP*| z=P{pl;;KO>2NL3T4t5JuQB(81JIuQbM0Qk;U5EC__tlsyd4^Ie>%l61Yu(zyqJ)G z>6*4Z@m{Vok}(RBH#<6<0P@z2e3kt^>ARLYOErN0e zG6s0u__y&NQ}DNj?qskI)A?l;$v8%1kA9th3ig#)7F~+FV~>SWauf~#9Xbx4)xr4x z0K!(DC(-U9pJD=z*+yyVUi47V}xV zKWUR|G>*qEp}zBao=$t>yeV%dYk01#9LFRZH-H8=Dax_yo`b0Nuc|yp;n-%u=n;0p`io5kdKx*m1Yee-YqU=vX?jlp9BjLY}sJ zo`v9>Sv9$4@iw}A%Xp^-Pd5x^n;Vub-+OBP=O1@y100&|=ee5WQFC&4$-_Hi931o= z0IbMjx3JS~?JReFp4nT=GANZJxb4 zYAVQsUX?Vx9_LVvM5Z;|%1QZ-Ff;V)#dz9yomm4t$pnm?!l$3FdiGs(E}`M;h~jL8 zP%wGtCyW9*=cRnmC)7}E0N`=Ze}#5n?&9u>=du6R>12afwfGz2Ib@j~ZuD(JSyLl( zAF)aS;CBPAYs-8ssEE8HrfKkiCzjgWE8yd4i7>lJINQ!i01?k|UZo87(|j)RHkSc; zVvj`B#z@*oTN%zf^zC0Z_zzK%KMm*t<=$JHdq{%_zjYjn(1FMweB*$9c_TQk?0oG} zU$J>yZ%Ny^>vqs0Bu4H?va^VY!61glatOxL)A`rtmyEnMJ-3Fnd--ndh zoA-CO(@Pz{OnHcoH}mrCJ!|ww`$j2%)Z9p(Q1j9@ky~mmTjo1RWAgXuUz->A7kX#x z{owY#!b_`bQr%CS9my0>wmmQlxj5<0D~5B>!!(7GyWN)TgfQrGT-%M2w7U?FG7yuD zkN2y0!MF0>=n&l!T}!a!=L2!>dwP3UnMLATd#h!#wQ~Mc#O*~OVf%u8$3Ojg>U3Ek zwA1YNw$(!+z~Er#Z?WY5712sfMO^s`&hj*MGt<5BZ+s-8!IpkBkj*d{u~3_y>(tDY1KBrIN~nFayi@X7t_|fA70XyOTRYzf8P=` zaq+t<%0W5F0OM#R0gR7-=ecImPSHQ7Y2edZncA(^pQ!nbaH;l@8j>PANGFVE9JyYA zA;x+U&3Prn+U|=Jv}QYq!+EZdf@Z@4SLG#Dm;iED@E*E4^_BIkYiPK*$=c|0NGbxN zkbYr<(BqF<LDa+5NO(Qwwd1 zliBH>G?nhO=KCf1$NF3)HkM*Aw$U9H9AXs?g*x!2!aCR>tgs zQN6nSPt&d^ZSZRLE(wlgLe4TbqPYNocI|BL&OsQ+HSA8jB)MNxja^FU!SI%|p?pd3 z%35l+`+VTmSMind$bGnVVdicgT!5}Y00GW&GxHvgX(z+~02SSM7hjDcTXJKKuv^T9 zh}d!@7*Ia;-bp7l>wXo~FMK2M9!PE*$%kI^V3j9~Ad3DCtW~lB9%Mjn$QjxQHPZgj zUJ!jtLQfP~Tin2Ot)rQhCuv;-^h8BJV-czv!lmei(ah?e4U%NjWJQ47x{t6lJVt)zTU9F|n zjL}|bx2loJHlKKiRfZJjX;M~1Bod9DpjYyv`zm;`HI05-Cn{chc`{Ifa}fue;EaQU zI@jrU!S9S-A^1=6Yfsi~X9nIsmP>Cj@W~+L$bf;g;EeNLP8Pg9jIi~U;Vl|HSkA2s zT|9mcZWUnDi|qdZEp~kx-1vjVeiHFt!tdHi{0-uS5o-3@WOlcrCf&MgNf|uFbxqr4 zMn_ES;QHiO=x@NU6zaCu5$Rf8)}?7MEXynsJF$-|9@4l4Nj*zsX9FWO#(%*?z8zUu ze%n3=_~+sKc*dXO?+HJc-de=pYO$RJnc0Q~(qK+W2WJFxp3C6v#r~J#eKN;R-23hm za)u7L0R8k(#fuKa5JvVl0O?RE0Ix8Y;-PCMf7?SJRMK*sm(RC^2rL_Cz&onw(Q2cW?)8kwpg&_ z=Dy0MS5C@XABNMzDYrOowf?MrLii)$FO7Z-X?ov)JaMF6X?mhNwZh$}mm@fV12Xjt zxd#lSufB6%F8<2a@Xu>-0Ea+$zljHyC%=+AmdF`Pcpsqu0C~vIU&_C(zuG&)-WB-U z`!#F2w~S-^E%uY8+}+vTT*TgWw9&?LK?MAb(UcOb4o)%0@(cSkYI0kA3!lVuE2Y)d z#-Sl@3oiJv+pg1*#eD`F5h|)~USF^I9}St{y^4!oXCJ6|n$kbm$Hw}<*@1#TwZ{}& ziQbo2YP(K*yN3S&fY;#$u9luK)}KwdPbMuwPapyR04&x=!EuZNRPsH=e#QJnzMn+> zhWtsUUMYo+rK3T>^}LNA2fhoO{VVbF!q+j|_^!g{LD7}__49rG>-3Hpr)brE9KS?< zeVi>}=zKrp4}iZKG|LYX_~%r!`(~NptMR7Z-9|>(*_X_T_VfFDo9aH76RZwmOI!C$k+tKhE^+1%;Z?XSYK+TKAmwZf>fu#z&- zPO-?LmQc!BKyX1^f(?CbJXL8WPPMJft!?bP{LcJW)a61IaJN$B_wUkI>EzM!>P=yF zBzAXEZ)xRFt};w`>V3{SbjMz6*gPxYokLrw{ls ze#zgkcgKH^TD1Dd!v6qZ6wCXvh7nUM$iV9y&Ps| z2Z&T6pRShl?ig&QFE3b^QFAwC9eJAXwUYH|zKHl=#a=P~+=j!$_SUGDI!>8yrKF4l z$vklGCESsLxtx%SF^;5@#|dNMO=rYfwYG)f=)Ti;e>^s@Mlczsxs@S}7bGrPMgSHd zWQ>qGuCQp2sp^TQ>8m7{w;wDvkVf*&C$E&r!kRBiD(%{&Pjx;lnTpS%Tk)WyP_IbhO#E<7#*RT@%@MMA>OQf<7-Z{0jMT+*+47TVO&OkU> z_X58Sm3V_spX#{y@>E;)erw44eD}i1!arNf<;_X$-FZLBdFX#TJ{0iEc$>o7rl$m? z-RLokwSbM@b-Or8Spdl|4&dE6LV6G@l)07C=&qu1G;C3W=X&iJ!TJy3?c7&)@bATv zd?@&hr1;Q{(Avwk9_{L3dz*gyQ_>vR@ukj}tAoS!{ z?VrTo7e%ao#@3!B3+0Hln-|Rq_S)Wf_eu8nQsNaWz)50>kSe~= zP=Xi^pU*~(@hV>wc;*ibX;L%Y>JzP`Y=uS@_?3vrAS!Nbj+n1(_~oH#{ww%3@v8p- zO~j)~@ivL6S#yuvK?F84$fdD`5$?`=SMHL-EB^6lf0LDKJG76`U)u}*3Qh2n_Sf<6 zg#0t`eCiEp;XQ5yv$wg8trlxipKE4Vn1)gIkf_2tujSJmTdsbP)7sM-d?8-_d;Va5nN zdvj1}w`(+;LXRp{&Zj#eP%|qWbU;ArNEP(7r58n1*)(uT zS+vX69vj!S`Tqd1Z6J{z=PFxiD;l>AAt2xc8Eg_Va0e#8Q~m<#HrE<{z2Z0#p|RDq zMr$N&77$t6!(^Gq9bq{3uO`qw5Zrh!^}IQ8ByHjZA@4u}RMV1AmLdnF%UL8$mxWZkene=%rCR zqY@e2u#fVUIqGn6?b5d3w7Hha?~HPJ5tUb%DKV*Ig$%%85_)GD?V6qs4?_wo>ND^N z&z8M9ahL1)RrIm2vA1~RxtT5J+Fl_b3m{%pvW3CH4p8Ha^~vMY>syxA{v3_`(BdW?3(KAkau4Ox9qEp`d-=CE_J~PR zo^fU;j;95-=ieEvBU1eXO9jrisJ@)KOwyFLjrXir95*K*ft+NLIsTQ5*D}bhB)zf8 z>OubiKmB^sOIW^Gm7{JrC9(kTp2D#b_R>csfMy4kU{6k`9mlchS}5OQ70V`8X3BMJ zbmxz!u&3V^Xqr~&yq4*VezmI(p`=?zV_SbQm=Th_{YOky;o>-on36rguyKL3@q_Ee zI6T&T@>se0rOm+ zvR#GFQh1Z(atSyx#sTZw*ENN2Y?Ep4rV<`V8Keg|Cy($a9<|VTWoK&*TS7o_b7a%T zq+m3*-#lX&{vb&DX0>$GS27!I=+1s!MoVu6&3k7i$ByPT1zdsyE^)^>!0%e03tszG z@s*AI^1H`sUglEenBpWZG7q>J&p}!8S}eZ~{6V+oXfJFe-RQHd=n9@Yra1PkPla=v zW2?^DSN_SlIb8g_s5$SQr1bZ#p`|%8WbaWkoR?6$Pc_Ek(~YcfKvrxP&usd0TH2n0 zWv6&*(^;1P0L#0(8T%xPtmQL};Ks)aMzmWjZzYtitcag~B~J&Oo(Eo;J!z$VP)-S}5Uf%}j#r6eAo0hb!2JIJ&TBxz@UO`1 zK~Pu|(T7v?#aI^VV2P$tlFUiYcpL%8T#x5k$!l!4EYN^mx(suSboC%qN~%u57_E+L zPBNyw4607-5rfx(!5xQgJJ+a8vt3%svXQ<>Tye(YM;r>^_eT}n7bfcW*vLBIju5NCX*ZyK+{hU!(n&_uMNOI;nux-;V+B_ zg7r(E?MOmf>J0)Gk8V(_5xK)05EZg|o;VfdnmyxbR)1leb|NgLfXacM=i5DSE1}b5 zZGQGGCq`wG;&N9GLZ~VW9FlM_qd)z6%N1stdks>%RyzCWbp2oBzPY67vWX$_4ZfqN zhF%6P?6SmQ9!!z&J^8PiwEqAq?%8io$R$-}QNdh{f%WI}&3$37co_UV_=(|dS4Z}`l=NTTkJ?q5pJR7dsUtL;S>GSzeT+IY-A#l4AM^!4!yGS4m zV4Q=&#chSeLfSry^%f$8tdlqgAH2$fL|ObZ>Gh}*4=H~BLE62~<}20g{tkRu)ty&I z@V2LRBsf-r+DU=*KPGSwbI^CidPT47kNZX3L?&+znB#YpeN}F@wMkt!|O8J&dEjTC<`26*dka)cjAT zLnMDJkOZ1mQ;vUm@<#o>>ktnauP+mfr!&x@gPa}OJtM=KotB;PZpQmd#9D8SY}(n55-OSA+Zbf+J-L(}{%`1)FdG0aK9Y4hzFNgmC5IjAjXjMdWPLlq9xT>v@eRT(ds{!j95TqC zFa2}}nydRg+oO0(RlIEZ*B46`@8a7OYJXD4C%tt(7|}dA;SDoVveLEbwJ3EMqJl`@ zN)Qi_vEHEHIZTHjf*9k{xvvgs_8tV&#*LugUNWqvZSNhsHs)0g^AP-ey*hRJ1u0*f z&co#DdGCN9`&0I{)HR0+QX6aJjh82BiYQ^p^e5&&)K}YSs7SJfl$jTh00TVx;=X9m zJU8Ia4(rY0-7Rlo)Fl%6vx%V$!gdWNKXgFJ9P!6&Rjqf$2|h`eP%51BeCjdZ?gjq< z_0z=5+R12C6{BN={jK~&1OJed5c%Jk1rP4JO^5Y|kw6@O!(-yYS8{nwR1?iL9gzrZg7L z4nwW95)py?B4m(p=t1?bR|QeR3Nc5Mi^E28a%}RgGfKXMh$2HJ#F+qOZYMneBp=LX zzJUFnJQd>^ekR&$`i_mLM`vRc@+`60&u}D>)5=92N^7I$g!1fM11ylm zC|KegZkk0{S0KBn=BpJ_T$1N$F8=`4io(VUYB9O`V{4#zv44LqfvLwC0k_F%EK9Wa zK61uJKR;^Yyj`MryTn>e)|ug}FEU4uWN#$)w#W;NHs-jvix>w#PMJ0Nzj*^{akN_S z`&;f|AeGkR=Undvvm&+*c?E$3Adz3Ezp$_T5+ma$?VoKQ#f@s(&*9&~%S3CfL&iGv z3lcT7Nxn&RxMflHuoshZ%$A9r-elNlkBL(Y8g_De`fhtMsOIeUJ~y`gnSLi~TC83f zi&6088lB*8v)f6o*co5S8{9`7ytBI$OqbfHXyo8m#J85P-D;9p*hdsLJHagv3o{`< zy(Ax;Ki*Of(zqk7e)#^=9~?dhd=B_O;_ri>utuFPh5RKYqUpC@DW41CuNF-s2!7Lj zeibFPvTen!>@9>5gyu!s-a`Hp-9(V8!)~EaF9kw?5q|Fg@CQtGuh4OM4lgg1BaBH( zOPiOfPiy(aDf1UFncpO52QT zK4-yk>JA5PN8mfwD$Xao+ghUi{oHWcNit3(icmpRV8DUKc<;@8{{S`UX`Q2T6tTee z&(ghK^_tSu$6^5kAcLG8-8Xg}I@gXptlN(VuYSLcb>Ur;)P|Ivr~lWpqv}&f@ax33 zg}_;~jZp2|gT;jZ05^W!vtKayTKj&1qkm_}rgLj)AV*`LEs%0fILhZ8IIp7Y>@_t8MWE7VPohIH7jyucx|wGrI721bm+xEn$Mtfz*- zZaN;rt25SdensUg_fkv0=z0f=^=WjU2x}MW3N@{T%!I%{DdE^!phaJErUn{AKv(;{?>T z4F};*+AX4hmU*ph{P|=%0Kom*?Trh9NEt20MhHJSx9th>+QqG=y4Lk%k~w9SW4MeW zVHoTU5RC(d0B%;t1mgz1N?1oIu2y`@!Oq;w{Yv=F;mvEro)n)-(Bb<`u*q+G38Aipwy@NoBQg+`6>?02Qy~j=YyH zojiRi^6tOk&*~>qk{FseFhefpC$MAGl6v;%*1Ye;7R?o`vjtM|p_FbTX^yBlFgBDxO@*lGSQoBk1t5g(H<3b8bbA=w|_ zStpYV7C<2cWA9e>yQ9H#adgvL7{1dCP_Sjd*&91~nN=VLB>nE4NG7rL4}t#x5qwps zNiV~_KIZmILmDz8pz@kbaviX8!>2_!0AoD+cxlSlhNcxFo{vNB>C*k%fKRdNSW{%xKMCY zgSq}=h64vR`bqIm;}#sZKyAm=sc9v^!@8+Zy0TTC;&X$(^Cfl=lWvJgve&Hx{HZOaVfoK?LR%fvn} z@Q$_czs6$gO`mtz%MU0xiPLYK%IPF!823^;fs9v>e#w?Hp8?%`Kh-2%N%TAWjVwrn zkbcD>Ovc|MC@YKsxbe##`PanVb3U7!(xa`r9w+eoSiSf=@uuHSy>$@VUHN<56h?x6 z0}+Fcqd6JifyuAcy=!c7CaBUfn|2c}#6ZJtHo4vN5Ho_KoF0|=qx({LM*7O?A00&O zl6gz^f)tk>Hp)j;A-aqK_}A!H!mkpaiC+vfe;7v-IlO^olH3IW^1B@woMR)Ck&GJg zF$&L_9?VjbO#LAJqco^KDt^cR01dt++N6(l;SGDpmPU(t7Wa_6OrlUnml0xwh71cR zUJea;55p}&;=@~uPejUJx~!3IbdAOXA!dk&03E;{p^v3|-|X@IpYb#HT=B=l85&t; zj>Kvfs?1eY>>JEQECzWC^8zs6sqhbnwz@pND1=`_FO~pMJk(vFC@NY_jq zY>;;3HbY~f{Id9Y;v4&~6HP6vBvQ2Q@=2CeMsVSTa3_#gHIm|EPJE<9Nsy@I+-+k^|Z?Fdze z-EcT46_Y)BSK$8u!)vWR+u?qpq*9#tQts3!#W#1Viwm~3$EBi?JmGB$kH^#4l zAMm8UC0N0CV|8!kqoS(GZzvd9plp1SDdZl6@Nx}*ExOO_WvBcS)qHW_FC6M~>oMBg zNn#@~i&mQ32&iQ!cV&>|h{y*gp2ObCsVO%~FIQ*zY5AWGpH=r&S!k8l=c)No@gKuJ zJ@}XVFlk;F_-~@!>(|<&TTS+RBo5+BbTg9WnPX4hAW~#>P~G!hd+;m%2^sN!S=24{ zuZ|ksuZQfCCT6kH&)ctCBjw#Ys@udz@hC~T=-hMt0Qg74{u=P7!dp!j!xk`UI&Gkx zlG@TWjxB((Br4-MCnTJl_2#@2S^c7X0paa8SH03Nxz6m3&dw;WxCUlZQj zorHi02uR0N5R{aZp30XJ0Rib!X-0~`$Pv;pX+c7yBu6)llJ0IsOK-#&u#K1B`w!gv z+~=O>Ip^HZ=iYm*T*8A{(i2*Bi=h*%6W2q!eSjh>Eyx1c2@BAQa`=V?)x6OSpwk0c zs71HC@=*zqA}_7lR+(VVG6Pn8(!-uaN51s&57+kbJxEtCh*sjqIgEDsb^ctZ*u&Re zPeOWLe!La9=`ky8j9+lpwzNj877?nE`(C>xT$#S0w)+%S@dJVrbV zUGXtH6`ePL;D7cDWbL521yHE_KGTa`D1F;wdv%Du)RrXLSb9q6*qD4eeS7O;?Z`&B z4M2EE$xrMCKw^kZL}_98vF97v;WF8uEnF_#Pw8{Uhh{r}cGFE5jK- zj5ps{E&Vn7tn##X=vQga?|dB(TMv#K042e;wF@h~UQMq18}9y>z!tCsM5)2&!n?*G zG#DQf7|W`8j-Y#vp{cn;dQgnt#FCjBowGbZ&owf$xVWTuc9jSUJ`TJA)GB;+V(SXv z9dot~D$JttRcomaevx-qr7?l0`g`ykdDZ4=%>xQ%3rfFFx64K1lX+pt`hy)JFsEn} zK zyJg$Zn(xNTrVXPODO^9*R>j4Tu_RlpIvV^e0 zZ*s!dOxSzt9Be%x(iY0~5=-fZq`}|Dihn35ShCorV^pmGfR~)Fi20-NfAAR+TJu1Y z)~YE2k+Bg3`o8{M*{{I)WpZ?wDZ6+79I|O=1wp64YiMR-q3AB!*?Ab?aWCP{Rt6D7 zN?JbF=^ykV+y=E39(w-IswYM70A6$1HtI!Tx*^-ugJZwjS;?XH*ZYT`$ApW)4#5_Y zX6;tOL|zY6DIAdvc!yOdP+s3AO1d5uy$`HAK1j_wLiOZ|rz-G{9pnn)6WwJQ69@}Z zJ;#+AkC$cs;Jah2+avR=2+wd9IeSmm%5(X@EWU~_Thge74c68%?!D zx6cyd;SInln?CdI$#RBJIDBAMKeP@N>6_^BK-#SAS?22ze=w>G^9`Q>1#5-W(X5Zg zuFy??T_kCW=V{Hh!mO|Bvqdi{aThoDUz)#(YQN7pef5;RJlSz~TS9!?WY(o`mVW)~ zE{a{sCb1=7yU|<8T+MHb_kt6QLUg}?7%%Fe6Zdut9CU=|1qvWrnbR3AY2#cZw$2Zo zJ7asLH-W7;02>QdW9;afaQ7;y9hLVVQwL7AX}|r!?f;fmZT#bV!2nk#*FJl08iW+O-jVt>Q6~Xj2}E=t!pBDJwP8!2u2ytl~yuXH%vJ*XkR8gZU{QaVi;Rg3scv+ zGe5l6AVfcqa$=I)GJ8bdH28-v!tsf7!K%i83$OU4b}cOZd{9owu)kF5#!ZbcEp-?# zIQ;?zCX++CXhhz>te`zy`l3o)!Ek!Gg%hb(D)@N+oC8E-OqfCqwhNT4J=;!8)^glT zO7aYD(%@-Y9M$5&n*4?4={r!JH|nkf<4~OKp2`pY16S{ji8d2_^ZKcP0?RUWbl%=Lbd@#hmP6vfXc{0F zQ+$ukt`y-pdr}p1ykRu^=jf z^(u)kvVJVxJ|c_q?nP7_TJ$8SVBDj9X@sh3Jdsw-L?CKVPd#t&f^2e|E&2DrhTav+ zEFUzMIyu>rbi9r2_vZ(6x%OKXTAXt@er|i2x|~NpI$lusf<+ZXwVY*bGdzEb3r}h1 zjeGsQ3fc2=HD35`sha#ICfJ0Rx18e8)K9mcYAiv2WTvB6J5H)R4n)1L{jSo~xG(hN zf%?fyg`k16vVBl!06&7$y0-LZm8OL~nfwcepUlVmhh|B+%u25gwzjY}Qbm^6A{xEi zF>yZsyB1P4W>sHXX9(X|uAx)gdwCzF#Sx^?Vo-#2L8f*WW_0E4hT=9MSR12h%xW6b2DwG#+Kbo$wFgr%`_TO^eQtRQf6=6P@Jxt&%4Wb1K{>H%;=(` z@ys`b8$G?O-k}m5f76f2x0W4bK>8tI(pRU3Df%TGM`xzE`Q@za@QJqRYW#PFr{-^L znwuvDPV$3?{T*TLz>e)|_KX{VW^I}EHN)O`Xu^KCk15ypb~9PkJ9}^QOM(Mpz%x0W zMm2={;x_;k3p9RndcCwN^AasSi$?%Y6@*%9zK3wzZhmy%51C0a5$)anh-9|}dM!rb zDQoeuI3Qc@9;ZN@60<;&ljjokyde^I!Vj;;|4?|ai;i#>%5PN6=x1)BgSP*d+AOk| ze!dF!$%ShK`X)3S>DR9DIto3KHZMveb!#$~q1M<)Av zbqNa7Gyl@fYrS3AOpHfgkofJhRmHiAzKM^wC~o2nZX>mGs#nK)7YwuPdKNKSV^*Al1@Xn?QSE;=@cZ-6;uW9+d<7ROdY%$z0cvegBER zcqH^y)`}vx)f(nes#_-`^8Tie!C^r&n#~YZR*~AN@1v0TB)QATuIYo7Wz1c$ic6tH z#~z3yK-j@u;_qmLQ1aZz7BI>ESO3IFMB=dqwLw>)Z3dm>w$ z{xh{7ns({S)Zr3g3=3<~;*8E)F}1%iV0EoYE6bNtbQ2F&V`Sd6o1PBla(ZS#nUx%Z z6b@abW7A7n#z_<@aSZ4GZ5jA{!lNtTXQfpQCR@;4o0Ri{kHhJ(gFRWiCr@W<%if%C zGz7WJFHLY{*)CsZAMIqeii*Vqnd(jSib3<9^k-?FQ;p&%B@W(SDd>Gkei>~Hb;H~M z=;Q_vstbG%iq2n_5ti$20QFkw`S?hJ48&%HrNwKlucpRUXkyR&(YWAe9nFmss{blL zDAs1-j_CYv>h@^Gwe2+KLGl8$N9EU!-MVGxDk$HD)Yr@>Q`<8G3v{5J4BE#xfZh)V z{sq|U9v_KclV{DR4~c_-$;9wUI^_+{>A#UzGM0x9hI9Rw9q@s7hn;w?s`(GKrrb$> zdD&~$m)VjXNMJ})W^5klLE96E*oTIi24Q!%oJ^>0Q`U3l7je3uZ0Q_d-79&*9ca5_ zd8(fTr2tv=xmeo=@a%o2b0?9^qM6wg+1!N5VAhwC<)a@cOABa%|6StzuDWs|y|E!0T8JPw_LwN^p3EWm+7Mdz&Lo$iGDt679$#_BC>>2 zovMouudYSm^Mw3UFobpOQLQA)v6&iUt%GGJ8#YDMY!rNRbV%Y*{cQ|8@Mw2N;I4{p zYr_S+T+ol^`Yt2|u#gpt=4zjmMCx{3Z6~hFS_?qF$i21)e|<&R8$25|-V+3UrkTI^ z8+GFM0-sl-P7i!;zp+Z~5Wwah9|+V9GifGL+uLOv1AQ~tG3pI(Q4DT|hh;Xyz5UUM zmC>=2a+$u$=v1o6kdxNz4a;5y7CTV2Ih<9c$UcA*b(9;)WK-`3mrtyUud{bPyViZk z#bL=`lbE1+2VSDULg-&*3lKDEJw7<6=@4cs70zs8ibT|uTmI`Lrkbn$_+!U0x*@A9 zYN+|vJ-sKaE||yCMB(VysKnOwvv!{QBRPCEXV#v*Qn2)fTS|(I>+^zO3@F1+x;)>GmMS+l>5FCa4tDS580I{=4KgWsf3<*usOdngxf;|* zuHUcm*A0OF_{CVEHFx5f!T}n7P=5m;l|peGG+;ReI_ZCw@%}dk4+HE)W1{<2HwfOg zZTuV12RLVZjRKQ8Pws}3?O*c;AMSCS(@-zk#UGG8Rv*kW{=>5IrGg9gGvCAF9>~dM z;Rb*VZDFz?4|uk}I`8*3r9RctxH8F!nazXtYo{og>eFcX*Cg8rRl+R|b@+npIH;w* z!eE?t$NfIp##Sx;I~~k7eX$c--FR(X8UwkW{I4*Ji5X^pA9K7`!68!hwT`brfh{u{XZrm4 zJD+bCFS-3U+}tF(e9q&4WY6wfOpsXAx!`DBFa=rCHvl^ez-|`vbhhVii}u>T^^>rG z3rx?Cr}ghL9=sdyu_cSz7l0xYEKu(d3$iMlPw;6tvpLsjBLD++;(%|^Y4kqey8*|9Q3{(jXXlDq%CX5#Q4iNV-BDYs95$N9d6S`uWV z6SB`Ih2>q)=(+)@YrjajSNt!)Yu>D+Vx_TzJHQW`_yMPOykAFLTcS{Syc6c#YF};tTr5 ziccT9R^OxBtyBGV;i7PE`t10+>eYc319Lh5z#pFd^`f5T9fr$_t6KHNfBklvPw{0+bnzF=%uPGEu%>zeU=xijsNB%_=j)HwRnlhNn{;DyuL zPwtIbU|TA*CL2eajiJjP#b@JW^Rc6UQv$n%{G^?mmN5sh`wFdpWM8u|lZG!)x}6kB zFBYcHOMp!;+P9hL0j8)EGDg+fP#B-weFs7a?O9 z4nng=w`%YKZEPL0o@iAWiiI}xQArxPP5T+ z7MlY5NE+gRZF@D6JMNy?rYH`af6j1}dz5e8!DPSfbE2aP8twm;;FFLDxA9_oF^eRIv2vOpyF1=SkmB;^kZgc#a>o&Cl0c;jH z8#HI3i|@KDzkJhboJaODITt8^N^&{)d%iu~<5XEAE&gqg!V_8hNE zF6d=GW%d8!G)y(v-SX2KWD`y{Bvzr*W^&t!d2W}Iw3l5gzmH?V3JRov?w{@aXV36X zxU7YDGeH&AW)@>b?Be`twL3vb@=?*X|84k+a-Xiv_P+Q@p&ojf1F`nD&+HC1FNJFD z-{Vqcf@4BswT4NvT*GN3cU`{|Y)$RQe`o$e&+^Lq>`37A*K9*+D5bU=J6oMLfLo`~ zl^ei>zbC;M?ef=qwom~6+%tGW$ILf>YiD-sa&_aE71o|hbq8#|c(jwkHN+3g{kS>X z{<7SxZh(w=L4|n~1>4`Z@Fz?hGt>vx8#0A?+S_5>0`{g*cW zoL}Mjcl->x-FLp23UO2-ZdoBloy$)=CKzfHYU3_ z96$QFE%_74A-PB;ndd>!R9rxzgwE-9FZ&?36_H=Uc96tKFEaz$}C9YT6-Ir01 zOF)%7gY$*F+tN-jw9F<&8VSdrKs&SPoEt3pNzGbioi|9%N-+(0B9_PSpto~t4m&qv zDQa}bT{2q>Z+Xc6n=*Vre)%_JgZQ-fEmlQyYRbsobK&cRs9*rs9E@DV|$P<#&eEGl)d*YPp%Q z)RbqlbCrrdYbSo&oV`2mzTZ|ripiJzL7 zeLZzWUqZjQ6Z;nmj{05}H@*f(QtiZ%)yeZw%&)1(KiA@Z=2cazc$6(1ng-qpR0DCb z>}C49l0rcs1`pvn2x0rf+=`)69}7v+(ia+6L)f45T%jn3gMU3wa}~a!W_w)jVxezk zvZHWM3r$<6Xo#`!BnvYr>|UDgugC#|K73xL^a8{C(>Xmhc=%^Mfb4Q z1))KmSNW;1n(KWC?scwQB|gg6#)>djKcaqjPgK-@WQ!d(2ocQfzM#8v(wod}Mc11k zDtm^3+v9(T+nrm)m@`al{|7m4QTc81Y3hOEYS;JI2d{T#8r<){Y*@5)=4^I1EduU> z)}>}Nbd2uweb(Z5;RBU9DN}9v716QCX_z<}b%tOX5Ii5}hO~Re1|HW3icGQ_aCw8b z-%PZ>3Ee-=Jl)Xf!pqhq5?q(yE3Uo$wVy^&Y)J3c#t!8|!YtA#e+OB~|POTzNO@)MR|i**^NNGPLb933V`&q|$ox9UE}<d>m)PrRxwj+6HunNP{={;9P@)#q$$|@T!85aBua2pVo%Uz1L;`$TUS#0*Tp*`fZuneqzHX zf649KZCsrfo!RfoqL{+nWik3{rfK5ql2l3i?!Up5k;w~m{1~3%=6d z?*{_jkjW8;vTQz(`sW^X&4v-2WC#%N^0MPj;^sRt_#Rzx1QPadmB#Va6YnMojthjZqYsYI6j>3#ACHuF@_C2DxcMnzu$B;!4Id5yGjh=dN zELaSAT2KXW&znNr3AFn=^}|hS^eV0uj^AHAh6s_1vJ+odP;db*_S=XdT*|f6yl7CE z<7R?Xd43f6W|S%&N5_AGrSUm>Z>Tj*GMxIP;GhZUCzmKUiTst;61$oDD!w#9Ls>cL zOCyH7n9^)>GDiasI5-y7{Js_o-4J|p{VJ;GiDOI2>*wiji1Io;zCU&>LVgNo*vI>n za{27_W}m;6U^BEgL+o$+Pp%F7+yIO!SAU87#Pzc<=qR$$(tmzUFR2}|r{JuT4}G+X zGFx4!-`Hsvjv;_tsO>8adpSnpUBH6uM5KINPYd!exSqe0qgqs(7fCF+|gzqI4IxtUf%?;3p(9|KqJxJB#P_2?S?`sm^O zwb~w(Ug1c;?xlMY&foC$7k2 zS2kX_({>ph3?ad_%6x9U-dM@!4N(9hx-vhR9HJosGkvO241PULijR7{?vrp+hcv=R zJcMaQpNLwW#>d_11HQ#yg#FRYWYK(k;R8&z9h{rOs2MNQc%qpOq1T$=Sx)ClG_jF; zz5U%DKwQ~bYH+S*wrj-Zz7tPjTLq&2( zgW=ha&jiTi6@k0vIUDohc+eV6h!gVu#Hyk%4FUo z;l=(e4+`l{bK6w^a>0J~vF`C-gU|K&zk5sd8efMXnc@@}AjIp(Aua0Ydd1Z4fP0g| zT>chnAzLpQeL0LD73=zVhjOac-{Ir`Pmw^%Oy4>*?1>y)eRuoomdDPU-$i6~Z5ETDl4Gh{VP;PN*!j3(<*y&( z*k;dd4ByV}F6d{w*o28AX{|p`nnoA|n)ErcQ`eqnclbjI_XN=f`jaiT=x}w^aiY#W!Wv@^P+_aNfM8B(xAuV1kJgGVG%V(Vz&3cF-RmMrF{r#Uc}quDP`WX?1z3ij8kw_%xqz@rN^N)4!_g;qqEcv}DJ z-B9|4!6(in+^I2#viI*RjBG=t>(@+7&q6KAc>I*?}vBs4sZQ=&xQ z*`lAps@1|JdjAk-1lEX(S1>|4p3xik%x&a z_-Qk^`9;VdwedbopAN@Y9r%pof-!}O_DT)kNLkvKTLa1DEYopk zw=%i_+{TW|?r8AHrg3G#k9VMW!)9Xd$AzR$@z5>y#2vJ*)|+&LZH}3_jWbO??fmF zV%h$_Gl+!f zt!B7PGGCYxk=Lb_2|cN=^Xj;l`u)jURq|_Wxh+NxUm*7yO}U22K@FPCWNXbHmj14< zo1x(JvsN&n?3EtMw#t5>5g%TcO!6&MV!{E)(4xMsJl-Y*u~Z7zKyTVWsjx7Oca%<_ zG5zZ5madvetA^UUzAR~0#j6~yeDGkuT>)b5zWA^U*>3s$S!{82rv z!%UTy<)4yQf(z2|cg%8$ztVpkr0v)4)0aTcH7DWnV4YP2a@tufG@;bc zehl^sdd0-#+W7U<(mx>w##XVXH|Io_9xQbsbv0|Y{_L>}HN+E5b1doL1}gXuQ;x_@ zzii{{e=&!XbDjHh`nul?Jb`Z+tw0_e)26KReRln_l^#-k4ab_IxKNZBFa0HPLF1hQ zR)6bUkWSsqcsV$y0&9y>SEJy7g$P>Tle_^Gn(r}vgz1#IMrXT{O*H*#*z_pKPK`Hz zN<;lc#-~&uz~KgvcJu+Q8^K%0r#?Pccmp8M?z%%)h6ru}IqnC-8RAUu#Mk>JNcYI< z-T>CvQQwK3qYG~BiY>LGe9bl}f&N3qT9Z>EJZVaQ?`bxMj&V+A5^r0$Sz!?T! zB~d?b0QLCX;Up_3kSiZbe*>to?fCx#N#^s>kQIStiJo}3D*lX5&WBcPhvgrT zL_86}bIf#P+85xf!gdRW65Ax(;Gw5JsF^DvyNgNn!rXIn+Y{&nO{asAyy~{}S0`m3 zi3N+z8-OyTfsEZf&VdfeZX2TGZ9*`Rvpu>2L>87hNVWIwT8yiloQBr(Gm^MM^VRO0 zEPX`p>UvvBah(?B)}+6y5vhiK)SxzF5n1V*viB4oa3}chPqYa9t;tVr{HzHcHqmN) zK=f}wmAMbkKZcWWcKTWy`rCg$Yv~IF&d-691u7=G`>J^4ByV`!|MbQmf|H%iRO{7F zKf>t>Ob*g(F{Q?w%WclGd7 zk4@3G$6`{u$LQmv=pPpg)9>8Pd~V!=XWIMfZb755ium^?BhLPHk&f8qc*U%G<>-*u zZpB{FhnoW`7SK;T(=$}d!mC!=+yoF)guyp+!FD|yfD(G^h} z%5pRY$UJm#*OcqK3fO6Hqh$Gc(EUh`YSaCE7`%YBR1LmcU!z~IZ%WV7<$2_8A^eZY zU}7)6C9%H-c+CD01=$_;H_MeuA7(@Rf+r3YeaO#E9!2z(jCY&62EUUN%Uy=>YqPEf zAD5r`B0Gj>GUZZUl7>r*8Q16lO&Omc6cyNRWse%j(S^v6H~jntK(DkB`&5<2dc8yy z-Vx(gX{*KaDITXI-a9LS@`)e2=Tp%mHqpi}+mHHj?r1GFI?Y4S@;Cv#>Ob`}r!*B* zQyjmA@EzRfI7I;W?Z|vkJMerVz6fgTt3?4eXuLLv@MAQ7Zu0$CO_O)klvp4&iB8~M zQ8!ftO8Iz>36nrKe9egSYN~El#q{Pmbj}(u9;t9Tibl(SsQ=^r8Zx>;D_cdPk=0ffaBl4e`fKGwZg5-oJNV0M;nwh=!j7?;D@k#z&u z4KHjXYrg?JfPT6GEYKk9%777V+_-0Gt#Ap3fij$rX+51v%!%+>hig1c`E-`yDiPI% z8N-(ls1EB5(TL4$%Dx(aQXE^zUREmRMb%o}Ah*8BmmntxndjD$kVmE`cW+ z;B-Lg+2O!Cl|yON3A#lX)w`j9u$j^PFNJwX3BPb$NkNdiUXZO6*OA_~NB05mOk)mHq)+8->O7->#8BHefkk5*?HENZA=dl^I&E3SkM$stLk<;kT~&Z?Y7NJbY0T#nW@Oahp_iVhw z^|6&bckf8=kp`qYKvAzs@}*yxZg&L)mzJyG(9{Os&#sUgS#{cIw@LC zx{?(r1q?vDLD?1mjoy}-FM`#a`VN`t3tP@?+b~fOk^KIcxEA&?2uJ@?IYGL-g}8YC zDE!Ac^Z}Tuq790;(`cCeZ$Qao&5s`0qyhR<b0=!UpX z733s*e3FkJxMg@hy;0#8J>$O`Dt2WWbY#*8= zxAL@2J^C+ou*pb7uwJ#DO~`wyG}ntE4GFt^Fd z`tUH#Swc38T9l-eNDZu^cG zrU1KkZ47CWhi*{+V(l4GPJA~ZD8~4+@Q8Uxgg)(QFO}PKdlP|&Ju#NRah2|DEEgy! zU}nru92@zo4_)3@Dna$4y@e)OabZbvDT|8z@i9xP&iF_^me4!qvvF2lP7{l`f}F>J1O~3`dK`Lx+~>ednZHiV9YgU32T6i77j@dLlE_Q{K2{m zw1heTRP6gc!cHye=(I8vrSb$pS<9QwNUQ9XeCt(vClDD@Cv@JmZ>zkvtIbpD|3P)I zpY(xqQ~x?8H@`%mx84AF!n(z-yNRVoWMZyw09g)fd3ry*PcIV~*6sy<@F(LA@Rp!^ zOMkzSua}n>UM}mP?^*`jeY>^A@r3rZK> z=rv3#m`@EXk)QOwugaQ(Q|g-z#rxu_x8?a}hD4?JDoAM6fo7W8^_CMIpE#Zk;Lonp zx&kKBL$`~p*Y@pFm{Vr1)<43Yy{DOA>PWm+l;Y_tDO&t$))V>qL*#csgEx8*at6$O_e!29ex{m zKS=*Owwvg+2Zv|exh8*!VJ3Mpxw=m7&U<3|vHMwBnc(Kh|2=0Elm6c@Ra^5{?IwQJ zYrqY_nwZo)Gw^s1{M%w7b-jD!$+Yv6CR3+HZtd?-CS}m%LesSOsY9F+xrdx4Ws>0n z3%jUlvw=HRV2lTj#`*l})?1OZn#jv(x4)$(S>mgMLO)Bp1cF!;M6n?K3Vaz4DtZZP+37XQINQ|1NGnlnYHB#_kW$@O zNvh4eNUM4DvjeEGK*)h2BeL&1DsTk!Fl9+kw@5REdBEu$vUinLdFmTedKR9>wfEV? ziK3g1Qh3-xj)gSW!8?#tDU6~0z`}uVBPWprzmh558qIOMz-xa}vaQwbxEUthenHei zm^3sod!76Ft?Cy=j~>Wh&ll$QSNTVavJu|0d<1D1PJvM&rnj5WCi5~TMdi0S~ zT&i^eRC(cr4g{aSA7+2x!PGU?GO+WPd*PO3zddAi1aWgPSwA<)Az}2^c#T}61Q-~|GZXTvipaT z^_M~R$ASLeVhcT$eJbBelhB*4)Ww%F(dPLQy=mtQIR%I^NiT zWjSnpzsp`N>6*sEOw0~&6${Fkb>?i=dY|A4vJPM;j5oQ2wva4r4G%94Gn5LA5U0uY zEtP^J;SZO2jQ$(uR$1j?2(^szEbg?(#v-fEj?b30uLAkfInpT)?RU2O5hro z_v$Bp{BHjGV^sFXH2LR;fEZWgTGEmGeB+3#hJP-KY=cmOLapvHI>bvXY5zynb@+ia z5Wl|Ixs}|`>-=UTBP8maD`L|@duhESNbm78g~Bs=w`;k8VRO-76BxZ8Xo5-Gi038w zcfKO)&m9D_oD1RxE6#?)s8EnCY~H{G{mpo3<=(h~c70vgG|x4+gW)3=K_e#Gs^WyZ zTiga2enQwx_jS;n6-erb(6Y_8YA>^L?k>hTy4NiBLCTjO=8XEZfi*Ecxr-8-qH3l6Se1<$@b6ZIQ^uf?rj+P-A6A zCN)jmPZm3anSVTRi_Hi*8zFmWv^1Er6d}YN&*jl>aEZxUeTlv^D(_|vb}3sJUT+NO z9FZ&@C=e~pNyOHlWI~-$19y(;ST02!qHZ6WdJ`%W= zD|Zl2BYhTTu zw9@tQKGL(7d1`&~GB=l$;*DC_%n%NSLWBw{&|nL->#@0IwdMJRBPe|05Ul_@^eGGL ze;%?w?M;)(xRI{l{aX`8n33_5DejOzpyPU{J-xFmr`m1x!!6h=A)oOTIm_a(`)ZBK z!7Q48gRI+MwtI!>gfzb=gYM``^_%sUO6N1uE?EX{=XT;iEjh??;X&$}%e_+L)NVN4 z-tMD@C$DWk7ceNXd>&=fv^>nj?zhW>cXIF5nEftITy4bY?XRJqzs-a5)E%xWqK^sG zx9%YL6U1a4-qiqdhRy#}fgKtxZjd{vcL5V99_&3?Wqt$yab)y?C{K;+v%oCMV;x8# zl>Eg>LJ+JLv~EL6I-c;~rlpU7pW8p5vtelEaZn8nDI~Rn&W{&;H(UNzo1K@iob7*W ziMZ5Jd2zBrp*^M6*dZJ8+scw<6trb|Z4%Hykimk{$2|(vsFBp?6JMR6x|5}~Y>|Qo zWt^1YBCh(A>G^!AZ%-1pHn@U@p|2o%x@@tfDDfv-`4dqtv*Vs1_KmHOuC=z>$OM>B zsuO>C>Zys3A#OZd3zZw{4(I;H?i4j)qtL3Roj#A&iu9vhmuFL%sI#E|ZNLAiiCgJZ zM0}EkJix$RBQ}>eu29Zj#Qs{;VV3E|61Lhj=o`3xAkwCZKkhC^I?3p`tB85fZ@-5q z^H|zQAr~7tYweu6cOi+1B;dz5EBKxOqQmc+VPH!u5vRfLKa6N6`1D}AzK>~&?={{g z12mk6U<1FgIiEI8UsJtU3MpA`Q~wtSh^ zNOA*+xA-NQO(S=wuxgkS=E5Bvv^{eF7+aIy4;RGee}z24`dUNn***8cK3wDx#VoeU zI^=+_QlN>}p^FXy8;hW1fiMhv`s5>u}_tap>m|Gg3p_IRu()BaN{V4 zkzz@jADq2$%PP)b1%pny)>oUCjaU9tQBqc0qIznX@*~JV*6$W%%N*Z%W>xq!`tU(G;%?6Cwy*lmMP45 zu!B^@ph2z}M$pdAd`~9y?1jnl(20s;{u5>H;^)$j{YAYcCjI2maXF|PKu@|wY)$Km zXQ~IoL~-3RK{xDq7Ubi-#5g>EqJHeis}Y&2$^V?mG;0@fhyV4p!hTDDB3OmHRu_2R zqwBk>n!=JXmxWOjAGp03>y5kxt$;7?4RZabsh~q_$;W>nuiH5`h&IqixrBKqLCT5j`ueCX}{rXU!hJnUU|I~U?eW!<9P;mL+$hk`f8v^vx7GU zMt|?W2dBTg6vP;feYPgoy!ZBvwBF)r`MP&GyQcBNTh=q1sPgn|2g2~eNF$nhuyf_{ zR99OGa+ThU!g@hFVNkC!-DpL(T@drb#0#*Q;LQvA4P*k@YQ@|Dhzz>=(TZ>UpX2lj z3d#ypww2@(jhp%S9fR_$K92+{cXDsLEB3m3650Wg1Lv(Qzr)O? zi0$$`Io$fG?k}v>5_Hejd2ZX=46>I0Md8%;at1q|x7)^n{kx7QQ;q#pGl_d$YSbR_ zg6^3FTSV?FGG@K^WEBk8g<+=FX_nx(VYW|s`M&P`{cAjskDqNlbOM?eBC`Zsd5nU( zR2WkJ{#E``$h~~D;bc(MPA1Q1my}hjcXyrCQOS|zH3t}D{eb{2Vzc}9iYeYKtk7u( z!laf;@}hMrT;6SKj&-=IQglGBp`Ei3cLpE30nGDbn6UBJhW0b5DWiDUnwi*#mgx60 z94|vXgNI{VYgCB9!4ET_B`~%;-iXC5NOPoXqcihS1(Eu zTqzVet!1kcb(a{VTKu9$TQD~%rAO3?QtG+0j)-rl-c^szRMC3&I~TZ}RfbDc^INQ);&}UCtd#12^1IQdjmS|51pZRNUs7(uQ)i%|*v7@xu{)!9F zI##MO{-+Q$1$1y~A?K!vx!NgQmnBHx^9U2bDuWK1g>0p3rtU)lDjntlqka7#%PA-K zNymmKhNt~uAJO%$GP5U$YXd?*@FB>`g}pGW#kmBUZ;|RGY*?qP4xZ991pJK=`?amg z5=p$R|Fs`D*~X5Y4qRtA_iW8{*>ZtOwYB|(OBCV8*M)-`TEg+g(U>G?nxH{3-V@{r zLMB?&KERft610NM1)A*TULzsjjap(;o5tr3zwHE%+V%DY6b_zb!iFu%a=C3KaI$_x zSoHep{ObC4INH4(Rvz7hvQ-wN($5GECD zJkkVK`|s*J!(iqMGI(q#C+US;37l`wRWFFd29b*MLE*QgvuFP(PnAgGpHBN-Sjaj; zwITHDB<_CId&$;5HDCRgd_XCqn=3np4M4#FO=ySVts(o-CgjHj+XxR8WOaFf<>7s) z_FyR0SW$8}j7(q#c74X4ndR{3vgABVe5Xu7)$;4}Cls_n`uZ&TIxjxNA>+u8r~(W+ zby-GQkXZ221_Sg-&YQ!Ad%84J;q+e$%x3b_U>;j(;*um&wuf5k|g%~**r>AQLi8Oy1%dQ=&0jOpYUM9mXH$O{rr( z(XzR)j>(?2e24}QqI}n)+Ghp% zY_RgtSNQXiY$b|C_f)jK=t>XKhQoG2R2IZT(SCYIf}E?PF81uVj!=<7?DfvcJ8lT?Y_X^9)~XCAL3PDMt-?SBR5Q(r=)#)ciT) z7$A=J;@;pk%|^moWC-y@Q2nMdPn4uF2yn0AVz|QzPZ{+udAp?Ai*bv4DK(;RPrY8( zSNg0U0ORXme!cF+HFTRwQcHIf_e=D4KRJc55 z=L$NIaD9JXEA?C9FTn4C{{XU&f%FYu|bh% z5YKa{-Y7EcVY1#n1{;}vweYXQuYNcd%3fXoIs0QKjNKb?II;U9%wHrK8u z(!437YC5&Wv|fDCY4&#)j~rw8+*`*XKyY!p8?bSl8vPLXpYe}W_;YEj{>Z-vG+ioL zb-Rf4?RN58Q8n%Mv3oi)TH4N}eV*FI`2x zy70b@;Ms+yrKxE~IPP_wbSnM2`r=ZqT_T${@IXhFixUP`1w#DgZZ5~-++zxBnn|^G z?aHn1J0{iJR$9KU)@gli8-sG(3zKylQE59z?Q5dDSGAqqo{s6i%_M@|T%^m5q=E<_ zf({5E@(3dY5s-K|H7L2z?ALwDoM*RO*W16gY}S4>)&3v+et03Xzxbiy3w>i%g53f{ zbxS##&iZ8?yw(x19Wn{(PJS4=(jd7~k~ZI^dU-}YVyH&Em9M(&(`l>qvrSy!%y7#O zT6ALXZM@S-r{#3hFTaa?6#{V0+xU3;b>P(#@h8EsF4W5qeLu#z$$T57$Tom|MoGnF z%kcY8XD*Mk&?l3kJh|erE8$4(PsHB>?lVZ6hivi3)3N&3O{RQ9_;si_iaUi* zVg^6R_pcV4;m(lXen&Xq^I2{1>cM0_T*NQ=?Nclc8cNq>Q_OLR-NiHO2s~-vJ2eHa zV*{phk7LgR@aC9&WAK@7mi~9N`$CXbQi;5A+3~o2Gn)A>Ux${lp-XvLayc9k_zu;> zYhMlSQ2DlGvk{(1#(%=FhC_y_?zyvhaZWOlylJfu(|s5AmAcRh9}D=;RMWzJ(PydN zBJt1&#Je%=kHWWgkN7AL$1Mg;Hv3Qbo32}0iQXyH-3ff;HuE^$=A?&-0ui*1RC@;z+-I(C#R5FvEA(oK<-|J>o0r?6mnKWp@#amF*;XOlBtv^~EQg!}aLhO#GZtW|ptBWFO@68THT|7`XTR9yc)lTgWP?ZX zN000y7YNq{4u_x-$S_-#^5?ihG4`ocuxzcoY6%DCPucTN@K5YV@aBDD0TtiGKM=-= zsp=5}G?s8ka+-ai3Rp2Dd4X`!$&BGt1?Bufsd$6OI_r3&#Qs!b$M>bK+#4-4F9um# zAtkyBaLi7``-z{Mcb)BMQok~O&!l#8^Ltu8T~_^%W_0mYqLgHnPqi+~vhMu)bngD% z{jUE2YtM>a1Mseg<4HBEE1grt7Oiz8G;$?_AhxuLw*Vx$mE0Z#9YFjt z_|5+S1xo#=bPY25;lg;P`ts&j%4!!^9!?q_uDp`9kL>)5fij$f0Src4 z9%_|RZc=>jYr9FVt@O3eO!1$^ZxL!5jJ_?@uVqWQh$ei$n&r9<4)%U{>U{-$A^Sdm z!BT&3pV_MVE1!j4In@@)4%gE)n~|yM_fe6CNvy6`P$L8QVwM)|xL4TrL$M>s!DJO2RntN5<{WWO`sO3RECApOkXZcqjeJLk1VmRC0Vd)>5&GWGKm z030yFx7XIbQx%DwdHZUv@_V!Iuvj`+dP;=_XswZ%1>oAO2!Bnv9liem#HONCU4 zTY2V3CmGK`2cXaS?*mIDe<%YS0iWgCv&*8fn66ZDl6n6CIizOWVLU(<0l{!E6C9lJ z_kqAZovWBwV(*4u@ojwkD zkmy$55&kY{8sxehixk==_J&y8TW#fKn%+VuWWXD6r*hX9mK-sMOhhHQ159D4>uS)(fKj6Rf=&=6ZgF(?OTG?Un^_=oFY30QC6U%b) zw0*Y_h-Bmqg;}tlqWujl9_xYQrOAk@WSw&s;vVMJks~^nI?N{OLd&Pea zbg6W!Ta83%TBMC~AV!u&Lv135*rAxHVgVo=XP!EKNce+G)U?YqO;R~+q>fS&Dbb@~ zq-Q@kQb*y(ezpA+cw!rg^)Kx>fDl@&h|ip6cfdI5oDAfjTJf)my7kT8yY>r7TVzSN z0!bX_f!C=1b^Uvicq=;aRHa*%U47fD{pkK(;vX0xguO`7=8g3Ct@<mv0A;dm7AU5I2~U;_2_i?y>&{p5t^xch;0-_r)x0~T z&g5a4tf4s>_1X?=(y#P=#5=lpgx{Q6{aNE-{CL7QYSbjX8h_+@pX@{9KZA4pA@P5~ z-`XEmheps%^`+2>B}ne?e%h&JDnq|&?1aS(*AKff!@fa+p@;QN`v!bR@bATc4*W&` z0EBN|vezu1Sxc)wuwO-Tt8D~g#lpY{k|axrBoR166wwIgM{h9W`NH^f@N3|1x#JHj z#GVq<=CF?5=HhfnT0DrOIKhqA06A0XUuJ&8n&-p6*%#wRgYg?l(rxtUwfUpbwG(X4 zs@i?oTCmwTyVo3K^)i29y`|UZ`w7r-#*N z9N_!c@O+^vZqh%lQ&UFgYak<0iQe2YgSC?kzXMe-X%iLf{){@3!JMnN)u6WhdolA9a`nZUOnQ4UZD( zcN#?De6>_LA@j8cazSRu3P)d*9PkHPwQhws&F;w4)pY58+47>XCD`s9ZAHMzJZ@&j z0qvUNFYM8*W`ZW_EY6;l|ypWZxWd6pkR0G-CzAhYgIJjLNwH zl5w7LYTQzdI`U8egdrqw8A)BtK~hdx!|mXcjx(H9y=|ducwq9>d7;ba8}h1K3{N8j zo)4(wisWUzTWg42P&APz+LUc2RY%V1!#p+=U|{{xz%}SW-IFb~KYjikd_mDH{t>>H zpv<9QfdMedcZ(Qn-N_UyoNLgb$*zjCL zb0I60ZSj+lkU{JCgZn>xX4Gc7kHZZLvdJoliink2B_>hCg}tm|>MhT#?Y<;wPO{xds{mL-+$*@w z{DoO~1#yvvWOIfCj(NiIABuFnb4i=Sy0rR%`%jnlfo~eh@y4%`?X^7bn2oB$41>^) zYvCV_zY#~n4+Jz`6w|MD4Ne~}-sa@Y<~tC?5+{>u#E$v>(lhREgyT5&kAdG7{toC+ zU2A?9)V1`~u1&eWI=$ZbkDtDA9br(JxQyp|>Z+ z{clOv?)7~$P_~lKe9}z<+bz_vTgA8ib+mhAg$NkkB&q`p;1iMbW#8=$X{XtnZy9+J z$2FqJ_Oi3)c%KUY0A-nRBFF=7IxGunB z5OT&a%@dginv1$N4#^^_2zAyMXJr~2b_ttA@R%%jtPEjOg z!E6kSHs)Lac(3!h{{VuD1lGT6Z-}~umm!RluX)8^Vp(QyXw`#>hY(7XZTN{_*1~X7LQJc`%$Hr zQM$O2=TNvSZ6c~OfgBLUmh&1IV%k|$mpJFsw7V!KokL~2`+YHAIeyw2ibdgl2g48m zcF8WF=dJ+TY>W8sX7BfF^6we3${aggw`=mRzDx8!NAQI=#CUo%)&3^_QD^5Jz-0q) z&hJcg{{ZWI)d?_3!OlBY#OsKN;FE*TeEuD)9&eO|{D1v*{2|WVY=3$|l^pk|M_QG# zMln$ize?n)>~zCo*#lr1s?WjT)t;-Gu5q7A-loLEajJOfQf&i@jCIXULlL-ku39is zOsP8&V+SX&F@&f&AYu`&$0i!5?nohURsMFdg>q&MSi3k&$0%e!%_| zw((c(S@81KeT*a5VVh|Iv-W7@xl%{7L^1Epb<&Tsi=E6Tt&y|fFW5Wwq4=-huN-_$ z_*3AGXT@F}_Z&8;hVirSG$o!k318_V`mWro16Lef1_H)0W9n{NJp0nyo4zIh0}aV@#pq-@mIz# z*~h^8=A&ic{{R*EtoVX$J~EM|(9|uWpLDK>B`68<${7S~Bl*#}&sX4e_=}=THT92) zb!|58>2^xmZS~!wN`R6UNg$Rcb;&1dWkKjNb6>P@pM{-p?`3;mO&$LA=zGuY^ZPpdBK@7Md=dK{dDtz% z;GYjI{Lx!qLf&1?wZ@Zi6}-g@d1i48h<9Lx+(0-Yzc@TI@NQ2K%5ANzr=Km7KAQV91{n;2*KN=g05(C+~#5HfsL>@KMhM z_>%Wn@z$r|{{XSU;OJC&%Y5-g8IoAMt?^393{bqXOXMmkb;*8zm~C#`$NJ{6d*UAu zSkEQx_00E|GAvB0^V~|)%-|k@q;@0F5G&~&W8waq7$i?LDmhTD!)ecKboZ`mWB{ZEeLt|rFj@Qo_e;~1vo z)O5U_?cMHp0BeX_%D#!4dlem}IrMhL)fag6@} zE-3J~hqMn8U2M>2mPy@!OJ)kL?&K;)q?~2gg#?lTJlE*|0NRN`%4__O$bYf<>L^os zzK?V357?jfO7UOqS@B^!D{nNKeut&3cUsP&7#pqanTS~7CxdZ0Qjr6~;iODhVQ{{TjOB=FXbL4aJ*{q*&d?fu_H_`j98P5Cus0oT@| zOFP28V1@Sjl^}j+isd!`03P@Y!Z8`VTjC8bOF_vum)7v(@Oc6KEAl#2DpYoaTl7Cx zsa7#pld;wwPH9KIeD`JhU4F^hhNikTkHpUmOLWb!M!K9CEIR^D-`2j1vU^=h&OJv@ zl`bu(8={&fStD`kuB59Ep{|T(S&75hVkx-ax@+?}u$hh?z5RsLt=Xsf2)~f8G5FE& zXW{<cqkC(MPK*KAK zYRdr<5)s_~MuPpW6|RugpJT2A? zmzHBE{#&RwF%Ist4l<&?%Krd@r~b?uXT{HhcHbE^=mP6L2He*YDEXz*CSmr4Z)O1lRXA z8$ZJFpA35(R+Tn?-JEuk@_YI=kK-l6*q#vLZ*PKsx_aBZ9_!U@uT+`+rX)nJM>R1~ zj2iMk*~jBXi~B+RBGSGmX<;I`xKnSa+ab@{uc5%6F2`5em&}UyLo(S&yC;O^RPqi-YX12l zK3nB@BcH~)gYpa#r{?Bi0=bD3B_*bRrT3pwOdm)ijkO)#b6Ya%p-gw3< zR%g7NDua)_2p-&5m3Y_UUX62T`eMoEtFG1v{{S~VIsI}vel^jAhAO1ezK0%Th`>^V zx>r11rb$lZecA2@^r{n_j2=0zdOL{Ya$_Wp#PV_V;;b#}GhqIe_pzsA@(JQOwP^ZV z!+rwrmZ9Ld@AV63mgY;#6(@NgyL-4*h6kuPuXnWgd+@VOltE>nTguzGGiFXt9T<_1 zYWS~A@z02?w7=}jIXA|$+sagqhC7Jday>D~u97c|UNyPYqx0@kH7=*+P&<#res%EJ zjJFj$RZCAxF1~Ul{I_GY`6DM*sqIn>Aw$uW50x-4m>#oHZgeCO-sj` znnHmVY{)eIEI7x^Beo37pSr*i&{xc#3H&c<@gw4&g}xi!xM+Mqt!dh1h&aqwS5d_> zj1kL1WCPx@{{U_Ky=PSYoj+zTA8B__{h4|2;ApQbau9=1(XU!NxLK6r&0XY```A`E zz&P>W+0#VVz65xy;UDd#|(X^=09n?wA18CH7!CI@I%*9~cABm~r`-|OX6`m}jv%S_PD{p7z#{$PJaDg&7 zWkxOzc;DFv_L7I=$NUs8!haF3EiG(QMYX=Tw9{-OWU|wA%@aqv7PfG1!SbOF2I2!d zGdT;pX!xJ@kNt-~YAc`H7sdYo2)rNQy<1$k)VxEe-f34BwsRXByFE_sTia`ezbW=e z;qs;)YrKF)Rk98MZ(jYGybIvpfZw#g#Ynyx>*vLmeggPM;@NKXbd3_$<5){OST40Ab)vb;{{X=~{wc%pYxdswO%}cc_d4&1V%0A9DZ^Ye7dn~A zVn;KkK<69|)$&)0e`p`I__J8owQF`0+-iD-?aYMd=92DdrD6%|l1Z));2*?a68_8o z02+K5@uJ?*rkBBb#f9mIC_L4+`6strumR<_X%RDlmIVB{ufM!&@EiUK@u&P!)jw$6 zU*m3v;%|o6dW_ojzk#&aoxE9imohci_ASM;uuD|)oWnHoqN>{lQW3K#`%KP`8wHuV z)hV|L(@H$5QoN%nHysnRe9^V+w0h`#hEnV1d1{3UiZg{tIde3v2BT-MZe4uJ-?qQS z8?T4{ANU#YlUKKBwSNtKG}CT%C|et$y4Rv(4o4)M zVEYb+xZjSy8$4tCKzwNNAIBdYd0*PTBfop;VL%=T5GuuQZ4fE}hTh&d;Y_I9skng5 zYm)HK!=H$rJ<+^H;$H@6S9*?};X47UYd02<<{Jww-d~?N&Jha&ILY}~<7%;Ap~$#; zmJb0=ILj$@*F`Biw6*?eS$EL*ejv~B80^lk_HEpDO4n^gC4adi)1>(QaH<+RQ2b!$ zDmv*VEsz*TE|<75IU?N2`dU(0nWehD(wJ zGF>W}cg#=xvw>Ib6CVEnBL4sp6_jxC!$x?FPO*lz?)oFsp($dyXyNpf{{RHHf1>&J zKDGFDWpVKHz*78Y_~~^rT%>5mAVXY5=P$_w3d9qAat}E;hCJktn4iQi+f)7uE#r@h zm-2WE;nm9N`W>5WiaR#U35F-+Ba4Y}6g9)-WFIM1e8;E%0D^#i)!OIBe;z-=kA`zk z7Kx`8h`HQ`INh-%lXvs(P9&I*xfxgo{It*K#+e7h{{RfGZ83Xy77NWN;5Y*!JOTh# z83l51a7nM`-ZSGV%CxD{f4u6~PwuYP>i6in-}+O6cqWB95wD3?huMqk{pokVMEze& zdQa@H@o!o12Cu8d;^?&tjVD!v&*!8P-3YGJ=1G_WP9;Fd>@rRioQ25iFPc=kkqICI z#1E^MKaXnh8^4Mds$0dR6kfXBG}tF-X%#C;3IH-BRBG{Vk#S74dP z?%j`OBjrMK%McWv;Me0TE0sEuuA}iEx6;j>N^zk*qqofLwHXyQtei;8fP1K5a@ogv z@ec(w$>FP|GBOnsTNjMs!FdUNzK3r^*qqm^O$?CgF0u`*t%k_K`G5UgtBdg6fwsTY zY}{=I_2f~<-F`<(?uA7dG*qE>bT_a;=2 zzou%VHkxb|HSr_Od_iyLz$Z||N6;K(jO6k3{cDxC*$z@CK12M-PI`{2N40fVw{k;u zC57^U$mK%~868~6v|-yV2F;rH#s z@SJ_JC4cN4V(u4hzh;m$w#B2tRFF^mrY*F9#ZNe|)Q{Pl#MZyGSBX4p@yo@UCA1n& zuOxa^xB3iTWz;t4T35Pbhj#_Gv!K|dZ3OKk(*3gk0A=k1#^14j#UF)V31n+qO>0S! zt}HI(l6bV6*w@aqy0?lv<~ATJg*Y5BISec3JUh&3;4|74+R;f~{hp2duYZyD{Argg zUSC>;Hq(?^^4mrCuhX&o8bzwx=^he*-b>^>$YhYWRcHB_jCbq>e7`N+n#Q9&^uHmv zWsMg-0U%@WP%EVIPl~N|OH-w+Y?CYQxDKQgU@_(LIXNX;(2RQ5Bc>R|(#a?|Pn#pR zrxpIEB(;h^?4^iK>q-M zsruD#72HZSBjLN)+CS`DZ?n8W<(hdE33HBw6SM)y$GvcV74aq4g>If`SItREJ1F3n zgzt|(?1#Z&-oAtVk~}m201GqrhwzVvHFlC~ja$SpT-->Zca(s&+n=8c%SV&fjDQKn zc^TbRgrip-SK)+QzU8mrdzm8o-Nw&s^8O_}bQQ z5b7Hdh6`@PWM`b7IuE_UBOT3hAzXVBgYEdWaMo$HL@G_GkAawg^ z&g08+S(E}uh+}{bdVocI2je{%e08m9e=d2Vn;ZTL}R{5Z}Dq@TTe=ro06dqS{t`)fkKa_*cMS4ZQ#T%s5%WghM zl)CRt`xqU-?Lrms!ypl!Ny+CvQzC2niwP!))l_CQR3TM)JY*kV#;~t-jU&Uc$*Fjc zQi|RMH|T{fI4TkYu%+gDR-%aNA_5(p5avoc_E#z4m=x*GzB7znr%Vg|5wB^jK z*^{J~yw%Uwf7yTb>hSHKhOPb<_`5^3hQ?*`7WPzok$&p@%XX0mZPLfLcT@xtIKZgB zJ$}i02Z$_Z_=)==YvB^&+H1(Pm?UZ7xRN#tG*A~JTWOTGL~a>23@*?Jufgl@0N;2E zQ~uxhMW{=6XEQRV*~{Vlm%wqjGcYHTt%5iW$gizGXP?@~#Qqx8;?i{s*=;YxzFN4egtEDkVZc~sB(iwj8leMeOG!NP5!Ew0P ze$en*&V1W@WJQ*5nb>V+k16IVfZXjR zT;FSrTp39WiV9~tPh5?>DP|-bXA95y&3@dTC%gEC`%rlE;sh}`w$yd)MrijbO{#8O z0kw{CfCxPZJRD-bpby%U{tBb;^Y&c$MX!7t_%V5Ht@!%>Ikd-Ue|Zj$BvBmCaVj`I zctiWB(U^z%n+gdZ%Pyzljc-=8wKw+?T)Z*)1*MUsVx#VoT#`;fBP8|d2IyLQ^${{TPX-=y~(;BgeGE61{Z@eiA|d=2|Vc+TTg@umKcsoSwgU|T5VE?dlf$u3IZ zZNOuUXE+}9_c6)j*UrDRuZFaXuL4Qpff!5sd2ONd26FMVpafx@9i-(+$sGq;{Ex<* zuMvyLrs&Gb9{iVe8{K@j`B?o|!Q96UgU>0-v@YlFCb~IUC+XAYeuuzPubcA@!;B2z zW54pO$+og>>x|aK@XHBkpCN`p&PEBxujyG5WVT5MlachV;%QpiAKTE}&U1mD^#*z7 zuDa!NDx8EC&TG%a-0OzLls_&zA4-I;IjIo#rm*KV(e_a*ah!Cn!ox!QXNGPyoH1x* z+s8~}n&Zc)ucv+y>Coza3%ibBG4`Mj9YH`pO8M;LGWwl0Tcy$ZM}}M}4C^tL23=t` zyqa1w=Gt- zMSWd*iWq)w`+djfQ^U$NT{$gc_4P;XJ-5S;*xScCR6i9zXdOm-El%n~W^LltXR}EX z+l0hcpi3htC0K)wgX`4k7k}_ctpqK*cv|aNDsWt`tuQD3`Q~10;TwAyJZs=r)8e`E zWzn@cL$L*cj&RHd?5{cR)7!mLweTIR4U=-ty$=hD{~s4nd`XM=AYcEfiopn#LnWF?f~o<8_B{BU?1SMd+S?M^*k z!kUEE^TtaCQhxCmCjfz*SEhVQ{iD7!{6o?gMDaeYE#0^nF_ZG(biiWO`TqbAa3(ty zoI^0f;#^Yh+kY$H@jqMPFAy*o9FAFicuC67vrhf=H~#==FZd@{?KkkQJB@Qeu!F|h z3YK{F4-L#NpUW8~jj8?V9?-PxeLGj?!khDPG&0E(c@ATd8D2Rfan&S4hDROMz+v21 z(Ebhh$Am?x+qXY8-IRs~@ zudY5je$4(m_$O&^;}5jkc%Q*qp1*5hnn#wv_Y%nURkQ`^Z7_lV6J> z4c-J@8bWcf{{Xk`$KL$KdKPi_pzgn~>c$+j>cd~W`*%nG0D{5(*U~|2qiZ^rj|7n- z#U)8wlMw9bH+a~yltVwX(HSoZXZfRb}rO&C{w0>A@4wxq+@~>g| z5BpF2Tm76hLQ}HeNR~BoO;p$Ly zaj{&Fbt_x(JzT3d#Kx+rgmUIurnf(_f7#>X_kh1?FNQY161)OhG-o!~)>9B?u)IYL zCA8akBnAwQK3OAWb;xS=;G;Pe_=Eod1f%#d`$~K)@wbch&x(E<)O;=B{Xm^U!}`=|HJ$uVYjGQZ%F#@wHv}HJ zRyF)vc*0vxhCVaZz8Y%sAGBy1jpmk1x6I#So#0ktPghhApL+h!l12k?Cp|@f8DFB0r-mV%kbxpWs1gUej|fX&zEO&lk)9$ zKW3GNe*Agi4S!BjGe$~n+EkE1>_<^w=l=lZ$*bP6)TL{eoE30M+(BKq8+jaX2*x{C z_3i%v1nB*#B>koT0B5UV;%l*U;?D^f^qpbPpq#88!` z7Mgx*Q~Dztf~AO~DixLEB-36@{v14e;?Eg)GsIW^4A*Qwv-Mpn;#(`*c`{5lHtu7Q z0l*{%A1i+nki&v2$n{Sbc#l*BTwJ;!;|j!a>7Pv3?MM6;tKfEr;O`%Jd-jOZZIus; zM4EP{6AB+tv4}|w*Z^hawG5ImB%dWc>+tqJ55tU}Oa{9A&Pfs-UPwp#EH1av~zGiNu^*@zm7=iZ9B-)ka zgtIXEU}B;Zvz(g!8V<<(ma3O>V4#0GnOppdtkP}Z8c``YtBkH?%HHFz+=ye@!8aDY z4hYT6WAv-7CnZ;>PfEtUU{(%)<>uEv_z@jw?RGg(PtaGDO@Fl1zi9se?Z>5BFY1)7 z-e3D^_h0Py`+WRM{hz)W-TWE5@c#gYe0AX&Zy!^&(mYqE{k{t=LQY=d*oQ*CV`Zd5 z2xldODJ{F_&)OgMkod9tO?d1677xXn=&r7#fh_GUtsq-V3mZ7|vewSg3nUP!B<;%< zCoar!k2UbGf_!D;-xJvQGr?L#?yswAa*KOQD<~d&iREBONaH|RjsauYR2E_s5eb+W!ExvV10Afbo1u z@f!F&AvVKG7oZLE&$^ISJoZ`{fz!7_|L?C9kSJL^nVX%df$X>e0z7|9ZK)Z()5oHY7$8m zz1E{4R548>#K{$^?vhs^BVb6;`j?CU0N|ebkA*%hY1$0lKhZT0hS%O1PZ__&D=T^1 zNsB@<7#e>gd&wosTy28h(m7g7nIuhw0U%CjXPFiba-&JcGL_`iW4m68&R$;==$Z5t zxKD}kP=#zllTd0Z?`=Hxit6@VS@J#CjlL)U0Kz$EHm$44b7d8;_GB?lB1+3<8+d>R zR%MJZ`FpQGK;pf#;=k<$@Q22~vWLSDf<6-PP||!;;VYe5<6hUB$StWG*%-vA=uFOs zDh93%TW?vS3Rq%g@wM|LxCX#r6wERhZ zCA&a`@JwOiQqY4FB#gm|1Z zoLg~(ZtX5*Ho19TyW4Z(cuBm>leoRB-?9M`mbFa4%IDSQ<8cku(^FM#i@ zEws;x+FV*jw;Zsnv&(4_}SxFd;{>8!}^bj z_50BCC5D%7_Y)Y?@5sRh*y2(^GDyi7Bq?A>2Cu~*hrT@cBjUT?0(@T3FZ?&H>9P5@ z7Fvug1o6gHvawT;%E3ujLde)VSm5LC-;EwC@rUef@C(8J0JA^CJKMhu_@l>~HJ^>X zAZi+Xvf5wFH6rby=z{VY7HF-kZDVO}B8ijDo<(*$UPX2Npmn`}_KyDmf^B>)@t2P; zZgqba=)N%5{u|rsce1qiR~l{Ro;3?7rk%4S-)3^LqsUrKxh%x96U`ng#QSPhxnuQu zl5tO7Z4{cHZdc0ex3i3|tBUlg_;;5&bHYxfzOx9a%lT~Dx?OIQx#XT0{fB-o>pu{+ zj|X__??v!NnceKz2&rs9vw1;b(ZA!;cQr34Cm>b{DD#)?mx0s~?Y^yilU+`F8 zids1RtF<41z6(@~N$_puuA{8^U=Ou;iS)Z$V>G;S)*4(^){r)SQ6%F4n)d$ygdYrb ze;j_>KeJAQf2TIDfAHhrCx?7nHH&#_F7Gs}Tj{K=nWkh!KWw?Qa9x#0mNG)-zHbf2 zS%oYuEY}#)gz3s$mbTGSPWOBL$w_rhzo?&v`Aurovb-{U^yd`if97uL*0zi1bLMXe ze#U>Yri<|pN&S^RJbXddbl;46_06uD_SzPkYj>e|e^k_w4VIs)T+NxTr{5%LbM_*u z0g+Ud$C!S8_(kxu;itoY2Y9>V@9j0CKZ^A433!pb5vBNM#`=9eJ!8bMEVJG%)%+>u z!=~6c2X(R}DvMB?R{hxj+{>@(#eg^Abvp4OHuWLRN^ZZXQ zjP#!ySU{I+ZK+*aEuHw)Y}I~iTZIN@krxq`bGjXf-rWPK4<~6_+=&i+5Tj%g*m++q>!8T@RVRXpb9w1Nf1v=-w#! z58z4u9my@6>#gYvsWzpiE!s{#&n}xR;cgNsAjz63RYFUF7%REo=3PKH+U;WiAN8zr z?3n)m*{kVa+GqBE@n7u6@t0WmJL2oBO-5Zi$ePn}%_P20u%Pez7!0lp6 zuw~rAL$}J>^u9&JQlREICp`4y%jEub_c%JZc;I0=6LP0y(`~&Qy4CCVyPuEdP{mcv zCrc4cMy9E#t1H>|&`%6l-0M2bnw`96W?2QDs;^lkkbpw_vu%xi`}1FJe%QYdqy3hD zXKg3o4}{7|;w^eLYsWyuN#?O^zA|=6G;bq-f8*W+Q^ShU{hEFi!=!vz(rqTYWAQ_u+{)s}x>A z`4J%_v5km0V_%l|o5ep>!bY7xi+}riSF`^Bw^pm2Ldb zTl~+I^?TLOwDY0qQZvgejMvu%o6NYl0hUr6lkzr093H%9Ij=9jwYYf%F@VZ?08R%^ z{ebCR0a>+6;Ur+bM%7j41fG8riuX?mcn;du&2^1vtai_}m4Aq{e5#|VW@CT?8d{LTAlPZ(v>&>`6?uEGuL=i(~Q=Bui;M; z_;v=l@kNi>pii1hi)oT*Q)vWmWZKFIYjWpbNf5s9#P%!<>>~}0A;|kq>c6sT_p4iSi(6;uP{AM0jRB1N@l_gnl zN$G+)&!tP^p9w>(TfFcA=f*O-RD8!cAdZ>$&p59;@b0MgfAJ^3Q}>uc-7rZZqiptL z)6udz8uDW`QasT;*wvjW`#QUHXLYYzn6+bh#={%J-zXu_oPc@kdFjs;#6fbAX=g^e zd?sX!ZT=F6C{G;#Va7UrE70{DTkC5-BT+|&9i^kWP+eC9Zs<7xADDFmpIY;Wir~-o zTa?=*&Q(|+lsF@A%nmj;W(4-&iqe$sjq1yh*%&&?i`_Ok=G?as4YDyLXP=krka}02 zeXPYM@JJ1Y>-_OviLcD|3ifw#6=z+pj85R)2q5$T_pc<8HpzfS4JEa1TO#qjD3HlW;E}TMg>bCVauFVNgvv_l#<-mD3Rv*M&rQjGf{oMQNp_b zKiV~41+qGdkRbFG$tsmwybY95|J44hzh~cv+CRgeh8ib!BeY86BklFPt~!1 z2e0CPn}_Xj@b6OiTk%iCx&_^ZsI+}j;o+Ghmek7aA(5YdnRB=gFoIbSIr)beHS;}` zuCX_hr(9e!W9EiYaSZ$HQRWr#2OZ#7loEM z!q^!s-R7F&;UaC9Ep=%s1}wg=^wY1sZ3p;= zsZC%tIBjNsHN?B^GR5{pLji{&);vD8*41zAcO ztJ&_IpHn^WPR+N%nhfI^Aj$*>mB%zA*T`;y)f;LbLsi zWp!Zj;5@k;splLYyTId``|tLh@hm^s7aH_!D+Jw%i#%bSRLAA2ZP?*`N`_v$n>emR z_IB_km&5-6+176oJ+N(8R)pNn-g`;rMC6b&7&}JR!3qyKIn8xar^`**>SsGz$He~t z7iRIdhCE+=t9TCf_e6FLZtrg*f;O1l;~_U=5+a^JBmi(l7POlEt*}QIaEvU~taekOsf*$d7JME3nza7_xBO=Db*`B+Cg}9I+3s&;Ry+u8m-nx` zA9<80Ip+fv`6c^I{{X>9{wI7^Yp(?SC^L9Z!i|{NLm~dqyk17@i-kYCQaVQt(mFG@ zO8t)i0D|6s!8m*|@bkm|9sRMq3t?$Ich=D8{w#(GCs&tJ+Jf5kq)t?nQw)WNA0}6h zKbpt*MRBM{_KynPjYLgsZeWWlCq@}QM92;cG6wSAGqu@BAy3O+=wH#Z!p;_!29|j{ z)vec_+^~|}DD8E+a=w;o%>E$p@5EjshAMeo3sa=^PA&6FJ8$?jzIR%lK#UQ#pc^>> zPYMA!;CB2fQUC)T$OE4Kp7kZgjpe26x^2>JmL@98*9Yo4{Y7+s9El>He?5PAn?T*$ zInU?Ce{%avM)5z3F*SK_DQ_4S{n{^{jGm@q7-P_Zl{*B>PMNTTW#btk9rb}Ros>3<$R^%iC4^Q!` zrA}}winMNe5FCe!a|72k8k}=ZIBrjR6ZdR3wHmAe2Nm^4!F{danIH!Rr*_Hd&VFzMS0qzuI$h*q+Rr&@uNK-F{{Vank>wy@!v`+;1OUG`>u>D6GZ`khok-ZS zyI}IzQUS>XjB%b1O8Cq6X_`aej~i)jK4>S?FBAjFS!0&nh#&UEegeM3{hL+yYUNH; zK!J$CAH0yRe;f|~0Lr>@TwLp5Y0htCm)v|;iuqc>aV|E5RjoGv0Prt+^&jC+8R@jCH=m?Wp6+1&+!I!Z@au&Uu_4V z`Gf#t-=-_FyIVbb#$F)!V|tky<)!tThv>_342zC9!Q&pa{K;N;GsTuWB%`poTh@6wPv}t~6pVOy?ziPjM z-Zj~2;m?Q~b|J~v?1*>`qyiumj3`h_#ZR+d%wK1)@>BWi6R`HFhM@O!LK;J z(uy%K663e1_Ro6wv*ADOqoerF7~}CRzmssGL)=?@uBC_Gk`KGEp6E*PfnRFrz96^O zA&yZja|xGpb3{RoKsh9OA5r|P_H45gPPG+V4=!lF$KaX13bhK(jw&3oN38r2{i6JD z@FP&VvC`5FPs94YW7V`P_49Q5^kKEcv9Ms0GW?=d860m809yC!uh`bdj&~8Z2ktB`3&9-oVa^rCr+6$o@J}A^|7T}Y&5)R#upzZiqdGIge zpO3$1Pl%SjKkyvNCWv`gHrE9Gp7Pm`?=5Z=a#6V|z!Mw%>)ansy;`!PB|+MD())Q| z`nvSc^Kew@)5I#3730+{FW%eP`PPR`SbJN&1lQ8f0 zm{0yfn!k(q$Hg8g!{TRzuTeq8>Xc);^J%}t{?Xw-4Y+E)9-cD|OPxt*+j~74YUz1B z56Z6${{X=tKV*#+0PzIgBiEc`CT&aXirD`EX398m`PaVqYyJu4`x5w0G=|sVo{@dG zo%)!UQIMZf*K$dp#=hFxrW|f9}T<_ZnnM*@ZOW7#-DX;tZm=}>9R0?TJ#jWyCY$h%8oI(CU;_z6G4EgI)%iGCnMC7P-q-dkx|3wv_d<$T3IXN2`G<$x-TNAmX# z*M;CNL{TWtHtoP3oqr);+5Z4Wo*$`&!dA@c$M}sX`bPJDjp_0~kv@^x?L19tS!Fpd zb6I-5m&t4MJh3meCylL=NeZ^sWmD9ya7pXNeQ{s5zwkrdPg%14p!`*#9p7ctJTPUQ zPiC~ekIDZ4(eeSGd{^Z>9wzYSL{TQ-INB9Q>ze+F{{Y~PzXw}R@HdKoXnV*^E8;0r zMblLCy4y~X+U8;DzUjAoYJMkScq1Qx$PC^+h3KN`5&Bk8a12`$;jx0!PqpRIp2(AZix`pd}U>%j$&IZ}TH&-d)+%_7%lWUo-+|A10E7|$n{{S(3ZsJI0yhU2A z1$f5MUUt&|05|ATxVN{3h>gUf)j`MWijFi5$_miCwzP^yMY>5yMP>4G>cpN@vD=NK zl0YLo4^b3CLKSVTOs|YK?ah)&!3w)^#yg%ybIu3qYNE0D`=cxJy~d3)>Rw_Q_5+%Y zY%YTp^4qVWu9c$ktdf_uvv}B?feZmaBc=cu{B!u%N%l{RY@rC1fgSdi`egPWhAW-o zQtH0*rWi>zv-^)Oy|kSpw~ke0-*;#M$53t)pUXA78(2m1E#X!tqM;=EX9Bl1PYHO+ z<~T;YvRi|BX|_jQ!K4y`sy25x;NxiTSQk1a?ujzZaU$+axLgoU)6jP5&p7n!USuo6 zSc;Z?Bl@14@Kqy*rsW$e%l`mvKS+Et;(d4aQ~isrekgcrRFg^Z$Ht4jLdMTmjl7GU zE5bT7iEnysZVAj1YL~@gGsaRuYzD?xP~txv>RvYZQU3r0%hhyGi`N&ad+`&-HeMm{ zo|~%6GutnUmithb&6;1dxVMRLp%yrl%63N*M-pW0Maj?Q`33^MIx8^5 zK|&nvqm|Q?lw|o5w$VvO_jh{xtC_R<6FtoExonnQLUNS(6gd*IT*-4c-M4nU?XHLF zKl~LF#QJB$-3Q?x?3dvq<((73o)x{E`W!^D@3R>bCwH{{Vtr{2J3&m()C4@e5u7c>y%`T|55(LT}E!d-mh_g{ywf z-?vYJH9rF+UvKzH;g11YTSG7UuQy4u7p51$C00ebD8vHF9Iym|T&L|p;GI9jKLUSb zZ-lyQIU28mr@M3t$jsg_*PIi(JXZP7P7JP0;IQWV`h#wbXE%Fx`9hAsfL|s&lK%W*r`hUT2+!){{Xjc zb?5693^d__U%kBurPk^WPAk#t)6k*uui;1Rcl%U$1L6nmGy5XyTDOHfQ{k&ipBH$W zz*_pO(Jhp>EZT+UjeeWF*y5H`BS2lkD=KV&x(f2Ih&m;$xBL?e;je>T#9#25{88~e z?AuNmp|aD{LS|E({Dxcu?Ok@0@H^r^>`(AF;y;K#Xk8`zE#kk4o*$FI-Wt$vrHyqN zEHw+5W!Cj;i+I{YZ)*j-5kYR!vb47j%djrTZyx=n{72wzbM{mC1MtJb`rWnV&X=Hg zuKQbt&Sa8n3;zHRYbkQE&Z#i_O6`1l;>8C8xLAlD5}2fpS|v?Qg-HF z5>v8G>wOz-7-B2Y!&9k`#M6x|OsRY8ZRWMNNl9JkbU*M_EBlM@_$a@{eI#RUovT@C zmhp^yklSe5azumJ1CTxa>)JdmqRf5_{>PuQq_AgF@#n+`_=9s4MN17j_gS^mG^rc| zkS=uOo@GDXM)a+(i2nc(f8d-SwO+4p`%-?;+P{pnj~rfDSV!XD2xvNDwYIsaSX)PE z(^~5eyDXxdcAtEHCS2*>Ak=(b{w~%$nC`AM2fvajLprpNbZ(q5U8Jis z5Wo;hlgKBJd-12mKZ$=3KWN=Y_MN@eCeyrSscPd~Yuyq#EXBRzqC}5u8RclzQZ+!V z?iq5gxmkhqbDWB$Xws)mrR?d-EBsfd%co_?{`11fc*=$vt$MC4xz$ou-=TMKJqA#06B?&PEp*~f_i zEY24QvU-n%{{Y~dpSCx|Zv*&K$9@p-<-N~`d}*Uw>R<4Y!+mWgjiaT&WV-&;xp^V` zJeqbHuAAO8Sp$ZTN!p}a?`_?p{Glg+cXzIY+GidGmiExnXb zLS`yT`K*l~QbMwZV0^8cOYn|^E}3<8_B}G@VKlaHaU$DID8?j`+`pA1gJ>b$3w)r1 zz%{J%9M)0hQ;cNZ)^bUCJHfWzx~piFw{Oq(Su7@+p(!P=G^J@bd+L`oZPU|VBA@Mj zuOE+pv{tp^FNW6hP2oK<-%jxMgLO21QJYQCY@@P*b_9}s(DBPU-~uC+0|j73e7&W7 zIk$g{Iwym5Yo*@kE-tnVszR~}SQFgsgRe{+cdvifzB70yNmhd1R=<>~7`Nqjb_LHL zTvvqXn%MCNi#%oV7H#U*Iy_czE3<(fQZ&r;1sst(p5M z{4xD@{{YEUPw1}<@|Qy__K!zD)BgarayqYu8U#0!$#H(BI4zURnV4q)kZ`;LSdIsO zYVH0ec-LCc?T~m<%6p$Ic~=)!N`KHqgXOo4!nWCpf@PEpgZs2#LmJ)i@=vDtc-&cq z4ux6(%0OwKR7csh#;qs*i6E46pOPS;jlTk<@M;a|b{ejp@Q z`d)^R?LK7R+LJZ1mCiFHibS0C8v%Ch!7M((v-oSP>CwS$;ae*yE}?=uU$SX8(>1mH z=3m}AuB9d|W>}6AI9$gw@anl0$9R8Jv$*h^_@u(o!+L?d-0>7(1Ya}w)mA;A5;n85 zV3Wmd{4ep9g{=2C5{tWwC~YJH+?IHnQbCc{HU$cwnDV(f$vju;P~m(m=*CqwpLM6; zwAX!mpPOQM#~SKXN5QVCGlDV*mrk&F^2KpAh~bcxU4mgy6c4IX|`ZV$rm+ z1DSNayCqjW#2iZ#F=-W0rgntK!k#6Id{SHAE*dS-u{}2-Ad%_F&(PQNuN-je%QFP& zD?(@QJR8J6U(5Mxd~wrV{%0#~s@~X3VRdP8_UQNz8oO*^-}gk6Bx5~k^cf?=N#p`UC{ch8 z?wvy8t~vVGz4*sow7310{0-o{C{`17d9G@gP6-}qw7h$JWo17p3+K69V+^CykCL5O zQ<_dU=DJ>9XVpR#YDFl@$u!@Z?0o&=Yo7;dlP%7leK{&d?>+)ZBY}b#=lOb?@_XG! zM32pi-riFtNcqmt4^MJ1dBu0uI(4L6_U<^~^vz*Y5aR5PtUW$ucF+IS`+MN0#((%EN5&CvY2&L6D@gGq zP(>}>%+W2RsxVkPybSR9(wR?~?9AtBI8ZqFA7Ak=gKoTS;-vU6&vD@h_2^>LEpDfK ztBY$pSn$_>ZD!Avbm&?Gmf8x8u5dpq{{U$(5_p%#zaM;Gt^7IgZKsBzj%aZPlZ{Ht zP=*_Dv0OzdnLgO$FqK8JO0f{2v1K*-lm7q&xcGS&?I-b{z~|z=r(vsUR`A3xX1I_w z%C?*dHnX@yM4DxiGxl+lv>aq+yh>CdLW`)SeLCuXi7NBv<+hzq=_}&Lz~2h#Uju#* z_{(38Ya8zgTRd$LZK_iK)bDG8e)pE3oRh)n=zp0{i+az*{{R7e9`V<~U3%&5tTkVQ z{{R?ouWX9O!e`SwNpv*XnTRe5TiwgFD*!~FFeD6rVZXO8gSBsqf3T;-?*;fC`R%m} zzYX7}op%bE9^Pbu#Bw1&c&}hb75tZcT>Yzl8GJCW9DObePZZYRdOHQfTwQpA2^EpK0@L+s7r&O@4WP)1D=@_`~}$=zkGhk1`v$7IL6|?pc-Xoljx5Qls^+ zx4+<%x|-@<7x1N#%C?WCYI;A-jl^m5c}U0IquSp>IIrhkDaKd9%QM2syULq;_FS*? zKX&1)B@9(81}-s8Mt0eCeBYt_F{)fSATCrk03X)AbMdoW>b@n?v}--`eWBUz5)i7w zC|d~o-vDiso(ODb74!zAeCx3q6Y`7``qzTV0GGzvgE9+=Mc&Q%B*Pb$8)zhe74gUe zA-h-b_95zjR^hZqn|RI(&2z@`<%@aJ1jbI`uyPY5bz*tv+n#IN^|-9OBjCl+k^H6d z*;$F&0-jj>#BDv7KgEGkcvC=0b*Z&IM=B$8joI6RI6kEPdRLnKbk$~iDfFv&!mx?t z^H?}l0dS4wfJ>aWL5y%o;-)Y~&Zej5_s5GZYsI&gKMwpc2}x!Mi5S@n$rPbWGY2L> z!FM~1sB%7B5y!XuLb{(x@bYPT2b5uo*DRuSK_=3q45>42LZz62k?)$~yd|V~i&Xf{ zedC+B+AS)|(XGVJgc&X*2(Py}W*{jJS+KkT=~X@8;}_2t%LN0ayYNm)Z|Md`uA9COhJ80R(i=Z8EkX)TZ0F3}fpOgj-EMnyPnzbfIo zki!_{k;QRd8Sp{8^8VR?R{*HX{M=v;gfTvwf%P@+dKQIse|HvvY_Yx6%pp{YGV31h z4l)8O1^c_38Tp$6yIfnAhb7ZZ9{_wq_yud>uNmBHBHTurf_;BZG_%Yx4I)X7CTiofF7MTWirJxI4MXK4J~T^yRUFc;gv0=;9;p zb4Rhshf;DsX0z#O1Zwxf z7r)aavVlCP-DC$Y8w7mJndsb+{9IS*kHL)-L-5Ci;P6hHWNe_bPbcJmo6JI0*sej# zFee`{9E|Z^JvSN2PAffxbKLLICp5y)ZKKw$e@9Y6-Z%!lG1hvo1OkFP8(=VhMG?r6O0cVdpv%2UjWLa1Ih zDY+Pdxp2isa6i?bP5VW*p&AlMbB=f*4*a**)T|q&PTj(ws5RY$i@?>j@Z56C}v83}Xxd{&o5F`)TX;vB{!%KEny*#Um=Dsi-j1Il4^cUc+n5$~5GV&o%zTJ*J&%J(i;w~qb3YVGvNAyy_I=SUZ zu907hzvzC3e$BVdYcGr~m0n*vM6r;hV6z`4?q%REPabA^SJ&UOwbWL6MzKFQm_n+X zKq?CoM>yb--;vFHXZs|0t5Wcf#(hFPHchK>;hXWhYVSsd;?>cCJqqt^9@($7d3o;f?1vmbIv$v<9er-JAI011@S^ZeUBW9c1-QR5tAU3nk=NfXJX@inY} zwU(dZ>*iR*-de-KJcGC?AdU`5{HyT~;=Y@2qI_KOPL9#I7W($95b~Xu3YW702Rvib z9M|esj+X9!+9J=za62@xPYWw65J(3AlwJ?zkzbuZwO@vAr2VA)cDj5;Av)c}yLbop z=^V!(V;N^Hn)_@kiki9n{{W4R;j!aaA7<7q*3RjL!tUG_>33tO!n)v$_Q?QuuRGSf z4J>yV&_m6`H>P?p_O`;rfLq1dR4QdU5rucGvP-%5?TE zu)3~Qut&|6Dn~*H>C(M5E?c;>$c1MYq2%5i*Y5PI_@{zH1kn}pk*@lD@{FJjfK=Twph4!e*O+!4%EV zbv{pw_%{!mP}N#%XW9P%k^MDzZ(Ot2?U8i(Qg4@sOb~OG!RxiXRPsA<%^HQLnyeXe z!|}+km;M5LR`Dji@bf^n@Rp%*cc34V=SNw5@33ld1`=GNENb6pbdb7kF3OJKj{?5J zu+y~-e@(m9EJSFUeXHKi(mJAukg9;0`|j-Ov7&;`PaFbA^$t~^QpM3&igH%_8vbCMU?0+*ZGmse-*Mr=A+#cfxy?+zUr(SCMgXwx*t6i~4 zBr&S*#8IwgXTZRXN8e_`fIufCXZN4>T>ZYh585~D;-&54lHI0|s4}|;~;tf^T?#Xd2 zm6T2R8KsndDVq6L$Di<9Z;Met>)_7;XnJuxB$v0hckDCJv}qlxegXdg8vHje@K1>G zO(z(e;*z* z{{Vu!{@h+9fW@Wwj>AC7&UB3?+7<)QJ<+>4_pg$Cd;4Pk)?X2~FN{7Vc%JPT5K%Qr z?GS_5rHQseJ7BGS?p^d?&MG_NYeFl^?fyxAC&c4^k{KjD+Ax&9NiWR)?sZLnM)2$( zXxFc8wD|kA-0@qFu4HAe&2QRk{tCtWHGB=x?=vD z--$mRz9H&g6TT;Et*L8Tw4vs4`?N$+h@gfbNQwxQ?TR2y(UMC$JGTMlPbt{ti9B=G zzM0az6E2rxEPu2et=(itw?=KdUmLd{xE062?co;|_UIz#40#Mj2>_l+ z!OkoC7Y~_X@buLhFtk>QEfPrl12M>Pc*@ScCT+@EyZ$GR{22Hll}CGXYS{3~z0-TA8( z($tpA8u;_}{P@o&!5`VTR+B-xHk$tciB+^sE=BwCNpl-{_bdMZUhr>lPw|u;O?{Y+ zBREtUB;XHo(!ZKd_$Z&pzxZ6Av?b?zu?jb-^<`CX?!c0WDe$#w5z^19pMhJ~lFY3-Y2 zN)Z%clq!rU45O3}s0N z+omZX&@Le)!*RKPy5m2tX?<$?+|F5ild_2ba;J81MLA>zPaQ{Eu=ZClj#qcmsL1i# zHYOoC11-i$rO(Z|o21s}M!EA%q}wnJ=IVC%&rBlAA@=CCvEiP;`9Pb@)FHaYnR z_Ja85@PosCCHQCHuY}r7`}{KS7l~~AMRz5{Fh{Fvx6s_c_d1QvcC0c5Lw=#g=f~DOUHVDMMR9+m<}n zy{waayIs32k4G`$YM#MLoFfUVURHN}wzcls*2?xu?D^C7nD~&Nv=_#2h#wT*DQzP0 zuCJ?KBvO=Vpo37BLlkbvN;Ag`Dw3qG<=~NnT^H>^`$G7G_MQ0Qt9)_s1%V6~f6y7e@ z?xnfbF0Q1%n^0#fboWxRcc0Botg^GQV(LN3IK@*-IBj`Tf#^;KewC|lX>oAjB8{It z0;xIttMl6PqfYWxiuo-&dLN)+sA6i_Nx3~QySwk|aT@1^?0iLiF0Ze7m)Dcv%X4)! zliWyDZC&$9%_CrN12F(_Fe{jo;fICg3es8wx1hgyL5M^E+5+&PdI8XW74!wa!F$`Z^6u^yHuVdh zKR@TibXtGFttJc$`<9dsPn7rUGmp>kuaV4rZpdk^Yq>up-{zA1PolthH=RyO)RY&S zOY+z7K5s)Tcq+gH$2@%i@AwL{4Y--Sv(dA07>{u;B7Iy*zHWtdNl6R zeK;fm?ZtIgo)_@$ogb5BX%r(Q{E7w-dibn=(jP63n0iu|t(WTm03+ z?O&*O_wdFRd!;djJF?)8LF>=byi@j2(yfzB&~*u0DRrvdYBH0_*&WQc1bzt?E9YzY z`@~fx8S}+7^!Hb%TlYPB9tdO+r6j4nRiC`|S5M2a`APo(1tRe+(*D(cA+^%o{GA#L z4LTN91r=ib*OXVO3*?vo0D+#B`KUW}4KpEGf3}@d1x$lblH};M3dGVLVFB$lz z`BF!HYs!Uz`NIojX*YH&zE>c6lV3e({#4@e)F~d z>wbsW;qVmj@lqzeTPBQq$A5oFyzkVh-7v7nSkVBjc@#MOYakF%RSw;-F7(Rezzov3rhZ#o)C{nMasihe0%K1{h{qF9Pdb9cCI?wR07Y9;>+$uRab&_{! ze6F{BG(6YBI`*e;;V86avVtpJPfv|5eCdijATuhULZ3PE-{vg9WM=^IJq!C1#w#zf z&RCtMHDn6J24lkTa0teF;|FhCS3BYT6I{}@DE|QAB4ae{k33shnmDcG7zv%KHz{62 zZuUIap=rWvi08U^5^(`;}u;dI5=RbYIcq~jXN;u}6{{XMh{L76q zd_1wPSS8C1{a@b5d@&uKm*R=+br|E#^DUf_uJWeFMKK-;BOn$ekC<=|0Au0rih6a& zhx}uxcym(uu5D)7E&&70LFGtKpf4L9I+N2C_OFQa-x7HRv};25j)j%{u_oaYt9e0k z7_^xy@-T1Qc%c=T)_e{_Rk0Sgs~%HzJIZ6yPvZmr=tLn*6)Q z3><#13B@mVUz$Hy@M|-a>rGAkaohYh{O)}2Jjc^7BUshQRsme#Hgo>~>-=l5w$t?; zU%=WHnR5PJtPmB2m=n4enn~m*Cn25W=Z;1=u6s(;Wz?;vvVufLbGOW8;1URDJ-%K^ z&Ooni@YbiGYc}6!x0FezL<~c6jznajRT(~+-RMPsJ>ntK$tc{r z2>Az3n;!Yd?_Mb)>NeNs?GU4>IV~G-19EUaY!T01D@qkywL0p>C1XDRB!bZS#|22h z;F5jMQ}pj#bpHT9?#U!)Bn)>wKEM5H+VLi^t1yn`t#rOO)uJLhdtw5{2*;oU3&0=b`d5;jjCVU6o=*p_;Azm4)>7&^j$aHOi2v64 zyWwa27Ng)7z^Mm={5#=C@e1hn*I#Rx+j(*s(-9b;d!#H`n~2f{5U3kL`Lchajbrvy z_<8$Hcq2pjm*MRqUjTTAQPMu%NVR81dG_Kvs0v2|Y%RUzgcj@4zlhKHBG2rl;{O1N zel*a2E$h%}dY^{$jZj@$*iR{0=D*Y5%!p047ijIHkO_AU%3Tp~8;bt`Kre;fG|~Pd z>YDGu?NUiJyPF#b-4fr-jzxy^b4# zi(0JBas7>|U1`@6MvAhOSr$mhm=el{LdeU&=dTs|_l23wOs5|VOZ#mvEqeZ+GxP5e za%kpwDbQQ4z3hK3-wXc$WZxEiLb<=yyj^`gj)A6mh-HkQHs*N9EgVYUFP5hv||&ok%ExVbjgNfP(sHFkhlc4Nf_0Ith6mT8p0nU-rWL05C9FT zHm?Bmz~kGV_5E)?F~m!jaF3C8+8U!VCOlm7s-KCPp8&q&uk z2l%W!npcRe&CDnc9VUwfnl{1NBH?61kG!YXpVwdbCuhSAAK^cVWAKKPcXNJ`!Kht5 z#n+Z3l3S1&$yk*URaI3$QSNe0en$Am;pLaZPm7m2-1m3-b*!^B#e|k6QQyu!V=6p~ zV*)d|SqA1H1HkM0tN#E5&ha;kJa_R^#v1pCH59zE(X^-{wTd{BJ+FB)hi7F~F8*9< zGC;>XbI;Fs-Irl!mSS^?R@R-H>#dc)uQS*1dmV{}I*wOSyD8q@m)GuJk^0=tn~5%D z`>_H~rxoJ50kzaM?NV|5RwecS6YrQ7@k|b$SSSZ`LtGfg&cM@2y2cFy#IIno|H1gbAxe};cZowqvj(}s^ z>yFs#UpV-(z-kTl2@)xXCP0NgRV$J6J~`dhKqnsjkzbh>;;pI1X;USjTA;QYx(5q?Tlf21o`g zalYh~JUSTTQhG72w!0kOh2Mo5U9r;cd_^RGy1UyHPr69tbiph~?=Vn5D4=9*>w+sU z#oiCTzmc!*r~k&M@<-pDRs-jL6=aHu7S#~JPWpxab| z)ZxJ+v2H7uBkePkSW)CG`DjO%B!u$AD#W^}UN?D)GC=@zQA|!(jf|}uMs-Ak$(6wy zBOwVVKiv!q5sor;ob=8?ud6?2{{RB&J|6LwJXJNcQz|dn(51{#!tOFW#%Xu2n4}Le zlwgp*#53Xk42r>IHx{A~w8IPUl2Y?T&RKk{+gjwbpWQ0!!28M$E8RXD>e?oS;>Xou znZ%LJ7)Wec;DMvqJojl`B{^Tc<*@~FISjjptwNIIyEtVgosa1I;4~f^*E}C<ulyC;!}gy6K0e**QR&iYwpw?J;dr5yR2ZPV z9XMuPo8->mc7S?uivG^N1zd@AJ4?7hvo4-wku}0?RO*hQRzSouo%@^REO1ETzm0$R zEuOOv#jhUt?@oczb8~uNhDfB0hnC(l0}X*!91Jq3t)ou$5rzg$N=+ZFfAC7*iZ+w@ z-$;hmD5swJQr-y}fQ|_Zh9nRM<=P682t6@h(k7{GXW`!*N2tG;S5splk7`a4z{BC> z`ND=!KvVMPIL2%I_kZA&U$wQ}wYP_@HOt4hzqXnH#h8#Lh>khhq~UY4a8Dd{ukV}S zuDu7w?}V{qA20CcbPFz|+@Z5(#7##jhblwl_1IU@rk_sBUsj`jSxf5FZl0IZ`v1pTBm zn8Ms@Nj8P37Hn@8==V0oRODqxmOxaQW`P6>pjR+2htj zEM`Go5n961UoHOt2HE_3gx?@sW08|rbj4V;cqbhTF#N$4jAg*Yef!q6rP3Mgu1GnI z<;QLa=D*a2v_H+MDI?H<=Od@RK{B7bD&b2L(n6(k(`kN&+?x|TQ)Nc}6BGoH4@ zF(&yHROFL^pVGe`ziH1B4-$N3*6txcySKRe9C$e!El@;od*(pr+co;raensxbsptF<6oC0u8IL;}`_bC)v9Wd@bQ_%LL?snJgpNM~De}w)w{f94nL-5Z| zSiDo=9BPx?5T@$-0maNxGKMS>GbCy-0bC9%@wI_WrgM&%?kmlfAvv|x9S#j8a>ben zZs9@Q)N%E%(a(l*3pjVbb;doup4?aGpN64Hwd+XaATOGyC)=OtU!Xo7xsKON{q7Y& z&UhHl{{UXUGw~I(taevkOeP>)XVd{8T5IN9WEFAT&k033mX_}9>Ig$E425or8Z$82iE@kT1N zcDno$JgZN&v((5VmsN+)5na2v$ z>%~rxlizt19AFfcCRq;W{7lsPwh6N5zI(s>J|EsJ7IwYdsn63 z#*sF5Zrj3Rr8_blt)cHRm>hY9^YRM)w(z7r6`R9TXgUq= z_TkdZzhk>%Vx3@-T02F$gd-|Q2+4G8NWUlwNeleccs9~aLPbDINRC;sNM%#BZph~$ zxZ|AT>tE1U?CoXa&x-mkmp+FGxtM9QY7WpUtn-UyNKK$vlu0a!BQrx8Rt3Ib%EagN z&H&;Cg~Un|smm8@-Rau@0Mq=B%=|*gC5odOkfx<2ewzOPU*vsz<6ns$3er9v>c0>E z5a{x0QFww#7g)KvCR>KKv{=k`X(sml+|#SgH$@?YU=flzpMep#jdk5;;EaJJZysq< zTG|b`MAo#zHC-B4=znu_YSDl=CgAnSu18Vu-meauE~j;CBrrwhsS_(k09Qb$zwIO} z5?JF_0K22G46Bm8TOBH=g}g(k{2lR4uf#KIt#zYa*y>36C7~8mCET&7`=UvskI8b} z#=F#En34Sxmf)yDgsISXl)ATe-ibEe_Oknt{P&NAMzuvO zOZa2p-CJ1FlUlu!(&iWhR>s!mX1TW!O>ogf$dO8jHn9U~UaCbn{{X=#{{UeK1j3`a1;r1=He%vGsiW*PogFA-H1>n}t_D z@WuYNUx>1wqqh;&x3!F5yyU-2pUzjpzYW~lX%DGiL{Q9CfFSSyJe=?|+uFU?OVI9h z$wXEU6l~}nR!6~QIoe}T3(3D}3$a)dF~xsU9tQn_KVvTfh~&|J9O*X_!T?FNC6iK@ zBi2jDl;*y((0o6jczPtX@V=dEr+@+?+Cdy#4vID?IP?|x{&Vz?!%m}~7KEMu0GXxu zE@SqrgTP9(sVaDy$y>GG=VSP`@eZqD;CoSO@mx=-qXm*Hm<$UO;2oYsgUl_?cS*Eh z0uZU^SK++AG5D|IOI;I4wQHSYSG8MgAoC zJL13XU##kW5b~~Vv};Rk5__b>3#+>pn9m?#kis^T$P9TVChQizqW=JbO?(gk0EDOF z4yEz)TY&w8!m4a^?aT7MrF9l$kYsXg?VkXHjnj~MUO!UJc*Yn`A9=NSa?h1JH};y+ zJv!T_$LHC93Dm^rpV{=PUJ6ZUx-H+_yPvk72tF5Rp9MY_=wAvvHo{9?3ej!MxB$;F z`KO(+)uxoYpRIauPBV^b6dC9-R=_yx&3~Vmj6~~Im0GUylWo5@t3S1{^dU-|X;W5; zR$hqtgZ97p-ruwDz#VVLI#i09&C-oKM^^s;pX;DiA05O99%deiU&@3UVgwr*nX!V- z#hs6KW<0Yoj3rrF4EmQ6}v8twXH_bIX! zImkX>#eR2LPM1=7R-v7}6cT@tukDWqxNG|_C{=3dI==Jt`z!9()wB5<#ccLjmT2hF z)-?Uq>-L}Dr^yhu~TX5Q9Q&eN4E+d28R@$Xyq{s!?B%1nYJ z`msOASKVW{%Phlx9}xxr0BgP_7^>|_uH_#Wx2d@Oz7Jp=W-CHtvgIBt~Qb{W_?L)`+Qw4qh z0F`{rZx}dgm&b{}lw&9O*)PQPzv3C^^RlNwdbuRO3%|hRb)Sm90MVJCn)FL5WEF=p z5Jzl*jQ%y|I?u4xAQt#H8s`Y$IRTKdOH{gAu`X3?ET6Kv`UXH(99h~uXR zkEMGThyDrtGtd;9O)A(Bdih9tdhy9M;$ps$d_PC{6e?7Hc8dJlI;r>>pJFtxUY#}M zoS)*6`A+^d@eZ|jX*QE=k<79a58?lyAQPf(Hg`XEo^6v6m?XNJp263 z+t_hmryB2vygwI*Fzh zNxHGAIbkqST+aUUZrUZ%-H)fi{T-;faE>z>HsYH1QjPU*uQzk@elG%k&{N@Mx_Fd; zOK(>r{`gb$>q}|-Hu&en7Y5^3xt@0CJ1y9;&uqxR4_=k}xHd;7{feY_0A{S4g>Fe0 z^yoh-`Fv;6M~LbssJK)A01Q|D-E-PES-S0! z)-jH}>{3VLUi0A(fY)9a#1_`j#s>%QI|c4H5^_(jI2HAC&u?#=sa<11)!c;xzf;9d zCC|(-LGC&c>JPnqE@|S=5#tk8@pEgkc3*O__St`iSr!fRVeqg|yI1^O&JRxTZH1g` zA%-=V7$p&Lk4{HFjcu-wV_pDYJ01`CR{D_b>z~G?E6sdHBQdX9T-B!K>f8L!s-c9X zNm`Ur^j0vT3vS;$2OUm1t3u)cM?~$07_CepQ^i8^M57}a9jlU3xzTbYZ{k70^uw(pW9^HARa5Y;4j%h)WxvaUN)ox=^724XKrIj~v z-vOx?Po1(Qxt8N2k}#|JEg(7Hh+h`G3GhQkw(;l0jTcq%4vih`7S~o9CC#;^{EKi( z{^o12&?!;_HvDBl0fE75!>o< zf)r$)20-9s*U2BYEdB9}q zqIkVwwMMgoIZ`JfaXC|!`UBtauS*R=GKJZ6=Vz(?Gfn$x{{X=bbs6Kf@ztM?{5ECC zk(Wr-u2B_oHwiT9Zq#IdyufwAuTS`K;V<|iSHyh^$KlWHuknXpu+^rtmcvZ4ySKZ% zm^H+27&1qw+QD+i=Q+&5iRGKAujKEsU@zXs`dI-SB81;wN<6lPd0wYb@meTrb=`XMC{{Ym-Z*y~TBV5MNx6X|m%<+V5x)HUxQ(T41i(BJu z9v{pFw`XqF+<5;0zIqYI<6mt;QcBNL#?#wePLd{NAQu3PA8ys|e;M@mj6>orBMT{zL%5K2y$_e|I>aB;kjcsL*q zfMcb86XIrTPEHtj%Kd+@y#4dTJf2W>EAq9am+Sc+&+xKgZu9DQR(f`$6I)MZNNXO`AcyMhmU2ehKYAtu4l)># z!RNhc_*y%!3wUDQZSoj3E4y@=hBg#U)1W7VfglBYjt{kCCCAz>XS@<}K>Mx8!*@LM z-_!7~#ay}M-$VC$5aohM=lofyUR>Qsp|c9Oj56}72;*?ZR3GwiDvjrbHET}-*?dEq z>e$$7R}$Jo<;jUih(7st;~POjKK4dbk&Z?Vzo^++-AYy2?p*HzEUCkAa!2#&URSQ^ z`rp~2j%|_0amjO_y_lj=Jt!tEsNMM|k?b4O5%Rn;ccJg}l!3olHC z0}4C#uUxYOOVUL02F%%B$fuAnRA-I2=D*Ij;r{^q6aN6>6bpT& zXudeL(Y5P%jCN7|is?SpB(3|%e$@*xi~<4OwUfUXHTxf<{{X>3KW#7BGg!U&1L98> z+Ffb7dRZhBTic7ttYo&eMz>d)8Mnqs!+DW!Vn7doRQ`8gA@#-I2kjJ`7Q%w8*t#*u1TroVQ#*HFEzR`ba$$tLM#mfcwv2+kD??!iC+JQ4M8 z?1S-Jz`g?bJtzDVyW>rj$A>&qIlQ!v{#%%Cpuc%k$por*G=NA5P)OQX5s*j&`N92! zzB2rO`1ku?Yd;qLD0s`n`nQI(Sd}leDel%5eNagmx6<5NM;)v&znEky0CtI0WZk@j z{e|k^6+RMw!Z{y`{wC;$SJLK4?Jlk@V2Wn8fFUn%g)=S{w&Z|}y+%cLVsX_d&0*?F z?ON98XsD^f+FJMg&*ksLx*nmT_=@+#I0U|VYuK(Y zUe@1~h;0OPE#AKQ{{Vu3ctb(>VezW+Uk7TVS+Mafyc(sA>axgWiggMJBlv(`ea=r> z_%lh-F0VC9a0l**X36ME44-}u2fcq_aQ-?q@UX=H05VMeTjE?SsN$!GT^aEo?M>s$ zZ}>zT;mSf?e%}%qvz$B;nIs)@7_$W!{uOMKk&o10_$9mA>i+-&H6IhjZ5^bqJ-vkK z6l)r^){&6%4ZODEbCciRzApW#w9kZo0Ptj=6TT~3Pc5mE-rLEt$DcLBHptx zLosX^#v3>o{S^NIf_7@21=qi4Sv8M_U-AUFz8_`<8a6~oRZ2QH%p^w)t{a`%@Lh}C&DWf$wW{5kaRi!SC#mPk(3h%Q?=1mxgj>(6TQ zUxy78wp#7=!Wi>@>m+y$u%hiaDtaHi(<43l*P?ih(jsPlJhHAvag2J7y|bUfxgP*P z@!IRG?xjwkWiK0U7<2=!I`PQo2aM*wfadkOKd@<}pkwOg($uKIj!fipyN{cyB%pKFiMk3RK^%`uA!K=RGp-i9S(YA4^duKrJHMb z3<)6$<+ov!g2RLIfCwWTj)ZzwbSd9Nb6s0Q)$JjDI@ipXWvjGgu`T7WZu^~sbJTFY z*zZ_VX{S=Wl1RX40^ldiS($$4?{_H*4tUReh83-)%(syw(6LDq_iE^%I7I_7?I4ne zg23c=1P~2Jb0z#Xw=X5Rc398Px!h!vgBVDL9Wj!!IO+f_Gfior+Os^m=I#sKOkK)` zNS|WJgba~_q%%p*&@cxh7$YYqKU91W@m`Z<<;f-r4e58fY}-zu$Cs4_LJ*++!g}F` zIUgx#nq}Ou+z3&i#TO5@Vz0c^2;U~oX1Hr!ubsrGjY6))^jRosCWqZWf z5nTew^Cy`RBMv1Xf#RlMHA@S*BV={J0c6jaBfMGLg|1$=pKw=D*9M!M_nd;ZS^6 z{?L*_R^IMdE|pII0Nwed79~arQa22B#~o|?xBmcwY5a1&@WSZ6HPG%Ob(RGx%_qww zQy^Ey2?a{$0F&79TzpGHbZbKqYbJVlc+#sG;iDw<{C~{;#toZkdaK#lG;Iv4=0g;C zQMhvCbx;@(epSgiBc3bs1O5wr@X{}gpYTnu7Hc-}quh8lYi({e3e4VJyM?$_z|LAH zVUzOuk<@;wcsBmS#XbYlyi2CURx<*H68`|KO}uh@bmu*5N?n`h#D*Q&daBg33Vnu$se%V^s(|!rPiO&5)QMH5)Fa%qs zIsX8@Kgh4h7HoXuu1^NPk34| zOMehWbKw>6&Dy)kYjkI}aradvTuO(Yg_-d-Oljwf; zpwP_@}LHSMg4`@mi_p z{U1$my2=&Hsn*1A! zd`QN}89Xi(sKzeW>VH7+Uxv6kxL9KGNy*7x*Rt~4{Lkb!_V4|i{{Y~jpYTeJLrc)L zIJK_{_*=yGL}~XVSji3JM;I3>vO=>QsyeZW$~vhe0;PZlVksT;L<^AOdsi)8Ep*7XJW(ZCM*QymxX2N+y{RBa9u_ z40GGlJ^r2k!T6P^H1-T-E7t&w@Cd;p)B4xPW2tgilwWhyrB|8?UC%f8D|ZFQj3T&? zECE>wQ_ybXp84m$t$joLdHf&nU&Sjg1nV9rvc0;L>9>|kHJp(vAc5nQ1dV_Aachp^n!k z<`;wnz{qTnG7dtMjPyTW;q6Lr&Zw%fQj2X_`KG^9PyXww2(9A zXDi9b9r2F*SI6HH{0E|F8kAa=l8pz4{71URbW&K`EyFItrMmeSCOe26fL14E11rz$ zUM2W-LKGe+2)ymv^|AQ3haMy1E7khGJL3Lj_Pn1<{(pV`S=1v-n3g_)Nar4(tyI!P zZ*rE5j2VGa-^4%};C@_ot1%_a626_OFOzd_?+nUM+?qBiB9BlVSbK`eR*%e)5pl44 z?HK9X@b|CgzH27CAJ8t+e8yZcHj(06#7ObxG9Aj<8+x+?#zx`E>7Jgo`-%Gr{8PK| zPM=||S}U{`7q>REO$4SJg@WQJ?njXS04~W_YXyHmSH9u+qj|m?_aFe%2*R8b&j*vo zxgx()e__8ACx`DZZYR@X)$Q$V?Qd>vnU3+~OmGGc?#L*r4JJYB z*0*)zFA!=P_P-jN&1P98xDlukDU%E3qLd18@kPgt z{{Uw119+bCyvv)N62#p6{$?jg7AZ#ljq}EGM+D~;^g0r&v>b}~yY>T?Nk3(60tsLi z;@a<2w2mN4Y>M9cVGtzpNJbp@>+C+(j4Lk#HT-qPb*W1<#7c~>7bj-5PgDB8g`qW< zP*qb+MPB>u)NV<^1Ddl5bAY0t-MHaLHLGHnAc5D9t$eRCXV66&P{hd}C#`%L`*{A- zm;V3;d;>4T--j0jc-O=b6^dBO?$a#g%C*@CAWGmAwgexWG7wcTdk@-w_Qdd?z^f_z zDdAryS@Dyu)wIs|EJ+y>-jyQ+4psm|zZeE!`;cNUA~`y z=*iASd0)qmiq_u*z7lIc5oT3;n@EIKF)_!RdokH=pFrO`9?GQGu165>pL1W2U+_?m ziP8A4;tij|eLeSCcx8O+t*ygq7YWL?I+$P~N4$b4_GaNx!SeJW9Ps7U3G*wK0p^Z}i%-xc_+;p=F? z2sFK7fA|oR!XSSqBDc2 zGF?2IeMUg_IW#>0>t?;Q1bLDu_Q=g+YI@_@SlnFck*&?bLnFf$;5^3)b|!mnYz+3U zW;r}HZ0zQE*n!C3l0N~-{Hpi%rLU9)ta7|ye+*|In_`n?!*lFk*~?Mz$HUJFN#Y@= zS!$Z)+yos$`WPKTA5U5XC8K1A4d|&Y&gLTgo!*k#}3u_=DBK55T zq!P|sJCP#-H7YV3$HNji$T|7KOT?CQD6&Gwt1&?5r&0q}j5>|`a2h{Py3BF)%8ol% z;+z-ZRx2#dDrWe+#;tbwl8l>CN>8f0PTee(yC1W0uZkE<&n$*pgv;sCw=LwgZp)*x zvVC=DW-cX8cm($U063{0;$6GR>FN2`6yokjUDpz4JcSCMmH{L4r#uia9&5CUJ4q`s z_Q)jv04n{b+9UC=W^^}tgDMnzgpb_d5&HiCO350DMjl*(=#%#VVt+hi_5CWidn-70 zA1x%?k&%Lb5Gt}Q)y5};7TR%~WO6gu5lftv2Ij?~HPy2oREmiWg9V1lK z11MFRQ3b3=Xu-&73-Q!^p1C0P@m*K`3Voni>vqpRkEGtiYTKu>pH#Vp=TY*oGuuR3 z0zuB`<96eWWSZ=TPm7wmiO)P;2=33MzilY22ZFR+J{V#}ePB6Yik~R7pP!U+0VBUA zzC`eTouUO*xwM8|sk8=(2;cqV^5C3)rn|q2fACNrg@3ib!~H+u*MPnf={^O&@aCYJ zmDaaquj=}}#mq9nG%IXk)NP_gLhK}GM=T6sc7RQB9v_Y5w|0c?V8PhqfLLc4{4-vJ zXw;=mLZ*zUILcn`#utrzG2vvg6KVEV_U)G3BaCIZ@6WG)!oNyC;E^A-AMGpQKaM&l z?AxLE=T+0Z0OIcPygzI9YimP1k|d8KNe#MP$n35j=XyItGDi(k*=3^KN@^xE}t*O&l<&X zBtYD2dfKZ>S&F~*oy#uK-H&fRVHEHd3No#*j!Rc#=__o7`Q`o_f8cK25Ftp@`hu#gN`htl-5w3U?GqK6uGt8vu6K z>f9g3^>X|)@G@%K#l4mHT|HL6GxHuU;A%OIXyTfBTbV8Hx~=+X^m{8V{{W}H2l&t48mELV;qsOhyg$YZ(8Gzi@pbZ0@Y{M@3o6b^&hgy z5wNp#y1lqURI5555yH)}L6$~H#yT9==gas?=3K_V5G9hqheH&$QfxiExb2yM!8zF6 z_O3zfd@JFvGSkA+3GPsr`$XUf(c6(C#_aDbtNbrE6?h^tMSabFHNw%P+o+$WxAa$b z`LpCOTmx36Z-!Rsqe(9|)NkmbZhp`|89Z_EZ^SLD_^H0mWQa!&nwj#n>pZNHzzZm5 zns&t34!{@0VU<8tPZZJg=hXEZT`tj1U*>Wce5wfC$2@V;s%uji=X=Y^JlEaJ5=mfl zmM5upCz5lV*RuZ4pA0@Bd{gn(k?`l??V{XxpT@WFXxc1t6im-_;Srgia9F_`+~DC6 zn`>if{98HAKCx0*nd$m@AGPHeKV{2?g4pPFm9V$8)3tkB>uc4L*5>Ez@cEzUuCq&T z9C9-%DVGtme(bnVLX*2HJc7mUV$D?}0bmd~SwXu0GuELT?#(Iu3mLt?-fnHki>#ari24F4Y zKF--VKAT1>z41Jb8XYP{`@~5m<~z2KK<&#AJ6JE8mGwJ#OZIPK8X*oQq@Su*w zj-AGOSFcHXzNZa&UD+BDJYF5}ay_XL%X*tvpe?u!&Di}bJ44e_%S%b8;#WJl>9_p# zsHF3}QLec!`-r|o%AJY_A1LD|Kh*kF?QZ@kBuzRJHiatK0|aDq>GiJtm5e1Tl{Jk? zV_zx~B>wXpFyk4)_Rmq?xWg=pN}`+&2h;PdoBNA-WLs6ncwON1&sN4c0CwV!>}!t9 zqnuJ^Q<^BZ4G%ky+U7QWGtN zJ`<#V$zQXNj=V{%_t3+e^f~OI)P{>S%r-Vo<(7il9-=1k0I<-LR&gDWxZLtDm-bLmoQ83NBO`Xx zlE}1m(i}_(Dcnb=@$0Z>h|vh_U=(9NLE5nH}R}(*PI+z z?@#;_AN~s8@D>jh!Qrh+$)=wALve4ac^_pE&lLO&yX&F#_t@eRVxrq@3AFM^9dbJ7Jf8LaF?XT|RJ2PGe;guNEv%x(ZI09CpD~NK$~KIUdF%S0`viCz>*1&DeWLhU;4r&; z-AY@6@iYy-OQ!0w0OSO~1gOZy02TF~Gw~JzuL#DD8l+_>DCnAR?Ka=sk@Ef;+M6!*(Jj%W<0S9xC1AW z2k_+aU&D#E&+45LJfBdsnpod_tOK(aUBqXco^pOs>D#9@$m*!^#_2 zoN_>}s!-I)yPi9(Im~g$zEO>pL168VF^Zkafk0lHvTzjj&T;3mys@}~0HK(=m1Bak zMoVo43o{Zrug=){fi>N0NpC*Z5J++Jd4@Dr!<=nm&$wW8%8Y}KahmhX>#1JyIW40R z#k59BFU(hxFjascp2QG2J!{yd3oQ;Rjo(8~U21f<@{vl#w>V!o5J|}!WIZ$AX!=rk zhVmPmbuDhPOEj#k>^7MLARrBjLyg$RbGMq!i%~K8W>r|_E3tgAgt7key2J! zjE+e8Pi$pPwIG_hX#HjX0D_zNrLMjncyB?}ETD%}4rNWV#c=V)71J#gE?yUKpc2Sp zV80}Vun+T{@gCGXp`J1d<8dc*F~|g*_XF|i*1q`onejIB;v^QWeQyDl&LJB|98Clf zs}NaMAj`Gfg3>y!Bw!l>gIC4=G=WO}q@uBDa9bOf@FZv2zNZUk8=ho+-*F$wAI3`` zu>4)|MYv6>nyuaj3g8);fZA1YfO=q8^zr`y1X}o{HIIXKdKJ~!n&U*dn%YHT11uo! zg-GxFvN4|6$8%rJ$L%|!e_(#l9xu}!_kpR)ARqz6yJZ6a4uSB0#=k`W0N{-u7MH?b zAMd^$UQAX$5!!}?GXRErQb`=-?r7VMqdzI+b+5VN{JY!b3Tb>PGvzpI7wj`DKCPqu zSifOk9}gRR8-mL7{cW)^mF#eeau2A^4=0-T4~_m8vDSVJc+)|WIT&APdW1!Ca(7$5 z04ZK`=ttJSD?i|w9~9=b*N=p6Sws>;DUCOgw;NfG)4^hJ0rcoNuiDQQ>CdcqYf{r7 z=k2zWMyKZL@v`+Cj=ih%te$?-gk<-FJuV@p=wl_zw6#CT`r+k=Pm@b$#HhuaG*MIScN{>SErPqZmPUENC%>;yJmySk=jAN?p#&OBd z0=P>XXSut0RG%qG-_HkcLHXDFbCzNwR}C7gs=59}aTXiu_{!98w3_@*k4%V3b@u79 zLY%KXPjmQmuA6t8p1C!jZnzi&1EBg=?we@y$-U0i8RyjcRn(eVo&_jMS|11g-g=3* z@Xv;HO~W@gH&-P`Tt^zj59cQp`F{IA75W$d00jfpv*X_n=!a{4lS^s1Tyb$TW1jy2 z>Z|k4O}mCTui&2+alYR^#80AWeaSD)ALuuO_yvaH>@+&G+xf}A$(93Wp!}&+lIpnb zDh=4;tXe!`@+Omo3=1DYo=@dpov9@jev=q`$o}EK;E?xfpYTp!hjxE;eos z)z~y+8%{`RRDDf-1>!wM<$fBoO)II;H8~PO2^*B+RVThaVUgTszmT)OY2)hDU1a|N zGy7|XD8`;&LM`nW{zvsU`zicr@UM@*W?f&x-Zi+6<@9S;gHeE-v9y&;Z6FxtHjL*W zameZ`{D;45Ux(TU!oS)}$3F}_D?i$_?+ti^R?;n{$RX|Y>-&pKc2YWzCM4&-J?s4+ zKj5Cf7d$m5#eWZ9I|kBzA?cS|8;#(kcO)@Xd}LrcmFK2LYy9QEY=4BG6aEJN(q1(9 zXYq$kxzhYcqiZ+NU)$Wq(Ynbc%(F)(8GTa8VYKwdb`+FZxj_{Qkpv)OsOTxTG1cpRTk^N)J?GyVzZ;uf&@r>ppO z+?eClv`c`>%sG2$W045y$OXOeoLAVMJJf!~s84pJ0Q|RcgMo~7>-v6m@VS&<)?|-v zjMuYBA0NOM<_< zl}qP21Z~e=)%jCpI_ft5Ok_I|(~g6o$JZ75ZQ)s8$DgyuiS)Sg^51B8acux(JaKi$ zVh=Ulkk|G(g$j>LNKnx>lk58`?_xlpT4q#dl&`jFgp8HsGJ005A_gy41Jv$bo2z8vtYNZDhj%LAO8?YF(1Q=Z&00~NOdMRgQuCUO^V z0B1hGk9z(f%xTIKYJ0!eQ~OU1B;bUR9IuF{S=!PDB}p;4De^Bfc%)TiP%&Lu?x8@KQ{uRvZv;ayI&Y zbvMJQbV&6`beVTGo6h#va>fyroNW=gXL!_wVo6tJUWcNQU46!%;j4?)(kw-^aPMf^ z`gd}YDlr05!+8O^m5oSl0`Xr5My=8BRiwGDecAgh{?b1S{sjKddUdbF%d3bXyw`Pj zp}4iTdxQlN%61H>OM(872xV3sbB_N2QQH39pRzpG;^27l!WAPsW{T=J{8ga_za@Sp z_+2&c+55wG8eFQ02a0uxL%NU|O@^Mi3!IFV;2a-X`ToPIUuk^lf^ z1(=cU#Qk|S@Sp7y;p+>3jaOIVc;hyDRgyysH<*%nuOc{&MiX!ixyT1292{|_89~2$ zV?S*<>9PB*@caG=`{O?txRb(g(JSc_-#$BOLN`n)+wL z{{ZkwIrYdq)%b-Cv0Q@JT1=Y;Nl}(tzBvREd-2VGEE+DetmxLE^qpT((}Dm(SzcV* z06@SYAdwUi*yE1X(>LvL`&D>8;ycd;{7dl`p6MiPk~PZRGL+$Rmx*wV$6e~c{Xips ztI?C)oe-m^ywUyEd=veXCHMvKrpLhE8Px2&L2#`l)zr3&By!wOGji(*40eSIh`Y%O zpl3DEDj3+Lz^em-7!W}m5JB!M`Jw%UKj5Svx2MOAZcm2a5I!hs`j(q#_GqQdRF(b)v z?hBA|PQlG{RfJ;fjU7&1B+t};jDHtAJMcrm7oI!u3n_TPj>g!Zp6={}<-&u%KQxD; zpe%7;&VHw> z>y!MdRK3)$qAvodU+)vs{{XE~!=mXjKbt?#mgKL?$F2ovrjg;*kY?E&t~qtyMmpde z_NaA|&}xyCv)gAEcMAP7p@w<(1e(05Y``^@ySn;_$mDyzD%YK31IUmlb?5*aIPH)D z1CFDblGf=bjDV~dji9FhAL~if8m4C(i|E`c+cK8NEWmykP;pbZ)X_IQ@U8~p0u~^B zN&c0|_{ZXpfP4)Z)x2@yJu^g#EH?YgxM4s?v$y#*@o&Vh_$Zg`x#0aG?(<9WRlc{V z#RT$04xbd)K5WRDjSI$}QY$tWbFdiCrENx)T8`0)GUZ3rRuR6v82oK_>vf+TxUPW)4h6hvOHy1?!lP6O*HLu_dY9TgZI!XDlc82ARYZVsG+-* zNbMA6e4cnD{{SOj%@>Qm;HduqwN}3gO*dB3v|jtP?LILlxD9mIIL|_H+mBlLv&CPv z=j{pOE0ZURJa?{KC?6_Ec`dqf20=?x0v>qeepTpG;S5XGRzy5}IxC;n*0JK9D@KX$ zd`ER_r^UB+`+7k?FeVRZ-D)>MiuxC)?iJY#Xd;~Xg9 zRvS2d`7S@?&k!XmiU?onBO zWk%RNvA3SyzomJY0LjxJ8hHS+?mQFzO?r^SQ(X>OYolh>=B;~wpSD~}a*N1WU8GV+ zf15w&+N;NXEN5f~V8Iy1G7nMxD>x2tIv+zy*dHg;8OLv5!n$LjoT8qL`?vNwK788! z%K##gZDG!ThzXc+?Vi2s^j|@}wzpzS{JaeF@}8V$+uFZ4e`8C{G2qtpW|L*ucrNzx z35f$CV0wJ4!y`F4uh6J&G??OHJve#rydq*}=z_DI*uf_fZ1R1GI}N zH~{gL8T@j88v4)v34c8E{?+<*&Nl>vg5HJYKtHZ4<1ZB4!FL#!OLb`9c2E$-P5=kn zkIufO{{Vt_c+~`W+WRvb2_I?=Et%#*wggW_%r>DEe_;ZAbg3-0hFV z&&NNAvOvEVJX>QVfnGg(S71tlc+_qWLU2Q4Z#c(V(YDsU-K9rk<}BZ3nWVP_pp8~e zWJOW)Gdm2nas~$;z7_Ff#@Yvnek=Hs#U2`&ZY*!LjY8_$ZLEdip89#>ZLTr{BPrTO zMtK0%W{2Z5V|X2$pmUbp&fN82IN*8|IT__K{C_Qp9oS#m5b^I#u)U7qUXs`77V@dGj#UBfW&)v>) z0**;PF(hKR%cCo#l#E6jG?FbK+n?b<)zWiq+ zn##Su(;|hWmR4pR5eOuoLC|B@zol{(x}AzZCY2-)BAChfagmH17E$A@fGV|>QVVRbY}yQrN{&2TnwIip1}Io^+o>x z2KUYT68sGKov8lO{{S66GI&G7UMOfzf#Kf|>Uy*mS9Zy9GJUfCWw_aiX7b{W(Gl3J zA>8vW)&5}Ybv;+a7D8PT0^sqO#^q3_IdY>5wBzMC8OK`R@V=XIB(g^}`dmwD9_r%W z8P;8qsVwg*DJ+ALmcRp{HOZRcez6WmD;|~s@=3Tt{%5*=(cUAo@rTBLiQXmC?qj@7 zTgBS`p$)_hzB$%?YW7&=M;tQ9j;yW7D!`5ne9pJ9S=v0rc}72-h5^YObnok3UG>b? z5kX}p(q)a5rs0+#h8umr2fcZZi7y$*cn9v?eqoN_w6s8xchD6 zUCiuc4pb@6Rs?~Zbnjka;`y2lY8O+|5sV(?j(Pg`t=p}8Q)g>SWF+TdEW>c@G5GQA z?OgrRYB1i~Uur|mbR|NJ7ANm6Kpl;H^r^V&c~X*VQ>(hv?0hYv#bFX8my$=hh{+#6 zum1qAt#cL{O!s$1wJAKg2n-H+#xsvkz}4r|+12%Jb;HXe?GY*U0Q0x>qFHVlPd3gN zZ6Y5iB(pk$(>caXZ5M5~WJtR-b{byUA8X0?w+>GrXBqS#PW6o1qZTD$7|$6QKaVu~ zn_IWqWV(nd=K)C#f_*!a=t-t|mcxe5d-5p|fB(_`O8)?3{{Y#C{u8UE_`mTnVxGb| znXT+El(Jq+*UX%=DG-Jv@_u#$CvHLhn?4hM*FG=(kA4F9)8mJRbq^2AG*$yeywR>; zSe{h3K+ymL1@hcT!Zt>C0I^_jp?@sC7i&)rhY-8+ZWSGx<+n1+2|NN*0XFT&1A&}@ zlU`f#%Uk&G<1dGc@W0_y_VY!2ZXR}7k|7*OxRPd(wv{Cg0=EE?!<<*=6U9pviHxdk zf581po(dRzKO|NE08`?xjDPS@pA-CI)Vxcsc!R^XcKU|3E@N0+wVWyyVpZ}TK46g` zRQZ4><|DOXe#o(S?^N+Fjd9^i3$02>wHtV$Yh;b&Yry_=cG0Hz+DDjxxo#J;3iCe^ z{>DGF2Zc0W_((3achZjda&nlJ|@!dSgBCSIFy|8@_@`U>x%mK_I0oe`#$N~Zku-<{{WGDdcJbD zLEkx(zDOW9Is7=UoIW9b$o~NFPaligmX!V=zR_*9Eq-Zj^vJb~TL5`LhQD~Or=B8$ zNa9HawCy67O~7&s4mq!;KV|RPyTc!{{{V!1LGa_j*C}(RUFv_@3bDN3x|N|wop#F1 z(SjpV6fqo=j&fdb<2o)YbDJxJr&jFmVAADz>VJcXH(inhT;5In>+^{8y z^dF6UeCWm~`j2bObK1_Mwldi`Kf$*k=YiK9Pi}t-@-Grj!qKFZ1;7Y_wu~{u52`cDAHTIUr6DYg^nSDUHcIljozm@>D1!9=Tvwult8JC>GNesExUpa2nQ$J z93IqCPWL8KJiA}Mj#(KU-DV0@l?8x)pb@t#xDUM8&m7kabz?STl4#k_INCr}$0deX z=Q+s0x@)MRxmJ$VK`eJ?Xnt|?9k^~7^ugoTn&2_#6(S9S2hl#IdKIg!yD{1d`kXlZIWyk}?JX z{A&o&v(UxMUC6voV{02h_C}X<%wrLO=A=N7MiA`^7%$Ao%-O*vy!XW#WDJBb`OB%v z$=&Ik=RfB@mDk_T4aLl23yCKRzcNOw%;~f@5#hFy4?)*C=R8={ktBtnW>sY178zg; z58ck?IO7e2UfvPf2OU@MAIeAk6cfXb;r{^Iuf%E*w%x6*&@2cI=0Kpb_p^K5l*Ws8*8Mt`R#>|^8G zZ6o3ajjF|VAhf%h26+nZA~!3zuOmB)V1e7|U)A=Ba+;Q$vIgE5Fx|l5_XKhHivA4$ z0AUY`Y2uH8UJLQIo~A~VO|x$;+YHi}(YCQ9fwYg)k6QlQ{s(x1J$u1cy1Wy~AmN@V zk&<|ffJhQmZbM;#3<(anU`RFm@0HP>8xvBDx;Br|xQe7P7;1H(&+`ZUt-LFF;a}Q& z#~v4z!cS|j>Tt6;R@;lYn#=Klmuug}ggq z`*wUy8g0BXLb~EkD@#HYU9t1HcIp`Hf<$x>u=O_A9P@|X8 zqxDHSD5U-5wX(lPe-iNr(YmH5GOdVsr5MUhrOMuo=(k758g7+&eJZ3D(mI}gRAMoV z^#c{%LE*h^;{aJs7a0f3Y-1g`74@yLDuO&?0~qK(Ay&hJ34WNaEML;25jXp+8eX$+ z{{U@9m|vq#8k+aq8kTDyFaoB=68SBkPxa3luzWi64I*QEnk^Lil8Tj(Qw#V#q z;je^xZnX?Q6g&X-qTa$xLie`XOsPGb(4vxLR*oc!<8REa3vIy_`Y-U$_Kx^X@w-g% zSB88OswKvB`X#Er1ra^xDvol;;8#n$h(l7VTiBd>p<}qyWwqC4Rgbnli1zb z$R&zvc^(-N$3{numDPu;ka3ZoYq|Js@uT8T!f%N7Uln{8smpJz*-qCBaQ^_kEYf63 zBoCi4Weh}tkI$Twy99n+neYrM^Ey(t?Rhu9$o*#~@j|T#!WChASvTD+zJHnhVE)3N z8vZ5xE%5J*{41gu?R-Ptgz?+g4Xvi|^r z%zn<=?v49PYBoAI#Lo!p8lIit{{S7!8$|?hJ>1hKg|4cXk@RyTm9@A8$)>SZ8>90T zza@WXPxvY2j;-VER?GH}(=04>&k)(k9oDO$=?XOyaT_Ds37pLDCAj_I^3;5e;go&j zU%p?nZ^Q3~dKc`;dmn-|xcoz+c&=NmWBW$f7(}M}Uy>{WcN!Y;CVKc3f>tSUzzj2J$dV1-SOkZdQXY|CwRNW zdJGX;>6aJxD`6BXwluVkPa@q=4ge6wn8y|1`cp`5*UJT)u*X{dyUU!F3K6NlBEPFY znz70*t!GK;cW;sOhwRVdFZe;eI{05&l(C9i!Djekxl6=oFmc#3srJA%`X})*=a%Ms zSjYT(u~`WuWkEeVpXbGXPY1ry?qSt5x5dSit-_WW!@|NvILALSiv3OagQ!8`i{$Y( zhdPUGP8e>{RA4e(Mjws6c_bg_URHaDajO}wrdeJkP8V$RZ8r7nW{T}&VzGVwpk(Cp zw3EoM)^FKwRcNi|(=H_2XL%`$3@|Zq9uHrBG3#HKJ`&NcwMQ1V@sBOeSiXK-ec(DA z8vC>0R?CYIk=r`7tEZe(mHQYDmUGAu383 zwva|Z{wB(b(*2|SIjeX(<2JW-q1{ImnvKL7v{{caJVkui)ZPaO0l8sof6 z@pT*ECye|{YOQUm%K~VrXs?z_yTRoL9D$b-NJ9=vAkGLNe_rtK6V|Jh#~F-=D{;S* zwe?+_?0+WlKM&IW)0PJU(_G0u>B`IImv!?$GCWK6YkT_(Ej^6ZcF;>C4#Ss}-41m5|+H7~m)bhUbtE82)w3_^RtRsA6Y_mZZ9CPyquJ1^a z39PNHZPb?91_0_<_U+e!`q%QVcQ@@NC$7CbkLi2_J;a%jJ)PCUMQV+a6B$(o2nC9a zj04MU9CYHpM89N+A5i##Z)+><#>xAqtU2y8BAxsF)gJcW|mXe`B) zsX6&_a&h&qk@(!`B(B+w%lDI5H$4?~FvWG)6&KRX|w z;|JCBn`=8Kl6Y-iDBC#mBrb5okT(;P#~Hvryw(2zfm%m}HO~)4lBuA!7{J2q}RhClBGD8#n;z}v=ZlolS zlzDIr<=>8fH;ySQpG`bF-sd^uFE&4hJ{i+ycz|o|YUq%xs1N*0pdT+J?Hp&EoZw=( z2rWglCVPn%G0<+pgX@g*$I`k#iFfvgP|~!`J*Eq39pgI6Mssy6EQNw9B9blmRLEZB zlbYw?iq&4`Tyx7S zR;c3#clRPO6{8sY$J_S|vgx}V?U7Co1CTzQ>zIz~1R|ZvNa@KVzaF*x`gpVc3Saw9 zYZ1TpIngwgcL<`-PL}3W^~|?36+d4q9@X=oi~j&>FWMW$kQh8&@e^0_oPhDgbsnCC z{VdYlJb7l6Q?fs(4Qp7k(_?$hUU;lvT>STP#|Qv)B*@AE_x)?< z9~6GsU$W=Qq=rUN(rWR#q*Z!OR)b2nf0P}p%n%ZJ$wAN#fPS^=;kZiw02GX; zm`m)${)#+D{{RIo_y?vrkHVUNh&(|k$^FHG*+vFB@4k`~*U?G#uLSXT{1tD-c45Ea z4e%|LSx?=|s%jHR!`Y&?fn&})dB^KthEsfC@f(InqJ%4d&p>27JqZAPKo!m3`2PUK z+K^G$5PEdi+pLUUwOxv<-VO`$FxwgL_Y+tp5&Hk zTXd{n-H9jlqy*<_;McE9E5pM`!5FtUtfXoi$YbUrrNPK$jYDVGaT~ugnu2Xk?seMi zSPx%nq)6*c@3{3m*Q*T`tQ?8&sWVSI9E0tVO=p?D`xEs%QIbFhwLC`TasL3n$w5EcNZ~< za#!WtGw6Be)A6YKfYwLSYgO{7x*n*or=>)dp?~&67j+LT*9(Z#} z)FRUF@2#P}Ib?;VMUjRxpDE7cz~ck?Ruav+qgr?hvew5{`zH7<)jT1q>&X~P{{Xie zR+z8N)imGw3Dlc+;w=E@^ta0=`_@zuEl9ZhBYH1KWDg1k8;wf&{t zkJ_#tbz7(=fJh1=hmX!g-yay>nNo5yxEl0bLdmALSB-w>Bm<0$^~d?*zDFO4_LZEj zdlWG3D?W#h-e}siOg1z_c6kA@iv4x}0D?tB`x;pMLe%u{kA4&JACLS~tXN&?UuE+w z?DPv=KKPq?Rb=zp_Dh*#Ig(QdSl8r;hB7mLUftaUw|L!f420sjDUMK~ut&!u_zr~9^!j52=G);|#bDf|JnxA>#te+~FD&S-SaGhWqn`&2Gu z+XbEV#k@m#P+f#^s@fJyFtl%vKD5K*R^ zXzu>Nr>vy+Kg>_zU;Gn)_Otk-cCq|3@Ry0TCm^~QG&}JVZ6og7+(iYc=a4+y9=X6Z z`YG_={s<5M00kiNrIO3yPYv7XO(E;z4MR_|X3lX@(ouaFLa8K~z6041?=} zJ69ckFT~B=ByUe8!>#o{i7$tL@N547#S5ct{{Rak;#PxVr*D}Rg|+^rCRB~cv#GH_ zalmJbZca+zVE&GLH~#>GZ2tgZp9ShZZ^VBS_^-v1LaNc*dA2%KZg~u`No{P`N;8eD zZZo&vuk_2N_)FoqQ4HQ7zr1yKIkJViFu>eVT#!98`q!fPd%=DUwX^cH%{K1%;kdb3 z7dh$jor*Gho=0l)D)9y`e{1eLexX7-DE%}?&w8ol@uCblKebwZS25aWu_$|l94*-78zwl3eQ{X3ot!(sdW8$sU8eP4f zpJxrKzMW}2HyXQ@h9QM$LfZlkLrMW7sQ#g}4-P|NANnqVVW*x3NK(fGo|}m|=O>!@ zXZ{L>`v~~A{t6@eGFyJn{v7cxjo}O1EoR$Shf%!KCBFzQ(A$-zpfcScb=6QUxa!waHDLoxRqdb8Rq35pHtWDo#gUcMdw!yx3Re^8m+e zbf-;sqv@Ji`y5J1+5u2bH+3ZS=sSw!j<s+Y{nni1d4n7fiI%^i-Y6 z`%R>BeXGkYosBe-FvbQB5NDnT82M*SvDQ38sYj>j(Mx-CAPAA5F604#02w#~@B+QB zz#cvD{{X?bf4B6jPq+BKH*Xz$tf_u!SK&Y-^$?NZv?!TS zp!{0+fgO>N-^5L)Yg4q6GlMhQ{g3y1jui@7uGLYDnTz-Z;#7@iMN$1^BT*|^PWaLw|~G)dzqZf>rvt!&hJ@JNzI z z)e&R`*)8sE9ngc2O3OA5c96rc!Bd=%POpWTq#e>yUZ*`iF~Z4v*GKR4f#gMs&Lsu8 z9zvv%#&9xK`*JvCBDuXr)$R64dARI^l8u705^@6*&m4oe0CU$F$L0S3h5rEHxW5GT zTPR=0-wyRXKJXS+x=XC$G7qcB`&3|-d;KPdw%+jnaCw^jcDf}?)JF=?%H zr(EmPNe$E6ta0g%WMn`{xJHr0dt2_6c3BrZuLO>&`~C_c`yhB?#=}?FZ#C^DwHOWE zv@>ZF=18-R%3>^-VtG>FjE&gHsg_NPg65SrDQ38K{n?*H*=SdqDPqLJ6z}_yu_Hfp zvNqgjqMmy&2b$Kkl50DC`@j6v*B1UJzSJK8n4r;b1cw}fnPZIy zx6OgpkL=7t+MD}{mS;nLWPOnKP+r`bBzZxIZAFo=TponWwWH^71(_u;2zPs$$$mPh-0o#uR`L&^9wOifQ=wgoSfqo`Dfy<+lTg`@o&Tg_>FhsyUR=H)mAjKZzkOWi~_djd|R=P zoT*{}$>P4BE8z@PRqrbvPAfm77pAAw-|$y`IxAn=Zp!Y~WtthZD_Fo^`DXAn=9RZRlFG&1$@OMA zI0NvlPYqecJ=vP;K1^qPgaUS=f>@Be@CIx810l-(t%QXcYh-?Vn`0E^DxJ^jXZ{J* z`$ArPIsKlrEh|maB?i*Uwo)z1SXX;ESS&|tr;7GH$nL&;BVPuR`><`KKv}P@iVoyxvyx~ z8pfj$!!#3IU6~f#ka+T=bW`YaUFO#VF6Ku(vy;gusWtd-6J^SVV_KVypELY*UxPl2 zB+X}22?;4(f0HHgE~l<|uUNS84~eg5)HMsYGEH%FBTF=n-+7(b<(T(l)Yd#Uk;cV` zHGLGH#+Pd;e}w34w0keG>Xzl!ZwwJX^q7qQIp$Hos0YMvUul0P*q^-DSIfa4M9(aOFJr`QbO>D@rDojS- zIuhK)CJ!Y}7~ry!GhZ%b4)rCf@3=sEZWVN}l<^ad8jAO5x^?AG-h;8(U(N=QQ5)sj zk%8>L{;I;$E*94EIiENOk~-qFHRHD47{>*evE$Q#e;US7@`APc-X_l$>BW309wr)^ zbe;O&{Eu7KViww`+AWwhw8dRnd0db;0h}HPue<&V$!FrP0_fM8w0TPiC(>lNSK6_) zqwls^6yb8v$&kd1;PGD#>1}DNXz)QHJCtFF0AL=N0|V+uUi6XJYF4cJY;w4Q^e39D zBdl_W^S8`EcDBxTo{(!R9)oIFwSd-j(2iEH6+gW3{7ccvp=%c)$u6t;pm+12L$72e8K z0VUj=1Ry&n=4XL?1qQw1`wtJsRsnr+942l`#2vzyAax6#fc3^}`q%x5JOkkW0EK@J zbZ-v$LfR`>Zc!w=agQ?M;qx4l%;T1Gzy$EB0ZV{R~xft89-Sia6$YYA@Js z(fGSO-x0nhd_hkcd_Xce)Y4E*ubxpzBqWpz?NPz zxzPMJk`tSD2{h+lUg#I$s{tNgn&C|uu z%=&%Y(FOw9h6=21Kod^UvaoUTM63wOugQ&a=EqO5kHWSJjLRUJ^65!Fe3;|{MoKPl zndIQVJNfz_5crOrEG%;TDoWPdWp0Pb@GlPHYGPhzk8QTJzn=1cEfxJvcF82To;cmh zGo7r*IV2pGKIEMJYu0=>Zj*VJ6A#^>0eWLN!j6AB^6P7KK=Y{ExD^@C0CSxFmFr#` zi8TE<3-6c9Q*kip1Z&VS_Zeb)SM%OBqj6{LSZg)ys_J(dwxc$sbNAuZf;C(X{V4 znK#{ETSBC82#pwqW4i}9^Z<9S;iF&px$!f_dPI5$iFNHt{>mT%!E<|aJU|YZj!9Vu z(`|63_G01GDi!Ea6%Rh@1$@0O5a!lXJxS)j%8%;z;z#@xqxMYF{8y;YH;QJ}S`e`V zrP)t&8--l_lkG@bl6en|k_jfhVDVr47C+$*nPvxo{1vL-$(7n~?(OWs8RvJ9Ze4ii zq34f!{&wBkXD=xwo2e%zga8grdz5%<4z10p!8}yi`xoNh_$*(>O+ry0gES2vM2F@j z-EK7r3mk1A$tAjiIsOBj^d0+OhTj&vdGY7McHa{IAl)tIsc|gU;p2%QM26kU#)^@Q z05=oKCzH=g{664U>!0k0a8ux=ss>t8vrhnwU}1o4cLSzR^R72q3?`6- zQM7d)o%5RUXgzLv6IVX2{ew08jXU;(u|!bDOei@70lTXyBRK?)Ij@|*;Jeqlu7~@4 z>e`l-aPSR7LC|MAd*!%%L7jGw}xN#5(Qbc~^In$fTU9cE>)z zfmq}QV%X=uKh~rOPfXN;7Tb&-I`LniBzS5`Xovs+k?T+Sw(UJ?WVd$&A7_N-@^LOLB3=uUc{C#H)tjJj+LI43-Fj-I~N zu?L2lLAo6C$j%St^{=ic_(`PcHp_dfNfn6P25zQUL1X+sydV#zYudaI`!RUu#)8^! z2zYx|*MzKa`c|8JsHy3ky`(az9m6@=I}w`XtDQnI<~k|mbtmwvpP!cA6_wQxE_mCw z1d)^5{{XL(Th`tT)Mk}gq5?es02m!Upx5okfd2sCli#-Ai!~7zneek)w1P!f7aEAN zv4jlZm-|HPDuKx*qa6t3@n2>55B>--`&a8RN&f%|b;pG~KN7L>*yP6{5<~vf&zZZdRa@W{{RJepT$$42=AzBH%S4*DcoVUHgGY(Ck0CLfsjpjSdK8F zw2E)h9)&&}69!h5PTc9(elKeWCm#T|(YFyF#+X zGOv=zcSRzeg=7GR^x&VRf2BXdZ}=ro!GDE!$5Z%k@Mpqa9J&&Dg6S=+W0TXgGv#H?xtspt$9=~q< zKK}rMG5*{>G_?RoLASmWuYeQ7EdK!Nzu_U&wCgR$8?m<9TggYu+sOxm#ebm{*TIj5 znhY0Kdj9~9Op!m#(ZJCl82iK~WaOy9A#>E{HKF1E00Mjwwzo(;Ghuyy<&LQp)8`y= z2#rq%rZMeY4~cOt`>7+MmP?0be zJCkupXOc}mJ<1Oyq9fINSK6Kd{{Vsqe#%;H@?3bs$37|XEPMvHv|T?=g@IByc%YV0 zHx&+i?ZYPo5CHz9?yhwI01e2Cqj)BE3<~|BW49`WO5iYy&5?2ra#w&3dsg?CWv#%H z>KcBArPB^%%#J-l-wKoI$sbDLshnb^_WuB{yY)L^hoc3gf3L*+H28V{00d9{hBS>W z62svwzlt6{cles-?^a#p9F;e7vLOSwL5$#6=+DFN*z>?23v|fz{{V)56Y#%;?PB>- zD_cuQf+~T8MYoAq4l&d=0PkN>P4FYanw*keUq=XzMZu2REGp!6M=h1-o}BSomcIjh z2@FCh;-2MmxGdK)1tj+&FnI0H9jlIVt5aFF{$`StdLPQy{1<2TRQ;hfpNbv~__N^O z58n8v!?u1NlTN$4(QRb9`wZ!L((IlHjFW)rAZ3(C<&caRsm6bsnQjH0`&rKEZ6stV zic{swkTOFfg)5JKeL%1EBkYanGe#L2V&*Qz8duKQ}^H zhpl~o{{RH((KX#~_KAwa!*(}1mD@np%WY=_moph;bYxaom9}mNAimH?Imb2d=9S^Q zJ0=p_$s`KnED^}S9RC2GYyB3#;EuXRqu~Dl_$If*J4>`^uBV3jX&4Mh$u;b+9`*xs ze1r@hgN^{BFvPWJAz-K_dW~Mk+!oqT#CYr?jNa+GTgH(>#VyR3WK~ni+s;M~4gu*< zOQm?S=0>sCFWTwIETYonK<~GMg_1qLk^1`AsWFg)6Wcf}a6ugN>OlN@)17hI(i9t|wK$_+g{Ev>N@*sVWGH8CvWxazd4ir0l~zF_Fi$5{D^q zeA^?cj%(Cy()w}6Ir@%j>ATfrQ|3mf*~V9%J%9am=J#GS(Y!II{{U*ub1lRTl8-&Q zL*^2tfl?)mF~=lqFU~QVY(EjTm5v$pyE}a<-a>KqiCu0bQot#O+#^c)Cyc7DI-YpR zuBP0wTG-(~Y%h%WpR@Puaq(;8rTomF@QQdlS=3`?2mNd|kL3V(IWAN$J!|}aJYS_- z=+TWSBxY?k+8bFU+Eh1`fe#0ci=ThWztLCz4mka+yhY$2*hb&rZjHLqPm8*OY0@mw zMI4gp7CSEQi$}UgNZo{1%-fDkpnQabU*{X~FI;(bNv+j}OBRr+JnuY@L&iP%?O&(x z4h^*`k7j&t6Un6;Ezcx-+n8mRXrw&k0REZadS}|Hf5Js_j>NA~f--P^wI$4`enEk= zAo}}eu-|FUK+S%sDk%A?bsOC3?R-}p7t3{V8!`d62cXZO&sy7)#(HeCBLMNL^T;HE zdhj^M^RF~y>Qr>5s^siGqPZ&Ip(%44spxu$@x%fdHcHA{APf`6d-mjZtjF<1%dvkx zPELA%^{bV!weuxa*`3^T)AO%xvG`lA+}T5LmS{wXtO-WR$j>}f{X!Ak#-=^R*#Fc1 z9DW!4Nz;4}EN?Zes=>jMXfRom{jB4FdB;Ot-^Tv{6MoNLInvX_9sz>uOxHmM;x>=> z7X`lY$l+Wcn6^G{glC%h)_Xl;!*aoS8D&wb2A92#Y)BT_I$^IeSHP4Bo zvA?*}LWvOBMz;?S@aAEFPyj~InH(Q;=i^jqH;C6m-N8y&i(#by01x;m`ESGj00{mk z_@*gtyfxwdLh>jSGszvag%lCNEJg<&{`K@1!XJU(8vGyeGep(3uLxY-T83HP3xgDK z%NIYzB#ROIxx<`s$mw6DUO4c_#7%2NpHcW#t=(8__6qXF8UpKb0&OrfQsoI91ci4m zVgbc`58;p7-{aSV^+(Y@A%)g$?PgupH&8_Zw|I*NRaA{mbAUvfv5eytDf_ zz~A^O7md7Ye`8_bFNN2d{-eu-bEw`_P3U|F3_#qIX*zR zA@br(fItj!jQmC7&-gY!;#Y;{g74s;#|Z52BUFxN*Q{0K7(x!qjV#&94t9Z-Y>b@x z{=xppzwl0rt4|bPc>DIR@f6c-WjgmEG*W1LHk+{s}Ap00qhTC?u2NHo0Zvn>$GNBWYeF^Dbq_I}+1e zw`4{qg-^8Y$0f%ge=Gk0w)cSkCVU_Lp!`$eUyS+<&Vl0FZBgG_({B8gp5E$sqPb;e zws{~s#H%ndGbS8h^#k-f;-~x-llF`Fho(Xe&1cCQA?K(0?O&}+43?<*nsxb=u4YJuMsvkhlXo0vn$VvfSRS3~kpZx^#|>I-8dp&18*U#edkyd&Vhik}ZI zbRAp=7VM2}aR3FaBtIg!80Is8tekFNLxMjh{t)WgZ-Vu&_)T?*3|98)(Jm0VXOLq7 zM?ZHtAn}~n=tshjihdgL^je;q;Y+hM!rQ5q7l?=QS@7fs9P^Bo`?(yBEAt*LRUwFt zwoCIpjIqLZUnBCT#r_fT55xZe5!`rh#4wmHZQB`K?PWi8(D9UE%AdgVkU98>IQ1PX z^-uPo@Ftn#Uj$xj$Q`v!APa#s#Fuy!e(@I`$94}NFRgx8JU&!~53d-moR6MxRTjaE zrO7^0+|eqiW%-nW&m#xZBmwzT6*$jf+O;fgP89fu$cpI>Uu2xF7W zV~`I~-`pDeY&8Y#6Sn7==g_%tlk#*2`Pc22{1LbIc=%KCQ{v740FVACNpE`}hdigU z(`JR|j$5L4iKZJ2VPe|8R_4il#I67}`4{lM)8WnMis6IemG$nQqwQvSY+y@?LoPOr zk`TL3IXFK`{*nIxWBGq&9Y<2rt$q>wd(kv&t9ir?rE400_A^~0VIht=CD^XrnSNqh z8%pG7^jx0_3CVM<5%IiLim4h-oiz38lhfyI&)5&!KS_J-C&C^ow>gY`y3e-8If_tM z9dm+s>^fJ$%&fmIIr>-X7sf9MX!f50BJl0?{{Z%pv()XSgvTMoZ1K9dRvn5GdY&uc zOTPpZ-7c3Pmv25)yf@G=;N#p6t$qRG-3ZaoDmC_$U*T`i`d<%m4tZ1~{H?FX{{X4w z2@L1vR3sXL^Gw&S94?zAF#2>n(FisL@vf&FQ=e-1QsxfdFx+`5FEV9d-1bJHh3 ziLUqv%LP|nxau?heQC2=p!p?Waqc_)O%A_CWXd)^6!7Jb%@vFbCr#ot+&SxU)yoFviA=EO0q>oIDRjB1Kjk~u4(+5A5T8>tkJiCaS8OSIJ$Dtf`ts^JUyDiVf zANVSro9jOiygI&fxV6wWubS^6+xDhVidl};8%EU}4uA^$roYi&&5GXQ)kIGWO&c&7 zWh=vE0oSiu{b2t9f|wbP#eWalN}nXUGL|57#mnOv{6&6!UwCQ@X<`x0B<&;-F^Wb) zsLYwi10#-r^Iy{3BZQ|cvWGgppQ}GG&vQ9a#ng@e0Id%dlfsaB0K7XlZeZghARJ(J zz&_Q_N#U#lL2RCw!RUP}-|ei@J7}P}T&dlGjAxGB@C9@Cx^yWn$bMXoGutDt9jn;H z3_;J2rTt=nlsbNykEVpYf~qULLxF;ya@1>&YNzBaSi%uI38`ZOw27 z?m!)nzxC}}5NS^;svzXyK|M41*FGDDuxe^>jhfeXdUbQ@q|;}X>mYrsM5KJ>G&!Oq>c0Or;t*)*_nP z>HOSNe~J2k1Wt7_x)OT3Kf$z#wEZLPS7Brsw2TLN7w)o-c8_v+_Ulr7NY$m$G$+zs zJgdD_i5O(7Bp~M)AHv)W9=!2g3A)qmZDpG3VI94+W?)Kna&p^y46*qKCyqV7bMY>} zcj8S|^((#s0b@*(5f|>L&!ZHIcN6VG8UJvreKZSIAB$lksRZ+|B?UP@r{{XUnt81xzBace6nGM#Pdoj3+ICM$aNgHiF zLjb@L+!54Q=Z&X>t}e0E1NVpo;~i`C8}@MUwYH1!&TG3Q^6u|$r(1_PV#y0_iGGR+ zIO&pmn({OGLDJt-vjH~eWPJ}LmTkQrWKwdc<^cZypX*o}hm`DA7gD&+2_13Tl=yE{ zmNE8w$W-S6S~lk&?E-PnJu8vav|kZv_biP(B|9(#76fyTUTfs3Z=*e?&wKrxd|jpd zGWfA!<3AH4Esd^PLmYl#QNZCxQ^?~TM{fQ{{{RJz_^qORbN#InUk>Tog@^njJ|EKb z8?@A*5K7l@8;i#xJI&9P@*p zZ2EPs>rVJbtH`Sbt+c_Pvnkp}GoFX?>+N6Mcf(KkHxJ=3EaBm|X}Wx)5@!Gq#j{^^d_VsHf)Remo)@u>-To1#te<`V0O2asE;T{8bPx8q z+B3+{%NZEs0E+RkJY!1!;%x4x!z+1BBmC))!z(>H;wxQBYkNzH5ANfZL`ftkj3ToF z$0Ps%?_WUp5B53uz3~T8hfDBRgLUm{NrvcN$4I`KCmHAW%LkAM>&u*soMW2*08F2U z{{XO`!LNeW(#7FT7s4J6gq_AMGQtSmTbBFEfw6*p&3f&}fc_ZSD$lF*;f592QZvOxmC!a6F8;u?X z0KEFu=AUGnbAWIzWte_34}4eG-Vpx)f&+Ycp2a`mIq{E#d?j?PvRKF4HG*-~P@>o= zKSn!w|h z@W#9wn^@vFBa%xvIc#M7qa7>Ct;D#gJsMtzp$wjaSBwwj>*2rr8^z%p+z%A^>sizt zJhpVvG`m|>E0W!Bjmc0(Hw7f^BMb-WA775q*6nofbB+4*@1xr?#muu+A_*Yc|-{{Z7Yvxwx^t@QK< zBwJgkBm>HV%zJu%RmEF1#7{|7f05Bng|>=E#y<%^;FjMCeiTHJco)FF5b&e}=G$SV z+bJ397DEsrMmlr>u;!rIp?iPo>}tfX<$!U-G>I%aaCBc4e7D;m$@ov{A^PPkjm zJ~#npHx}&@0qf=?Iu-T94|>zF_@`&$RuXAig`L3z=2#>WxEa7DRI_CLI2CSwW>Lea z%JD=)N4vR^p}V-eb=(*ym?Kg0;HU^W2c8aoyb8&^@E3uv?n~ZjFf%p@-WoxX(Cua` zpI$kxqVC`ADn-#a1McImz77e;r&^^Qi`v`>?NI}qIVDQ&W7i;_ez~iQO>Au0S4y^n zPIGH-r@?CsYy?FjK%^1WVL?-pKp)W8M;*Jy3wfqqFhi#9M{ofgntr0%wS|i|%VUWWdsQH-6~~S4sb$Eb}iz;>~~;__+R2b{2W8!J8OAA;a7YvlIMUo z>et>t&T)|)q*DSqapw;F*M1)=#Zw{{U<+7hRb= zA8(=fXLM#LzRPJO&ZeyH-CSeC3An)oAlENvvz!9J#iuM2JdJ`* z;pV$0ILVG#7!&tRd4{dyiFG@+()>%R-$g8H=rs5*rAf(fyh7Q!P7B+fyq*`*ox>wAuww6HNU%I-vC(SXKB;m&a~5Fzfw#xOBJN9ALN)UN-U-uPa;Pw-PCd`7SB~*32C=}8(Z0D)2?!`8)&Cs zlQVwoq?(Pq(YTX1X&PXv0N`YrsbD1bX5U{{vqx&nYiFpPR_Y_AT?PZ~0JZL{z!=vL zIFoF6A1fosc+bg-xePN|c!n)%$>q{6WRY_lX8!!LK~i zyl-c914Utc4yO@dhSeM4n-8DZi&oQ3c6K;!Rh(l(= zy;ni-n4eOHJFTr87ait2qS`yBqt9}$0Q zuZ?~f_!scRBkP_dzDre=!aNpnoxf?kxCDT(*+kxan}}8lBhL8{AN1PzasL1W$NvC= zRrm|x=7ZpAJOirhO`_@6wg*t2&h_QHHqfkIe2k!md3Nt&I3$|*WBv#;{{RH+&_859 z*^^BDp}a%k`+2@7d_~iuyq4=w8wQD^&9-|>7%fmdzI=(s=xMcE_oa-6E2Dqi;N|J42|{wG5x zi*$W*`r6qx=o+lhEX%bs3jDiv{Xji12Tn#S&i)8|K>q-RZR6X0Zsm&F%niKwCy3aO znB%BY0mpn-d+?AzzY9EHe{dC+)njHE`Tk^OTrZ}0&3xW1-K^ShKh-c+IT+`szh3n< zC@I2J<+D8**OVm+(cJ!uz8v`DN%3`suAy(K+s_2DqsJ^LcQlN4?cTq_2PJ!&`1AJr z{g~p@Et}(4fpp1ZV<~M~IFREPMNQ35QW^$^MD9Bto=iJxZHy^Su$FCPa-Wc%r#KEiS6GH07YrCd`MQkw* z6mKa2u0H;A=ms(I6fiNsVwC-@yWKlA>V0(aa>rr$953kBkLG*@@OR>8i~bP!oqS{9 zy?$*EP`6(;IUqwW=S-AFjlqq%^ZDQ-5Ti_$UwUneiv%%sv&H;>GucWbs1% zn(6H0vbFQbU8sxZTFtuQ*o}cy6VB2JuEN*$5dD(=2>dGW-RJE=;x)6?yipI@puPKS z(b~pgDdt<1wt=>@ZaX~hoT)4@7mQCCc$@wSUGS<8_)Y!|SzhaYD$}G-u~@}@sT*T9 z;C$I`Bp)nrj4?5XEZi?3%Z`(k`TgZ9_` zlD;Q+i{fR?o{4#NZ*i*`?nmw|FKzK8W;XJEMN9w~7Gx*oIp)6uJRk9|;!o`ntlL}o zzgoA}mP2;YTe4qT!?xfID6~@XGP0u)A^F&kn|aGux%juhpB9()MDe$UJ{nukvMVLj zbtvs4X_NaGDIL|rmog+a-c~+!5$)ve&IMzXENjCH94P9)sb?ocWQ@Y_fs?a6IW)kWPAo)O82zU3+{A@l%#-x#Nco zy@G~!_6HbTf!7BW*WBnbcymS4EHz0y$Rdl&5-{4!A~`q%aSAbxb6=-$9a?h5xTme3 z=ze*|6zW2Xs=NM-@jn<^8#~swV5(J$@G+1u0mt?4Tphr|h=zIV>Fr%Ut9I9uM;zh& z!M(n0lZhKS2h-BIo0EbSxjxnUoU~RxTLA{5qau^5uiWT)WV&9VbD`d!-r7j%kT@ky zG7tAyaz6_Fitz&5PM>6uE^*Lx&N%1r{{R~N@BO4aGbWkh$b4047T7fiz;^5V`2JSh zImYG2J#cHggK;a`%7fZRes4+XJD)#kr69eDrgItw0og`KQgFuyjs{I^>-q`OZrjO8 zMZQRk$_C~GzsvIA@FK(G9LVW-hgvo zsKSpcO>BJCNz0j7?tTmSli@FgJXUodi{2T!@kW>B?fWgJrutlp+lS63NM$X@@DQN? z0C-pLkL+vlZ}tH3mx^ut8}MJiI!}UpLw-a{sQ9|)`&weo3Wbh&+010H0Ze;FNaLJW z^K_8!a56o+{uTFM!k^eD_O|$w;TunhKMH&--XYO$wn-J{pLt^<1JtV|lccEXMj2W# zK^5;{Dn^Y}H4bL{uFnTOp&FFz>TJw@t7S|K0OlCA$12H53nIw!He=Tu;!CAj-Ybi*VR~Zd6CcY=djH(jEQpULaO4_ZQf8oqLKF1|WcvSA< z@28*qGe1M${tEH?V2qgc4J|Xl#+MIIPrhrN)IZ>?U$%YixVML2v9}5^40=tDMnB(; z>+^#c>)w!x{EzCCukf$9{S(?g=ijaW00lw)w&Xywc+{WwbloX>dScItr8oQ(!}iLY zVow^~j^8c5o}c;+n6HES@I@{IR*H-l*%jILjqm&vL-xeK7;hfx$)D~t2!AwzYn8wK zxPNPnNlH)g6JAhw`7c^O%V1yWUn`J03O`KMMx0kcT>A$^@wbisB52mS@5C);`&_-2 zTZoq9P`Q@oRgOJ}V0l@Js4PfOK;-ewT-B{_;k~!Gn$O7J6m1)pBub(&$ON7`^yqt0 z@TS3UJOiS%NCOLt^=H8KjEw&PpGxaIKxFaq<0CGRid{--|AOP;h-MPR%)!0igkmRWU z0C*FF^{o9?2%-c9*x3XQdN;Szn)Z(#lp z#}TAz9wYHp?bVK;ziYUO!%5Ic1LyAdWme;7U`9GuZLVp}q}$r~Y}|db`!{y!IaQKU zeq*=MKI)Un9QUs=v9Y+d@k3r^m0t{AFmsLHHqtSJ_}7z>y^LF30l0KL9i*O5U*%rRsio=u3X4p> zF^l;Ey~72=lby^95CP{I89g&zXK{O_+f2B(GGu4C&pkJF$MX7Dvxl3KaCJwF{=vTzr0`YeiD1^`nrk?0mf|Z#BQGj33FYqE0c?_8p1+H(>@O2B8# zx^7H=!wQ|l=1@xc*VN$aEzx*vs#uroyZ-=JHGgi;+5=1dqP{LcspxlWHi@EI4LaIZ zIS$*5w=$-2lrn@wZjI&c84L;e3Qbbj#r9}Gw}m$nqy^v{vpFZB#~-bE%s1C}_dZ>= zZY~(`u`ihU^a?Xwo}KWk;(v>Z{{Y0c;wxqu-5|z&&qJSF;19yTC(N@6VyjCLS>952 zXX&|q2~npSG}WS&k2&!!zWU|Q+3hkd(B%5N0gcDo94I|M9y!Qtr(u;D#})Nog+FHP zTU^wiN4Jz--p09-&dplt;aKzn7z4^l9R|~$!oNhm5`V!Ye{0_!+S+QK4ESNAVK?|Q^ai7DA{+xar{{X=Oe`{@S7QOK-J{a)bnRAI| z)TO<+UI0Jn)^_Y0j(^v5&mz9(_(1|rEZda4n z_k5}BNF%|;adsLC@ppfD-wqkA_T~M4C-J#q@S^mza!P?f7%R?6Z{h?4kHWnVPWUf& z$gd@v1(g2)tdJ6*f4#s10G>(DHT~6iGyVuY`w@6@J)SkZ@dt_SB2~-WYVBbgmH-pw zXyVx5u;3gXqo#BAPk{db;G2K&PcMhpi?4WZ;kSp){jty5Zgf$1K4KU-xxA5|Byy(% zIr`U+Ta8nG>{;Bnau)Zc_#fwc;ctXb;#;#};XRtf@Qk&-lp6MRImZxNtgd+U@Yc{K#}KZOqlf58R6Z%-6kCZ!jJG~F;UCF9mLm|!@^KfAJu_>u_Z zWDl)*f9(nT9C-WoCh zU|@mCZ0DXh{Hvwa=Cs=%8TqlE!)o`DW2c^ zFiQvgF5L!8SqdnTnCBzzj1>e9{YHH&``rD5qwpVzeh*&{8fqV9dt2WwI77H*-wLvo zRbU&OjBR6q>0iKK?A;Wf@VRt#B%+y#Jb(rPCm?h@SNDhi00iyvKiEDI>(3ej&v|Ui zAOmuP7Bikm9Cinq@iV`9rg~TvbL`zuQq}w!slg9`{5hxVmL?Sv zIj)-i?m1OJA#m9za3xp{G1nLaJx5ySulz}`!{%RKTs5DVk(HBqIbd*sL+;zxkW`#@ z;8)Gby^-qj!?Eq28P)zL>o&mnhsIWxLgkCYZ)~R8MOXd}w=wyL2RP+%+l~h8-wj3d zV0e$k8jQ-oa3uj)kK)F5l6#)@^8TTDXRE4O>fTI(M%>H@-<*8enMgSA!vp^9Vrj^} z9)WFqD|vBdM7RlUa!O}Be(And+z8+{;zxREuBNbQD@9x6eUqpBIrv>-ph-0IG9d?i zxm}0VS7MRRUPW~pe~11a=^)9cMGR<&!dSPf6ZdY!%Pgo+s^x0NPW56B>luRVx7 z_BDLh7cZIV*IL{TLGmNq*dI4g2M3=1oOKjGh$gsa5TRJUT#qbroj?R*r>FToTdR17 zNYZ0;*R?xKZ!9S*cPugWJ@=D zZP*6@<22(3Es+yy_C12{Qi@r`B!+NRjANF@a;K&aJ^uho%$HETjha?T_T=Hi90EPD z$JeJ?`QrZo_J-4wOM_a_G(AUBx0M=rXSP&mUOeEiHs5G=UBHi#80V&Naf@;LKzOQM zaeN(VrdY*1(yB-0-z3*b8*{pASzg`tk;z#1xETN%>H4(Tl~k6e(w71~MlUkq48$>6 zon%plJOE>FoAT?_R*P7`ZR2aD7(iIM#K=k~P)O$ku5syK8S5Vu{vllImp&Qs2Bl}C z8(VqrJmGCFpD9QNSIb>aKe9T3!$>YLIQem2Id7==*T))F{-NS6TKmM7B0FWZ2_vn@ zk=V43Zu~nXz?M7!7s`qjPIvB8R~!@SOT|F_8`M+7P|CNr^IJg57^^hOqo2ClzE)fg zcH~!@YkwC0655B;#-XQbx`Yw=vD?ixv~yfJR@#yI#c{Z<+>Qo)tK#EfX{mTp+Uvv+ z+TGnP?9y8;>~^}OiNXajO{_^{B855J0vUnMS&3Ted_&-m9a(q+#v41JmUi|L35x0r z@v{jtzw8fVcNW4<7tgx$a5#PgR`J2XYbIelOKQm<6#mfv0Jq2d6bIofw>LTuz?blz zo?;Rk_IurGCPYHzyz5gPuw-147j_2+Jc{@S$G^Al{1wl~x+HprlD;dk({3RN8St-$ zB@xUR1_ViIX>~sKQ=gJWI5_}U^ebcVx5sDV41O%pG^0F8GfL9f$0Qs4*vM99yVTt- zSxL$JMWU*nRAdTGAHe#|8pf-mc*gD_d8t}$N1E}??jn8a9rRmGK1tOW<)djrsc-e8 zIX>neF{4XGO@Ci`I>~Qe>FY}{{VtZe%adP z(?PB2`d@_Fc92I7t$8#PN@88ajh2&ImD(~~-3)(sJP)Tn9e=?TqwyY$+NY2HB|YDh zBrhemhqUFN_cCQ!V!5@ORWnG8GGFYfpdM2k*X~Rj{{V#TylG`C%D-y6y?}`$w6KAt z^O3x@`Q(=GfJW0gKeFV4H*I2y&sf$c*CG=e%Q+xod`ca?0Bqg#c@Av4Dr&0_20L$>g)o#bCZ zX9Psasu574M!B6`JsQ zQw~X8CTkU7WFPBhj9~Oa1yj`YEkj7Y(>!UR+Q$vFl3U%)b!%?~Avb`NW@zkpDu&78 z_1FQGQcfzvO!gij9t-iNrkDD5rRQ4izJD~C0P~_R_S>yNRAggxu}6czMrH!JWfM(~ zFU5W&@t&EZL9Td%OM-1oK+)XU+g<5)_mj(L#IKParELw=&QuM|)5nwdGB8iH+enw1 z&9{lIuCJQP@NShatS_!2SniV^Sd#i_EnSuNfQcMQo=6}7cuxpe!*6@7cvr}^vuBPw zxZ{bWw`tZgW1KJ9{{XTJZ25PVSfO3Z%eHW~o*(e%hB});g^I8`Fd)rcGGZL?zY{KP{Ww&j&5Dk|mH8>1>t7s%S`AY-MbaxupgFG|hYkBRbh4h<*P;L?9 zkH{BF3Nr{Hk7FZk3^&U@2Guz%YgJ6spRri#dd0+AX1S*9y_P(jMHn7iLQX&sSx&L5 zrvh0n)Z^~41Xi8?sp0mJxfi<68F zF|73#msz~<#o_x>+^myBy;udigO_Ox@=g>yLmTJIs~e4A&tZWCtr6 z#TJzu`_rHfQE|AEIjEq6K)=#1uAV!0yt84orC6Ftpp)g=&uo{|G?6wyju}Q58;H$d zU--9LPYU*yp7h*)PvFS$OA4 zv-5QMqHj2vWVLpRKn23E`v{5%!TEsuY8DDGaYK!a`EGQVHy65uDdI^MKQhvD4AGM; zkcmQpwS~>pNP<)#h~tNL4jbF}eg6Q1gnw&mUy9$g;QgFD6Ptet{3N$FF9C`hRF_%Q zV2bAY;KKk|@eRAdX$uq*sW&QFm4QFmw~BmSVem^t@h6V_bPRe1hooL=PpGA#bQboO z?RJvH^4;oi#5XS2mRMr|9=J9BT)sZ|gW|u7UM9cs?~Se+U2nu!v+Gx^z#|#&rF*%P zVt@jx%2iYV0)Q|80DVUa;gwuRG?s|-b6U=vE!^-OVMd>;%WH7kk|VozGsZZ_Ufl7; zau-uuO0Jf}34^o~`Q!X6yz$YsdA#OjS9A(bYz*W1ep#<2d17|^!)V}pSL_tuGEDe> zR^;wcl}ZxpjCA~IBT=06&rDRW<;cH#r>B0M>NSb?Y*Gp6dkV9yJqyvr3o%Kvo&Y(< zGuYSexBL;4{t5Z1{@&lUHj`oFOH((){{Rah)x1rHjx@N2(SyUKBh1ml^53|`kr@z+ zMVYq($ZPS3;b+5Nh(8znbEW(}_-~_L>-xs4IJdL0)1Z>#=Hg}rgiywc#hrql*i{AC zg;rtypI`7xzu31y{fGYmWGw^W_l9M&zwy*ke{FcVw2;$HaeY2EyGqxZe9K{IpjyU~ z#LQ6-4ZEL{;+*T)QuZ<4M}Ap>RVpg8S})A~8q_>nsLOK~iL_fLj$1boTpLtSnII@z zac2$IQIq9k=bgNr!xf_sj=Vb1qf0Z|u>hD_^6|`P9HDQwE=u&y(VTQ0E0K>>xxBlN z#o869oLsTBzJQdna_ZQc)&TZ!6@o^=jm_8}#2EFi>2$clfd`8;+erTah6!%<26%^L zW?f$em!TtqM-}-Kf%R5D|JD8#{ugLIBJqB(-V@R!5!u}omh`zIF&qTA^ABO32dO`o zJr;qfc$Zkz2ZrD>K^%=CRUmCm$8Q9K)1UyF{XO_iu6P^7nl7QC{5R9Qn;juxwvE*T z`R?dkv1}8Q(YG~xjpLmz`{A#PZLD;!Cf3hb)V$dK%BswWfg>oOf&j~$4&%LNOA*aC z7OZ=7%amamIb9zpyl))FHtMGb9@YDM`we_7_<5)J8q?zrk#6=^5?H(!cQ^ToW4Mp~ zWRb}K0K4*>a-<(XdE&nxz9!i}By^T-0As*VZo# zSU}|F;g(tU70<~OMZxQgyRWY`>SefU7#beV8vbTj>}6a{RX4lP<9rkQKx@7V&Y7gz zM|*iasfyBgq>)9d&AW3)4h(MS3G(-X5R;1j-v0pLh5CoV?}PsU1831ZQ>DpwdE?tf zw$+Ws>0&lan^Mj;am-*dGqYoRu{gj0e;V?99@BmqyV+^5d9BKewjjKO^f??T_Ts;O zKj4yo@K8?-d^>w@*}LN{ot$HH&+It|LUvTN=>cmDu_jDErqe#AetrQgEO3(qzG0E6`lW!3yIa^*Kkrp(1fyE`1S z*+1?{Jd`oB7G`5#kRKavWYff&a0Wotz{KLf*sa9BMY~9)AbGw^pNXmy?sBf5ncpx6*^QxXs z=(nCvrCqqUNPuA2kOoqiBLz=PbW`4v5xgoBkezI@bepYQpmj4%}ytry{+7z!nb`ozAClL@zbGklQKX zg-#uu?2arSR`{qvLh#x5I-vd2sp+^J#a>A@JwA- zIJWwqqEN%~w9`AyX7YXCZnis`P=`1J7~tR!e%R?=AMrCtvDQ2{G&-pd9PvDbmxCLj zEFXjXJ;Cc0cH?lw-7BJXHfTnuM8AmbhLj92gJ zMx<=EJ_b#hQkiY8S}~L;#~pa|>H)8)e`c@RZ{lC<@!}-adyCGbv};2+y#;x>V$Zt`W;B)>pTaJr0f-*NuQdEX!XYWvsz34!}S z{2bS=G|$brD4snd^uO|Nhg1z_#QTuCZ z)9G@p+;=)olQ8nomQZ1mAg%!TKQc&{zuAimKu0`(s*fI z-a2W~HE+!PfgIwD4&2v&CxJB(-dI-2;ACSb(+31&@%5__cmn=r5vVHIB=tQybmyMm zLtld^D_-a7YYjffn`hUWTx4hPuV{neh2-+AaV(pTI4h3af_qm%Yw&vg*+Z{Sy^J;w zVSsAk8gHp?gwoXc8bu(-eRCf?^1&OYK7*}w-X+nm?IDoe zPV+%3Bchy-ElQ7&9)*1et#m#b_;soHH^EZG&`1&W1a&el)%l?zww`gy4z#-TTI?Ed zy1NpzGN5RKv}~tn>il(??tI&%?3ZeWzBwA1W}8E`%2uEZ*P@0q#wE72LWmpJN=QM3+{~&kJ#w z%c))1JZA*`GsR|jcG|~A@a46Y%lT8X8DF8=j&s|lN8?=8oLNVC2r^9VDMdW(I0`*+ zw07)kRL0%p+2;DBS3pT2;a#$M9GvHmuk)_2!n%;RnjaHt@&5p$#@ODx1GL~V3y?yd z0KnXRaZvb=M!C3y{TAQMjy_pHZa_Q?j_uo~2Q?4QcUVP7$n^2?5uOk~&*V9wgC!XB5lw>7S3_u-@PXzk=*Gb^*6ISsx_m^iI6+3Xm z;1W(hKS5ReH{ll5ZcmxSah$$*8%JJF2iCu@kN6~?{1aEf{{RjAH*5Pue$ck54!3m> zlf(K|+-tVXK0Ld*<8a@KQx8z=JIgI009pe9Blv(>9@p}`WA&d+FVB+ z(#RbYi6>Ib!J8Ymdgt@|Blle%+RE<`W4XT5%EbsckDd3b^NWecj-%_$J5fH{qEqhL7;4OT5&r!DP79V0+E&w6uS{ziGU{ zoSbum)2Xkv(rrPlRNvkRblG+{L~@t|YNT=bVTo)INIM5?RqbcQ9v4k23;XRvU)x6< zk;soOZ$$hDM1tHZIKaj^BLw7-E9L6rtIOh>e>2>tN(*FiJ{j;|gS;80N2T~%MYYnc zE!nogV;!};NgfC9K0tv^?2bX}f4c#seOHUV^tZ3m60+*!uIvWV~>xZD_`K zaG-5(-GEOy$`t?r0LBh{=~c5ew?m53^!;t@TK7}bO})90#L_89;@g&ISqfn8Q@{Wa zG5{T`w$S_|;kz3THu3LusV0e8WrkMT1M`49qNHU`;xmE9Ittm+JS{${d-iV(cwGiudI&&_{!eV7f_PeI+2S@StC4Wl?9vSz|SE%_RVWf zcht^G+nfx30Bg5#_9nGNAS$$qsuT=l2$L8ip=@KYCnV`x_*+hp7?IxL_LeZg`_){5 zpOt*Z>Ux3)LxEQ;d+&QwIOtV4hIi^$G!2W^1*bmzy{$J*t-nq~1tt?q$v z#LFbt_P%UG%fQM=grhM~TMUYQaZJ#@D)=kJ8l;zT>j`@yjKvfPZPi&905YjmWpYUY zM&N${YL&MWi$}K0tLheN*A|xPXKx~w3l;zv7(YAU40FiA&3<-%+n?}GZ-76x*wegM z@j^{oNbxS6YxXGheHv&@%Ua0A;|(3ecNX&mZOn}6xpy`j1cUY7x8eknIOMPrS__cd zOsb_xQMatTD8@7QNF$2itzgv^WSR$&BX(mVTo6Mj9IPy^yS9^p*e%X7aau-B{_f<- zHL3o6pSO>}yIV@U83+TIx561XmXk+}PV)mXTmc;sqLZkK{!d zP;dz~@|f`?Gi?&XBcD*p8}P^?zeE23;IDfAfvo=k!9xBd&!b*JsKp)Cj4w62tcoU& zO}0r;vhlqbZG01gFizk_erxHgWp^Ns5=oJ$3NMZ z!v6q+e-6GBcsAR?J_WazOok@iBfZ01-AZ-<8f%Fe%RfQ1@IQnK{&)WX;DY`D(sUb5 zd&bjRP4>NJ+C+Jga>;LPFcFCG2`Z$tjf|XC?>~sOf2^nAzo$MUxQ4 zw}~Z`E&>9iw&H%A*UIL2lQoSdhaQJcE|n%(|VUT=+q(^{Zm)q4b2d)MZpE z2y-2zo@?#r4wzw{hml+^v#dDrbUq%`uQd21o+Wc{e=Wv|e!GvzV~*L091d&F^=rK_YH{hP z){iXAsuV)(Sx+IOP|nemU;}mC$9&?o)t`$jG<{oDy?s_4E?AtZTv;r!xc>lG9^1Vt z=j|?s?<;vCKsxd`rv(@d}NxZpIV|%EQ*cE)P)iV|hcm3RC014wHRz0Sbu1lleYN>N` zV`*Uwl9?_yHIDF4%(s@=%9ifR+j;HQ--q=<;eQkzLsYc5(QLHX(d1{g)pWSPiA;=S znh6e;@sdeq0|Su5ipJA5Mb-QzapEmJTHgJ-<{0O=)5WH#D9bdi%{GYobmKe#`DY(^ zsmZD5XGCa48foDjb_)wlV@T9zmT3vMc%YIy^pYh|S)0k5PnAG80m8}G1Y@PGKf#)2 zgYg+WI@*znB#zy#tmc_u3_>)owhP-y2wXPM67^Rgh9j+Mc#2I5{{Y6CH-+^JxUR0^ zwnxnvuHET=R6-ZI@$8@9)2;dsqZDUi@bpHSo_>0cDvW7u0h>>{&L8oyP zL^51zc11|%a@lOhEQ6J%rP$k%E{B_1cq>-Yd=snd8ejIUqTNptTC9%oz^N>SjFGd; zu0XhtIbDd3Kp!qfGOWA}t;8(6E#c<0d$*CUZUe}c{%q5n0LMtYvzZvGf?4cN{(*X$ z?Vb|)9-AkJk}IhaX=a_Ym|>mO6+~*z+Em&c;dc@M@?=xocNeU+ts__X!yT3F>d$hk z6c+Y(Geh>4#ke89&#Bmbr4XL!s5%fb4oL@Ec!|emVJti)@gs=6j`lWK?=($5OMN~S zhFh6THsU5Sg)bz!wY9y+%EX=NFeDwyySY8=*OT~*#}?P#QEOzml21Bk)NgGhSXbs~ zC22mw-d-{cenWn_bHKu^tZL-|LA)9sGo|<*2j`=_vZ#0{$CQPX3%(g0h1_pYgn9XisS1hF0 zy3GFo1w-L|R&8rj(MFcATiZIxK9dcjN=&jSEsZVZlXx8qMkePfH4LU zPP(kHU0cS!d$hC0>VT@WdV^arkn^*9J79c{I#%trtz)ft%f!}JdYl@Ju&vH)A=E5& z85G2rRc$ur+TQ(2w?0X^z&~|?IT=1Aw$;2d@bcQ%##+RdCs4hHCjQrsT@nOQ6FEpC z*FUu_&Ruh}dS{)k2lhD=QV#2Yr1x=W8yy#ygGz4+1obwW{Um(&Ya~(Up!{%(f`qLJZfI_?kHW zBE5!{;cI5`9oCy^Zw2)BHX0_g5=e)r_d%{P2Vuu;M;S*JUha3GX9{whFX0 zX!Q+4#PjNYJ+tt(v3+fGZGC$zP>Cg)8?en2NWW+EZEbwl7|z%(+iHWHfN{6s9~}Hx zwYt5FP}cPyvO{Mqsx_vCVG>3{Z8w^HnxchdJU}87F~b4D6_MgEA6e;N8+7dl`)cCG z^HRMK+*;}vnxJ_ZVH;Ya|XbNMb<;55Qg+@nqi;uXPqgz+Ma@{(jt+*KM%=qZ9jeT#r}=E`lA*67U@!aOnv$jOai)fFdJ139C;@rcydRQYC2{2i~Jdai`5> z*Sg-Jq^vfGs+Uc34fIpm4gnF_Kg}aH*OD{)#m04Qsuhzqw4F=A_kR#|j|%G&Lw7aZ zoRG=qT*q}JcQ%q`B9b{SwZR*(W3)PMY;hM2S3DD_T}x%+PXWVis9VgEL#f7vCbU+8 zl%%5$`VYzo9JAg$Ga8nF*5z?xM76SLXl< zw^*3Rsye++SeL-!+r_q)Hd9$$NofT4&21N%6q$IQIfbsFBW*2!Qe=;ed4%NE*mbWJ z_=~}sUcIJId8q}4Iht!hb$MhYvtk}UGAp?tKX8T+T07wF&g|nO!x|2^;H?wIBGM`J zbkyzE`PSiN@LD{vF^|rg_eEJ?blO6dw?QW#IsUL~%bbI+EwS8Q@l%Hg^yRuuCk9?7h`iv$U zf_`i}Tm(Q#5t4E^Ul871UVJFipz$uEY%QXBbnBZU;r2rncF4!IKV?F zVVxd<4ch2>h_tecQ?!8=;bnWTHZ^gTl^R_g@4VLgrDIqS3?3VtT+-*V)VwhjwS*GS zaiuqwf3tTr%G%Gn%Pk{ZXwPbh#gP}u-o~uvqUdueDF#HW~?| zgI$T1cUSokMRL)d#|zUL%39fo*zqR6qiL||9xl4PipuIK1b=6~dn-M+mYCf3@LgJ@ z?(9G1t6rdOp5N^{r-!vA-z>77V^Facv*l$nwc1}<%F#YZjyHxp zj!O(y9+PY0PYT&yXmDtEno<-uF_&-b7{rh$4$@DjTwYrwLLx|wB8;xG2f31!IX8L^bv}`iY>z6IdIUF@o%nwM@bkF!lykU9a z9}n7pX4>6HKe4BGahVLS85t+$ZiCN!M=y$Qyfbe-_2e2n8XAT(&p+Xrl%wOUrFJQ4F1Gl6?}E^FGzy-MDWLjHPNca1hyA~dsVWKnC>3-H@Y`0 z%n_nlvIzrwlZyWUD*bv{^qaeTE9q6Ij@}^Be5?v4e z32E_L#Qy*ea8ShLFyNiU*{L9>ZWE$ zH4~I_WF(E>yvZbIw_bya`|bmSZgYDdIm9&|ELWQ`wY6PEl)uR82rN$+C$)L}h{)d{ z=y9BXp0(6pTw6gOmI0JLc=Yz?-;rG4VB`;(asARdcdydmv}exHWpdyy7yw3caavZF zHlj%4!xv%~C<8aqNB6V%)e=;$*pA>wao^Mb0Iy$We#QR)vyQv_RsPZb4gH>cJ$W9R zFN`%vw0Q4Lq>{8gbTT}X?1(e|>LhjyxxvFX${M-xSdV81JM47ApFEU1pVN2z8(aGl z%?F6JKlmtz#H$Ov8$|HTU)kOdyT9@vN%ae`$#tl}x2TCcFhoVXQ$aEXmRZ+v75$mb zs6?~dc$+}9xYRB0m8FsiTTqrFNyCelPwi`9u77xdA}HYJjyeAT2KaK<;g*TvzYTmP zwoOYy@cy3;ml(0MRE`)e;z*~3V}|}Udx-Yr5n{kdPaM+SYT9>)wH463PIS>}cQjO7Uo53eMW03rh(;bc}WZE5MRcyP2Gja=bVk%u4YS^ zEF^0gue7*c5@Tq~X$nxU1xOl#0gjjozd_Qx=R0n0qJRI^{#Act_`c2Xk*)0&+3z(8 zZY0SV+ZwE4SJjv=L&tjYAKHq2D&yjwf#Llw;62T`k8;Mq2%1?z0O3c>zy|BbamdGS zrF>zq_-F8s!`}?P5{R`w7;10>A+?N1){{s>Z7g>Nl#)SFz`@;tjQsKOZ^94obH`dG zzlf(grm+Z3Ls4?hRzhXmiMh_~?NX%vBE0N0B`T7sFFPMWiN(cX<4!v5asL1o{5PQA z=?~+`H764Jzh#EjU<`U=e$52>}GQ#@T zO@h>_q&Ak3Mw>bfqiX@~Pk+j>blqFV+PdJsgS&D60Dm2iAJV;d;Ae(({Zrz_g~pE{f}S7R+s1@^AFsP zKuAK_=rVD;sLwo9{{Rp?2rn%pmK2WTX#^ny4hB9};DV>PJP}`q{{U`Yc9Puwi=&Vw z6)4M8e%yFB_IvmMNIpCx$a3%?;>FOqmCXy2* zDZDPnM3PPzgT;Re(rY{7mrT5f#TpVBPs-?{kgtpo$^2R5FgfH``Y3K=%!lOofysaB67M^a!#mbgZk{3AL zfxyqddi1}ApKI|JyMM1s3X=u6h7~QeM;ee@8RLb==UzD4im4AgdB^bj`)8bc@n58W zv5$aezqHl0twT>)B1o;G8^UAFl(ek4ehUQHNa{1sYVx!BsNp8xZ_Mq==}X(j>i+=M z&n$;X)OE4s>6TA+aKM;iX;T^FbEw)6r+;%^&)`i9QSirx4xN2#Et|=6BZ%Y$TW-|= zjFLb&I6qqZVjl#?q{m}p3H72HP{BaSP{HJkMiIGiG!kWS*mJdE@liu0*A(Cw2)3E~X} zyiwuSgpl`ED15abWWd=Z@8dpM3P$XnNE}zna7YdWM-9}G$I`yTx4YBy{VsVG!I#LD zBEbup9x|xAj~ubUUZ#czZvxd?s^F6zeyA z>{!#ZtF3<8YeZ7>TQ22n#HtrOZh0AS2RI9oco^cj*IDgnF|hfR;Ep=_8teQgc69x6 zI5I!de{|W~-~3!~dmDx_$7;+Z-6T&MI(cMBN;7WSnRAbqBw+r6d{zCJ zv~4@$73QbmEkJ92AJ>&NoflJkgK+m&7lSbwWsvWABOt=Xn7I+F6P7snWA+Kv{Bz-- ziE~5XPlj>)N;fezrm15rMZeH)M%g22Sov@)iVh2vEW?JtBEPoJ*kk?)-}?vn)AoMw z_lkZb%i<3TTv>^9{{Z+!H62RM2{hpxjO!9h1ai+Zw)}|1wX6XVYK9=5}z^s%A2bU9TORTH9Nty5HuXk^GZsf3tS0cN&<|8BmP!6`KRL(mQ*8 zRj+OPI@~qDvUuY%vBE(b@0GHDg%@!-^aDMIO8)%(8T%H0!8g1(xbVlrc>GT+Wb=6q z_N>`chWYN?L!9==`eMGF@aOy>pAMn&J{SBrvhd_+KpRDdm{emtt-4JpK7iooiu?*$ z^dqETewY24yPv@a!r%BM&+Sd|Emq^epA39WsUt7}pG`JVkbC*}q6om95Y19p0V-r(2u^KNOFMfxS)1f6S~DD+5pZNa(75Avud~L2Vigndz5+g>r zzn_-mVM0u(c?9RO@zit0YhE1i?Unc2FT9&;p)uUjNRz%6JQ(-BOnmapNhFLPep;E0 zd3~beLMvo`H~#>^UH<^!oIkPW!SC2JR`K8L-=^8xc!R>4zMFk>Ji4s6_m>)fo8;X@ zrb%Q{RyjPtfmEHmSMkN-vvVb-rkE{EN|9zc!7UtthBzIz9uI2%{(s=2z7y0uZ~Fv% zR`9-#@Fz{uEcWPgQNc^Y7TryQ7Q7u~hpZpW%-CEX5eMRlzK4O86hbIHC z{{ULEFKig8MqS9m1mm1{^&+&jn|Wr{8Pa3rlbjRBAKk?|#(QLdEbq?j0(<^H{d)b0 zGxBLuyE@5J?VcUE*RMWlKo|$*#BqVR;A1=r*JceP%908G%O+jU+Uh5YrV`m=yq;29Xvs{UQs^_dPuQyo=7EjqKzKj4(#@J{_A z_Ttmy&&C60;?_i$MbWQijyAcI@1^X?F3?~?yP-mVdg=)v1tz`bT{#nnn{6=G4 z)~dZ1WPbIP<=A{3B}$voADG(CvEnAYeNxXwxVuM%T6wJDXl$c}V{bS=)JjW|?EL4+IA;uOy1j8=dT|#3|<)uT{~08+eW> zEp1}cG`|ek#Ssz7cQluG%z?LXes&)*BeR}$~i>1xstF{aNk)zM# zt`uQ^cB5v|o{SApz4%@6Ud|)^kK$*Hcfv@HT}o(sVr`5oEzbahDFL zdWDfzJ_sMcGuyp+JUYL`&kjv^JX7I=e-)5ERQ3}l$s+_Gkx!iQvu8MFP!2&j=Cd^~ z+5_SBpfYOr5@@gmNTz%Ej>U4@LYa_F7UpAu3w6N&j%g|>YSEjUXTP5r-s*CjB)N(> z3OtDlLSsA-6rzPya570@!R?-vpC+qqac-|I;rU&Pu2>Zyl^~T0#BTl^aNW&$Od8C3 zwqH%ShT6?e8_cI@UI{)7h>Wott!E?_w7$6?T$JXO73UQq??Akld_-6$q$VH#;WaFmiMJ zWS&sq9-xkcjJUVE)Z~qA1=MVXveC@T9>oNMg&}$8895lQntnO{(SHGc2ir{_#m^mC zXpQ&0kF-ZM;K(>p4Y4zFakTCF;2PGQ8Oid+HbOqDe-TfqmM?L%OO*;7NUqJ)as~+K zHw^a`$7?!&gRiU^H4QE$mNK#|rrjrE+>%tO$sKZ~*S`Q);|GmD;ITgeyg47+{uOv% z#2zWRxWF@BM{lItov3jo%SiIb*ldA_i}c(FIQVbI-|$!8+V{nAli&*tAHo)8ivwu` z>a#957@Be-;B@`S1D?ITC}dUTy0@rH6&0n==@q;_G}{Tqz2aNM(s_vXsBJbN8QCW3 zRY>FIa&eA1JlFEE{{RJ>{il2%L#hhpP%w;UIU)ZVG&ydhvZ27qYyxIfB@Tp?ZEotz1Q}9@qg^+ z@b|~7;_r*z1G4yoVG@yTrO&C|SlYDgK=W=qoyOr&MivwMvdl|{+PM9J_$mJY1OoWW z<85R|@w)EILa;}Sd43$8Eq+PPLm%EX#hJI*zuvZ$j&cCUKW+Fs{s>R|6!?F`cY246 zZne#3cpb{z&#mgd6>eoK3@Z)fNn^i|gqLmq0C-@U%MqT^SBux=MI4rC^GTz^{uY11 zZ+r*fX{~$>;E#k_2ZoK%5ui<7?c-QgfF!Sx=Q0k2D=P91dspf|!r$8)$3L`Hifa0; zv>pr7;*`Z<8k>y}tMKzkuc&3;}+V*dcy)8Gfg>rV~*9q=`_ zod&ObEkTrT~%0UMJRP(=>QIL-7*k%F@?fSfu+LnzorXj19!6$+j07m87>ypm03I zh%o?Q1JU|#{4L)Ud>^pUwaW(9?(bDvYpu|DhfZdHh%moZ5U(vhZ%Lr`ze)I$feg zEP5^Wp{BHwV9!2mm8`8ckZ`9mZNUZFx(^P>vs?Iw;s&>-YFcYf9u$vJv#{1;R=GQ4 z=Shk0q=Rd2%S^-!jXfeE82L3zUa#m0;;Y!#s^((Yr=LKkHi}t zKVGx9GikQ)rOnQvrRoqk+I;DAsMxexc~Cu6g>jRd;1IhLO6M(Yt$)I6;t%*i?5`r7 zG=+*eBGEO2V>-Mrsd(kme8W6UxyO{Hff&ib0C_dngDpHU;TxS^-thQx@@Zg+3MJ=( zt{!=0&gQwgd0=-%4e|)Qw>bo0@$?$Ws%!cWiTps@cVNmK4D;Mz+(BjGFAwP&Z-?~@eI|RmiDr19)J};sk-~y94X23~?97VHG7uqN z2yVwntwkr*9(8@;j~23cYAe>$_1g%cmRRGu@b~unJd(;YKlbIZxLBVGcW;SfBL}uB zZwdT&@iotjykPpqg{d2R1-n~VJUy#7i6NO{Q5YjjbqQ`qAj2ZYfq}=~$@a0~*^}cn zwa&GtMKi~1Y8LYI!`IHpv8j>4)~sDD9TkZqFsVk#!OtA6rldS|;V%;ET8-RVzuT=| z1QXs`c*fCI;%%S{3l+D!mOLNzZ2Pw5dm24Oc-->s7sg%=@VCQ_K1&l9g=V?ER*o07 zyYPL$NTVkvI~2WK@-q~wsQlmofnM=>;Pvr$#H|v45otqH7M6CwZ|}70JzHU!jE%DS zZmn-4;4Xa2at{okkU-(}S**Md;5`e&cCw8nZ|1tVQ>V4xgO+m|tXqD`dY366JHG6U zy#oMnE4Q2BX0I>CD<2VPdKI_&JXVPMt7ul5jnFa2m)Wb^Ut7=oTYh_8>UR_*Fv8KX z)RMNk5NP_R{3g~OFw?%$y2KE}cE8!S`ia$d`LY<*8pBq!vp^d-@|x>lKPtB0nz@}z z`(NSLfHZk+C5yv^>N2ZDvfTJ+Y*=t|mWixEDb6^QpvFp&KnI4=d@tj_ANV`Oc6yh@ zJI@%iMo~2Jb#163F}e8zX_r=7QZbEizFo}ohW-Tb_KSU`Y1T#W zW|mjFyuI+F{ITsO2=qnrSe?W7Q%Q#G2?C}UYu-gpN-s@Lh4kGoQTXAeYPT9m)?}W` zPj}RXot4$V5_y0sU&VQAd$CFRT1z95!es8Oi$UXm5cn6w{u|eXlf!EatsENF!@qMO&t0l--Z(?|DwJk<>7?7y{073B#V^4_g$O_J3 zZZJ$|icv_(x7f_M(fn7V_yb3{)}}fWHT?02tzo>hfUJ?_OAQ9&RklnVoX?aerqhhp z(mn$C4@>yhr})dk-W){K9>(1+H4Q2a7A0kz5ipgU+G@kh1NVn%-~1#nHPGDY>*0Tg zx^2X^t)ej0!TI8wLFJ)f!R|aNZlU-6@|f81!P;xCywk1qe~CI3{JLnr5ZGE3yf)fK zts0H&2usW9ZM9`Sq{PFJSLV%bsx+??mT_-$#=JZ5%SxUP6WLw)nzz`J@5`~&?l13w zk|{|;_J0#Zu=#ix0Nxl0!y^U5R$2IcbMWusz0J(l<3U^PMiUe|TTP)8Ad3y=NutZE zTOzW8I1t89-|7kXog+}1_r+c;@XnokatjOeNEcJpCvyCevcp_}>Buv{Q7MD6;WLg_ zD=7Ra@bNVvr;QqDZ{lVz6KIY5*w_-%_))IE7Lg1`ss0i=BaNt?u5-@`30=6JGe5(a zyiwsR8Lu?E4R2JnyqaJ5m}$0}_3xE+$Rq62+B7H!$|mxJ%ts-Q%yK+Kf2rxd9nkcP zbkwxvxwLCZk+sP5^b*E!5-mGcNBdbP0e;Zx#BuLmP3q7Mf5h4jyQW#DywTZ2BzW!g zyTNolGnU~{`;E(S&$teO?&<;TP=bHek=h2)leSzO=hYc}a)-L)*WC?(TQ zI~e6?Gr+*euAl84b~z=L#p;>z&yD;wr)j<{xA8OS8eW}uJ(aE0mlJ7PrH$X27T4Q% zu3613vi;MT8Co&-PEglv4d05czA1~cx~93N#c>OH7m{f@)N2gj@?Zu%Lef30yL3!= z=W8j&c6Po9*I@W;+U$v`_+hl9gu?e8R-CCEl6?990EBL9yLKNpB-)tACjmzo-Z=PK zb@5iyNY?b7N_|e^Xyk{?)9o~!V$4qo1!SA;iKS{xasL25@_~TdE=6w~!kal~mrZPQ zo(Z*Y4|vJ^J)zHQqenE?7Ewo|$A97E^CS%MtPtu3TRW-AP&Y-efJ?4MRO`cG4J8u!eqhCX7X*S7bweZoi zND_Rkiw>cp$tL2UkXr5*9of|2*GwzH?9NHhpHzA8f;C?j_`6HK@c#gW{6LdSr^yxA zxA60&&FDhRjSty;KucOgc7h3G<~BguR|mbg@ZJ8S;kgfwCb@s??LbKo)-Lb7FwiXP z@~ll_;@Vj<2{H%rNh5GZ9LF8i-N(eA_(b55b(gx8^H)OKbVm90D9a3m*^qp4PH4%~uxHCm6gPiWe zRNfQPb)OmO+RcxSG|P!1k{`E4F1Bo@jw_pX+aa3k!j}Q3n6BN3(8nT$;I=R=cuMj= z8~A%t@LrufnyuBI%iC*PREJc&lHJHjP}}&D7_MM}7yv}9*(8LNACwxI`k5Xk@W}Xa z@dDGwJ`=FeyfrM>DSDy}H&)V!js8o6d#FO!7B?~~JF-V{8AfnEb>YXMTzE6Y)?X7L zztz`R@l}obG!1#E{{UoOtJ&QG(XW}OEE=7x0gAf@5+>2}e|SMW`j>}%6xP9^(WUVG zQ1F$sc2^v#Lmi{u+g&o8hS*v#dMsxE;NH*SPZIc2%KpYneOB{6fCI@b;T^eLGm0K!8Vgt;c4IEw;bk{bpYEht_kIc7scCy{t%9-Vq!pKMQW99|A4ob)2XZ#l* z_WST3!N1tTU)g`csi%04#Ge-8zlM9(ytMHYc3Kjkg7Qc&B!=GdJC8ZiD`7er71`w_ z)-nhA`QO~kxAze0KmyV^!T_UobCn$61Jm2qzhr;lwEqCL)xYh5`+Iyr_>rVuKB1uL z(~k`3k}!+r)AUx79qiB~YW`)^mr|o(W+sn0BPa2jQo3mT^qVKlINjI2LF#?0_C5~F zRUAJ&ma;xOH?PlAld+3($9~0a$T}Qj@y9htu>K$b9AtN*Lf>`I;weIsz_vg=ap~W! zePrgAhn|sYC>fs_3JD9i@CJC~^U}YvkN7o@_Fni&srakLzqMD6G_7C68qb544J$^T z(i1I>jGD9#C7btqZy~x^f{5pggiCpx9ll|6{CVgu@M@7wyev^4Hcj0&NAoej`^N(y zcRUQ|75<@r@J^3{(|*i<@J|nhe+B$|rRW+ji?kgqUg}IV*fqwCwT|SyqU&u0(iAj_xo?72D~)8}V(WtN4D--&E5rQJzb9qLv*dA31?C8QR&e zkReg>sf`A5Hu5W)J~_F*@aWWa<9{3J?2$thvKvb&Asi&0MynL@nF5TkIl<%1W6gN} zx2SwOxzz1-D739M4P1p=i`z(ychlUa$s;XwWI_|ccZf(hBLoh=l6zNu5%v6!vF#dl z#*44XIZLf7=U0FQ6G1GRrR1?OIku1NQfc$6LeJMS3hgGx5!&OKWYQJh8+A zBhRL4o@*-b44bUn?<1DWvCmdLYv=7##=a-+ z1>P3}FXXg|xpVVuI6o~*@MhCcm9PH*;VyLZ$&+lidn6mV!=#f3RvF|l3=apI!lhZ? zNRBjnv;WurT=ak0)*piY1Ya3^J-1&F_>xIBL2-J}#S9>l1IHfi$+xQvlH81dc=%gF z@D{t{uZX&>{{X~`z1G$jhAmF)NCx@c$_U{ka>f4Yg}?(C90U6c1+(~wTj+XhPjPc| zG4D>BE)uT|1nI?H};dOVGRtVR_-}pRw5KuD0V(F}7Y; zVy!F4NXZHS`@XoveZ%n6;P$oS&xRfp@l4lxeTq$@*dS=3Z#9Hb?GGSQKYHKACUV{D z=g->S4Le2nX>%N91Ki!htIp%{zU*%5#{iSfew2I*y3zE{fL;iPQHtgST?)Vh<;f&L zo-vj(qU^!%k~Z`;@8s3F;mpq~Hl(A7v=>9n?Z0Ln3B+>WYS)b6KsZ>DGyFv|tiT@m z&3XrhJ`Z>=z<1+c(#-N-My?iFu4HqD7$eIVkDvE`n6IK@w9+maQYYQO#?jOtN_MBG z=x|s(I;87w6pB@zX~bbcUJuMb>)N|<_-|`QaD7uARa#WB5UTn#d<*f*R8c&e$yM2a zPDed}Bk}xerv0COJxQvnd^z#lgY9;~Rttt82Ml(m@=kI`8SHWEULEmo#U3=%VS8JP zJ6&20qYN1DahwLo;OD6O!}-^?c(eWq+xtiOC-z$K_wCoHcym{`@TZ9rOpe~>Xzii0 zi8W?bMiP0?Ji+8Bu{uJlmKne#kHP8X60Hd}Z4c>6`K&0;5qrtmdiFli{g-@kuY4l? zsI)7cF+BLS8-=r$CM7{Ga*kMV2tLI6b6=wW0Pt|X!EF=c{{ZX>;osU%N|Gh<7sC7W zwbXGDF4|tLBHPK4y_qA1eP2i3oK*p7tq4Rl#;F^ z9r~B&<>)=02gTK;kEa;-K6j6>u&IEQ=e3{tpT^Xhb)v}WcXa|X91y3W^#o(`q6ym0 zLLr_TfKJ_yf=+ng_55l{e$1CXL5Lmh3!Ds|dJ$cgjbU#-u)nzpZy(I&B>|ZimIU?a z4n277U)d9LO6>kVt65)>>wiP*KiP-&P_+2fugiDidF0XbdpJeR)5NjvIU!axl2Q>F z@<=5cfN%lkzkfawd;_^%GQ+|D0112B z^~;}7Yw|Dt3Q7At57{sFguVC~@ru-6_>$K`(e-I&(l5xhir)C##+Jj)wN{c)*6hsx z04nWZ0M1Q+cY0rqekt9^EWAVFEkf~>KbT?iqux}JxHXh9gaMSP^9jyy39sT4{tI^& ziD~};1qktlyiIbE#i3{xU~UraM21-xEX*048DBk)SDv-uQO@eusmmn3^9T>wvsrgtLet_Ey!ab`v!(Ft&>jatbdk(gIqS#(4!JerJ~;5Fz*sb$ zM^W(JtKwyu5Xon6t612Vn&Fs-Nu{uzqlO^AFnz2^`ElvhO%0v2A8Ll>oNps(LW}_& z@JP?773Q8U0c^2nF)`D-Q`CI)RK4hlKcMv&gPH7?;UF&4fT7a z@LjHtEc)Dk*;3D`=}=zWK@HwwkXgw-e#<0?>Dra0(puKl%q4{@e^O0(BB0u7DM zjbS`Y2GZ@B5<%?2fX~zl`_2c(UbCa$U%2_sD4`#Aw`P8PrMKAOTj`Eu#^fG^9E{gz zt?8O(nXB7senFlY3QuzYl#p`U%I{Q7fzyCFE6*plKX5$B4AX)YPC|pg9ld`V+SPTd ztxv<2Hb&jqU zV>-Oy!=$0*1VbQXZO&3P7&vCfUzcyUu37ji#d>^kE}wU2rul;s$pxnOkn~1EcN8kP z3&U}olg2$8MfgSH-Ef>izJ*L=i0hmKS=mB;kaXh z#RcG1$Cqnuu`oJwA+44QTbVpeEurz8-wZTcEfm|ubUxE5^9{|dyIgIU0#3(~kl=yy z27I?1mgMi>_)oyLnjq9XU1N0dA{kB3*`u^koE9ZwLOH-J#FpbE_ph-N#+n_E8YYUc zfyim($S3{P#!X|~d{FT{$awVGmIZH=EwT>WobJ!)X{;0OX0cvJ%ij?`0bYDZ_&cvb z;2i?fQiEC1wG@)=uGU{G?G~=NM&E$MG5J8i^sn0_+Z4&3?4=$Gm_7f7t)j>XF zWPF1pg(IlQBO<@mHeU-^_|4kySGAHmiK2MT#hkL*+z{$>nJw8Jy*_R|v0vrW@n=uC zg8K7CoG`bt)b%?!$O=L=wcEx4ZWv`#?(#U}q0j7o6t_-Qq3HhrGxOd(YILCGz2Eiu zA0+sZF5|j06(ZfqJaC|v=zU4;j+M_dF!``f&*8^j_21kFF}zn22j{0;_PFX!n#L{^*gT- zX+A50RyvlGCB>}qYO0WniLZ+NlqR0cPTwxlO{GY4`_?;tbBH*G7#Q=-Hhn)0t8qN8eWs&&kk64Kf*e2 z)AY?Q-ED1Pv^!QPV*msPpyQL=@=vX9TWWV!k+Vkxp?lzO$n0`GN4Pco<-{4~Ov1aX zQ*Mi~`+ixM)5B6!;J@IW$1jd-E}t=p;~Q{Qah`p72iuM+y7-#G1Hz(A;C}L6jh;Bk zKjU6Pd|~0cc~x$%?d{}dV1ij=R{6PA+FNla>7PoASoo3PT?W<-Q(C(6t*#xTNj!<3 z2_07@RziU?Ki})eCcb)UBiHtKUg|wU<5Rbj7V7|wg7Co)Cp?YYaDB3BWz;oQh{G)Tef5OSUON%>QD?rq567oIJ+*_m)u1+?G5z5lWSbW2DW98=pyd&dh z$6t>b&WI+GQeu@Z8DT%Cfy9MLR_aCLcUz&00$5< z0Ks0a{8H8scqUH>+sc@V6!4YS11QNK+Bfsd12?Awr$fbjhvUzQpYT;*8eQJmc&_i_ zh10U5Nezq_!W0jNMG2)rZkS=w5y{6;YuAQQrK_nQyymISpThp*`u^56{XfD`z5o$H z?!K$yeMZAef)d2N{lr$gK^e|wb;oS*E8!1_fACZf_$PIYcb2-JkMw^S-D%9xwT6WQ zYj<8^ovj#Xk&zBT8;ppc_pj!MLjM4Qb$-}i7<|tf>7EOU^IL7~&8^;B*y~%6?QPNO zZqtUxd6`(ROpI61DgOWjZT+cc@LXOi@t2A;Uk{>~l3h1gw7j`ta{PHoePq(bxkq({ zkmK))>4pmdOu&HFJyq$J+~JOQmmtuT!ums-5H(k$bR zU*-KM zhCO1&Qa^bt%R7lC;ALES;kd%DLVS9ewj!pke|CqVM+Zs@>L<(EPr&^v;pc}uIpE(3 z_%};`APa^|zYhNZXhgAK#R-o3-Z|~n*bT&qH)9)#>OEgU@s^Eq;~U5z@^tMpMv0Zq zkKzea&+-8?Zm@v)D=(S~jrcgnp%v6=dSiH!`&IGwm30r=es8i(;cMTr-A^NYu!M(G ziU?LkLAb`!oB&rWI?dv530%L0EbRPgWcsb%sOs3)H2b!ZV}OQMTa6R#5yK-$K^bw7 zrvM7zoSS!q{$phLYqn6gN6KYsF=V6-VlF z4o_P3Tbmye+v!?YgmgJt!ET%FZX?wpzh_*S;Eqd8eEI66oPwQ5?Z#nG4qJG~UbOgi zVQb%1VDh+z_1g6wAU2eIf-#R&T}>3U^D^I=I}@bnE^!L6(K)(g)PX+`Zc z2mo8nUqrXP+OUHxj~=9xtf3jW{{U0C5uPfqguHpF_@Bm8YW^71r@hg1=$2H2O4Y2j z7+NUMtYvKCiKjct@}}U7_w8IBgW^95_)Ek3hPA8>J5AL!=Qi<4HI3hd?q`wP%$^x_Nt+B zOj$S?RUHALtLfTCgW;VQ!}7%igt~;2UFJ($oibmPh?Fe;90nYWwo#wv9RC0b#^$%A zc%#Ig6w>@E+8xHJ1>BDqUKf3!+!H%%@2FT50%+O3W5vmO1?&lSa;r`ltUpcn(~o*nxnv2JXg%@ZN#lh9R~`&(~` z8gIj`KUuW4v(e$Vj^j;-QM0?cNhSUBv)SqvS6AxWS$6*X76g(92D={->DndFkF?DX zTzhG*^!r$2W2xBcHrF7`#oHG;Zp}VGc*p|?e(}Kqw{(9HT-DE!}-w6^O3_;?1Tg%vEk!{Q#HMKraELud7 zY-YeJk!o%i9Ql$1Ai+hSr`pBPB zyYTOTyltatb{F=(9>3Hy_{GJndez^Bi>I1Ido+2L^3n2lgCaUe4+n5L9eD8GoZlBU zj~2g&*3CXm`Fa>j3Zoe$Q8(+g79`Q}JuAQYA ztUs}AJVk90K1v2)`aR8zl0z<7sZn*cmjsY_9JQ{oVesbrR`{FaT_Z>EWjV{*I(iv!kte@)2|}&Y%&W~OI6fi z@q#`i1P`)mao88Y1-@xK%nYe425$JK={_I$N5Z;(pw`|M6Hjug4x@YEwrM_5wJmK{ z_TGKKF1E}Gjz)uYjF9!rPb1ll&C1>QpJ1}Ox-X6@M8 zMol>;#{2X;k>JI=_}ORTdrbmsm6jVL{ibwXHvBdt10z*ih_6q%k{smxnHjG%)1>fk ziFB_S_$vPZRkQIm#-NwbzK(V2b^C&>b{}+*vRonT&lUssvmv)x$qxo6apqRwr0nBp<^10jqH719z*!b(<&HQa7J}eLR zDHn9``1u|<Km6E1iIkSl9dw@jt}=A@JSp_K5*)KGG<@-*=^3 zc#~aB38K6De!Vba&c39zD~%GvbXOO}Fs?fi5E#R9DG4j|A2~ z!_p~$&nyAt{MGSe;ZBFDXxc}YaKdwg7F)(k(H2O72F67H?th+ zE8QBNAMiz|gS6ijCAN-qh}z!g%ejk8i$hoPShBg)v^nOPLl3&?3djaaChV!pdzro_ z{4$2-(i=Y%eUknLE4~jI1Xf1fh16G0nGOi$4)8k?NUVov`WwdHEWPk;&xM~{)gbWooR*CM zhJ9}L!z6i5302b)JG&`L`*NXTv;$7dwzl9cFEB%)>9T&t}7M*!LoY%e^)<5AMjyssf z*`Sirhw10~pBZe;zYtky)OZLADNvqxlft*Jz)$W$* zy8#}>T}N*PiUQIhOab#82E1g07e5&@dm4-kisO?zT$9c-(b_N?w7=V6^38f6SrP?jsSS)e{8hTKAu z+XBVsz0t~+QaD)UDBFQ5PH;JY5PU@N-H(l?)BH0oyQyuyh|V5my|)SxTm?zD1OSk( z3#^eA4gnoG__cP^ykjidqIg%scfV^FcFAiU&8DF=a^R{@XJv94;f{V|G*YV{n{9Lb zYAN?EVWjua^?!%D>fY#g+AoH+czm+Wc@*9pyN_9ES}X>)iXCB6XrlmUX)Kv147Krp z{1hwW^k1?U>;>^B;^Z>PZQ@-T&{=q93(HI03TQP=bt7E40A)P{$ZRw%IQXYhSpy`Eae5@R)8mkAjxZ7xyO4xKhh-&!9Qt`hDPl1Zr)}AW zF4Ump+5EI?Fse?L2_s0M79GTb#dsT=rdgD7PjYy#D%S3!p88dfgjP7n!Q+qVU0$Q9 zN#z+-{O2SeUrhcSir{C)O8`JQ_OIWlr3GX2h}Cr@=E|oz_ULLTgt0o> z>2XZj&a-xr2Wwp~N-J?Zq-A+`FESK=IgC)O_fJ*3~=OMhg_WU$eo zfZjARk>s`0TTG=GuMs<-+!VV8#@hTG{{Vw?{{UjI4E!ejov*)bFNqqQHn*NKl~x6u zOK!Hh2AOd2rNch|04iVY3(+Ga5<@te7~*yE`Fj1i@dwABgF5b!sA;#0Cy4y@k|-tC zQp;Grj7Z9%BDIxOrL$lI?DJXw0EGZ-0r>v_73U8Ticn7RkLLG2_awl&G*f%Cg7Iv+ zZ-Vvq@YU{@s%Y2iW#`HN00{)qSlirN$mL^ka`Gj-?2pL-+0}??)D}@%ULrpfyd$LP z+Qz%#8(D2Nw0K`vi&u&5R!db9q?aR4iKU8H<&n0!Nck+=iVCr<{B6;u_-8+Yyb0o~ zeI{rmw9`T@y~Wm#1f=a-HMg@mebuD%^#I8rQZbzHdcA5th+h(PJI{!EAB68F*R)7p z*6QO;w~>viqX^zOBuOnbBnJjT=iA+?HsUh8*M})~XQ3%4zK5UuK=EJg0c+vg&l%hJ zYr}W;Fg21&_TDMIHx~wJlq~Q-G~07CCPTADDdd)33r^?zMYORuE^Ae93Pu zZDW$zw@llFvaBv&ka7qUC&B*!6ZnA!y+4a2N4_6uWs37%w?Jh1h*(47B^lud3OMah zqt;AnPh_rt|Iqw>{hz)*d<^&%cd2|p)^2B;##WjZqZW;5ut_9F@<^NatG{eTo0Nt^ zaHl1X+=~24{giagOT=FiZ@h1Dd~L>=ZqrXYVcni{f>^QY*kaAjNj|mrCcmwGIQSFr zuKxhQmRh{mI=o&VmN~U6xHpj@EhIK^$hnM6S-=UF+NUgf1NpJ=m*JO=e0H*F7E(5y zqusJK&A|+!R7`-YkG?wKACw+RuNMo1r%sIdU9Z)jPm9M+rD$n;bUo+e=frytj(#xG zz7O~U1950I2*OWnrM&x_qObuP0h6_y0h5+vfIHXvFZ?P00D>ca$6gBfZ=h+Kw}`w= zcV}s7Z(?HeAk)?c3K5akI9_2Qw;N0D&u>rj$^DQ18+<Dp1d_|<% z&32GWa`U_w0^(^FJ8ZkFn1W?66>}#Fq}TdlUU*AGz3~pAb9i7;JmAdUU)m*>L@UD? z6iCgLE4Z^TBRnw8bK@}*q03H-wueO@-Zwe#f9V<;C;Sta{t0F9yG@P@tpeXtNXQ$t zjb{5(EbquBBRc|5piB{4RAL3O*g^mh(dFtSmH0Ba?a@uoB&>@<_lt zuunr?5o@5YhcA{*E?HK0KvF_1av)CV=a@P4cc2;#T-bJ z8!O$&B#`cNv0@}+Xf2HA1Xr8?0Kr;+W`B&o7k_TH_F@%KpSe z(yU6?Fln|EpE^G;E>PV73-h>~5_bV!9SAk;IkruosbZ_ftgwxIO{sm$SNHy>;uq}s zs`z8$M~dyf9eAGJTNof_y128FP-B(I#>YsH&H?@w`FbAJ_wUF502057zu<-+5^XKp z{R=|zmX&R6yEZ6+HE0v$?&-Yab~fZ-6N>rAOubLpkM@3>#dp@?&&FOaiFExoFE|M! zjzBj%g~>oNS&n|_ug}kjU$xJGyeIn~_@nkw_-&`$I{2@}R(j3WrF6>gb8V+8GR?RW z*q-J;-66uPLvZqxkXitp39{4w+qOISGHA`I{J)mR_LREp}1fTh4jM9A+jw|JB7i4tufL0wn z`thH7{+55>+Yf+#7xgbj_y|udk0A^|0mFAwxl1m_o)_L96X}|$hb^xHRGI7^|UXu@t zqSFVF;N2!Ag#tzz2xJemdOV20;BYd->skxq4;AYI7crzt!{!c4NDmpv3;r1BEBTw2 zP2FmK#@dS1^at`je>!0Cw{tGFlNo)Il zd_>aj<`Vw^W*sWUq#GCgUY`V@BC4wG9&R&^xyj9cdeckf&F0-B-G?BBF3PG$%aM$> zamNSoug4$T^Zp36;V;{p#`nJ)J{b6gyba?GN*L1huB_hw0871iQDcsIqgf!HIees8 z%SS0v03``p@4``(Ds#xq){K*l_dkX<)2*e`%&^EfbpR39uI^2Fw~4Kz8?sq1PyubyMkI*va6u6qbKkaWhtHqulZsfpDq`11>;bPg?$^zif~AB&NCHfA}QFjJ`N{gW^?}j&A%b zV{77jI6Ob5M{TF1FbLXYnt5(+W|7h&;FK`~j1|Un?PNKMp^m2S*YnWxvuvr=!%EN7 z)gQyv>@gDCaDWZPN2usC+Pbd`!E34bdr;FDT+8zZRE|KA{LB8bP|N`dvm>d=;8h)O zOE6C8jh`u*So)rFbNs4*3f<{e_tzGhxrglc5Q4^kGs_PX213F=n2t|R#A3goE43CZeNM_>3tU~uB$G?O zfR$VUw{oy7zwR6!we4VFu^4*TNqxAr_p2TrWWA0emLV%Rw9oGLKOXpiN%lP&*56K% zxZ4aW(vHIn`8lk~=kcz&a6a8N-20c7cOVYEjuaEyit6rsQv_4&vy09HEQCZA26}S6 zGxhu`qxj2Qia+&m#oUn?I34oGk?CK?PM(Kr^ z#(tH2cp~yNCs&y*T#yFhFi&z9ujg4e{w|T(V%2ZOzUCP7r9?tUWmX}H1Dp*070URJ z#l8~o$+eeRn8O~R8_1G4Cy+?X_pr#NewjS>&J8B5xp0i-vOO&5z811<++X>IBZpXH zEwujtA)m&d{iERfP=3c}CBv@(%ESzMkU16Q+SiCK^rp17)AU>IO|KP*cnlBZoB{-> zW>-?c@qov!?Yw80kHngnh&({P9`FqMKC^KcbiROH%#&Kp8NpVM$#8b_zbu#|joHmZ zsF9>FvwGP20?)=1#dRE!S|kxhLlOsU{Kr1^{%OCq*TWh95`1&`v+&R-T_l&h- z;186pp?3O&8TU5Vk(FV_2_1TWq5R$;&D_@-rl)n`oj%WWHxlbsNof?4mk5R{i6sCA zJV(^NLE!OU$Itv1f8f@urhe6b@U>*Kj?+r`li|20fuX!N(MfxuOl_{_`$ol5@<%nN z?)reI1meE$!`ym?HPXJ4UyA<#fpg|~$1bTX6OvnMe>0a*e5QQ-&e;H-*y5(OMVvH! zT!20KHAenxs2)ge2H7JxJ^kx0#`5>=K3o_qLFD!rK*1<>8-DVQwY^ zY5nVORE*$}mcZt}rtjD@{t7MdXGy!c{hxk4{882P+59W0+iTW(6go`OtoG>4BD7nW zRJ@D!ptCeFfX&2t*jW$6_?4G0s6wo_zMh)@0Fn2e9%85Unv`I#roOsAGxSc<`^FGi z3r&AfwAJ-%q*%?RtgE5j!e4Uvt#5fGvIb@tjSf4JxC~VtTf%n*VenqPdv+&;nYAhP z`zx7Zg$id7>Q=vGwnahAvKD0rkCcvk?;d!n-$d~nOQ`EQcD3StLMvyQ-&wb7Aq1Ck z`Le?VwwAI>=Em+9%VymWKQjNIT#hbr^CKAy=ipodp%D>&|?mVOS-+&bqltU2ITS-S=v0ZI^YJBqL1$LPSiY2 zs@d3Fc*n#N-Tc#eI$odR4K^pXQMY%Nw>oS$Gb%=^R6Lzu8;c&fGj^TMe&<)P(yykA zU9`6zG1ZERB-XUUrCp>_213h!r9%Gzz9aaSUy*yS71-Qb&8ygd!oPU$?zDSoe$}Yo ztd?FUv6stT!^?*1dGE@`MieYNna)5wS1WJf{{Rr!cp)_p4r!M$-Rp9a<44q^xp*Ov zmph==*Jj% zQg;!$GEd$cNUWT#xcOU0ai#c*%1dM7BrRd3St)|UPqezx|Gyiwx+05apmTI6iD^IvJKk|nr1Ji)1GP|UH(v9`nez(53ybsUbV z;Y~#~32km>)onaA;pCcYhPWDby9L0;MDgwyx`=ni)n6-i-UwndR{S^Ok$E-GjDSqo{JbNDJImPxwoGH>GMf8t%1qYjNWJL=$HQxu(Gd#Bml;y{~k5Cy@w7 z+Zkh?0r#%TeKT3N&@KKO!ELH)AKEDxx|&yy#9Dcbk`1J*s?3wA#u>?r&}5KtNi>Bv z>}N*?pgc=|@jv2JHu_py=WWM`G`mpn62)LaduO!a58ON0fI~OUnv24^2ajz$330F4 zUFt41B>Oa9*f+1Q#;wljT08L+zDl+S%OGRG^``iKeJ@(^BpwX-ZGUTPrs+Zc)i#fP zb)wG94lWGZdfJE>f}vt2Z_`1s9#8y_ZSmVR<*c>F%AGMN*t=RuED zlETC!cGh|xp>M8QqcSjxM7L<5VH&6pBAJ2R$0X*l67$3U9gg2g)8f%!@i&NbCBm#X zUK`Ye4JKMh-obSS-tzMxGA=Xo9G-W4YpdzH^p^TxiDJ3D()>E&dFR#iE1gLUt$@?p z-r7wNafT?RVqykPF`Q9puC>%YFVnQSTFqn@);fNhsoGAZQ-LZ&sN35*C>vT-N%Bd+ z+(4`+`SLTt>-N_~Dv|}i768jAESQ=M~ z^jNhmN8&8f*;?CREtE1gt>O1~VY1dITlb2|BpvY?&!u@S*TV}B25#zqMJQcO-9M$b$)l3PR<)ho z3d);r=X=yxun#d8-O%m%YhoQcw_|Otd_j5OnT^!9n)G_p`7CC(wec0Vl%F(f(;U#EOS)%5FKYsFqD zxbYRd4ks3iu3A}N>Cs6cDvGV8r`lc^!3UX3Z0d8!meK`G+q|@WPsDc~F!8mW&Yx|e zBNVyu28m~N95FyKl+=D{+9?S00mkv3cAhIQ!!g}z{t>_NuZG|{wxc@)S$rp}&3@}V z>`arzZ>or`KvgBS5I`INNCL9_F5Vlr_;o-0E4b~gwF~*u9sUxzO)BOX;5($16IzpF zCg7l;QZU^*n(DlJZyu*7hddGDn9iqiv754dN1n(tJPTq_j6$gwJwqyh&=-Q;`V57^Tt?qgM`dwV0L}#dH^%Ho0}; zO*g|{8n@MKwA(nNhDXwFbgA^?J00?6FN@zRs5m=uxE=<1s#+E8)!)PkbgdHlYkLhh zFf1Aty>D}GBzBn+8{`>8hFhW+s_;}hO0-<7MOS2#D+>NAwSnx^DPG7~E{{V$G zNc3+3*h!;*Y*-hT;?{fnzX{)~%mT(Ew$s3dRcOh|yrD+~oaYwfVw79m75qoyKM8mX zMbSJHqtD^b56!5vUYl!eUQY#I4TMJ)EaQerC5+{Rq=N_L;Pf7c;yn)k0K`5#vGCTj zr`}BtoeV-Lb)60!V%^!7%xPfNCNasAxTAuE{G$L4vx{#U9c{HeZVwW8OGnZzfp)xy zNWZXkwhjB#mHVWW*_F~Uos3(i-gpKQW3s-6*Tb)hJ{9pVk9Aw`3TyUyi>u1XZ>0E^@?uF=NRf2Q zrCU39J2A6(j4(XsCb_+8X#5l4d*#<{e$92RvRbVA-Gmw%yn%zvUi-tl&-FXI0Ij%4fB8a4gKhN*0~8n1_M z(@{mW`J~3HD@AK0dx>OaB|~Q$j&ZePuXxi^yYUVDmmVb3?1i=L*7pg0rt5Yn7&nzH zHn6MQFzCq}ZpYo^^>)x)-H}EZb-(yRd_#NjDt%QgQqpG6j4d?zt>Y3Mp?=e(7r1D~ z{ky{#3)GX7ReUX?#-9tBei;j^p!cvU{{X@(s4lPN`B^MPJ|j^Nlm`qGE)?QC9&4QV zabe-D6XCY4ci=cQ*e=wtOj`B5y{oC^n{DTZCz0cA$_SCZT>D^FZ-)LhXudRE zTj0O^Bvx;&G;`Z|8om9dyy+~B_kPc5dv835fbGYZ(~R}5Q$g0Rz8UJ4zYlKwA$#Fy zjr>O2SI})6P1A236_lmGwx3Wj!6E8yL?LoH9jQ^1c1Y)`iiXl>rNcGniF_-f+IW9Z znh0Iya~-_4dgOCC1BOj;1;E+{L&nRK*CQ3s>o$>S-w~kK9&1}zBZkCJD{8u~ktX4i zxwEznr%RBh8%W6;PZ+P6G@pnbHTaw2csv_(Kg0h39@%NSl+j&7_N2Piw6t(fn6X`3 z%96+!2;L+x&BWNjdcG24tUx>A858(o~qDV={n_&o#u~r0!YYG^2Rwv znF&?QZ8gkUA!FECv0YTKP3b0cOE8Vwj8Cbpelhq1NBEhoz4iRJG08o|G0i5Er%M?V z0u@tJ(Bc2x3oLsN+9eN# zlo^+jTV^t~-RQ~Uc>Hgoe`kNfai&`vtCgQk@jlzFD*1f3z-yFNHi^dg_FM(vAY77% zr|L1brz^(0=zSgHO&i4e&Yx?d_*VAY!xq+FdnUQy-9Xw}B!)lvd9=2YOr68!h2xYn zjBZjza~>2LKg4;*g}h^{X+AvEP;wvj_`-^+)p9D?i>NWuo#>qXp`J(N?J8?6_Rla3iz*l!;;_JEm zW8wb*1^A0k@!^M8yq?y^%f(R(yD7t=*vWqYklHITJATzTEscb7E20pmv4u(0ZQY)S z40?{MZK>%W5_Id>?Pk;2qL0Sr(_GTv`!UNqNu|oBR%O8QXJA+;WEl)iFN8-;*1S8e zS^O#1?6kP=Y?65A_`2qR{uRr*C4}^4&9Q~W&diV;$ z<4>MTYsK*0*`9lN*>Sq=#nh|Hj+j4z)Wk0r;rf=+>HMlc&2}MIvcFB$r&% zt(Yl0r_-m;l^`kth!mA`^I>vF8{uCN=o-Jp2_e_KM?KBm{k6`N^A8VA;oU}6KRU$) z>_cS8N`@n7U`F*Iie%YzDQlk$K0l{|^^f>Z?ffOP z!S9Nm6HQ!4;lC7W+D+`1w=(PPec_4hh1pplgxdg;Tig^NgRw)NKwN=dr(=1k_-Dg* zS^(AcjUL{_8%gYJVUNVJURxmnZYQ{%8heQF+XJ89Z8&8lf;zPLC*dtp;(asXMv<#( zX>(~LLN668I@OYF0Er&%B3evf;wdB<=U^O~<~|Me1n#LAJqzLCrmJgx;2s#AVnOeAbYK8L#gP{tH$6WO!@fAN&)4#vUEi zbwjN9x8h{0;eQXVtEK&iRjo0ql8I7=DK5XP3xg7TWYnkP+z+fEU znz4Iv70mm>kfVSz+qF~*$^)s-^sm#Fi1}(Tv{EGFDgp0|i1nY_w_Wh9$B1-a3cUUv(c`xW&UHJ8qif5pue7vw_Kq#pqdUCW zr(ArbSB=CN{{X9DWj~SWW!QCAvWwXM!{+^(JWu-z>Q>hu1H2t+<4=cHIwh5X(S^6$ zFSLntyJfb9duvnk&1*6%Gb{n7jz%R_(T>g_{@Zf=V$!vL3-}-Y5$oMAZ`o(j1--VP zsx8I?EK6^6@+7Vsl~T~UGK`Foj-SK76ufot`^|?!@f+xpTgm1vp0(!LK=BgXTfpZ2 zH`;NJFU!FDSZqSX{DoS7i zdUX6El6=j{?tX&ev~rEw{=cnHjWn%y<4=Y>Z>K^vdE(T}5(z}`hPjRlg~@{E!%}GE zk|}($KhZ8-H;gI9ao2cu;_}DDH$EM)(d?UCxd;6k(%yOA+5{i#4V}Ens#*zR7$Pw; zE3e8noS#XX_ICIqtVs@o;BORoH+2Bed}~l##52qO>;(_rZ5A<=Y}K#z9kE z1-HWA9cZ^wXnr2}h2cG3OP4YxovmAHdNOCyIOaD~!~+b04ZCW(|3kjbPy93&`xQsLK518cvK`lby$k^%-qb;jh7QZ+8B2=^A&J=D>bj zq(rerJcS3j=Q$jXzcXD+*uph8XWY`2HClYTE&WfRKj47B4zK<#f5BUHe;4R>){@$I zOzN7`MQmYS&X;S@?NdN_eJYbip^Pz*G?+ z@}K6BK>)BPp(Gxa{5}5w!KV6khPnG@c+hI|Z1a35(r+*c^67F5Zrli5?&bI+BLov) z-tM8`&xG3Q#U19Yd#U}BK{Rkfe|HjwiUn*Jv*Oz=0t2sH+edK-@>Mo0X(X(2XEI8X%7Ck3RXwwwwa{w64!lpQU(2dnSj;eb4be61@-RqjPF+G8{ zlEqTlC1{y<8>TOa)HLCOk1uMVQGh`zf0obqE?1892K}ZyCGeZVx@&!#;jV((jQ(yT zj!XSfnW9*cPRP8tp(TJBV=A2dwf%zI{670oOHEel=IsU)=0gx8p~+GhjCJR~<^Fyj z@Ku)41&%{MYj8Edl@7kPGhi$F=&HF9v^!N z0aMS4%PUuK!_kf0nn%>|jxP;LwDCBZq@f)z-S+RL&&0ou9~d=H68QPNN%1;WyMs?; zkL)NmCdkQQY=D!*qYEcYsciMHio9#%ZxDP!@h+j`9}!58eW^@mn8u+|Nx)P=(NPct zRqU!e=BDwMxp}UXTefD~EQJA5RYM${zCLE>lbro4glEQaU(viJ!j$sbU*Bs}@?I|D zxn`BQqofnjey2sE$ma1$%Bp3FUbz1N3jX=O;MH$~_Bs#j@$pOJCaAU{`2LAjX@h5}7 z;Fvxf)$S15zle3sZ%~M_05!5*wXL(~IAHL?u0FNN$M~*HB8~TJ{LedvDc-c(=#Sa; zYnV>bZS?)TgTHeEKf0qi$9_1f+Kv6a<|Nd$8>{ACeoP{_;&9l-OCN`^){72zWfj%;S0eDx!`nA@N1R7KpQ)(A7S7&V^v3z zM&VF^?4HabqYY0!yK<>$v(&$0FWK;Z(q9*CJR5Zm%@z;d>i0pg$!rGG3~SWOah-}s z-CfU|s0aNMemefne-Az^{21{!fm+)K#2O5?PO+9)*u9vI6_zKAIN%Mhyb;w+ekgvx z-|$L1PuXiodA=n0&dU1sc1dm{wQ$h}3-@DH`LGEfZjhS&n(?2H{vUif(vwxb@g=^K zZt zwYmp6`&Fx(d6%3Y^^vg2>*-!|_GOb*i|+YNAO#SzDGl}|_$+tq>!^GN z{kc44Zx{)t_^_vnH0O>Z5;S^|FDz=LurD0pyzDXg+%X`@f%yvIn&1>6gD7FoaC6?j zsxo|Rad>FgkJ?A#xs3-y7g7tO8>whB=sM|!Sj=$9!Nlgk~l&g&i-?*=RByA zT$9s)2vN`hiu$kiD)^gs;SY;;D2f^xo97Xdtim!e&pa+k!OnVjuYV)2$tcbAXOo>$ zbz$!x>G$Ek7wTI70K%O+#Pi&0o*J~ax3_DJM$S7eLK#6&25rHb>30$XD2y`WIoq1i zz18phNovq))(NXvdx3wzhp-B5fi;0IkGwd>Rj1gT8`|JJ~x%*_X zYWilasi|vJvlqJFm2AqYptLLG#Tt$Z#quc`BL=+c$HZDDoZn#Z=ZfyFTEXN^Qg0R7 z-CZgoXYO53_E_TpjwZ~4On{_=nz5iu;wu)^HLnEO%55xpn^n@UlTni8NZ!j9ogtA@ zNjVD$U~n^<`Dr(E-sRI{tkZNWDeo>J@Jw1>udnKUW8Z6D9-h-qx`I$ZkTiR)9J%C3 z?94~qBRtjSnS5(!CxpJ+_RSKyJDMWU_=Ssu>qU}PWOSn$k9 zEDu`zgZ}`6-gx`NUk-m^PZ`N{`d+!?KNer;ejC0wR;z2MT3G5gh?2e{cg%tv!X^X= zOK)CA+V;49w4sirC~wTa9S=J-qNRqZ2|kbVKZ8FVSgxgcHlu301p7${bAy0#J$d6l zg;?;efu-3(HBD5iqedot9EFU0!*d*Cr#*#I)h^?P`Gg1}ibiv_SxStOaHUQ#Po;gg z`x1O|{gHke>aC~#)1MBP#1j3bWw6(YlHyAP)k4{^F)59JWtkD2lZM(96a9mdQH^Sm zgyfQa&*ePLx?IggyLR04kAXfl@dl4!pnM|MJUx4Br+i59HjdV}(y4(O-$s}1MMA#U zWuA3~GIpaQGX@|G{-^%UU+_`Ozu0^J3IpOT7ve98p3A`g9>21%n?vIEQ%Fn%ItLc&lssZB`S0P8bRg0rtYP)@=4$EXW4j7RydlIsTFG`q@L-vzeImX z{{XYs?LYf!e&4?l@BDS}k4DjSe}qc}_I^#;AGBNF?q*B4uOni&lk^i>go-s*IiGkN zx{3Z9$Kczg@OOvw9X-53cRQus*M~17(5|grSzJZr`O~>9a?W?)jtb!Byfgj@_5T0` zC-{Hxi$c^rro2qwWbS_Nm*S-w zu8gB-+fVo>&v#MyZ^T6WJiogQVQFykUmq7~Q(Ymrjkfu#d3dP-T%1F+w&HS~Yh`SP zlQjM^y0X=@O$S88Fu|c;4M$IMuZYxGSVUy`iwBei7zCE-n#$MV@tfVtq3N>w*K&~d&#J>)_QGe#iZD(tu_-s*ut}K(mcWHBd;!QT$=YN~zn2U5ccC5s(p({_@k^rs_XLD z>KYD!HrUztt3Z~@^f?=Ruk9U7kKWF}66*$W)Eom%@Xn88;vH*H_;ulHuMKMw&mcE< zo*TSf15kqE2@6dWu~;m!kc=|q&4wVWraI_qwib$)+HZ*Ud+T2aX=>8X4~;af@E45i z-6o@VFU%xj0udW*2P4v)VW}#$_9#t!bPG$bh~6lNT+yexV{c;ypLKQOT{_m_rrpbJ zV7ZFkJ)`B!ahBtP+~8<_6u7hS^xB7nBhz(#cVC^&25buyB!(L72NZ30| zM!+2I?05VDq}xsQzlqv*fbm;HBvHj_;C*uMR*I# z@i&P4MW%nk0JlqZ9lVl0yKUn88Sa<&3%N?&-FX&;5U483;aHrh1w}JK@q9MAM6+ue zMzP@y4?z<#lf(Cp(cXt4(Z0uP4AA+rZ6G0^DhANUzp+o@&l`AKLxaHDRi}s}ZALiW zYqgMgj=)9^S=zr@do+MbE4>TI85(T9jEhlj3Y zZe&>g*3wSw(I#7nN6pUF$u-r>q2*HRC^I!!mcq&nLu;c1l7G53F zbuByLZ-XY$Ak@6XxV*R0HACUOLMdfHV~wnBqnOA9Y)Mye0V9L=hf(6qKTFkoNVa}C zj%ai*4x9{Xp>Bds{kHo$T(c^C#>NnRKmbVm(Xqxqk z-J(K_1cm3(p=iUnJ5V(FBchxfO{3{U!Cn@&vhXIAJU2IGB)D%2-bPFiCox4NT9m>? zN9Q3>FasP^DA?6I>~8o2#FzdhyVbrVcx9#3ENpVoTKHFAmsf$AK1c#-@<#*;b^y;B zxETlU9&3}7 ztv?oNpYWPkX?_{EywiM5BocYoHhR~Zm+@Q_*q&2am^QFdLxzommIM_X8&+D?)z^xx z{4oUHDez^Ej1tAIXSRsxQ*2^Q%1bO06Xs`(TxT2=R>`d#^%I7-C)Kn)R@cE+UKO*l z*RK;*D|2xu^88n(%@D|nCzDl`9YDyFa-if4linF_JPoaUNYg$R_mfc|r3*o;z^< zZd}_JX^( zjO_%;%lz3qjw0}DYp}8SrQz6ab;zw=C|cLS`u)bGZ0Z^AL;}<2YvE z^%`}F_zY08r!bMG&_&0JAXI|@K_gx7AsDegDxtvPg(r@!pz%!FSHtj{ z4~lLrUMqWMBQJ2;6uqhe0yUQPfY=CRV{%dx`h+MkGgFX7~G7izje zyYVtyTRn!q3?3i4nic!c4aS_4v6mzcUm#?Ht&DU~_*YZ#-R75P;aU7wr`pW~Qd}KB z%hzkA~zoZr*J>T2CHF;olA4_@BcXc9|Mly{hSvPo*Cyv&lSn zvZKg17GU|8jl3eZN#isx3E6x>_@k+K_xlgSI;EAL@9nR29cpWxLiPyI7#d4Ji4w>d zZ2_fV58ZBfQdiih$y(%kQv5CWoAIFA=+k&JT)5Lu*_ul`+2Pf~S`t||VQbAJEla8!f zxmzC)C6|OX&1c8@t;vn!5X7GlEaB2(6I`<@MAsJZ$GtZ&j1iX^>g3lq;hzU;UIF-V zKBw@y*85ERUF-p+@D=-OfFc6el{HxQ`5(eoB`g6L#z_wS#bnlu-0&}lwAel$YI^?w z!;Kok@_V@>w--JDy!$=E2VnD03Dn*=KtS8djoIV??Zs$(K#I{kBcy0Q5-+2>xxTx5 zrB5ANE$L){Y+ovEC`Al1ZeYkuGZB%uCnFEymxyfU(mXY#c>L&^h14r^cNAVPN3qpa z%LG|1VvETG8F4F8RQ^kHA(BQYVixx9!LrRi1UFKzmE2 zfZ>z{Y-0ePYe>fC66H_cXQ9QRd`h=XKTGi4mEDE3HtXfwczXH>^!M`{a1zORltrSmv?Qt}V51vO*WjGx^?JpS$O4h?zjf-MuSMM);%g zZ$$B&ej3*F{Z~t}xmjIj)%7b)QpzwvW=B+x3!rdFL~#6&p|O%J;VN5W2aJN*o|U0n z_{U9;S@CwM4!vb;EiP^%6JL)I+hxHyg2oNf%7h)topJIg=qt`N8-EH#@b^_IXQD}Q za$$@IfGC5ZLjI^!+ku4<4n{1JTx2m zt;r05;~))Hwri11G9Ea$gfUXPT~v^-WLW55wp*D1IN!ad)Tde{Bx-nxqF_ieeO^ zL@sp}h&!-5fVY*KjtK;VxvJ{^Fpld_wX?IAO4HCRQD53m_6SjCIWt^o;#G7-#tB86 zXgMPUk;r&+#unO-jO_d`p?Kcr?%w7?B+{<*m$Q;Uo0y$4K(GzboE*Kp!)AVA)H_V@ z_P62Bh>%`i_$F-ut~CdE^_??ViS3^u`P6NqxrO9eN6J;LB>BiBfC~SiRkoyl|Li&e?WC?dW^g44)TuJ6|4K_&V3(HPz>vc3_uG zy3$R#ks`|obnBSf0A!CDLeS5E4j5;3KTW*xhK1sYAwCIRAYN+XcD;jHh()-9%QmBJ z=UcPHz~R(eO@?mx-CYra`zI{wN$$>@UDU3;MdO=YCs*;OhP*(Qm+;GNq|c=Np5+ua zRB4wcL|2kLe4Ao9?!eSD{5RG-JMjVydqD7w{h`!vjLkGU@1Jif5t7&1b;P^8yc|E1 z2`T^^wuxaZ<%itWHJRZZ6zDNzxdPOX|?g; z9dE|>O*>ztaOraCi)(JO88DF8G_k;Cc?cd`s!B-doaVVrURzHIYeQYW_7F_sW#6B^xxsEI3owWT&Ns>6yMPcQOThR9LyMfGPLjM3Z0b^QPwZ!eL zKZra#;Z1M|?xVW7yn|9jjzAnM3yn5OA|+USvTTi*Df{EF)}dp8gTwwX@du3byU!Qv z9tYQ@(De^8%FyZN&sEcWvPpPk%%SCpK_ebmex-n|Jy%AK`^PJ&OMl|M3Rx}!EZVH{ z>KaY%TtAj}MRRX!6oY`NG)y;i1OZljW#gM$PZKVkF16t}t?g$^sI=>=D}yWz8Q!l3 zpbH?CFc|<`lYzKrHPiU0YUyWl;|~nz9x=RzMKjBPZ+eLfDu7vkv*h#N1P{9udFodN zm7d{y9(`awCh6WW)Ae5x_%p(uAh)u;P}g1?c$)tJOo@prD_Tn#kojYlRhM&fg!#Dc z^oLx|DnH$jNkLoQXGbzbft{YaDVd_`)~VZ|BzSBJrKj^3=(BYZ}jE84JJW zvz$)uszz}fU<1nfm`&WJsmAFrcrQosJ6>pdevJ*?t-zk~bldr&yW0N%F6)~?z6pR< z-03O7JgV-+cDl!iActQPYrZPiFD+Tsgm?Nz>q88u%Vvi1(lB7a$X0eO&KXEGL&Wzw zexqiZFpI)>cDJ_aHJz5LAx%k9mn6c)Cuq(|AhO2F#|%YPwz~07fvb-fS!x>AtEhdL zY_gKV;`2dSP60D5ll`PJDzfg4Q5d%7R~2Z6Zt0!{(EKN^o1YA6KiLgsb>_O*>oS&^ zNF)6#O}LgQ8FsNHHWS@)aa`YwJXa@$JXHDByPxzm0m#ir_-FM#|R72Nh=;<&uIdo4~t0R!w#u`4StA$-CdAG{;R zPaS*lUP&RavDf@Xt>||W+4*-`PMfACv1W!c7j@yaj%Q-oA2PD50h5E8xhrf%+ua(v zo`rqjEm}_#cwfT$%o=K3Be7ju?Qz^E+{F5A&e?pn&hPYaPCjCBoXc=$hvH-tjbp)& zs-@D&X%v=?re4Ps;Kb(M_=1y@8DJM+40vWRO%7E%f-OyMd%3rMPqrGfT6lGN{kfAErufTm~;pDiHq-Ml~ zxI@R~+ogKXjjweLUs<19)$ZEv=I%*uE-sv7&z44MWtE10QzVSiFzLCl1~Fb8s@$~G zkfUfEV~&~Qn*GZqz^pw8!6V?Y)ty@MchIQnx%rPwf1m#VT_}%uAy1||RK_#qiF2GD zy|}4hQqqj5Y#gxXk=$`!#P87OQa!Waf5AT&d}HzEkMQ@wHczSRTJ7u_ZkufavzhNM zNLZ1A0_HU*e8omqC1&kk>e2fy{>k19{gHkIcst<#0Kpv!C(*P^7<}8t)aA5oUh!iF z=KgpcqqVx0;%)5ZhdCI)10Tn){2L?tBFphN_K4R10BX%{+gOiC_&ugaCYt&@3nkNQ z`oEh51|cx=WNTX=v`ZvxA0pxwDUg}|=JcDL8^&5DqoZ3}#jfjC*tkFNn`y77yjIM4 z4T$4HatZSwOdREhO#WZR*@K;LW6>W~l40Cw^UJAQ#dkg#(yYy|i8VWBw!A?qX_uN= z)GebA{{SrBcpem19XVz>$1TA*^Y~A~o-oo<@4{XXI=+(XUL8YEyMo$%!0dI#ZJ=S1 zwSvgolwrBZtDYUzyiufR_quQPq+T4;?Iwpx-Zx>&|9Jdy>n#G&w_mSa%o=F*^4TUVYcvT7>8$CzGJ4qh(n%SOf z<6R@cJ`S=4a*I=3&6?YE&K`bO7Bd( zeG+Xm#M)y3VnCh0Fmol7wY`*at^}O^^43;es-YTxl;?uP*U-8Ki{f1yPoKfQAGSUg z9$}t6QLg_0w$U~PR*Dw6^JZ2n$c>aQB&!2iQR!YE@rIo)gW`=_OYvIV6FrT+v}ZxT zlJlL;517s*anG3!#>gasDaf@peDA90`U={s1_n{mZu+v=YMrhz88wX=#xP+10(bir7TKw?2SJY<2I`jf&x5AXC>n@ejgZ^BoX zpFN%Ku=buHx3n?GxTIGy%{9WS^YTfJ&G&Za2Y|fzn=QTEuv~mu@Nbxo%HC&%@Au>! z9ouyUT<5L;8R!LJD87cSuVeqx{!4#vKZklxz`yt?$BTR!u4;*U4v()!_t(r;-w#4j8CX7I(=iR`0WPYP)_X#_rD3oXQrln;QTI8rw+ zMab%UeOvoo{>%C{pZje5K=4Q^x`M+@pQNs!SdGLgx=Wm^tkEt9)7 z^S|vw;r)9=@Wz#;+B8t;T4Tp-mhq`V(v&~EI5=Q-@y6hCNv?FM`$(s&OLOQkG^#IY zeHGdJ-~Rvxo9U^je%LztNq6>hHidpS6h~5GHq4`Aj4=${bjLi`_sw~w{BrR7B>o$d z!@9s{4I)l1wC80c<%Eg$#NUhs7**@gSMj<300xZy$a?RIb&nQ)*9UO0@S{tj#HEJY zi`_!r3D^PDEH>o{CjhgNkC!L=rjJ1^`)((W0x|OL1--@xOnx=<__UpQNbcvfBD{|b ze~G>>@az8o#ZBN{T1!<7e%Ge7H}QPFsFDfr-H3?ukU;BH8}_yRp7hD$wDCWQqVUY} zHo+FR4Eko%oB(9Gi6RA$-OK#lvtIdgZ{hoQ2{xj9?ZXNkFyp2+oaA;jYwS_S19>`f zM4;tbWKyJ`?)j&0f9F`*OJ+|rUg*b*%GNC!_eYW|=$T1Zf=@JK)D__UYx!6I0E4!z z^@#rfV=si!$Yd~&7V46KScX|5&~I6AI{yH8^yBfb+`rlf_L2RDd@HHNb@8L(Hjm+L zV@lm_kwK{{-mca=k!`G*obKcdC}2NN z^(!ljYh+nqOJ(w2bdF1jBn)>F4%G)OmH_=P3E?W#$3smMz5Ne2Hk@IHl$rc|>$m>^ zYcY_|yUPdW+z&V*uy8VcMRS0&e7pgUchIzez386+EN}QTM4{K*t#X4#%3~ z(WSxpjeh>Mjn9F@()SNy_+IxKZm`;|p+~)i7+Au?aGK??u%PMILZg%3zt(f%55#}j zGxiPrmi`=m&AvMLi{Z@`d==rnH%SR`sloP%B!b-xjpW6?Ld^S#!t-C`q4518lf;%S zCS_l=+Mta`-+3lQ#yR8yPCM7_*17SMz}^Yen@rVit+Y#r$u`qHy{y03 z*3pnN)MQuZPsFeIFU68tOMUS7;fqNeN_R=FYsNePd1)iFx0!ex;7j<5{1*6e`!0Ui zpR|fyc$467fHl7q*g)l`j^5(Z4XYaDlbNAu1`bNb@)pJdmcXy4eiwhi8^3HX8$om9 z4~+VLneaZ&31SJUc(xd&g^a%CKnulwZ#*6rn)l`SpJxSAduV#E z$A9=QkL^L@y&QOJ;P}#f2Q#V7?u!hXjrLpa`BLAG0U{{oFfF?~58?8|1|#=?b^6cYPy7)R{t5N)yTnhe_}5U> z{8=U1%{`8R@gCn#w6zGONQ_71#P=RiDy<`#I^+UPaz`6NlWqpH!?|eL{4aPrLipd} z%~s>X{uj{o9}(&nvF@JNNVK}uWsEo7Y2&nxV;1AWmQ@XcLC$gPehc^$`*=;QL815u zz`i`v@8;gBmbN<1l$@#DWu9?oZZ@dlrIB&bPT~Ro07VZ1drU6VYE8^kL}60r_2}aag+R8NhZH?KV|;_*lR`jJ7AXnKk=rQ;_n_H4zWru z1YTifz&3N<8RZA&+ag>pIvv9``pe=EhZ>)UwMK`-UKrFgoo`W*F6F$kL#x@vCj7d; zogzez*!jnj6e-AT^w+%5JX7O+Iu8qYXH(GpS8aI&gHn}ddlyA*qxT68YH@-ei7-2VWd*1yxY_Urwa^k3Q!_BHXxz^@4( z5O`-$gHN8~Idv46Y4=yw1I)I}nu^Jo+GJLU+sKl)A2&E3=DFhwIIiN0#t^5I9-ylv zsCe?`ahF5D!5sepz_VYzcw3pucqfOG)-O*-ujg~}emcwjop{!d+Fy~IKC7nQ_*&A! z;nq(j8YrP@TP@|k{PGL8C3?O~bmG3+_#5H zD{x~%io>yPq;<%z&+Ru~y0_8qv=}92O~PL+`C(jRJnkWhRv7_KPob}U_yPM^d|3UT zbr^r)2h?PfO_SzrK33fe2PD7BFf!TXoa56RAJ#JVl=)=zx$v2lDasdz=ehmyf59?- zIqUkTz}S30;mvWh3+uaUX4BH@&P%&_pUm>)SGQM&Qz%v1F(MTt5)Lt6r`lJ-%@e~m z*FGJOLAQNE@Vu8=wt(rQ%8cw@K&&Qfg?Ug>7*5g&%6Q~Q;l@%e%c+Qw(`&&6TW3e$kd?NMd%##yL0>_*F0bLvt>z@c#f@)inJQ6j5uW zUTN!MH*MTwS+1fNKuFxk#a)n`^cb(m&(Rl=eP-A7UkpX#eMe8yJacIrq-l1xmN3~$ z&@*62X4I};JVcl-$W+Y0l>?yWE__4b-w5hc*}sY<@Yjwt5A>^TCsw>|S}0?k@T6JA zENiv!%M@|UM0gnB0aZ20G@Ty*0R9%2#=j2@4^zJKV1`{PeM445G-0-Ri*AA?i2xu; zBq3PfG0DNbZ{n|sx+jL0#+pv9d~+r2zEauVNd}H1jFKK>jr*nJA$qDEbny5*5Vf;No^NwGspYF9GM1GcCPzG@h63RHDht% z4+PCGg1l`zMABL`uXx5On{vk()NX>h$^jdq18+bpTJX_)Dd{f}h zhx(26iMLk!YupQHS-xGxTJGlGaN0@A0;GY1Uh)3`1-|%=;VbX>DgOY8wEqAF>X!Po zhlV22v`@EMt13w)wYh7Ot0a<~!1pF51>5FBp5XdVz(0sSH1W5OV%DYc*1Pc|#+RNQ zH}mLPO}ZTmNmPWnhfsETe#np*+%m%w+%&k{g%}F`zbxY1Q>6)1>b%d)v3xy3HRTxh zKWV?^ILVY!K2xj4urT>mS{1(vzp#*S5LQwEgJ41@>x%B4Y7`Ox3zf#i-Lw|<=pNS zQ~~=T@bATT)}ISC4-@#-?)ukUv+*pJ20IIDtDv{HRzgRbYdDbuEX^03RnRA!yOrHv zDaM)2d~71BOW?h}Z&T_r9HN#UQk^yLO4s|eJ_y%8VLyo4rl_79&~^U+4Qlg(pxazs z$!T*7u-p<`Qxy1+DFuT1*XSpPbUXh54tO@h;C;u4H5E-Z*{yY1b)5;Ww0YtwzCg3d zwl*Fu)b&PGX9*97@9kqK%jOknUS^U^;30G%e9C$X zrKxK}!_iv&GVq?EsOfssi+HZ#)%5HAe#NcWmHRr}$s$3!7&1D_#eVFA9M|UF-cLz0 z>|+fqja?_fI%4V*4-M!r+UdG^`$OuU8r9{td!SMBR z_|I3kn*RV%vbxeORUXGq@h*uimB4mGwjpzV>m$3cC7;OLqpm{LYo7~T{kF@(`bLZX zk88H!wSNn07TQ8hHd!Px+d{#fDA9)1K5DV&hQX+;B+z~<_>g#Z!&uVw?Fz?f8gGa+ zTb9%#Yjz@5Ym3PhH@g$C`5D0g7h22Ou7h!8R!(#~XZVHV%WYRpH*zF)>1QN~xwY}E_g@(sOYqmk%iBNQ+CGV=+uPrjLVTq+7uPKx?v=BTGy*{jjNlHat=x~q zT91kJJvuLkUM7|GeP>yLB-9|+G`r~_Fi6a)96FYdZjgxsC}&bjF93iDYTl9?-6vkt z{1M?;^^XqO+6S8A^G3YW?`*FQz$SKz^xaJxmxipShfeTh7Zdn`Cz5XvcqMH# zW{IR=#eB)8isQ_3OSFr;5%Qdq$maH7;$FAbJUQ`a#4D>?{{Um^+8&P>SYGN4Lrv5Q zI8gC3J3|MXE3YfCDx76TD_8y#tB(!_@!yPR*YqtkI!AA&NVZz7q%sr<7zwArHOjy? z<=o4KIm-ZR%e9{i>0UP0?YAoXdtKC6weo`g3x`yW4%Mq(G-$A_V1pOl82NFW)92_~ zb~{}fO((;;JpMC=9TI(GTN6iZHianBFZW5s&C~-~xOj^Kz?B1na(8!M5#0F4!~O?@ z!aAkSrKvZGL#^lhB^pHDBea&x4=?P@+A^dNnG1&9AaLLi2N@g>gM4xE3*trG7CM^v zYsK1TmWWVVq*oJw7Ysnu+BrnC3}sk{Q^DPh)!u1;7QP+Y__}Wq`2F>thtgXw&1b0U zCLKMExC*NUnRixFxGb=*JeD2m)cOmRqhiy*I`@RMO*g{d4D={8xT2A!x|_n66>Y;GZtl?dD^ZR&Bs%{#{0MuFq69O-`#FD|UFF0>{4B(eCP!*bqSdD3lnn%hy| zZ3spfRxyW+k=G+=*YJI&k>Z*4FO08Y;a?hRPy>s<4_L!%s9ie$0INYYYgp}Ro;_6sLf@jT6ps62ZDAZbE!6IxZyIRGP8RT)!yirNw;Hu z_rmv5c-POk({;TEO4Fe7KGUY_NSb`M*4v~L8wj0rm4?OMm^HsX!ct zwkZ{aJTP@6e5>XC?=mG^@58{ZxH+FfTrc^ApF{{V!-TN|r8dz+$G zIGyb>{#u`vaWVOD6rQzj!rBI@Z{Vr5ttva6O>boKA)CYZQtEL=xjWm))QXLufB=oR z0B|~Hx*bze)Vv+y4L`vC8<)ho14S4Y5m?wZr>09J+_7uBsO69t@s3_R4yt%HnX0ru z5qxx)R~l}SuGw1?VlMQ}R#m(xgcl|oa*A7Wu`7|&2X9Kr$FMf{XD8xW`~zcTz6$Yv zt*2St>ONh|>6cd@@QvzCvHt*fDoJkp)jTDvTU*$8H^Z0G*xFmB z>FqCcukDzml0qMHU0g~VD!d%zcfhP2GsSv^?}=ajCf7E)ddfm++SZC;5cw(>%NKHO zkcLnW>^EK;7{`$>#jl6{74hxZ@w}Hh2CXc@Ojv6-_d0a*F;$DnGZ-wxvjD9UjOQvt z76jaAN=rmcu@GMqJ%Ri!E$_s6PMx9sp4!C{7rN0rLo_QiQDbqNOM#+6E_24lz~HzX zRJumL{k`LzOT<%ame;nBERrpzrJ|*c#5)GniLd4{$VU8aeWdf;SCIIFQTW5**_!(2 zM~}pocM!Twa|||mCa@>zlpcBsn{Ez#*!OhWYa;98HMfCnt#nTr_@dq`E9gU9+IWH+ zo25Iz^43YFoZCiF=X6TUNk1^a2Dex#+eTqL!kRnJ0ZXd*L&5t00EoOnq-$Omb&O(k z)CY;+f=i+|eVJ_@TY`bfa?c7j4>(-oJ6`d(hrBWH;`3VZMc$XHX_r?5+Uk2*W$?w! z3n46J4RJ7&b2uEUrVdD9j8wX=qTVRc^vwp>!FN`+w`;!|B-2@2@4!IOvbDUexP8)q z4C5lI*lC*1i3O&YW8xLjbqP1jA6!M$wFZgbYQ-k`V3h=T*ccN30N&hrJAY@b=CWh_kj}`3{LQ%@N=BknE2nuG5C|h zNv(MPE3b!|hlf#=Ud=mNA{(=k=?0s3C7sYvxZ2G7Pg11w>hox_URYdM>sl-Lg{~%d zxH?Rx)U1&JiEw0Af^y{m-ScD~K5S(2vEN0Y_+|}0+r&|Lds4rWR<@VKQKjYFsGtcg zLQ5sQ*ibRJ29OSSHbrX;JRLxAo2T&D@T``$`G2(CzN2WnnC!WNDBkuNWi6k( z5Fmf7kCBb2wA<_b7WwAWCh;z%sL$kF+jw;OMq-idj^Wx?fs@pb*x6||@j_sb0ue{dii%fqozQ&P=Oc=r zO^3l+Pl;bp);t4g;l)&yrN3tkCr~ni?mIxSG2C*VWxjiZ*1A0^eM4WK=T`9^qP`+) zh*m3SvPZXT$e5EPE%u;7s+1cx%42TZPhApV@SUapxu_XDIb&;Vi#XS1FKq#n1!Y&C zbWGe}MkZtg@TzcWNgy&jIpW{#J$lPYv+?cS?X(Qi9X{G9(Id)`jcp_XHS+Sjs_5}m1pG_S+SVJ;$o^8VTs?jzTPAJ=Ks|SS}z;9t3lWH<} zmf`L!nkmlM?jv}fTW4*`8IdI16#V$e6s$DQY4ES;q2$|?X-;~;*==OokC; zO`Bnn*^;U>}_EL%EufN&0O&>gM2}6s?1Zs6KL^X zUqs_mw$Q@F)7wil5(t~5$`)PAz*1@t5csF!6#g&&0EBN<_?zLKUqX)LLq3BI znninPfq)XnBVNT3Xe3an{*SrXf(Z+Q%=ojx`dzP!AH`l0_;ccj?&8Fc;tL&R;8_Zg zH{4iS+}nxz{noadc0QD&V118O@h8U{JqJBf8e3=+WmD|`0AgJ?N^%a+zJ1`1 zC*S-@9F6mI!RgcZw?+F^<@Tv(;K6F|2s3JT`lt3~?m}c3#j`^kjCv?(cVnuK{!{To z$NJ5ei6hbVFNyvS(qTxTbSP3&%CgONvLKYyK|PEW+B@c)Lu}EoQWc zNvB$9vuZXN+y4M9<%q>1xc>l_fu(GAQ^BjACGfS+jc#o9y)#1bCyD&qDADzeBUb*+ zmOZ196}-~hB(VYuCijy$=Oh~C@3p;qOwsf?Y&>-j!|hJ$1XQuSf*YI5fHtFf%uE+A zI`QU}xpoI2jFX!h&Bm1{g=}N-W|yh_P}P*YH^)ye5Vq$gOM6F|F9c37aU9aVdl7?0 zw79HX*L+uhrg(Qug8u+n(Yz%U^bH$DtXQt4cW~Ip`dJOK8F>BY?@GBpDCjFEL-9<$ zDY4Ua9WKvY@s;1%*4|U$$y(mV5g+=rhvoxeA9QUjqvazQ%`XJ_gHzFb2=aI%Rj|_9 zTegPAe-qkD(!$E+p3-Qp5iTTj$W(tVTqqeXIX^9b!A5>Pd`|c$`vQ3H#@aTc28-h8 zXNDaneFj#J75j9F9mb%gBezZK8%crk%U6n z5_c>&QK!j|o6Gw%It(h34r}Pq+KY-WqVUJRDmBu@fZ+T8+8sZT9@%sFKHD@>9?%t*^LWigMHdi)>oH~tDW`zn6X z7WcNEA@L5gdd+B($78Q)k7F7V0&%AH~mrzZPfJruZ$Y zX;8&t4V2S=YmG}yhIQKbLnX@yqzKAW5GuIH9V^G2Dnm&l+KpICW@&hX!=D7cFzD0G z;|rTlhzkVYZO)f*_CpfJ3pCRi<#^HKIm@)CDi0$h59N>k4ovZ`oA6t}{{RmE0Ars3 zTx&MEPQ7_|<7@ppSGaqbpcbl@77#--O)lsQ+)Z*2F^y$~T}JLl>aYA1fBp(-;!oHo z;y#b?+v5&{4~RSk@dHoPbea55q+4vA2#Q4tw(8)#wk470wUHrN;c+#ayZMl(@g@HN z1xEe3bf4RY_Jp?hx8c18^TSqFz8%r@G_$?GI)vHNqnOIxW=f*VHN=dOE4V~e`LfK3 z^&BsiRI6S!E$*IHZI9%n;@-Uv&;3-3s7NCZyC^}-{JR$JY%}vKPvA| zxD9i1?3s|j(%U3s=H0bK%5XZ0rDgHHe--KWv3Q2(Sn!?9W_wxfE+9l$OeDq{MOB^< z2pLB*fWsNq#^z$ZSq?e1 zq4-ii5@`0Ru;H-L7Wy6qb@#T1r98|i1hCSXtuXwTJVp8k_$j%xrXabze{Gh3-e-l zWOyxSQhEj?5!3=WXNB4%Y`lG}$AM)XoQF=7$C0=eGF@Fn%Kck%q0c){Cq~hJG1x^elcXizfHe}* z+$H9tG-v6|cfCioO%Kw6&7|09d((=vqo4 zl0{MWgXcn|`J1OuM8_Lhf(~1s<=^(6(KM}B;N8x-X%n>8w{Tnlq%ubn{G@_2$ILm; zuND1Wf5B>J@qhdjd*Cja@nZYK)99WKl`eFT3|wxC>UOxab0pU@>?AC5G7Xz?@&b1N zO@Aie7QAC;;h)*%bYBuOO{(fJ4L;)DBg#yQcF5j{Htt^Rxb4MwnN=C8G`h99_gR$M zl<(O7nt$MhKk!qZfM2nP{1e7618H6e@dmr%ZCk|Jtch{1@BfT<}W|fW8{|b4Oq^9nJQmd#JR2o1s{3QP2IfAL0C+f58~O z8hmH{t~H+!e#&14Ak(irK@>80i%x@8zBU%^1SUAIm+c-*_+;M`stC^Q%yddhn{4~w4=J|1{3YvA5Ool56Zl0ul?BaLnCH^>*UdOX*<@f6bP`gGRn4ptj`3GFSF!6Ootaz_}!7|vOq4xhlk z1FdEC+UAqc{y%SS^i4Zjk4sCWi&WGZ%yy9+PjbpPIZI{Ck`OsNRFFNZ;}6@5O}^8t z{4Fl2XQ*kH*}5qfqhoVpB)0Pu%&509#?2XM{#g_hVh+|k*ZOe$I`}2-c0S+*E{{TC$_&IM}wbj4irTXTl zpm?Nst3x^mhlZO!+fCfDTbM2nlPeGkI?7~o8w`b!PCjb)xKBNeOlnFxS)M--WtPK9 zCVmch_2Er$K_1d!ja9hAXBj)Xf_dsV^cBS-vCAGi)!Vs@^NIGHupfV(IO$5Rt1)6Y z9OL|cmHPcVv*PJq5K%ta{{Vu1d@j*`D}LGE2|gP5hfKKEblqRYx>IU)HrDc8Jho8W zEycuQ7_lRkf+~GHIUyblYD5cxuEjw(#s)9h_-2&Rv>g z6t6Eqp6)rTk~`j-4-u?XCg0gGRTx)S2h`mMe#f zJ2;v%j$U87xgZ{E@SZ=+WjuVKo{`Y~JB2WcIA42q?sz51yt?qCUwG%j+NO!6=|!$3 zlf#nS+gU|4TXwTWJK9cHo{+%^FJ*m-6m(_+z(ARsqQ$X@WT) zfOC#L7H6V{iB{0-xI zB+~Vd5N`42szXHyj(Btns{}EfvLv?Bd5**G`AZ@yjFO~`S0CYx6T=q1DZ0=+C9NB8 z95u@enP;||>go%CLoxeAu9ov|7!5PW(Bw!+%~Ez&MsAW?rgTt$!mrXiRdZ))ax^a* z-8#zpU)t_3W3_n#`AjU<=j^{Q0PTn>j=ghUiLJ%)14xndFA-@oc(!d$7fCO)=C#w( z(MTxB3A+1Ay91FT94{Ck)oYDY$F}m_{5$bhlc?*FUR##B)h4*MvP4+}ERiau$Z()? zB#p})@CGZE@I}vrwUviY{g`}Xr>qH|xBa3komI-9!l;&8w0Jf)dhXqkk;PO}u+_Sd zd_A`C{o%E>{hK^dr%uHm`#|b5U278Ti~)$Q4Z+#vws-DUFUKOTc!n)1JvL1<#F}mY z0D`S7E&;sp1-zCzRkY+Cf>SI;P0-9(1d2hsByPi2$BK15F7HgaviO~8sOWkwl`7A3 z;uX|lv9@s^{I@S_c(bf*TLLLpAKnM8U(uq~b!!`z_RW>Z%_$!!bx@pSRX=exi4_ndSZW}~TSx{Zy8_CJg~5oafuZH=R9dW7UC zcZ~U<+skmrCOx}CWMO-s^F03mf`j}fwD=+WWBgP2A2yqFr0Gqr++S(dmyr2WL2G_~ z*9Y$KHi+IyBTxYOP!84pmiL|`_-T9MYZdX_+SkL|neCX{X?GVk_E6l$jyG+$gv%6? zDQq*T+<59SU&d$r9O>{2#@-11seB#r`@~|xTTdNmEn^h=WK+WsZ6-!|M9U*KWqW&u zCj?|hNgXlw-X3F}Jb$ykl27o|`5rc)=Yo`y);gcd?}C0EKZyPz>HZ17yGt0a?xV4i z>PFiVnVV`mFa+$}KsfyRkjWo>@<2Q!xA@PTWRZ`;PRMKN%{hc&z zxuU#_%(yWoIa&9#L}z!G{9l}!&BV7+`3!c11QU{T_4Xf?efRKR_WuC=rvCtEJpw2` z9%`1c>5qwIu)4RlHq5|nkj9aOl(T{JG_3jVr#1Zxg~Y?!CpOooewSTW&3d1Us?};! zv@HAIug_EWqy7nL@hS~p_IK61LoAVvNvB;%%WlA~1K~h*0A&jDM?1R;{;Yg8u6XC- zSBI^93#QuXUNi9Sr>5K7>J6&N_S=Ibzv~iPSnR}JOk^h9usex7^{?X#{t55@00kk{ zzB~AXQ}BPrEgQqy6hUH>`%_Q1TR7xtBxLgCLUtC;2*JV0I2F`>*Z%;tFYN`a{6p71 z9C(`h#NHq9?w@di-pa#K8hxU{8jmh!YguDyQc?4O+s8O62;^Qz)cC7%<9L#J;k=g)QWCY0-8Gv8YRDZ@n-!d64ZS4fwCX4+{SP!8ZQ@ z;G(`M@W!9x+fRjBjD8uviEb?~ZW_XIJS5|KuiH$>2<1%CA;&(r{Ri;({1I2-mByo? z+<3R*PPa|UeIpu_2SC8k)XF-RLf}zZND}I&9o7;bsx80C;tF~ zcmDvvG{0rP3)y&!b&}mr?4Pxw)D~2QjcRG<$b&NY9%5 zd;b7}&ws%={uBH+o4|hw{A+*WORY-MOL^drM7`HE_~Di}h{X-@HjpcF3rQ2pfCwPw zxjCutN}F~%S1y--*W>vg=gIM(;&+YyH2gx>{wRD%)TPz@L#^N3>Q}ed1$^s^tCwUpO()4}$Oy%yF}ddUc1`1;da zWv*>F0i#0FN02rz+^+@wi>KD-_{CxH>PYVHQctu&b*EWg!>3)}*$`#A(;~Q;96@n0 zj2N=1F6Crbgp(qEfeb||xOC~eTcPn4X-YMlk^Q0gGxj|FrhXLo#{2fF_;07#ctcCL ziR9Gp{A=UgE%dDiM**Xc&xR~o^Y@i+bn&1vG#83gf0 zr>SZp_-Z~Slq%{gqBM54H_^H=kuA=|+cKkNa#dAb6n;H^!ap8<8~7*ocE0#;@H^md z!@rAOJka&q8+be?;Y}_iu(Oij2;r9VQn-%#>hn;A7D;YTmu(%n-3!PSOwap;@YD8b z{{VuZ{8zb;;s?d=7I-`1^fwDDKZGnaYkf|}WsrgsP~Dej3&RAwblu2a0Iwf1y;wCA zd+@IqK}oc%`uTLWuhHyzUEjiczXjOK@d2TmPS&rb-j}xVH;iL}!W_y(_O{oN!hiu8 zigC5J;B5p|?+JWB_|>6!e&0**R-!yG?@&k*q3 zQ)=3LN`**SC6e9?s7#IXFO>1F&~wH!7DG*~k4e#V?I*)p^#1_xhuwIC;r5SWvJ1g2 zgdwp+asuLMSHPTC`+<4o>(s-l9+CGJ@X_`v;OMj$lH*bFS=Pwjy z-U#7~%#ryZ%FC0G*y-gS7u9@OrfK8h_lNvnph0&8{zj<|pz~@sGET}GI3CvKfv%c{jo$&JaK-8=yvA7aLt7-SJXfWN%%2sdO3#i^`k+M9pvMB&E z1Hmf8a<=C|r1|*hvfg3ys8J2Z^zahB?J_M%LF*@eRj_JY(Vgf5Omd z@X6=iSZff)ru~*Ix0=@0w`|Nv$;(@#jO{!DLRMpMLjy+fi|INE_l*+?RSMPhzdV;KXGSDq{`fZq5U5in%8 zbA1Gefxr#4LNYP2#a+>Sccu8}UbxlAi2N(!og&$U)|P)@3wV(20URN}4v|C>Ui8Nmx+A|NfT5Fd}ZK(^;$kD3XL2a{qYIB3-GPg{F znwBdoeP&A^0?VN4T0NbvQe7iZ(WSc5<(QB@&@O^b5U3ao91L|{_2)ki{ylgf#`?UH zvuL`J-@A2Al{ zO`lHLP%QleWh_Omr5g>ux>{cxU2Yi7iis=FL9lWk;z7? zQgV3)wR~6MO(OpQT7yXOPl9cA?K0YAhTiJhYkSFJS#V5}!7te*v@z#9?L5o@lZ;nF z!K9VUWtq)A5!&B;LGXU7;|p&U`1iwicDu^M5wN|~Wwh zu4q3QZ@g)&PvXx9T(^keS)@o{zSAwBia7!1DQ;qEWQ)q-STYGSjITB1ZLj!V?_Q6= zUk?0j9*L^y3HDK?n9}BHHa8C<&SJcBcm?B}f;j|}nz`f84PIZ!uz0t@_x>zc2)k*b zkrGs#pWaCor1IO`0yqlsPb8a1sONfkI%`v&raE%a?=(*wc%MSL)HQP$(A}BtcBTE+ zyAEaDy`Vy6baY})&$FV1BVgJMbJ}LVcjH}5YFZ|*F1D8NxVerfEp4ZY;1y^~Pj0ci zAmD})TQiZ$`{P?Sm7>VL2=M;^iZuTK4_-qn%N?eoA5zq2E(0JD+(;$bpL7(IZRK;2 zMRu3AH=ZHU$nlnydEz-PBnf!74*PK#{o4UF%PZs@?N(<_ihI`4ijK<1JgQ1toCcHO zeJI z;uzB?=$7|Q4brCma!W8LP6X=s(3R_u=s?RTEB*MPY>!dpE3<;Z!RKBmPPX!XKQ&xDvlJXj^++W z2*mBE?7TtZPZ3Kw@YjeuJ>nfIX?&}lDm!M8p@hHhK$;oXBrizjhvp;=>Iufbg}fP| zL8af{cvDx@AxYx<95$XVxVkYxc8ARQBf2)XPRt135qDgD++^0Kn-7g`wTsPf$M9&E zS2k9yBo|r)3iq?DygYG7JW$GnXE^hpcSX)Aa_MwZb~q0cSgrp6i50H=GvZAoUCkA> zp0#OpBv49u5qYT#v{9muyY`6LMsd2jJB?-$E#-%Xb>9um_Bgi9rQ4~vn~#91w$BHg(d_Agojpnt1jn0#;#WqU0K2(e@qx)Bu9A^H{kYX1Nb{6C@UU)fg%>dx;^R+{n&W8^p3<+odi&mStsaWc1{>r)DMLX_-lUd%N3 zp5sig@iwt*0+{~Mr^n_%rIkP?2$k7Y8L^XYRk5AGR^+;8_GY6Og?w2ThpeWO*;$~~ z8Y{cG(2S`T#Jb14WGQ%v2cfSN@V|&WIq{!cnr{jC(_Xy3vT-fWl+2Q}Nhb~F+uS10 zZlQ+J^Qc|`1de?!T|V;a-rq;@HKvDk3j?(-Cpww3@`E^I70gjId;p-uyOKEIno@^! zHRe&ei@};thHb16>rm;Md_|JD!eoyAxv$g%ysYWgO0KrB4W3Tz!%Ww=r)q?Bh@MgADn$ zVaUj?mitHX9))FVsA<}rg_rh*_h0x(EtNdzTW$bIyoORRL1wmn$2*h}UQOck#-H$qG*E4hEjr#ilZG2nB`q44InOI{uj|lL^t)TVQ^T|9x7tj95kZf8 z$9m>FZ#NhdLj~WN3x;309G8mfMmOy_Sd=dAH6wfe5xd<7O~2RtaimRQs9#*PGe_W| za31s&OiU)XTRA+!zbV}lNwfpFf(2uE3d2^p)3wX5hqrecvl*dFTW=ZL$s6es>?B7k zm~7{eN-%$a<~~OZbBgV>EmKGEmw_YG^?9NAZ5;QrF3A-Z;u)eNdI)AWFf2|nwME9z zF|m{pTbhlf$BFzueWiG^D=&zalQ?^OAf7^9Midkh!!(yr$s)LHZJsnd5ES!M&d{2^ zjPT7b!k#gYS@ABp@gGCebPYwcvK33oR$F^3*8q~GT1l0GTu2T9^p6MWeirz3 z;ay`@vb4SUYiAIO-gvb;ouf~e7)G-DL*GCIoU4diVakF*0~Yi>b^Jr1UQMrfme0oe zUB$6mG=|i}BfdsbYmqh75=S8USgcXV|HzI9gjqsO*zAaw(`qx+S6_Wl$n#%qsn253GT@!pZ5SZf-a>erG^V$*y`v-w)7 z5trKq+;Pi0lvO3RT}lda+ejpOw}Czz_`90S2MEtaQsEcT5501$6AI|yb7_|ue67|&88XrMw5%2n;uk)BE7v|0_l zbUgn1LHN08u2|k`+Bb%@iwGz4pt-O%(qGs%c733u!#%_8R&Cx~;hQ9FQCRxj@53(* z>dUQa+LwxLuLa69nvS8qO9{b~l>x>2LXr*?d5}KV`F46$;n?*n*uRk!gE!|wrJ zV(#obTDnavR<{%GKk@Y)jLQp&4-B_aA~rr^4lA|Re0SsdZmx7)A5rk^w#ecujV92P zxJCp5vOTnSC`tlbW1=v}3=cIDa@_^BvBG$VO7V|~uCBEGKGVV%x^cJ-Z)d8+_V=-c z+S?Xc68n3D^P%$N>_$4)55;|V;eLVQ%Zu-b8s593-_IM1jaD|EEgDn{^0AWY8@njX zVEp0Ge87{&Ys>y2d=dBqXK|@`&K(ED`ZlcO%Dye|uiCu12wlEp?Pk;Yikt>psDd0| ze|o*|QnUT3=G1?*wC@}gorP0W?;FKeNdZN=Ls&p*=|(|HQk3qFWkGt8C8RqAB!n+5 z-CfcR(y-(%CA~{7u)vSsA8=>x+~+*!oX^ZV?}gZ|^*}!H2!TdrYa`*18>*sw-qs89Ot?X1g-k~>CwIL3O#i*B8cF76mGb;W3=B3@Ibw45#hUq3Z5VP2f;P{ z&GbocLn}2m?IJq?5Yb*4#@SA0Q1)x25nD;zRDip5Md~yl>=;}17o&9W7F}cIRKzeA zYZ5xrDtDg}CIQt%ibi#Uwvp!AIKEk^my5sDWx|_4NOTATQ%_Uz}sd}3b`Pr zvNwA!VQ6a5l;+;^@WDnnZ@Oamw!I+@U~?iwD6 zgfE!ZHuSggJMR3T3C||=<&?fe!ezeNG5uk>;L~$gN|7oh#OQP0&0dz7P269lj-YOThg zo+vk98rs5J(Tq|BR09Ya^Csj~G}7psO}2euDn5sK zNy1WdhICe9Vn&AtUuLP^!CgQv({3gz8Qv8w^9*v^_W*bX)gI$JRP(WsRM>8Pn>4-W zy7b3+(Ez(-2s`I3+OM)tc$tQ8RLW;0?mx0cdgA+r0R2ZQ|7?b4Kkh= z>Vy2`dto6qos-gaWUUhhGCs5vlB5=+xg;yE#hD)ftZR~J7ZeqoFVYBp(l1R3#?o($ z5nXbAdhGFs(TVhx{cd<-q@}H?R}wu1lU=GUs_%1qecETZyHk=!(Jq7KrA!|>`PK+h zrh&xGMTT!I_gdKy;KMK{dd(?kI|UKAmL$mXl{A_~y=@C5Uw?d*DJN=m2DZ+9<V^qt?##UB~^KpHdQfqb0D2t*AD<0jDap>L(D(Blx zv>|e#7khrDhfPY8ZAHsaowB018(h+(eLPJV?9CQrRI#vRDM*nZFP>~kN?k+XSLzyM zJZ^lA{+O56dI%jwDQ)6h#dk6pJ3IgwF!G2FZ@p>r5VVi8XLRO~Opp5;Q7$RN(7wq= zWxO=nc?t$%+&NT%{D`;EyMtqJlBX-;vu9-Ev>Z4(}4C6V3XgSiCS3 zk1V#^W`5)UEq+(4Jz`OB1)qAd32vsqIWH6?d|1Eaa`LJ!;s+>9dG>~q*@Jp=cRb*C zIOZi+uZ$G>{R03y4ato180@L2SlQ2J3-kTiQ@8hR^}NnNxqv(GLk6HWwvfQ(Ni_(q z_W%gux$o5tXlgpDg9n7QhR*%`TdyYrL}61U4l}n+)%#{Dw%3LMS;taQcKZAi5iCiH zw%2l9H(qGfJ_-L{Rru!}bp3`lk^P0gii*ih7kQ7OsZ}iW^pi;HS?&s$0bv_YWkoin z`oARQGKNoWHG3szidvXGhg4}a&rqV#1FA;frK9%hq@!6WV2iHYVWRuqZ?u$*X{Ty~ z5yGMMos3ftfJThWOt8@BgMS(2x`{owTdJu(-dq=_t5;jw#Msz>E2Z=t5T7Y-At3$M zdVxOyb-N;>Q}XOm+jr9%xnTlY6IiG$+Nhm{kI2-@Q-`mRF3l*I2V`w-q8N+WydRpd zpsm^w6d5m&-gu}F!iKXw8>{n zkD5r7EQKTRz1Tc*CoLd%B<-7jY{lN1g}&VW#8smseoqo==t z>|CoV&&8v>0*y&$wKZ*XsZO^F)O?#q^C>+#L}vs&wIovwmdF$RRhni=bI7rp(sV<6lnWEQ)=|&s@9*0GAv_#ZjGspBm%qPHcmRNiV`PyU zE^$mRrRd=C5djoZ;`Z6Zb2#&P)hk?)^VSc5c=0~_Q5qi-!8Sa5X2!v(^BnY>w8K64 zWc(SFwz<9TFO4`*oqOZ*(fjP~u>SB>BJ?3;qjb@j(jId7VUcA%z@mh2{(w z{LQF=(#d_3?0E1c$CRwSW}qzc)9aIa#=+l^0DUyr_4j_0$g)DiYC}Wv{XLC&qTAlv zud!rr3`lBUQ0NB~RvjkZ+A7_eLMa~rp;sHeM;v_;*k8HUeb}ZiM?AHinf*klof#Ib zt`x=fM~FvCU2}#{&^!Z8w+v8ow2liZ4Nfs0x*q#^d|H@CyQd$~N~!lOr8!A2jx9sg zK(7AdcC#J+|3iwetNH3q&fbo1%;py)neBEBbs${+#A!RU4-FuV%i(72y~H|;B1^$%dz zzX_oO9l{qcp1rOqw<~*z!_m9WgqFVyn-XGTf__Eol%WHRvd1}QDumT}eTtf*HbJ$1 zxhz~SK9*6h{)la za*}>x@R@+R%;%buvilAVZ^db0RcT61Qs|pGOxFv=O!)MF_4+Z>d0XGzJq|e2l?e=j zOTEM>Fpm@I?(ym(lzHvH_-Oj^?(n|Gj{0bghBi_)M(bJTIzs-lqpb4ZUlheHMc>eq zOkNpnnz(E{R>05wOeCGJ3{>;c$#S(xJ6E5>CQkKpZ>8uGH?t8Wps!kB9ZLe|YmKi8 z0ohGQ3>&i1vJHbrOei^G(q8`_m)d=~9XR9KyovV3uVSA{uOsU?cA7YW6=Z&lUPa;# zA+fH8#&G|>>t=Q5{2Qav`}WC!li&vcQGHI#B_+&1t`8{YzA!pPHQgR*5wtn~uxvY0rBg06HhyHf*iIHkH z*>KjG`Kj-WjdhH1(%}nQD*}?2^lzyb4ZB+I1T-lZGfnjVw4PwtMBPVOI>M?vf)5WS zHmd9#uTup?68`+w@^^~5fBgX1$jWI55A=WHKMNxsFnhTl>i`E!@F)^iSX8iOkLN)$ zXbec7o=FU#El2(X$^-KeiMG}s}HmM^AYnI1Nt z{o|to``jBL(FNVGXFFnFs=0s6P-~hNIT2EV*n7CesGYTOJ>X6rJGg8TQN}ym4 zS|0VV8MfnPlEUe?1$8nlU=#|+;m=vX9Q~%$Nl(*u_2N_`3*A&+g|=Jb$^8e8Db3p2 zoykIWMsE0df2c?9_D)qoC4+Dc3OwrX$3z7!HgqFkt=pMQ+|jJ?TooTKmRhV3N0-L+sZn-dwM-Y(posnyk{ z|IUlpIyL)CU0Kj4RyT>4PbgG-vuTl+ZC-Y07rzpS>W2oc*n)}>Lnx_oLDId>YC@D_Oo_mP?qFI9{aMTMWZOgXVL4?GLq@R_?_@4kB*esU1&U-)KM4wW=oq z;|ZP6!OZq=xOLYlj(CNti2q%c4wpC>HjE52U+2f!8NH`3T=t$M4;)CJ@Ye#>%}LK7 zWjKd=Q*@-%B1L+4%GnWO2H)A1Xs$VcmMH`0VgXNyX&~P3atx3an9jG;h-Q~Mhg^JeqOTw#^GjS( zh7%l{^RJMYgh#R>i8|REQA~pjlnjE#%}u8jYE+`47Srsvl}LQVD}(zF&^l{W%z`=h zJqOxMwR#p@xsB>O^KrQJ@gFTvuBn!7=WBb;0)H33MJ>J&^NEHIu8Jx-n*oBs#_KRKG`ZT#h_~E@^VlvQp%a-}g~*BW*1H+M=s0{! z{2cALWawkr%o)j@ku`!+cnOVUjpE3}a;x4m^Sqxj#0wH)ik0C(2K0=}E$bjB(o5AD z(|sNB5`hFucgsxei8YY+9_6o@-ORye5@_E|&3@u%82KjT$>BmfI%$Wh3DgMa`|VX@ zE1s(~Vcz9x5iCXrI z%pJ(JT*l%JJ`$d=+~SYC|7EP|8f>JK3(SE4PUS-O(H3}4a@Li5omC<6GXlBvs2NudEtZ|psRj%@M0{VdRs_x0KfI6xH zrf4S00yIgHgF_)YY~bkdg8D+mwpPSVafHpNur_GN!@f66ww1Z^#ZiIyO;&sqfAc=$ zynsr@f>rR_VJ?eOH{sj^S?vFxIx>|(d!mMA?N1_aoa<0_1F3HZ88b`J!F{llU$HU2 z%VXcx&!8OKPx(of5%}`XR^gVQ7;J}h?<$EhF)S8bv=_ub z=nnQ(^=kgKNK)b z+xq&hGK$dU3HrHpL*y|AtIW|>H4`lO`RD3h;^?d4ghkl@uU0N+z9!_fwvKrLN_Qm( zJIe?BF623vogmv7jEAZsjruQT#E^Gmmz26qTvC6H!6MVSbk+$yA@qkF+#!+xF(_xw zS{0G%Erkz>5qnAs`le8e8Tks6~s}d)E)v{(36H-}o zF&M!RG5aV!yZ5u6>Xut8#s}Fr4pO4O3o7relRsK_uzM!fTE83XOYo}M^8XCAe*gsg zblDM;LZWtvgUzTLo|EYVRTswJngU!%%=om`AE%9+%-){%=zE0jpcy2Z(cQbp(w#kyr|AmfkB>*^`PD4 zL$w&eM#zP_N~P4?MI1{YJz1iOOD{26H2yN65#8qMji`e0>7z7~izch>o8)%YJ7n~^ z1lCs+0vP911RMU-kJNg`{fupHtZ)=Ei453LEu@AZzoVmSrrstg{Qm-ac?yVxEbXa>v%H-Yyc*XHA)8swhu+ zA4}fAm1&-zt@a;WQ;p@4nFmQWDR#Q3d1TnpySg|ffX&pbaemXbB{6Vhz9^M#Ep*>k~FA@s=wOr0ZkGsf$dStA^2^4N^r{Q#*K0)EX5^HmJ}gnD(&Idm6E1)tY?kFP7$(NE3ckSx)`50GCclPJ>HA zodbdQU5dlS2EGJt_@yDf2C+d2mEfA26S=aD#{gV3lm(2SquszDP%6r0&@6QFVB+c|OA{ zRCFs-SoAEQz9QRxshYQljAuoF=x9Vk%RR*wu<#j9sG7OTt4WIyTByWW*tpw~w@Ms{ z@(-Jb{={r**M0|Pa2Q*$$jP?*lrLh;@&_$s z23QuOtz^TXW~IcWP;QjxLS+3gb-I-S&q)P#rpkMUY1cr!;bqpb*rj|0BGi_A$Z^guAJyf1kQhT!v{?H3yKWTCITs)X)XKRp0Ky83ECW-t6%gr|LmoX^Xa_4)c( zy(dU{s!jgrf6cbt#`f!Z?qOKwcrSoTKx+1_=*aA&zWS-TJ&9GdX7se=9HrS`7XJ0!1m%;OK4kmcoFh-^Re3|rH>liVErs2MnUCBDA)hh=+9?)G4>D2&1 z#s?=IElDjxDj0LTP=O&^L21P7V%_^T{TF1v8->kuQEUk!4*-fo4?ja`=Ew?Op?@%g z`$hcattI0imIOX7pf{V6tl=((jw4w3gq$4N@c@V@=Y1)>lV9Yh?p8g_@W&j>uao06 z&sIvhJoi0-==)fz_XFTL6wA5mg%kAgGvhbF1DYz6=_=-W3jTo2STG-Tg&9c2zr2Be zTp-@8id?v{3*R;2kZVEx{GmcVpOowvlLgI#`4oNsnO(|;6^EUF82*=pRrR_c(6Q#+Z@UdqFISJ0AEt7YLY6Z2lpz=K$}=Q4zPf5kLV*>%P2~Rg64L*+7^CO)<4~Gf;Gwi z)NLzskvjvv0l}0KcPAm0MtG#fjw{?asJm`gi*+5z>gG)wJwaI4b*kC0kIVTb=tw!?>bW&V5>iflQIT zltZ4_lE~R(g`|0pM1Lpic6X8lvGY$o8VV9oykmDpa~Qs|$`p$5$nyo1!21T9IGYC8 zkbAn!*v$7BzisV4Pe5=~y3jZ=d_LX9B5(hjQt+!*cKdv5-)Nure{A#%QcQ*Mn1H0e zwPj9#OuYQd;z6A^i z!Ub1;W1Vzw!C%Oyz^0{s+Q#E0x6&JKe{0l4e(bWj+j@~}Ihfny0T8b44VR^PY>%&G z3cUjAGW!dw>|zGIG9kI0Z`Ua{F5Cvi^|q{#bptu|yWc%z$wxN|7aDSXX|MU0^wUYl z8fDZYWkwySlM~2y|Eqd0BYu|`Q1jn3R2+$T?)GNGrkxR(^^qZvE`#fNX&kln;Thfn zGws5@ap{$yjuA-yBK}biA+5J+^LFSQi$?&K-p=G{Xg8#0+G}k4vh)5od6KZw#J>-r z$~4c1o^%4b&>;BE0>@O9GlspUukp$&n>lKqL1sYr)x3Rvr}?{0Z27m5;aC*t2LOV> z{jz)-%3-nby4|7xP44)lpuVvo#vv(QxJk(AN{?({=$ULAHc4`v1T+)%`BL_-v!P6M zURYZ0r0?>8#(|P<>S_H4i?o7vBAJSM6~FigT`= z!3L3OqO0Va?sT%#(KO>poxegK(js7xc=m??c2sjg^E_o#Wn~^^=msG#&%iii}hoaF;2#t#?~xUAy4!Ok}Gth^3!W53DP^@E2?A zOfC;S?AyR{>N^Tvo=RX$%wvE5eo9?qop%^!3LcV{e`an!v`CVwA9 zV$o8UygmG00GGA+bNpa@I1>Z(`9==yGNcP$)dS|}CRyw|^(!z|XDc7sCmBmz{-|y6 z!o4MLrNH{7f?wtaF-&P-O$CnPlhQp##b0avagR{#l2yl;@L?e6t-DJ4)c_%{VvtOwOsz5r08lUd+_MW{`^oK zl$xkNKQd)5=Q5;(-tdr&%e>BlaHz{B1EA=Ao$zA|y3;&Kbw8X#axw0IqJgX$l)iHP z_zH{*b77bC`EeTSUfj?yYt3iIuX^USOF{l$qf;?3zSs(7QykjPS`0EJOjcc%Zc}ce zT^*M9BcapDkHb0bwxKqkZ&RUJj>$mNA(W0jA^311Uh0B9Z5TlpUx;l*_QrmxJfhFUDs;q<^S_Xeu&~5;xA03Ye-W z&eozI0N5AkC98@(Sa>MZ#0G?&5SgpGSlrs4E#UTFNb=EZ{Q%0>X00Nf{VvUE;~^L?uVpu*>8J#$sx*Jxpc!&A(6%X-7pD)S zdEV}>@D<&w?h0x=V%@~^@Hcna1X^}lP0MZ+m@&2MprRJE1Hxd8iNL4&x$~-o%fI59 z-%g6B@aB9wjRvYWF}&~hQ$U>HgZw4ZK1C1u6Hc8(FH+~XPN!rapWtoBM6Mc&X#Pm5 z)QWEl;@UdF@t=@rioIv<-*^CEsrwYIMHE@(t&h8>dlk+9l!qj$)V>N*^Je4M*Z_U= zC=t6|z7ACpE|o!`t!`EAnMg3|_H`J!mgZTjUyLW}&H6wKTvz765uOt(U?7%Ly3!SB z4eI-Q@5)eZjRl3*gXTN3cq?2~f<5GEt?f>qq{Ol00@&oP78-hY{e6om{+w?~X>+$X z^N3X*U4<}Vk!GKO^RncqWaA%~zaKgqZ~v=2XwM;|zH|DX9!pPH-R#mI?T(jRxp8Ldr(acj48mSIFr$*S=ZkQM{P$0W z1|57CTRP4@Y9evEwptH;5^4`~wGwv_FtYw!Gr?crah?xnilm(n1qD=K#Ou%z1d0oK zE<%9v4!XlVufJUEf^}4qKg{1q6E{HyHaBCw5sLQmVWVBS*+bX{ej)JUxFW5X%ObYZ zjy??)D#MbMsKvK`cy2@mEN>o z3*a9lMmDI^^*$QI@C@d2o;-^36ruQ|7pp+4{R1?~$6dusEd*MwyX!1Ql-GDqw#pX) zCFk>hA)OONE1pGor{{!Hp^;Lm9oAiADLbwE`HX9{QjyC=4LP?S=ArIvqP?JjEKD}; z_wl8Smm+rI9{*vdFpWtUD2qKr^-p=bYRs?bHHM4Be+g{%GSbhVKLCjKrlD+2I#Gyw zlXuExxPNs_Cmhy}Swg=&Bjp)-L0wuSUYxsBRD0UJ8BaC1X~Mble$KqR75Fm)nb*Q`#MO{KyW1wXUKeck!X{> zb(~cLJwp}CUBQm5NDI#8`s#F{N*SbYl{mw5nfyj|%bN!FyoqN(Q9dbcB97advUP+cw~ z8En)@s<2})Xlu*Q%q&^b^Z-yA!3wNQcOuR#slsmjE5iutTM$dLR;Cl#Iuj4_9H94zwISCQ>CdRIft;N|O!2?8oEza2EL(vH(#80r^+ zd}gSJ<8Xc%eIEkqYB(;?=lMJUqWlRkuTcyu8H$B)u5{kqgcbHe2X54gV!tvOou3d3 zrR@2i$QL0i+FOMz;Zk=&Au-%A3%+n(WDs?(}D1t`K){Mp;_`N&47f}fX#;t=cbe2u~18&Lb0YBFWmPUJ{^5s_mf4F+vW$0;C4Q+>gEMh^)9(x zyh3`X1~~wcp?mK*3UAo-fVyNvh!M5pbnqn}KC7;RaBy>rmn z9InI3&40aAgLk|E0Cbk&znqunSYNA;T{sCN6PGIC)H-H$qx=qHG>yMvrotMsb>g?j zdF>CW4AGxa+7mm|J(y^)BD);#`R%B-Az?^72OpUTwRSZV#?@G_#l7Xe;PqZ-QKjMTw^n5gYTcI=*dvHMsVWF6=F(k@B z`Ws)yC)w9f2P7XtG?;hcaNf-^!)ZgfF~68~1*Q>_Kp^F~tWOe5pJ}3r?JX@6dMgQ) zZ~aTx-zmwDHd1v-eRE*}6jJ$^?0sC_Cu ztsfZ(UoKT~D|7D_O5Wtrw_23EBDZVRS++ z7_tZKkAK3lBDknG_h}FzuDv7mZBF|e>y7#YAlO2RZ$lFgV}=^2vT^|D%$UjoKL^e*;LdYijFn$Pw{^$aItFEV{2-Nt#wNL31| zxe|hpzLsKr4p;4}iFANmQ#cRMN%W?XZA9F=NbQ`46WG2a_z} zNwQgy*|SGiNXa4fbcvAg4)GUSiWNSA4jTO;wZFiQWs&Qzge&L%Vi;PYCfZk_i>h?J znhfpQ$PB1y3K1S9#(~_QjkIRyMNyz^#yhjFsPILvy;8LYJ_TwM)C&kQ`aL%quqY|W zYY+;fEWa1L1~pB~@L=RRMJTC6ZkHPIJrFL=k!BrD-;xt&Lh+;(eA9X-(d;=#I;izN z-D$KPJUpiIC|fIO9~PS77bMW$!oRj=1lE$MeM2KfW(G?O4cN%ara=0Iv{r>@fC)xN zzX+@l2C%{LWIlJC>xnBmSy*I~_7-u?hs7dJLNlZ?jw3B>Kz5GVh9a>6?D39d^v`%~ zz;1)%UR$I*iw}U86uSubi%Zs$B_+Nn?-tBCM&MD|koNbL2j9TkU6J+a4ZcQZ^{RQA zQiuE3Vgd>l(BC!9JwXR=u!FPTnx?_4&>ZoHiN5f0nKJ}ccNMKY3^P9^Q(W8+b{8-- z6~J zp>_jWjRuW}O>$H~8U&r>Q)X`CVx%RsTEA-FK2DqIVGe^tC!)+Yu0l`p(8;BbM66mp zEBrcjP1#i6M%4Ak7e$B}sd8*$s#?m{Mv%H67`fvo+Q&pxRpBC3p{8$0Lp!4f#`~1i z^Thd2dGznQgkFFpI3c%2Btu#rP;q>*|>2@@_b zvyamMSR2W%#m-w0MnwHvYFE6fk_E*VanG>E5e8L9m`L{Njt$_S-}>Y=wh&y)cAmKy zP`@C@iJ_DZg`@~d{!0yC)6V$Y966vH@M6hiebG{RUf-lJ zi9LopVmaA)LxK{w8AZKcYh3mLjEy)>-Bs{&M_H-0cS=}$$*>}~KDnfxI&7zXP7Goa zd5cZi`Jt^YRL3GaHrV(w99h?W|3N~p`vK4h6$3qEng|vP6kQ01z@k?f8l{e}?RTo|^6<%YMtin>vvL2Oj0nYN#7O2GRrq@HX{HZ58eiKT?r^VQ;AVkC?v&J(VRJmHgipRZhJd;CEmo~93? z^(P)-l{{(5wRILXy8N4?wCOr~fPgCZh$r6#6Q`<$R7)^4Ttfe38|4Rn7-7H~kY@oq z#cX}OlXsKU>*?e|o1ysn^bErz+7EL+e^x= z1AkKN_}ly!uIBnBVXLC>9j4x{kPO)%>sl03aO&>Zlry5aKG1kvB!{B!1@H^RV$2)I z#1%-`LifY}S=B$uOS!umySqdwzN$&9jkX+m3<)~(xAc7G#@*93b;Gk>MuGHH)vgz# z6w_@5h7qg2c0$7xEkuf}oTC0h=rg6-;Qq79aF9qDu%>|Wvdn3K(Do6uN`F;mzKCtD3UpQm$khHe8E?WlB@VM_!GK!Hkh!IKOD zeSpr2==3NFWwQ7iUZbJ_=f7w>rFl<$J|T7a&&a3UU>Yzsq2%ku8lH6XTcLFG0IyTU zTYuwMV&%WSU1>i6LcBHNFB6cJ=|08j(~{OxU}wxb?Es!ewY|HHBI?WF^mHYy|F+9c z2RA1%R9Kh1XnUAf&895A<70}gYK-%#`7=!?y*^A?M67{+SuejyF_KK8G!IUW9nE1v z?qcZ0Z#fOn@6aVe0SqE7ElX0;WlF`$z*uh_;;4N-_M z(w?YEMt-<-TV}Pfs-UvC>a2Z@P zbi64_diU^JI;_EumQdQ1>%jMy{LvF4knmq$d1pg5{SgYEx)_o`!84Aiu8qzI0P>Tc zT_5N-1Wyk+k!+c>4`!e4HK8w>JZ};d7#TdlBL8~i^!1PVl{|Z2lN}w+mx1Z%HoHqD zt3s$evhqhK3-Yqq6Jbqy+%#21JE|7<`d2N>S|h5p{B?jgUEm-<@`9tUlMnO$E?tJu zY@dnz0pJiTFNX#r2>)%ScuFhkoC(IWbDTxq3eCI$C=rjX5XHPCMp~fkF6+@tsIxxr z&R6I%#B;4RlZiuf`q%@Xyz zr)pVH%RRZ00DxbDSMa>D6)LfOwT-3@aQNIXEn8z2A&WFRS*qIb4$YtIWP;>;K`&LV zYs{~y>6ZM*)~sO3Ym*9RQ6W{-Dzz}6J|-$@0{Sb1x{xMj(Ww$Lb;LcB!S{@49|YHO zSfX$l=t#*(UuTQ>HApqnNYx6Mg}MK#!{IgXFW~vnaeYdx#Vsq$Bz#9zQj-sey04kR z(Ok%w&7MAf{&!%{tL_a^(@YZnzS57Hjrg;Sa|i3$SJS&#V{EPWUGhh(F82i94*;Ck za}A*3%1&`~kbMK&tHUG{nF(NQ-EA|Xp@x(b^M^9-OET8U#pItGyAUXwZy7gjQADI` znJLTqieEY&OtpDsrlBYGM~$U^4R_zxsk$=H`Fxa!ea7?`aEuc;=CyZ#&z5}7Z{aEX z>NSVfj(Sr!(|5d9$xchzYIw#k#QBz?-jtTiB1bF~b%uAZLf#xrcXpt8kcz|rhsm-7SC;*oFe!M}&%Eb} z)B}pgp{N1>lylvh-{|7*`D7)Ws%0nolQCdeFM^Mkx~px zli%(b@8SbM2USaLy@p+3^_REo|4mdCef(#luXbA;r5a3>V;3zeIvS*emB4k{q=Tyb z_1mF(Pq#)&t2@Y0PGFaMiw|Izt>K^YPll?qr5V}ZHa?u@wUU(-i1c$c;}8><)-(X7 z6vQ9An7Ld=KSRm)8uFu~?R?x_p>;lt3O{D@udTU0R(Cp+vaEY)Ymo&N7pj)tkA1_7 z=oDRof|9#oBI#xJ34E8b(MJu#167_*!(&u|20@qCQsq}sqdX-2q0I6e>>S6 zzL{OdRupFZ7o{}IlYLAca;j%7(EVy?2wNF{a*g7)W8(z<@Za%w)6LAAF_Au2m7uPSB)dt>;7KMHqBVQ zZdVKqt!|^7%Hnm8CClZUH1f zuJw`1zHh{%Gxp<%GUCE7$HCF1uE5F~IXLNT4jCOJ0(?AG{=>;~V{MlyeO z?->exvKMu#`~N!5n0;IX`t} z!~9vHpqdUDMwEFgSakPu$#tV1i?G_!*`_j2x}iq6rAn9>_3hwDyWOT)_{~7e1Aw5{ zZ1w_Qn6j12aUOA^ngI$`?>;=97t3$g4h+ia`278JQ@Ge2zRraH+-+zR9&E@*=GaI& z3>@s6=1q6!CR#e3Hv;K3>8b_NY?>?%+W?dI2MINJ_ZXpN>c@xf$xCR#&$9({{#VUZt^Z(Rk0fByP!GzBLnT#WM%qvw}f z9{io-31SVj?|)Ef-}R?Z(m9@XnIe;(;Wf!%Fm*&8ov+ct+kwnKs}!9t-M(d0HoJe`Wey%K9l5QOWl$p12GzqiRaqBLxuI8sQJJ;!|v?~_VBSe zgmytzuKtI=B=xvs_HqgDr7~uxyK351epf|EJr5{3N~l{cP;jmgL1h_Ew%QxNpwRgn zhp$~P4E~hy?RG#h9+}e%lk?@bOh6xN4XP~)F$1~UjS*^csZ@XziwR;^9 zKI8N0h+mEipCc67-Z)*7t{ibL)3E(CYSbJ(1OLMx5^gG4Umwk9kR6cV8SkUQ*-+jH zKS}^Qg$jJon=p{r9o3brCbVKNlZ~*gsi~iV;#DaXsyiRQnyCWAQ+)zy2#_O*tBU0D z?X}DU@9=^R6xH|KbyKd>w+wfCPQtI&q#w6t)uXI~%7{fWdi3`R?_vA7!`tl@AC1Pk z0entnzNWks+_ng){ALB=BVez9zDcj8`M5ViQfWLk9q?DEX>^L?b`vqCdX>HlxqBi_ zt!(QU;5~5WB+GbtXuFn zne6T0a%HU%nqe&do;j!WxNw!q* zRoO;PBopAC!lCMNl5G6}&?9ix)=Piot$V3KJ z>`or#--6WqjGP!A&y|%>bl|bt|iW_G+JaPh=Ql4~#TcGpdIpHv; z`3&L+=n{7K5pTl-U~SCeD_-)>`)!p#ypbcKa&IU+qH1t-J*116x!t1%U0Aj;5tp~4ItV<>g=yW zOmBKMMfPbJJ%1RNyV1Y7)wa=aAMkRPqC7DkjH!>uGcz_?#;DJqRK1Gl0tt7eZw30J zjH10fSNf2(Zi8qIE`2!b-}rK~l3N4WBUWVg=2!sLs{L6k{vcaNpSHZW1V4^^H@Wf^ zKHRPRKX2^p0!V7?tpWzijI`fM+(8uOnOrAPj8^!t5T?c(|m<`Q_r2mtWYf< z3^-Gmbd+zhs3~A19NBY)_f`5^pkr4p9F#(D_QC(Yc#s6qJQ<3ShmSMPe3%{9tRI;g zwhRGiwXSjeEco8bjP+Fb`7E2 zNEU?E-&7-x=z1eVgO(jI>@kK!E1@W6uKU0*s@xI}f&2oTkwi}Jb6ZXq;?z|Ee`V+l z*ABSX1Uln()OlzFL?(`Dww}Jz%5*AU;8bQ3ds!vrreH@;Zh3`ga?T62L^XadHd%pn z1;0YE2R)NJ+Fp6_4tv;vx3^(J;~&iUVyH6tan?{a_%hkX5l0`bW>9QY4(EgbuXh+- zign|wf-lB!uMvE_MFN!ktt3VSRXC&RfOvMXtZ;yHe-O?jB4g)9kcE{0Ad-osl zi6bgG*3uI93W0&ld-w5Dc?MXopZuU?-i^_V-n-H4?Fw%dUi%*aVL+b0zu>J_O&UAn zwlk?DtqrV^5*cH*y_6I^cPbSeagHnVi9QK<-p1xVH{t%QAcZi+G~n`}kQ|JNer5#q z{qG~Sca}e~x5rIJRlWF!uG>Xq&AMZ8cM}+kFem*Q?r9}ZM+eJauT0jD4GrACuaPjs z&8tNEfxl@D0?82gr^PlJ)%KW=9hBN+b8b-NZ&>Z*S6GQ4XJp5BasaPB@R!CvgPK=~ zA6M|y8rodkZ*TM5z!2$I9Plh#kv_BL0)(cHXdPfr6 zT3kzIIecwMZU~Ci$v?vsjKt()BEF;XPwe5Ocx%A$>E06Xb&jES(m9#6E7^4GQi?DP z3W+1Tlg`N<6;3%lYc`;kpV!=My{F!M?_=@G&}ugD{6N$EKK7DJwnljcvqc{#Yg@=A zR&EA-xjD{27_V*6e`${aUwDnb;R>Hyi&mXN#U-!;&Awc7Z>X!sBKFKmr@rD%eBI+8 z0{A<@{tmOc@g=055|dbC0D-OnWOQywxy*`zfXHxh^8vdj0!t5rUl8szYmHk@`%j4C znhe>Aq()OJpSUh!DmIlWa#xHVgwgCNOHvyRC6pT^&}cZ5>zZwcwvdM=@4!bG0i z?Xg{7LpI&AX5FKB6?YDWv)cgI$-f%EXpazS8YYvc_%FgfBZp7ZZI&xJ{66bxWoU%* zt!w4Zt`HoBduCDmIIN!xd>qxa4Rl_3+%w^7(?@)tF~!uA28#{f%Sr>&4?OHZ31j zyty)6L!_Df)|GOiV{vSdfzS}dat;|m;CzAOeGkIA)!edptHD~1sPb*MO>oB}U9#|@ z#IU%yfG_cW&+AxNiA98{u3OM*u;gDaq~P|!*wT``m^8< zhONhnZ#7>USX%f}`%JSebr?;o$uv_RnPRxN#lwI=ERsha4hZCN_=^XF{8`}Uw!HC< zv#8w?N2 zal1Jqj(IiDiNU^%>BHh9vHI`eT_?iw_>^io2gG@NTcfm&ve@biZ1)ior(#2T9cGP# zV3nO^$j>X=XI9d#HO+N&&m4R=pP8Zl&(+wJT8nyR{?e(o&;uX#G z4g1+`^%&xug##)fyP3(!&g?R|#&(Wt$E`+MT<)h*FI^4KkJ{hH3;kyAO7Ks_IP5j( znOJFec7p25Egk_a7m;}v2PKP20Xf=6E9Os#e*pd{d`-Nzzt*(7{e2PxJokEgi_6;} zR}RSxO%2o_9F%BF9&$!&?tc*Y*TWjtnI@Iu{{Ri!>Q=2frM>C{d?S4PgfxCs&^vV? zCeg^r6@l>&#Ges-Tdz;0cyGp^VrU>9W{8M_G&ndrZDfw)FOUoQryOEF<BO z@TQS09y|@=Xl(AhpCd^!-^VBcSteDuiDW>ek+2pj!vXlOuYNat4%Gf4*l6~D5xgBI zjHL6v(8l6Lone*N8=_ec+Hy|{R0%r~SY8nQnm#>vW5HKR;A<@>!n$kRHp|Uvo#l*- z6AP}Q5@8yg5U9Za0CZx#6;?L1%q;ud#QmDTXrG5#=h~w1EtaA7xZzN?y6Rld9h9w- zvI}d&9Fd6!8$9itVF>2F=Te%ARSac!h(-fgT?q5{nJ;zc&Bk)BIIGav-@u4;}F(%;w2sKV=* z>bxtVe#>%rqQ_Y9746Q2sJ!Yv&gJX`>~Xj~q@!yjpcM|EH!X(ACcTfxZ~Ii)=+o<- z2(a+3x8b(ppm72NxY2&-kf)@9dnxBd-d`%{-AXOTso-eIZ(H#b1xSrLF zC?a9|~1etpd;EF01g@L-CKnEki=_9juTU?XI=EnPGdhW-N@ljgom_^##)1 zkdO{IugKK@0D_YEui=)VVQ1mr2q)Uo*)cuEwAXV@BQN^pyMb6H;CBJ`V!Y%q99MU* ze$~Gmd~e~cFT~zH)35Yc3%P{DBcOq{pWd{VVkU$TaPPq94TIM=gr2TQ*PS$v(%okD zt-c>z>%X+5T851SUda{3wv#o^qa(gPS>d?TL~;m-$=xI+lmcW?UPIC$kYF-I{DPg{sx)Q;fs`QNEO?KkmXNS5Q__lQ$fj&hG~ z_m|D8rMOt|sv6x?s6WHzv3=YY?O&dM5d2U3WPBO%QuwFFH<$YCm+>;mYoXdja^g72 z{{WARm5j}8$@xi`y;!L*o(bo>2ft}_#%QmuD9 z5nsU|Vi+oyMp1%SIUdvTQ~nEe@pIxvook}_N8w+BEoIW?j^f(->IwDTN+yNGk;sj5 zZTzVasb7`yTu-j@n zg}2$;bXO8Xc-FVu!>Bv04DFsxYi-wihvJaXc56@(rK|HaFf& zQN&hFzPQA^_;QCjHH&jirm8Sx`3>qK?}l=d9A7B zRT}r2xq{3oDQB1&;aw|B(!L(S@gDgi15r@1B6*~p^IO4};nki*V_3nv5x=No?}sLR4NyacwkAU*u?*rgEXwg0=j9xBL~C z_S~`fOCQ01hyF01!a7fw(?onbq}p3NOCy;bBDlDYXrqORI7IoB93v>|4b}tr`85X&y1q{2%uHW5nJv zkH>I}b(X^CO1J*blIf7-$34}=^IJaU+9NR(Q_fXJE6p$e0BP%g40yuMUk~^?{{X^Q zdWicRQcY-$Ydf6CNxDUv&NN;^AhdC@yu`lL zVvBb$B(VrqNYk&EG$3T;I`yvz_%ZuI_-Er)q>11QsO+^8xSlCosoA^cGFq@@agK7V zRQp%+i>~e$((1b2o+4@7yItA>o80H`${i$j=bk$ATpp*cYW5n`UMBDsv3qZ;*eNkQ zaJ;R%rVR45Z5DrvW0fPSlhYe{7?S?f+^`yc!BjTJL0CQ%Atxj zxuc7_fT#E)o;#RAl0VqTx34qsul@>I`$l*U?%p4YkR5wWjW(N|HPh|NK>>WoBr6nw zMt2bE$2=*;cRn}&0D`=DMtwSCHk+)Ia?Kn-P*7S2~vO%k8(_L)5nOLzzivB3x zAb@UJ5?Mjc+%5y3(_i={M}%h4zhqwvd`bPJrGa#Rh&Cfry6~TfWM{h4?QrzTK4vDbAu5=la`v;{L}bp{{RdT`!@K7GMAdxjOq=f8b68F z;_AuouN@W{Ad^!`lg(4|#IQ_M?;&Gu3jU1vdr$FY{+Vy%j~RG>!@eZ4Mx5!(ZKw?| zQ-%m%%ij&Wziqd1o!(?-?%#IYDv)tsl>Y!7f8eJ60{D&MZAj@p9goF!PbiYg(^0W8 zTg4(Dk;B0>h`~qQEo!}T7+1i4DE+OzD{3AjZCk>+9+lxc>2|ZtrhTFdmt+}0^4mNj zQ~W938-DAy_~V&tf8j3 zj^@$wa;&WF$sp|lzm{(YYySZ7Qs0b|h<+Q*;ybAk%#A$Ewg`e#_rB2o0B67iV+oLX z!kX{2-}okP{1gk~`|5+@)}Ma`q$AFr=S`YR=&l|{JC_khY~}WVTXa%xJPqfPs^yI@ zeqYz2)khPvw!hcR{h9dN{{RIi{g5xTXuMbPZ^oLxf_0q;Nn;+HqG}OMaM8oJ%Xne2 zmg2_ZDHML>J+zXATrwx!ug+f`{{X?jR{kCEmb>APf?5stjjty=bp2<=X{Kq99lN52 z6GdW-OCigwtz{drI~i3#W5awW{{Vs>{{X^&c@KuQZ;aMH64dVFQ4WuNXCTyMBxhncJ z$2f|2VUF#^YYa9L3iVyWQj>arUwQoQd_(^Lf~9}KM1O0Wuk0ChJMCehw`(jGlp?PbeK*!?a@on4`euWoyrsXhZY{26k)@hgEJQJxAMZDrHhym9!xlB#%$Is7 zS*3$c*GJja9QHsN6b5_Dfh28 zw3|t}o?q;lqqUr`%=VEr#sNH?>~fhSpP1J*TCjTZ>UC4AJ8I6CLh*NlbPM~vCr+Le zztm@Ii*f#v3m@?G$GO=WrtjE87D-^PXxC4{J@JY7pt#J^0n_pjBsr z@=r2oz&l3S##=mb=5ERAM_T;bh`4H{TF()88zt3QXZ`o1A)-2Fb&z9ZTAr%zo& zPP%C~V{@>}E_uN1$4_dvr|Qt%UOdkJV?sQz7pj6kgnRWQeJkKgPZE)NHU9vB?v_C# z194?2WOc^}<>LoE7-Sy2*P&VbaMU#DqZb-WheMJUKpWWf`MP(-e3PjoO9nNn&fq_j@}w9XO0==BonX=z?@{Cx&}>lVe#;6;Hi{Wx59l- z;CqkR^W&F}^v{N09d*r9!&(lna+a^HSXzt8Y$cfaaNKQVkwT=5Hc2&ow{t-NcUjQQQ8Dx?grg~axe)5`yMOlfA}t!z%P!U6~Ex5 zQ0jjTybZ1Rw%5cy2JqZ*wwq&hb7=(DlV89glI0?6XqW>V5hSVx?aW4VUs=LjQy;H9 z2R4p3^s(k=d^d=O8Dd)9+t2#k{5!adR}(yQG@6_xc=M%>90SyCNY}1C>mN`4$&TyI z&}Ox>xd4Za5X}C#3{;$x(<5zurg&HW2%G-^1th=G-^E@Y@NSovac$vc(1QK1^)mB_Wsu1D$tw$7f+46J>dDEb0WQ>UTbBPj4sI_I%0(f zs9->^(JN*cf9F;{R-Ou{+CLCsxYTWJ++5o&+VwAUGHqeh;xs@<;4}2C%{DI%wD2c} z)h%x28IV}Qj4}s1iy=53q}TL!@XP)U*zk{p??$ch$Kx97_O{XnFz9w4V|fYw278-} z*#H3Hys)Ho2EO_DYySWQvi|^rW&AC@J|XdE!`b|43gx`La(Q)Y00H?+TfQM&fsy7W z6pWMJyts`me{{RAb zm-dO)VerrF-Jxn;Db(Fa@;ou8o6*4JyoiQ4he5ts5k`4AHT~Q8clLMvkGw0Yjc?$O z!mkC`$rMPbv?s+uBz7OX z8b5_BQIFvbfuB!${KdN0Eu@qzBO$tf2`3%1T^EA%-CxFW zyZCC-=TeV8Tm6+JyIhljk!~c*5-R##so0rhbob^y_wl^*>R-9J`#Z-U{Iq#v zJY)N$@&0(Oa_h&Q6w<9)#s>RK>>n&31kO3hI0XBFT*t%j*(dg#@#W-pJ{S0L;@ioe zJ7XFaqiiG#*KF5tTg8q?JMrmXpg#+L;F7<#4~S!nQ1Nevbk79u0f_M)t8Ep|#yH&_ zy{Woq`ZFhSobg>$-XebNApYje<(A=Te;%d0n@j!=;C^pC{r;f)tP$e#F@OnXIPNon z`d7UE%pNZB2ZBB*+u6-Fsj57`y-hPs^C!5Gh5#ZM!H}=G0Y`k-?hkw7FoVYg*QJKxde!3ou`4dW@W%~)EW%;5!pE7flKgc( zY4~ybLtl8CLb&)*@w34<8V#M_mu!~0qsJx9%%f`r@~zr!nHx#o%EKd$xc3bw;fff_&II-E2vE}h%S6VB$~VtLm>GfSRPpBiZhIY&iMDP&sv7{d^dP}dj_3-q}r97 z3mX}4N#dF- z3)_>Y$U_xAZMDHz)U1FOSlJsnQ;tPs{7Lx#04MC@sDHv&@rzv0{2k#bW()nP8VDk{ z-I5Y%qLH0gox6P4)1Tw@)3EV>!Oz++Q-jLUXYoDc5(#wqCu@M@$P1f`8@)BKu|D6v zCU8N+<2bKfNjIkFnxN9VM`fmH{{S2`r;^QXbUXVq6pr^65zP$6lyeEwX7dBN2aUH5 zrvwlq znoZ@to^4~vwANeg9%GEMkF>_dSjb`q=^~qeGINtrc;m&|e}=U6@b|^dPElj1Mu{YZ zNiLpA=gAi&2!dTfq7?#+zczuqK~>D7Mt2`Equ#dEsmv zoRJ9wj=gz%--!MZ(|k#9;jf6YJ=OP}=ck^2#~VI8wHCKgNf(+}3@+AkqpD;I?PU0Q zrpKe*Mc^$g7I70p9a9za1Dt=HTWds68tz9Qw@m_P}WwjubNG8F>>&wMis&%_jSfF8csZ(S02DlR;m;0QYF;kX?6e4&%MNZMj_%ex9f5w=5`>INpWWr-W(Nb1 zaA?+F3VeO7FN}N-uj*{~GNhLyPLN4wa;Qt}Yi9FAEcrh)O$qC}rYm;Dd`q#{+eEqW zm9?&!tV$w|^4|3%o+xlmZ{WF9d>-Ckng((gxJ|FLzVY8f!L^Tu9w^ilc!$9{-PPJ$ z#>*TgXTG;t0nBb>ZSzKlC;nQ$w@Uf%$3F#rA?ucxR(?MZr6sZp*{|*Ait5-ZHr=8A zc|#T?nB;|WGm*w??#)Y1@HdE|kHKCC@ioqiH;0x*Xtar8fo(adHtf*ZN3`CANHoFZ5EfU>o)j|T*Vcpp&Bb4*bt5T zfdGHYL+*L60@i$CsC+)SxXu0UqiY-m;DSqZx4AN9u)k>pCJN+kWLFu&P^{M@*H>mbTGFeUiU3tdOza<>c~1##g5uE781F;cYuY z(RApvUk2Q3*Ozh0_O{Wi%ElBPH$yAP#Yp35EzW*!mGS5(=HhwV0HTBa=5=}CBhHWz5Ygwl`$PFI-j@@vT7wu2*uG-o? z2jZTYajx2ce5<`kMkC(bxrIY{$&c?HxyJ_;b^icuj|X^XLAUVt!}+AKmefe`waQC+ zmtnqTjLmZ*KGD%aO5^|sL5kN8I`Q~Xolj=nq<&j`IsX8HR6mUMu@8$So_$&fzSBGt z*-veBV`c!BmQuTv0u+=abDw(s6Zm`o00ioX;aRo4(KP)MD}Fb$q*_j;v4&Z{dL$qd z)l;Sc=Z~bc-`f^{9B5zJCr`4~?qpJv+P%R@FnX@-u9+i(vPz?zWY!!%9iaGa1M3n? zYvB7UC3vHT@#pOG;FwSRB0eV% z1m17%E~fiMq-`UW+F`pJAvyZC;&4Il@!!P1fSwcZmx)%+^Tk?B8lACbk{gS#w;-I5 z580#h5wL#ysNKNp&3dnnJayuK6kHiB{A;P}me&YcD|@)(x{xsd#ujLTfTNwCy4{XR zC$EQiXW;k5pNL*18efex>)XL_8dNt>iJ==tcP-FTP=U_YE8GB2ON4oKlOk=}$h&o{ zU(aI%+FRbMkxq`>ZTZrR8ITIf)X3t`-TaHC}R-y2ZN7tY}A{MtVhImo+xh^H1 z8Mw$EdaQ(k2g+L>j75He=wARP(*#=QhrB_iTg2!UH0hJfvz@|@P0To!H_sW&pn49q z?jI8Dz6fdBHNKVOj|X1(qQKjIq3=@OTg^V&W?z|DMgEeGxc>lKuqaXYg+r{98ldH( z-24{tE|c+3!?&#*I)RQ5*=>zAsxTPG`js2AjBPEn_Ulx<8{!Q=!`>`{ZDUKCDegB% zvUwOmbj^}L*pi;OJ$EqU75fh_!<`a81eN${0%_Kl5~S9*x6{paZji_TF~YYbOtH2B z8%Wv70QIk%@BSKGB=`3^o7hV&pjqP@T#{YSK6ftUid7DWj18r|bBgIzd5mRBN!}+d z;QQ~5mj=_rx`wA?r0ExIRh9*cB!~gIOWV)Av7h5sB}o|rCmolH4}!d7;yaQ&Tdn^9 z!d1Ou^DX9EXyhsK0G3w^6$uOt;ABt16#*&aTyJjc9MAq&Vc7CgBT5Kc%V$}6tiyBN($KY=T!*iyjXp={D&W__!GAYoG9^ z!cPaw;yd3EYJLo#!8+!N1Etey7Jp+@j$wx)NWXJ3WdSa{bUUy{eK%3jH7I;9rg$g8 zdi}40tm9^$-rCLpC4aPj@WS@jOwF}75@Sp-B<`*<{{Y2WpNIT8d2R6;3H({9!2U|x zX~{5Kn|vyvmK&!ENWmpeQ~)-qrlj{TOEbzYJ`d~HSIekrzACWSH2I_j%+ZJoM(V@& zGQ!OpVB>%@jPaaTl6ZsRH-)eKNG<*@SzlT$#mIs^L+mec9Q>*#ZWW$H1mhcr1CxQp zL*d^QT5H}mzSRB|cy`aj(m)>CdpVk0eWpN2Vt~9&CRDJ*WPmp04!wG49~$m;*oL*@ zh%a=R+_ltpa!aSl3XpJ%9@JSe^5Z4J$vNW{q$^uSbGmNt{us~k-|TbXPlqLSWbrdOvDC(|e{k%#mNvIdcL6c6 zUFP2XqY^7F(5D6QoxBX6Rrs;tPX#`x&Ehp0o%D>P-b*_??h1mS-bu7FuG|1Jqm>x1 zfg$)<*K$6mrD(HBcyiI)T!+4dD;$q3uvJr>V3c8w=dE>8YF$n`v2oEDx*gV);eQm( zZ*Sq@Yj_4zZ&f|8yiSGZE@r=09xBXV|#E< z8*Sh$u1;}=d;!gNx)gechv98c;%%xpIE9||-c;H#^CWicLSwNiG2XqCK=FQos#>(3 z5w)LEup3q=+8cP{^9OG;aF<}{cP2+%w>8&NYxzj0DRpOC;J=E#FY)Zj;i)y5Uh347 zGwOfn{c;A#q9iRBg-Ep-Gk zuF~6%oiO_ov_J>n2;&$e zI!nKS7q(Mrn4~r^hea55RYlUTNA#jlS6wwx&3vzY)tdw4eYOHM}ug z5TJ6h?!h@Ep1+##Yx*XOs-1UCv;N<|j&U%(MrmV=ob%<&8sM?W1$uTo*SmtiU*3P@ zaN;phwU5;;OT|7k_{Lea-vem(8YRb+-)fG^%I@s0NiI&K98w$u)*{&FuNCJX5LUmbaC+A)-Uji$xQSzPSOLj=5P8FPuLYArzwq3*I$nTm8r#e<86YM&C1lF(+7mDS z$l#uPS4}E$vr%_3s;zAfUQIVrxwcp@;%Lw)@Zzz5;+oTK zP0j4`C|3;ow@0(EU9g-LJ#a~_=d{ug#c8a(%-&*#+nYe@7w&>v<|OvxARc+D*0z@S zS6e(J%(2SFwxW=wG2Y{AsBSpP`qq-7Wfx|1ad?&ib1(Kj*)8$JvO>^>W5~u%PdWLp zewEB>H`n*qDsE(j8#p2Xmg&#$Gt-=m4A*&crbjizGixgZ3n|?4vm2?l`?N{|?e01H z3g^5<;jakkYPz+qqYVCeK3YmQJCc4-u#Kl5fv9wBbi#Lgo_T$71K&Iswlh7%eGJ>B zY#xMf35{~PYw!O6gun1e-`b1g2ZuD@jUNv+FACpjdaNSrO~2J|q?#+p+#jAByCu1E z8ypWdI2l*{qHsQqy!he!M*hoR4)l#L;Ag}A0t-fq?E0ndp>(kui9l6T8G<*CR+sM) zEy9u6O6I&%#Xq+n?O*W+!8aZp*EA=#wX~c`9i5u4og6N5eAq5@X&`k_`R;ki3xY}H zbCdoWvAxuzt3678_$8;rEeqk|_^0Dlz1_CBCU`DwbYpX>!5m6Rj(A$u2(PCS3^PV8 z(4ff69A}yMQTq;jDA&Ae7K8BD;~lNzkLew$)UZswu=Ggmrm4to3w^4!Cj=l zRyZUY?7wF%1NQ#__}gJA@Xw2M%~Iaw5iE48&3tN;z*WftH~TwWD@ab(S(aij3iF)( zY2lCAqy7q2bn)K&d+>`(ra&Ax2KkyQ z6r%37^#1^Z{%6oX3AD`@;Qp5mo%=_8M9_wZd6l}F=IS*-LBi(FX!EtUfIOKS2WvMO zBkVs1{@FjVABV4EweYXRTlYw%W?L(Z;U1kbg~K8((#YFbjG>A|W7y+^`33Pu{t3bG zlR@zf<*$IeO|K`4W`JDE_E+lm(&P<|{{R!uwKJg|Oi-X8=OE)ABjMlJhvNO`j4bBV zw2L{dZPARd>C;9v35nV>A(}ObgJb*Afsml$xt%Ds(VQBh3S)%iu~~SU;7+qtFOY7^=Yb~^n5xk^| zW}3*`m%vSgLRb|9{J?w1!~Xz^9zO7|g|BtL4&V59#~aa(lODaOL7`v9(K{)7iS+n& z8#zSk10hC6L5;`>A$TWEy<-0WQ+Fuz{{SQC-5bP7;(rDmGvM~EXX0&MX>!l1G(uKY z8C1oLeo{J&g2omMINQLg4WoQ#W-TYfyE4aq>)$4A2HZPTpkffPg#a8Rrzs-7{8} z_8aXMY42raKO~cgLgarGQ7Y~r9*v)-d8}D{N#R?~M0i_JHj?YIvGT2~ExheP*ks}> zP_oZ6aBvX`Zo;^v^}9MD7rI3YMAkIRJ6UXQqmsa3nPIn*<>W)p1)Sq>{x6&9PJ3-P z#EE$|>=(LnY~iGv$U^?NmbgzeY?{yHG2yXmQ47!5vUCOiDTiIPj z9J%>fOvI_+o;bp!qPm?f5>~pk`{;g1-FSCY(X1`L$neW%qa;BLmrU`IlY&m(c;xQ- zRd_95QWp|1yS9Y~54CNJ=da4c%oqcn6#7@}CXN391VjG-f{SV1B(bycKZnMP5s{Vw zKBc5Z6t1A<5-4ukNf#eB20L`^ui`)WA!qy)1{>W&T=5@;JTGr!03|N3_4`OAxCf9{ z38Hi!n0Y|%NU4ltE~Ggn*YQ6PH7yR>ODk(>BtvKp7Ev_vT(BK>OBh#H^kC=dS5kiy z-AM1E>Qf{!1kc-T4B>}uj2agQv1i@%HT#v|{{Z+S_l$fkrr3D5_PY4H;lG9&CG^JH z%)ty=ovg38?L^jLyGtaI)qmsM$G>($mjgBL)Bga$Hh%w zojXaojT9d;;#sZt^MjR0<>-C+uPMH{{h)4jC5CA94L0Aem?xG|jPtfXEggvI*bnFZ zD*QwEyZ-u^FYz<^Bv?i{yNn(`K3l9a`{kL+(0By2@aADc-?|cWk-kb zGS)P{{{Z-NTG`$){{YLzzT>6+g>;|Uu`UNZ$L|vO-%GR6yal1&X?i7;K_JsL>p^3vTU)+NK4rXe$X9mL zlPTWJ32YkvR=ynn0Krss5839(_-pnI_)+2C0%=85IPo$zt*hKgj5Eu7ZF3Kr1{IL8 z-bdd6TnNLHOD>| zUenr9rkCAv>t}PFH5tvno&Nw2_$T$<<0-sjeRm&;{5^4}Y1ek~NP^y3CbSnPqeUIe zGZ@egxRw_Ramda_Z;8BJZKGyuBmORTr|2`O8Cs1oSC8|DF8<7r#UNt4Qg0;uTju^IjMM~ z#gAj*-4{u53tZXX!KqlOd^nM&h%=&r!!+p**5juq{QG_<{7Uhc#=Fa{W8;Aw`UKTyb7e;TgOIpsm9EGSuxOi%`wI;%K+gSw(WA zC1bpb-dL95K_?N;vH(dc0X4t&EWet>EKT}c{@s2n{{X>BKj56752uS?zxdy4HnFD$ zSJS*ZE9;Eg9}Lf?SuB7M+;FSh6W+d0_@Vy*1@rxq{1G&#;9rKd?;ri4*!j&J#)y#N zRBf3xNFtq?i6ksBO%TQzg?}*CmYyNkpqBei(64nnL?s0JO@;00F1!`ZtP&w9j4%X| z)c3Aod@-wQiE{b^UfeCAVLWMW%FqNKH=05-M~~t%Z63Ha)lVpYxKn?@ z!G9Wb{aQ<34SX2TbR9M3GngRP=L}mI1>#*d${_GvP_9o#2b%c<;@|uhqy7qM@opxy z(|#dY_#)K1EOB^WNVd0;(ZS4fTwZ;?N5YUd0Tywb0C8Uh_(#Cs5xjS8asL1akB9Xi z5yN7cnA+RTdLaOR%SN|Z3iRk}LeJs9jJ2EiZ8Yx;c$_;aR*K)l`klhGfQ%$YD{M0# z?u@oM#xsp4fTI_p6lEuSqv!7sd_euFWw@JBXVLXTG_51u>NdqBmPs76uI3pP31%gU zSit1q4wd8@?~Q+ITe9sH-jSxMBj>b%cm&{(WfEiZ&3)nGpM~ENz8YSQFUI~E*0c$o z(j{GAO}(%(JlNQgt;M`zW;xoSHyz(EP(a}PS)g3}JiT2f$66kv;ftHKc`a90((d%P zoNe4pBK{bB;wcqUAZ*A`U zJ>gFt>H37eb;KSm@a3Mgj6#G6mkQ8bK^WStwkZ?_1%TX6e|!8f{{ROfc<;h~6pKjk z@4*XQ8ur)9RF1=4N3@nC#^Cod*?qDZGo8C(pSDG{N#U+Xs*035qAF3hDDhN%=tFadi}o$l z{6D529NTEySp6Xpi^E0N3be>}T=A_E7z%yeFx6 z&-O~y+Ts%C(QWlvE+(5yo+Jg3X!@Jm+(I23FxX5)5XuLC;0Zh{JhJVSC`oxnL?%Z# z>$H#8CcA$R{5aKb{AZ_J_$y7+uDn!^1%<|w1jAL1PKs@0wg%!h1-iz=86=!$xhmzn zt9vteROa_q$NE3n$?*eA(r&H1Kx4bpqYA4%q-+7&4&yDjGCE_XGTHPZvTd}l4S1UE zd_@d#$m|JQ%Ve8u@+Sl|VfILi(SgGbz;^TB+49%+kkoz~_)Z^-+Gd|GiEgxec`xqt z`Ng{}+D4*C<+Zwyy2z*dv&*=H$gfM+JP`(?s9V_hit6smR6{Gm;^67PgNBic+lP*2 z?8K`RkV)q?=0!;}K3#2cos^y;(tJ(!J6#oJh2mos^^}l2aRHJ<=_4h?XRrWB4;+f* z=GFWkPmloS58sK&Jc-Kve_3OjdNa8WxS>8x32<52n~^QUMLM#mq|tk`lbemrBbs0zOcx z;EqW2HO(7cgHNG*OVxaP6}(Vs7PlI#Tb(Xu20MM(&er=p>ak3iKQQx7Pedc9&RXy6 zsqiXIe_8Rx?Vaa>b=`9dJ?@8pCXp<3iRvD|@C(<+SY#>m9|6@h))5 zIAZ`kmn9#r;4xZCI_g{}Wq7mXZw`DU{iePRYWMfw1YoiFm!x?s_G=AKU2QW_j4{AJ zV`MPOs0Ydx>LBSMhc@+9}{#}|qvDjTi zF6WOc@=FMkC*+9^E9?(0^5*bdY1i@C!5n3yg5DUX6Fzr^X$CN$3>>%zjB#9V#5>;u zc)!7I;2)0O7_#wahxIthUO{=LMX2dGEOv>Md6LHG0fG5(kU{h$-K;1myQaSH>d){v zO@80PUOl`|5a?Rf<%YDAre?A&7ED2Mmo|4MRNxLV5}a|I9y)Im$>V(n^|f6i!f|T$ zsOln>=Mdh1vUXgoP#hE1Ch5r;6~OpY_EFP(5N^Cz@DJh^ui=e1QnpBv&gvz&(<8QA zvZcM)*{PsXPnOMdKEcAK&z88a3wXQY@5B2ods6txpzFRRv(O|04MNs9t}HK?t2vZL zZj%d*+wD~FGEEVa?q<|>PX7Rb?>D-Khmu>b0(h%g7MIs-msfV0OorO^=G%sC@Q9JI z&~DtUI3lpLeHMKiPM+URNxVyTZvOz$hNSV@$}RECZ+8N`PT|4Y8_LMxh#Z`4Pvb|y z&l+h)`^H*jmY1cOAb2kC9dE2>C7a9pCBnAGe5(T-VI+)#&WrNrw9-e-zo>c|Ixli=d{3cck2T z5KXHKa?2@GvN&BNEO!HdQbq)hn6E0^Wj+s zY`RH-$4d3Nelh$-@!yH=d=29-hu0>?;qC>Vt!~zuo}SRE9RUGV+$UA#Mp?SP0|+3LF3ibDynX>)!$wPSqyx zPmjDy9-FFP+pN;*?{JoqGPwmm)!?`Lpk=z?j=!Y3KZkrX;NKPqHBTSkYZ@X$BQ=Jt zr;k24z|31Oq1deuIsX7z5M%O|kO9w!c+~qTx9*4nN&+NzGF9sySJzgD3?qHH6cRBI+AQyJ)<@6FD9&-`~GOd*Z8%KYad|RUGnl+r0>F~a%smNVsM2y-Mexym~uIzFN z0GuAF4Cg|73sGB0I{!*d`+lY+sS!-XK5>8p}A)AmyyB^s2iT4n0;5RbV({0-{RTTz;eQMGZeI+BxM`N+#t5UFu0Ce_J<7_&XZS*!xAQtN0m9;5r*!-=M~_-8u&l1_)El6d@b>K7P{;b z`EgomrGsP**|xbyaDHEzS~*VxAdz1}-QW0|!=fEG!`2bR*2p6!_7=W3E&%zXnm1-c zoS&K_o}`Z46{4Q8I_bG5X&3wrFNJ(huAA*QO107TT{dvnAVD-YGlxm$kcpwYZrwQ zKZ%AdKF3p5iby_dq#zuOvc6jE~7aYI>R7|(T+kHW66z(!4I+e432o?d^zC{ zjCz#+0Pu@y)&|lUqGwt3+3mG0K2sP6W5aMaiAei^#!GfJ%j^FD4(|Rg-^f?R_p7Vh z?TFjQDYu>>ouEsl$^cxE_m(vE=NYXcr1ZF)_P_iC)pZ{N$Dnu??(TGjSw6=w zOPg!(;zb`cGT4J6z;p7mg(?R-d-zv{bgzM)8rCD$JQ=HMw^nVHYj~a;t9Np^5-YG1 z4WqX506#E13bW%6gC81v32ASwczViBVi==Tmoxp2`bjbaJTW;Dy0QKp%EW&UL0A^| z8cl|a3HXC}o)5Y45E~4lEjv?ph!Q|x6ts%GHxguHkyXnTbj)O)=;$?n9sEkT(NBi8 zFAHhcIxeb86`aL)Zv365Xm0$uRP+i~6OMr66~Jo$02Tfx{7Ufzw)$s?e$REKqT0;{ zk98S_5Tk{b$;Xmde-S%d801%=_$yV={0*yWqs9Is)O=NBmPmAqY4oPI)I9y{Ssv~e zNaYeKRY!3euF_bX@$(nNe~sD&{{W5bH2(k?{3u-yU59PmmEFRhv?z^)gEw%P)PuK> z?!beCoZ!_uS9Z3gG}i3&KNEP%;@+2{iFN+~4_x@B&@N~4ZQ_+MxCPoQJGssqY8-+5 zT`FAz#r`eVygO&8*xK6J=#v7r@X9VNql=PuM+BRk6(N9A&~(b+*Ta9bAMHcq)t>50 zPZ|v^+z3{|R8G+xa(v|rIB}A96VDg}7(bs{$Hl*i`o4#0Z>#ICujz0|(|w)fd+T^z zi4MUhW%5e_hVqqL-n%K_9OC5kIp>Jw(Efm|_5EQMJIzB+w6nN|M-OA`BfT8ri_deg=O4E1}pO`;U9s1 zGW=BV?E2TkSYWk+`7vuf<@A?!(U`$k*&7YO0thG$0pW?oXjuNvAG9Ubxp6nfo2$Ed zG`I|r>biC9yIQ;|a>%H{JAhSwZH6`-kY|HS2TeW9rHGr-$J5>={j>Zf7o5Hq@U5Pq z49%U%Z0PvsZ<`*XBL&YNbh33huN3j`?WN(pUj0{Jw!hG4R9KQNI^`XhDE>QtDXnr( z`==ZRAXkv+-?O*EpNN;n9S_E`T;0GGZ*4B65^8aYIYBM7(A!)<>z)H69x8%c5x$ zYParq7tWTWZx{tFLn&qS%7S_NdS8J&ZTn07MzPdx?lj#i!B!Im6W=wwcG7Tz%V9g0 zjmZSrJ{%e(h`KWeeWS^qmj>3F+};#oB`Sr{X`0 zlf=4Z#3kVSSD75_0UHc534E*$M+&TS)DA1qJU{y#{3bfhzK`)U!TQdTb1mA#4A*v( z8%d;Q9$%NJTS;*b&T)m3ME6l#U&6omDL=x$hu$F;ejV^-)|af^F2f97V(u>adxnkB zTO_J^4zUtJE0Dc@*RlP%uNkfNeRIXyJXX4hQE_YHNh7zri61{YC8>C3Dsl3W4_uR6 zwVokcOC7LK*_~uRvUi63J*-LM9VYumwuK+&v(+t=P>v?!1BixNW zul&uUXPDF5kt)7ae1qB>Pb^=H`L68J0NPab$yX+9Zh?QF5k=Hcab zx`xtd!jo>$T{2A(3UeeS)TucD6I%9`@9_Tn?EW+HMx0~Q*Uq(`#_C|rDv%6D&R@6~ z0#u~(A^W6c=D#L9Y5QJ$b@7n6(aqh4ryRpFE!5)lNHOw}ZZ^xgPds6UYvo-_#Iov> zjW@+t*Y>Ib-2+VV#zubZQC<0x3}YZ}+5q;g>EI^yZpIVDtLT2r`0w_`_(9+p?k{aL z{YJx3xo40y)^x^yFy|!}Hi`H-&fYsVdi>k2f5Akx{eN1PPlpz;X>6(Fmw0BlG6orK z_wcEO1~Ii{jDyJCo-5)%40wL`P>x+Y!NNP{XuQD#y9pU`2|irkxNP;zdwzzx)8Rc@ zt>{)uRX%xjU4vpxw=Q<*$T1S@AmW?OI3n-l9MX!U>G=D;}i3 z%F!-IAf7laiu(uQ#D5F4d#4FwcdlNkD{d~V{JVac%QQ(g+~D$1a0gDc^dkPyTJMA) zy3;Lw9mfh>qO_w++p(pL9kThYv>^bIxq{(OOxCa6_#^rp&S}c>XXiqE4EV1bZr1dR zyXNyZtf;?iBaV_hhs{uX5XDDRT%Gs9{{R(7BfYhy&8*!DBmJU4T%Eh3B&b}2{9_-j zewbQ*)zDnpBkJ-?XB?6#dv$p4CfkhT&9@4R$;jTtz0X?mkBL9DM4lwGlStCMJesY% zhzn1BAf58Ojkd}}ih3R-U!gU`F`MmfmdYron>q~wfF zU&MbGemr=$!dHF^@h-JJ&XIi>H*ifZ^FGorlSV|GFI}q2yx{s*h^y%~@hmgTEtI(| z-cdHO$hgK2nYjlY)Pw1Y_0O{SNp_=M+}p~E#$<*;Y6v8bW0NkUwpElL%CU573#GT7 z*F&~9_Q=9PD#&DZ$m}j%m4L@PWaHDC(lJSBijFz7pUZl!0bO?tN;A(QN`GU~4);{;&g5E$}7$Ojp(KzZ&Z)eWrZx_#c@Pn&R_ zZV1oI3apV5c*ribYVyxlNaFi^^In#9M7Btl0Q=Y~sN!d5Vn7NVcN2vi;+@2iu2# zmENunavN_ToOk^P{hYsJuZSKy_=_&7t@t)g2{hY?ev@D_Aa;$dq>POI@nMe~VNQ7R z@p+UW`42*l7IxJBTYe9C1HpGUk$98E7MiZFr{2P1dp$nRTay*eL5%&X&vb1T11kdP za@j3`gZ5{`pMYNnJaMQ7__^@!RMGVNRU}Dcr^|U7D>gSw)-biwDBu>8g$Fx`$sf|+ zgnwpF**C-9G_}@8gKxYOs99VKm6ql1tu1age69AA13sHFGL!O5GtWRrA6odM;2(`r z)%8ydU0U7gEW%i{yOBPgfE*AbxVLFkj^MSoJ%|W=L4ETeocnU32-dl@Z9`jCJMT33K*A{ot+g`>uDF!&M1id~`PAli1i+}J^8=1T$ zzYV?>_;w$O-Y9|{z61WtH#XKj zEcm_f)(uW!9Pam4_AjX$ZLX{H-Py$R#z|f2Ce_+U@U?s$r})$0?}Bu#Lr49cFYTp( zX5td^Cb@HL@u?;$CA()3+mMHHN&_g}v}Bs+g=^~d9ZGAWKNuqL=f=N?S_Sr*;)vn+ zeQ9Ag+Z#@>(rz@EqkEYf1~BYkW1qfLYh>;!p!4-V?ECu${?hH@D11?Os$E{_tr3-; z7B$M5E&kbg4ba+S zid#Eolrp{_E}8Pk`I9G)7V!uC6_4PIelL#u;a|fWe+%l1bgsINuOzxdPEceC;?wf7 zp$G0=N86E*E3INGOWlGdG&Q?N+W!CvJ`n4A4epiV&xt<{?#=%Ihop{s9b!8Ob?G90 zKzOw)Mw0FfcV>l73GKSR;BSUnw}dq_1N=dT()0$BD;<6~b*GJFC5F(g1==A$bgb?G z;0`fgkA5iltN#E6L-^NmYpr+>#THs6rlO*IdqHh1(KHgS_}&?9LfmX+AgjovFg$Q; zxbTPU{{Z_}>l#(IweiwBuM`QGrNyt272H~@`(kUKrOY=GA6$e?gQz^~p2u)pwc!kt{(YTAn% zmxEIKRn^s)j4t(CO!JMm_o*_T*V^0P>8`~^@zf`` zcWiD|QqxQ3hUD^*sLx9EPYQm+`sR_T4-x!o*1Suj&1~`gqHQlqH;_QXBt6aUme*>K zjC{uC6bsj;O=bSjzBtri@r}-v;dw4RB#^j~b%l=iPL1}CH(c2ydT~Z1@o*bGdW_fF zpRK$9*@5X8Gbo;^PSz1h1<;AqfB#ol}$`-`NMei(VqWitXA#r`zfm78-sS@d{d4HN0L*jsi-u4WMo$@_u8t z@c#hW??1HeU}-KJ1*Isho-u`TG8BLZ3_E%X+v>Q9+VV^K^FEzpsl{DCxqqGi03-TY z@J5mU00!ay%eR8V#M;h-@!Z@^wk=yz(e=*}%8FG%^4iiFbjacaHd+*nAL1pHll1q9 z{{Y~wKk!Iz+0#gW0shS23}<~l%1G{^)czbTzLSX;Bq5qfEN2Y4K5S=neB&+7Kaq&^ zTTMh8tzr}Bxdew|>T&EzD~xlBvf6g1W<=~_w6~P;AXYJi^fHhK(;~B3JX^fv%;lIl zEt~oO0F{ybPk+Qu8rGFPy{Cab5o>o^Oq+$vYg+VcsYD1N8WxTV+h%@;5>2;C}3OMFwUO*ezQL!fwTOOcslL7_o4_m{ZsGu*t*6tfjLW=nXGk&u|;zb5#E7ut+x3{Zxi&M9ITVYHTD6!3Ykv2-8!CHL*+t=%C% z3$A=Wrtetf*F0Bo7MG;J?7?=;J2dma+~l#g+Hr!w)k`nK(|4ERXYD4|kw!kh{{RIy z{{VuC>-Trse~f-M>o?X{`-IwjmReDYByikY2}-Mac&TcA+i9E&=MjGJQ>c^n5@60E2!%Xg?IgZ>f0e;}?VU!!%ir z9}nrb{vwRXz?BPjC)1;J=yDV|BIVx$w5B zE`t@Mn}W%^Pg&aXXpVRMw@>6jsf)tW_&)%IDmA(MscH6Bej3w1v-CJ^G;1*_ zlVzNKTuxkLag8w!;08DB+`|Bz0a$uZiGCQ*sGSo)c<0nDclq&Y1q{+Qc@jYmT(EDw z^5;BzSNCCI{{RGz{{VtSc*90M9`I+w%Vk|YWJ`#XB%cJW6?EGRSYp$3E7@&hNVeoKiu}g+G9ehin3K4FtjA7yX0%tm z6l?6AwUhKe&e{)${{Rv#^?N-o*TUN6rPi&nZK2dO+sg}y*^WSpE4X2K6aqeFI2@8d z8L!bFhJWx#Klmu;#qB2BQPBJ!r0Mq8B;@P*)vOEl^^oEqn=oJ;JYsnd#gYx?{TD!v;5CcKoCgN7`Qr{{Y~FpRsPWV$;L%YsLN~ z1epA|ZS-w9En9CO!!3xoL(_7}$>WOtj{HO6uMT)m`#rR1t|qpf{HuqzR!D>30DO(8 zBV6^v94X5JIjBYRd7yk;)~@_mvPl)LpFOpjTHQ*c=8|b4c_nfcv6fxW)PM&S=zs8w zYY${}{UU8Ld3XCY&3agc*<1~bU4C5^3j%_5y7-!ncp_#^)S1fTtb zz6IUeUVJm~jfKR~x%*T2h9&VM5X9wUxzr4ocEn(nRCbJYF`U=Z&)`pmmeQRI$Da&z z%`Vd7832|&GREUfnh5epdzD2*J8()&v9k}l8x4;~)qWp%hVNL@M}oXXYik^Fq(9kr zaiof=jk}ie05=e$AY_&!lg}0OuZVE?H&&Oyziq!diIaSh+@vr?Dl&phUSgj;0B$jo z4+qw;b!RT7+^OnKpm=k^{ut2P!=DUoqVRf_NsH((K?Fx=+mmRc%P7E%lnTw)apt@~ z$3FpduZW%>eJA3KH(wI%o^x}0E$5OLqlp|k!1gwx7nay?B#il?1@Xv=D z>s8czIiW@2Ypck&3#lU}6~=tFjs`wbu{_DOdFh^pvaWTX9{6)gyVpJ{v=+j}gktAS znnNAbAyk{9sHLImHzQ?+2T@T@a*J&{3F)z&q5L8EVWGio;vWk5N5i@m+|+Rj)Z zywezrIy9ED!dXg^aAB2r&IcTJ8vd!E_}*Lp00Vfnmr#Ulf^9bD4ba^xC_ZBgk`?*M z20ny!7_NK6-wHJE1litM_yT){TdC2b)3q6-)GV!#FYgi%S~gX2jE9xN9-T2t@8T;< zYJA=Cci<1~h2xY<&yD{83UnV9THV^Dx{kSPquO3sd5WY+W|2$YDx!=6(SQ_ib6*qq z=l%%I`wsZt?&n?7Z8hHy*<4JQP)DcgAuJXrRm2cQbdJdz518$6MotJFKUQ?@dtC68 zFRJ`PfqX9wyv-0WOA}k%?)!|AMi0n1$bT$@kaO0&>&HG5@Ry39{{V!R@#h+={`~5i zMDf8qg-BDn5?(o!F3=K1IbHz+k=08PQ9T{OwH0Nd@b-`Y00glA0D^V=J~s^C3GH== zZJZ|a{t-_+zq7Z)-8;iK(ngWX zCW&a8eavl*%BA2>HZ>uM+UIFJ^UY#-!{RrLGz*z^Z3j<-Q?Vr?j^Gv=jAck0o)=|_ z)pqga5(ivlSIt`A?O*YGPSoyg?QeP7AeKBAmulw;x-T!4+;*Oz=bp7wb!w}(adX>C zpQx9XdV^Yhq8}pFRy8bjA&H%iesz%@w{m#~G|A*1)puBb4ruy#7icY(Sc;p;;x1n* zxqaE%rNP4GfnJA^&*84Q`&0O@Pu9(jrZp#rjfKdSe8$ie7w`Ol0C_m#x$9si_b#3$3q*d&Tj}=_PcEh5 zomFoV2*XEdJcX6qAdP=|i7TKO`HwlySPW*ktB(=d>oH&WXX7u0C$qH>G}A5gHn+N4 zMmn=jq{p|R%j{v@YvXSZ{?R@y*YxF%=IVU`BZz+EO^qkF!YEukPaJXpMijEok6~Tw z{A<#*O(4PIJ8Q4ATt*@n6NMHsF_S0iI)^|N(`(Dy*EG^sN zZnYMRZwvw}dvgk1Sjo@JnA>c}1BEfna0lJ#RxiA8Bh#8)UO6>5Hb(bNr@&^mS8_oQ z3LmtH#@=_vMo7*<zZ}ST*`-dyN*Xov9w`QX-Oa3}Sqla#Uo7++$|rzSE8?f2c+E{{SO5UCTr3kBVQmr^ETK8XYIYnwFcbScUSW zp5>P1Fg{P+M9UdgZg6*u41?Od#_RUY{h+*gJeI!<=hUZWM^#S<|!e@b6<4Ze#siz-Ws-^O^|%WWtkCHMNPTjaClrdQ_grB!C$j~iZxw7;?IM$eLnvF)uf4T^pN(f z>{DwClvYUH)E<(qs4QyZha-T!DwXo9@`(`Ut9(BYrtKK#MC7R#lJ917uwvd63 zlo4Dnj(#$H71z8o{hQ+1t~B(#nP-qK$*^+!aIJ`$C1aoAkr{F_c@-)$zx8n{mR7aB z4(r1{9Qc7};@fL$ont}q9)YONO~PKI>G#%Al2{o0zc$)%tODn99A_k+4iAq!S?~kK z-Y0K`o<7r|pHhk58yih(87-D+So8KdC)+HWx~oQhVgUfxk!U{|^lu4hnuJ~#*Y12} zc+-Znhf~1>3FZQ-i@@v)niC0 zr*)}^}rmi%p__?{g`<4n=D%^Kq2B31K# z!Khj+i~>7DJf=C-0r{CFR$va;$rwL1c-Q_4L*cfASJC`GqKz&MUDj)>-94hwFN}yl zR}(MJPaA%8ZOg$YrFgcT`&GkncY8D*CDb)ra|mU%y@ELJ9r~F3_jsVVJYij99=NWh zPOkR-Oq+x1ew1rp3O{8nSH!LGr^a`XHoatArIJZCjLPJHthaXZ%!C|e<7OR+=DQd? z347sRhf;WR;Z4k1_Ol(yEB^oqRnFyDU3iGeZx%rq`5DlTa>cP>1vcn%rO7K3gs}v`VNJ9&kQZ9X)xgpAo-le~R8Mylrd39xa2ymPs5?e`V?k z9leZ_D8V0TjSa{y-FJ)*0+EB5jT(b;jrIIb(HY{r@UMj@@o&bvC_Eo)qdFO-)GjT) z!h!z))thP6f)!>s#?^Ai8*^VMYC2cK`+pEc;!lU#_N8YP#KPv{C?^;8H+gK!{*QJ< zgCOU0G7d=MzD)6l$Bz&EHoAuQ#agY{x4elYyuQ<5mr&Euj~gx}&yd+UA387t8NoHi z=^wPu!5u&QNxl(jG22}0P^vB7oLT&-7eBvCDO>EjvdzZT9-xpbNMYplGIB{={RFhv zyi;p&JH_FPy=zEm7s|WQnOaEVX23T#4wmz%=btamL5{VhAA>#|%i}Ab4QRe1hr;^g zQu&t}WD{DWq>=&q*RcS)Nb7@<<+}n2&U0Uz2je&GA%0dJOHi`aG-OF+Tc?Iw8|5jC zE7+luDFGSgBl8}MUp4r*_O|eMjI`-=Ux^82;tShd%LTT%Yc-AispI#MT(;ZT8=sYx z$5Dj>yCZ~~h?QvE{)RN0tM3SDw^nzMSop_Ld6d|-)!*1*F%AHb2&8{Ca8Ef?(TM7L zZwC1LRrs6ZsV%j?0>|OqQ^GMV)!|!rk0&yS*9;Z8u6fX%?Ee7FYNFY7{YiBBzLj_1Exc*m?(sJV^fl2cJs) zonX`aGo@=1CZ%DjNj&V7cMd~~`uheo-jtd`anQfMi1!U@LLi7sAWvVFq9oQ#M&&|t6nuP#7&^|4 zcDaAxl`my>*WCXA%~<_n_=)gK_IU80hkPyY`{R$qBjB5l6Ef;LMw&0-(5~mXWy`0T z42rWdGnLr;qh<$aHA>U=9`V0|{3ojo7sW&3My6NH(Csygh^#G#F<-6CqNB0-f^22wQ*Tkj z^&0Yi>irF4h^C^y;r{>~(fZHu_uy8gsN2};`gUQA zEyR{OosXJeBudC5n87Qi>_$Lre5?CJX?hQa^{f3~z@Hx?j&C*p0ODVN_I+B$4ULD5 zW3^~zjEoff$7#VTLY)3X_{Za)?GNz}RkqaiUx<37*CcQAq`$nhnM(Cmj@gwm-N0a^ zaM=eH!%u6j>X%c`<3u`*#l|sk@keUsI3TpJD(9XC?4CI_=u*oi9a}kS;^O`kedpqD zi+(S&y)k?_@jdnWtZ2?`WseePAg9^biKNFo`DFCkYv!*IPBnXo_0Jf|4BtEL4zkAo z0DGW{W+X5m=jF)stX&V`Zl`>!Ev?W*S5Y4JR~z%jWGXg*d+q>tJ?rSN3VaRFEMbeq zKN7BEhAV;>?Fn%VvI$Ufa|haFC^{J!sOJRNR2(68an!V|c~!5A?4He`(QG7^6$J{u zVTc2eK=}b~csLlxT8=F@!57w(TgBnev(AhTEYyg6v%w`L4bE}Ok(19A_E(3zG5a`p zf6p)C#*+HxGN}`1X7brhvouT&{B2?s;2eN)iuC^ghSy&V?Ch6RyYPfs}_nkb#-fL4xspk3y6eQGBG)1O_CwX=Qta)`q$`B!<}!#5noB9=o%E4 z5;BKNP_fSxO^!n(VI?SglfNF7^`432JugG>>kM&s!bT@XJH<_rSmKO`is(vDsm9brT;nE$eK-$9KyWz{cIt=jvL&3rX^xA&h%sIYr$K`*1E>C4UUS>XR3~~-vg+U*%%l1O7 zw7JcP@O zE5sCxZ88JLTJ~LM!Dmmo@@;j?iC{nkWl?RI0-=F73+66Ha!RP@j006Q3vEkMwT9os z+DuxSLAhYQn%G^tF~grQ@^WwSb%jXXOYrm1fXzaWX0@zO^mDuXE} zC!r`v?~pT&cTn)=v#IJbjZoZa(<>0`aVlIXJ4gUq?tP$tvdQ?@v};!SmEDZ3q!R_d zm-8g*llg`=;FTFMDCeB7(AU;~v+wLh;-86{N_fBHHmi5w&jrK-L#d{kCbhUs5(-=f zm_Uk73reaRw@g$^5gKajaG@zXBlBa!{{RcTckv^{w%!TQpr2Bj?G!W`ZK5y=hlh|% z(#f@(8;bBfMSnqmu=ng6`zZV^HXc2{zPQ#rd0`|zWyYgt7_!o*!DosK9ZElw0OQSK zBmn%5fY;EU2Y=w1nof`Kz6kytc>DW*N!3H%CaHTRsC%S#!i18^7AKA{Jh=Y=a9F6r zF>JBqbwBteO^1l|>%aI&wf%h|hG)y(+#7|$ld?-`npS0qlk%eZdq*BvuQL;k=ekbF z^r+B`cRyRa8?1O+R@831H{%iEt!BxsUA+A%-_MnS0!Zetm`NBoJb8B#?mPq;&0qL+ zC+yLpc#(9!h7J9Le6ojqC|u8_iC2-ew9BQ92q&({f$zG%7(6-u00g-B)1~TGx4r=Q zlXVV|LT!TbSgz3a-5a1s10CI;1Fe0H;Lm~o02}-(;Zvi0TGO>35!>mm3^VBs2CWn= z3vQ0!K`c>9vJIev63D>vtU8|-aCgz%?wViBevEjV#(x%kD${BjWuBXTXCZx%L3RC| zdJ(x)3v};qGoSByu>S-{4J?YLcJkyrpi#h=O>J{NWfgO{ z*Z%-(Pl6g}ha}Mc8EUWMeP&iIYk8`O?wO-;kfH2jbzq$BWruO@#EjR(e-WYhKk<*m z$4dR6JPsz8R*miMHK?zJ-LwrF?m=>}Y`=@A?$Pb=Sbz$#$^3r!^W)!+XT^HHjo{A$ z>AnR`b|5at*}l#viV)6>v)ep&KPN5$LxM@##DIS|f8i?ewVtT!b*sJ1ai|g-hWkVT zOMe7W>~KBGei^S?hFs;X{{T~(ScS4j?dOYrE&jrP19eHfDe!~h4yaz7*ANukJKoh2;2h+i<&0K~@JF*bTBZ!pj~* zC|%!a49)y2(!NO4e`~+l#(fSi4(tB_53D>|01oF;vP-u@pkR-*Ixryo%F)Cz>&0^# z&+SX_Csv0|(=@#*T`u27REi5W3wS~XEU~4X+%qYR5^=Pl{{U}*2I~hqYMCyqU60g% zg1;ZXWbcT2Wv`31S@k~#TWMurj_oh*Y*q!30(^;Jm5~uoDpFKj_C3E{J`;Y>dXIqg zyX{xN`s@5bw0O+geEPJLBf$A8hFheLSf?dV1?9*c8z#RZe`O!rN8qQ0?QQ1xmoAk) zi*;+fM{T0dVR(~ae7IzV*6P*b!EMhO4Z8p?2_vo5{{Y~qKd?`Lyk%{9;ZKBDz7o`I z?iPRTDD5VeMBBB+jZ_ty%v7nfk@A{@H&R;nD1M zzly#By=xd`SdO8j&ODfeM7|#cvjJyr|Uq$;uYfa*BhW;jk+TKDGuB~J*tzc8hM3T_0 z+-lqn%w+4FV!ofWPXTzpz?-~(;QL)uRJf7SShQ!B?6U8~G5}+OLmu2SMnW(rZsr3u z&Z8*#Sn5e>Z4apQ9U9u!%TBiVOK+!L-)z}5x`F|7b07c-4A${W99bNlv1|tbU{-W4U3`F=^aMjLQJ*l@$9+>x7`y_n>Z(&g_9T>L!MCbzQihmWtkRTZ25{{Tui zmd+TR%DleY=#G6^w{7X%TDb9rloPxW*=VY$#X_;Tb^sh;w>yui@79yzFT_uTo*&dC z@V~{chxh4aBdXf#THc=}#gn!-f2>7m;*m3*z$oCAd;)9bxxe7Azpy`tC2tQ8+7IFV zxUeSQ$`izPd0!^qnnHeDW0Fl{8@*yegL@G5AUU00!ylI;V#rzxa>w!shPcakivE>68RJ`P$SpMw5-i$gx2Rfq?Wf#Ku-%46!h0yyw~U?H@+HE*BTqP|vE|w2^dMi-&h-Wh3P+CeT1V zMSahAuXvi@#%SF#z~=<*lPY-m^Tm3WkE81s3*^rh zo8;^tq)G-?)19!NPE=b^4DnWcHFa~g7TyWY>p^Sv8LwD6Uy=w1QTFI^*! zG_=s~B}+&^URpS=<3e`r`?1J(ard!W7Fy-7)ZbZ`O`l5CuAS|kE7XoRV1ON}42-jk zHw_te+s-q^Wq8NpZinz+P13CXH@(DS;e4jnEiCRL)80i23r@}+3qs`KQb`K+8~SIf z)OD>F#2Pu%-qO=rv2{rxhH|qM;1u$m1|wnA6yw{ya>ci*cP3G`==1%1!`E6py^fvX z&2ldbTFdNqBBp22xIPL00WfoG+vTZ7t7o)P5%X93CT! z#r`6fPmcE9CV*U|h;=yCmjwio?^$-|q>SJZ$2hMuZ;ZN3T7B-Rp=y_&IEpY9DD5rd zv(%Ld#@F*6IHXk>$&Uo!5QNvxP_MxqGgQ2T!B#fv&uQK`w(!-uTi@uGejHeF`|mv#(9CjKqjp%z3IW=-K=v}sS3lHXB+YorD;QGtqYDN;Z|=Zq1>a~jvi4-qbzXQO;H z@dcNM(bh2RY@!z-=a-b=68*~Z^&YfmX|lpL8G?9I1v!TGWC z9(IG$w~ie)x)}R!GwpvE{@8yA{t#*};jbENlG|{R+qCm}cCzp{7;fchBw?PQjmIA< zkz5^@?W6FP_VV{s@Q$B%YpUKuEx5h5Y3H-t_{8@ba~pW)AgIA$i~&D4CqI`d@qhMI z_-}m+9Z@wTNg7wv#Dr#(RBI z5ccUX1Sv^I^B!}Zu0nbQJXdsZQkID~=4UKKW3l?p;qTh-;*E}*Bm6{dIw&E^NqeI- zt8a7(+6;D4$29RV`^=_C*faB-W~yo*wvT|U^!T-ne^sAR`wJGfm+d0c$vOFud5+#< zAL5Esa8K}t!5@MCHT}0E(Qj8#w~3ZVK3sFypFK|1?2)pj&YTp-sV2T}pZ13yA-#~^ zXqQt-aNA|QmE(>=>Ns-|ZKorr%aAxMafIJ`ULFpJubP zw7Y0<)6aQ3BS|S@GY!53Wd?JRF~H{oyRH8K;H?&3Of!9_MTWvRD3Q!TDe6(-SCTdZ zI4VFrEBT|-&&3ZFPc@&1E@8NhS1zfr&IlhcWh$Uxkfm>VBMPf45$p;>&w&BjOIZZ{VwjxqF3O z4PsZ8cMN5D?5$OnU{Bt|4t)#p1JF5$s2bS1jouIR+Do<7!1Fb~z+CTE`*p-+|?P`BOJ{tYJ zbblMAr23wZYdwvWiFIc^;M?U)pC~INteYfIPdiB*f)7KvYx`UHF3VGn>rnWQY%K2N zZ`^AFCzdwJ%G+MsEH?6Fl|@-p9+_^r{(CO|AnE#S$4~f$sl($LtwKnKNZQWo-+*!F zN4iE_{{VV0TeP$gx*}@683udnN#1Kx_&Lm8pjL6H57O!lZ^fmtwfCz{euq~zn|DmlUR`FG+U#vKn-v!6%P zE^XFS%Evsmtu(Ny0lryfloG&l2FJYnL08O!!vTSd8^8IB~n^3v8|s&E_39YGNG`ke>SJ>{S z*W%W6xS_Pw?=LR`NDFF=A&js;C}fPs4&$Gf%1i(VDl4PYekfb`c2fqqX$8g7sUymP z5-h0slt{-TJm7)}Jvpy4KL>R^KJHyg8D+bKKbz!*DKK0O%-ix@^c^}?`+peR=_s0L zu%A(8EE?3WpR)&O+`CYwa4=M_9r0K7Xv;{m2~DkTeL^{Y-MbeBB)G)t ztFst8wzC2_$zpjuab4ZV?M?Arqm1a#$!`n(^Drz*yN@G!vcBWTLJuFO#dh8;u+-A( z0So98g)JO6Dvu8F@__NL-hq+F{gBoaBUCf_e(+Z0)AJ zxKpI6MI-LqjKU(h;37v7u`QlX4;{`1 zFej6TDx{Id3Ek;~-`udj_jbV9Tg`H;g||$^NxL3|EPXo` zSOHroko)x#4NCsiMxAT=Z$=!ge>ZK?Ct^&}JRLc-H-vQROJWc(XI?170 z$7<@E*v!6eK9c1&0oNNyKEk};Qt_w7OIwLzhfzah*jWrNE)qh+AiCpWJ;(z9U~${e z3VW zmMO{F4m0UO!|SRk)o*5V*Iq8w_1kc|m9ne~{{S__D8918@VqW$ED2UA9OZM4W>OJ{sQEa@9Ac^Xm*NJss7PTtG(R~F=37G~(j#Y(=t)9x z+!2mOD~Hyvd`tbDvKgUxhwoF*EgXP=0r?g(Ng!u}0PDqeLk^PAnbp4L%WB>!7m?a) zRu-1_*8GKt=4_6DI082H$j{ci&sx9mcCV-%9^+KHytQgTAB}O7c#_*ol4&%1D|zBklCZ0VUEQ|A zFfpFHiO)5(XgHZUw)8!cKZ}19`~?ZqyfQDW?M!WLvS$(7v}A^8)t~1mFb)$1NWfr6 z90T~9&9p0jEZP;r%mc}0?<8e<!9G-Cs78zmGw(M6#X(sg}+Q}Vuf#X}R z3F>FW`h2rq3wCiM+s1aI9*db>xjzr0dQCu|2@) zU1o`6p?Jan0JbmgH0du}E9YrGWHT1XBln;Jai5!XeCL{{g^af?RaV&gFH!ih@dHTF zn$t(t^*w&&W>mI;;D*L;DY^ahhDS$WdN5E=pcTycVm)u-2B5>nQOYlL_gQ4qwHr2_ z#yUwHvMK%7T$MY2LtcNR_$umu5enTJQi554VT}NPmucxJ9B$KiTy$)?Ib#Dwk)~lj; zuIol=51MT6(mhj6mz}we7=q0KA9QUjgRTjz?;C#7I^TvJr0~@3sYxVCTIR`;I6*_5 zjI3I3l;d)|Xry){H8zu@e$UW@&(g0n`_NTn}%H;!J@fmLIcXnyUPws4ezxSZXGjH>9#ub%5Gx6g%WI%FZ1Rn z9fU=JZ(?w3f5!3HtHW!o`7Ijn+LFi-!m+_SR1(?72_qa=Jg;rH%hK=WfT#+w?Ttem zeeW=ui~^(^bdEEg0X#83iN`$FWcq)EuI_Eu zOSf1IcpJ<@^4Xa4xx}D_9lk~Y3e&cmSkt0=dyz0nSxN&NU59LvtB;!lxx(#kGw;&c zX)ml#=6I$F^wP%ybl9pv>4M5+@iq1%33N}LJcdt*~!JW7r z@OpFxxOUTY%Xzb_hq83Ra9N-Zndn9^eVAnSuY1$J6Df5j|Vw zc?LQXp+~)a5AfgNpTz$F9mfQ|8q#gAEn>`3q<|R~Nb$K5zj-$N91=rdn!aeC@M zVLNPmQQ;2(>GztMy6~De+M9cQqH!ZOG09uE!(?>p$lzlY)Z*E((Rzut>x4-IhtfIYp7evaS#NOcCbz6JPxH- zoL8XB;hhiRzPoF4;{77~Q_`JEwc}W;Y1t&HR%pbt01r*bxcc%ro?xssMYenw;6K?P z#9tD;xI8r-`^h3IwWW^f5!r@AO2G+@Gr;-RuOwI4p8>z%o8J^}yi0HJ`^Q!q*Myr< zSCBi|t?iqL(7qn!P138jG87(u=^&c@g7_!l7C#LRo$xj6G&yw%h2%Gu_V0CUBarTO z^5>O_W?_QB62ILYYwB->+GodmKM-8#e--X5A+&>nPI5>{<6s9&a4Xur zAo$bvZkJWO)V>%ZT5Hgk2T{@QXVI@Dm5C-#Bto!GgyoLt{%=xi$-H;}00lSr#b;!m z6Zmm|qj+Oe^E{Jxs@pZ>ZvOyrOfn-w0=`E9)ce*>wOK0_dTFESF9`nt!8!i`W18%l$m9Adv4JWKmw{{X>6F7LIU4fvnL+J>j5 z-+60u631m}XzR!-)7x9y%7|A33oi1!5Jv}}@c#hqC$4yA&feET*Y7+#dnBy|#1_jw zucnRJ$@$eCev8x8im$8J=>Fh%i0f@n+ngN5tY7~;IILGX5tzAK*l!`>&f5KnBAO0r1FeZ2kHnJ~qQf!BA-o_gl4Tl`73 z@V(Ku@n449#8;5qt6IsaNg5coeZqz$k)++!Zg6qI?gr|FBeK8X$aS0C_HPV6j$|5# zg>J3aPP>H2@?T!d_NR$Y&SSBVMI4L|7+uUy%gtu$7dE<#aa!p*E~lqy7TJxp8<)1w z{L*A6E6Y}b`|gT@+{#qCe~Q%lrk)9#uziQt|%rHADt?TYF#lsP8=l^q5> zeAfQ}#NI8nxR*njVAU;c+@LzV>d_6U$cVoAmy?a@$;ZkFITspIYg0WL>2{tM@QwG3 z=GU~J9K@2^qAX_E7$iYE2T3dME!V>DS#$BP*HDb3@ z$r=9Swn~AOhd4O|c5W-crhOr;-~Arq3rSE3BZZ9661?S^LR>PZBz(M%3H9jwE#u!B zS})kV33j@k$wK{`OcC8EAx9ENFDL;1@Zk3ttrG5xt0lTULfRO0t98@vFH=Xdj58&x zs>5uoG4chA%8=w7<%WIpO@bT!1`uMrYl}imo>iiy%uJwsxoL}&k;%XWAA0kxAI3VB zw9r~=mp|Fk-87Ps8~vhnD%cGqW)gZo9a`x`rxAPMK0E(zJj7TMS;lj;=oJbLwdGkC1& z$*uTu)=SYSm6a{!O9D&asW8pADZ$3n$8FWiYd$N`^lR33(#u`G&)-368s*e>^P?mSNvfv2@gNmB!)lY)H>e=WLpui~Ey+Rv(Lx6^A71Z0vnOLwze zw+xHr%X1u=0PYel(Vm@au8a1>_>-d9L*WfS#Xcd@La)qp%a^`(EOLS4xLH{f90gVw z>*z-gBM&Nx+hfp;NXK*bN5wxMelUDT@T}fff-JlP;r%Y;NK;tVZ*)7!Hs!;s+5M3c zB6(&qI_}P6ZnfKZ3-;ge-+--`R`GAdeKS&xtoJsRCZ`SjkV**Iwgm@qdoINgwvb-SP1a;U${uQl4QfKpZJ}XD=eRJ3z$)tF zUMmIrb?wKHiRe+HF6C5ug(b7jIIik>eI&Iw@zm~pg|BgD#y67!9riQkdXSCM>g`1$ag!!|d%M}Yii;lBaRdv1<@wDnMi6pb8- zA%fyiv8w_J^4UX>I*=>yLs;<7j&+{|wcqyi(pv@lu;xhQz|KC=vwDmXl?6%fj{{*u5v5pe~G>p{hz!Ud3Rx=YqI#l;&du5Y=XQ| zl0nFxBZH2=JkELK0(kIS&kt+jc=Zn#>DHD}Dc&W#c*V$2GrA>TFt-F@N{>v|O{J%Y zHM^N&S*McWSdF7~8m?K&NQ~rfb!whiiBD991WGpxrL>!7yr{zOd|<}5lKjCbo&=vu01{wzzITj@p6ZzCug;v&*;1gy9Ux&9*g zA5e2uZuKH9C#mcn8rSSDbyOY^yiX0XuqRH2>Pd3L2Od?=$f!X1ytV7j?AK}Hj}3Ut z-KUHEWj(g7rm5d=1>NgejonCrTQN%b;Z!bh#(Aiv)35a#gQP}t&Ye_Ph+F8_~QqJ^vG|2vmO~0L~yOZ^5c(qI3nuWWn?{aM%EbTkza9qJO2QJ zfqv886tuM0yeVmzR~-smuLlcw6YJI?*m_-_MZ^GIrx)B zXzlzbV)7!A^Gy_hl;;??SzTKlK@tED4Z*J|@ZW~~Eva5hKaKSnw43Shu7=m_F{$ba zoB*3xa6xSP4)u)asT(OuDE&?Gcl;Lf_V9;Y{>Z!3^zRJI3k|lq9i64b5D-oREaGWY z@qz|(`q#{V62IW1f3`ozZA;0w@z$;3=5Wt7zKeAFEwtG<^Ip~&Sy`P6s%6*Xr4mv0Q02f-`4ft)X{8N@~3&8Dn;%oa*?Jcc?Hu{hrNoLw+eP;e)2Mq zdlEUXnf5Z?DEj8~vw9z>x@N86e;Me}*=pf6ohs==#~@%ghR!5Ov%3eU$S{7Qpqg(G z_(M&G)558!c&^sgR(FI*vEQr!3^YvRZP-#U0d;-8tU3I{(SK-5ZFj@>qu?%|r+7P3 zzPMYmE@HTCKIaE)k)(T(Z5~0EXN)p~^K2yZ>i!w{zv889JuBiCG#!6cSMoI2uA(n1 zTjz9;&aN6nEAtJYHr`oA2pGC;x6m*1N7|3^A5QUSho`mFZEh}ftK?*s&gKA%DnH7~ z_V){uw1SQp1L?X@RHNCyhg#1AmI!UpFEOH$#dt^y% zXNVB!lNn=THl3h`Ut74-^#1@H-lzN}*9IHgIM7*Yc9ODc5V$*xa><`AX#G||K^f|K z9UbPksc2e;HP|k1v?;u(BEQlW8PAy5O}CINerzD0y5X8L$!1!1{$WCP_;vL@9MnEA z_*=%m7w^6dYd5!^9Pvag=G$57a2qR$);2kk*aMleLtv&^K+6CKCdZHd9Vdw6iXR{A zS2A2%1`&B`42h9~N66A5b>a8EvPMP`4K68(YeoA(fBu zAq7atIj_&Hci~5fJ^}r*)4)Hj~z4hEs$9B{CH$G>YisE_hE}@TUWgliqV+Ruc~ zT>L%N8%DO$uUlqPODRiBBIo9Bk=3^6AZ{Nkezo>ji#{dzH&(Wq^HI@mVZVbdA(_PX z?%WOb^Q*cz$-!m_%h7_cBEAgQd`qBs-^BNt96CjdM1cPK-sCmtCym6y8*vAw;l~55 zde~ZNtyR&-QmeiCpCb6L_KNt0;!8;(@YRl^;N8;6DU#iuIGtaexR4(woSa4S&LU%>JgM2?`kE zRf23W+DnEE?A<^cFmOogTn?G=(^1l6d%XoFYerUYJ2I7J2kw!Lo4amKeNSrlu=A${ z?jy>n&fVGZ&6c;X>vr(?b5^-q^&spsNQpQkWI2%VPCGFi^fjbD53ao#o55)_T@aIf zmi2PXySAAN%Z0#iT=8F9Tj-i$hABK1WNfZofEI{?SXxqXkmwPEHyJEKj^tN2Y2ZJI z3$7-gScD2Ngyy1R#K&Ls#ZU=6)*&2y!9SrsAc?XBI$-ESr_ciE4!Cwz`?ME7uC578<*s;mw$1Ar#G=QC+oMWChafJy%WjCc zz$JFY`nMhHDb7jVAT#vOhdSqiwHB7kNRG}$0inDO-eRF7i5B76j!$!reKB69HEj-m z4YGVlp3he;^CQ`bMc6IIWN?thpHgsob+13uymP5)x5I1NC5-8pf=MQtG8g!RDBPv7 z{4y2C09U7IR(}cg+xv|_M4nrlxmY{tv*O$^i~xSmIaVwQAQdd9j+q&*c{jX(<`?1C zgQaK|z98_d6Y9wvs`nPsT%lhpZ`~plO{H^_mMlLS(D0wd{{Rw22iW{SqMOYe0+Q+R zLiZNU-!e48ut^7Y7<9oMbJbdF@8IoDMACdSCYdQNiy+?MKLv{!SR|PM4CG_3PkSq^ z*!bEBE_`ERG}Z$#UTLxy-dGg@?3;980!HZ~l@D>~Qg>FKp{GNoxV^vlxUuQcUyljQ z>Zj~C*9&cC+lWviYhZrwP_iQA6N=$Aj}LgK;V!)J!#T3pz)sdhQZ@`Wk1)yRB!J`P z%ws3-ZK`^&fp6^Z-&zp0+$jS^aV?BqNLC}}-mYbtTPnXZvJ3;tgNp7vEqANwx>Q#1 z=tlcZn{)k>Rso?5SO#QiN)60LSITD@=dCq$@allTNjw|l>$E!r&E_*L&Ad$_Z)^u? zB350*?ZaSjKIpE~{uS4VbUS9$r;ktj9B;Zi$VoJw|0@eIp3PP~>uKp|Mj1eS>Czb-ASp#k=J7H4LGpxpD@39c?wg>R6+9Z^>}JDIuZo(^4?+RzV9H~ts! z1Q6Qm7V_y=(-I|Dc^S65e4&`hi#w)neJa_O)*8Uso`R;7pL63cy^I$w< zW20oCC#Y5=4%PDpmEv132tvA6t#u}%B?@D()nncUN#gMo_LurWkVdgY5Xhe|%-(9g9{>3^mo?(*a*36Uzjf7upVYdXdGrC0@;0!QVW&?wo=Ct36T2G4(ZZwOV$5r0< z7V8{x$ellVA2>%GK(;KC4wuB%M7@n)}Ya(pt-+yvU~ z4Z`_y#;QJ6f17yPyzuOYsjZDCUA$01kM6L~APS}7{W=R4ZDYeQuBEUOIhI2c zMUq(m0Hde{GIBuNPrrKUHLnNwXT)-?x{FIo-Twe8-0wE$9Ds~N6<~T78+!~_CF1)} z7*Od6j$6pV$jhc^y zE$)0%yaMx?*_$Kpd66A}DB}SG9svfbI2A2+WWx~8yL?6QU&lH;^4RN_cS&oxM%_TI z%y$6e43G>*#yBCA_swt@o-ei5G-A4xQ|W-SH`<}ZaJO7~*b`=y6^`BO~&p?phy zZmpnct7B~z*u)YxARvq#zG(nA`$_n7lT{`0&bh03%Kk-#%P*G9b!S83~x zNEz-pJrKcZsS~Zt&#EqD*7TX1QPXt zq-a?R%AmWjY^e`1V$L~GH*NN;Jv+qG>l)))&u6k*qA;?^Ws}e%k+nGFoSb@Bx9A@N z{7)5)&bz7Fjbcc4`Dv%xxw#7caR&oF;re9azLEG>@KfOjk8H~Lq)0B|$Dd~!2yU(2 zPB2Qk%^A)KB#&&@HA=9Kh}~i2)z2L8Uw~fMN}pS`)l7F7LM`WG1bdD_4J2zMiaFqg z<2>EQ01Rtax;4~+Pzzg#?jw|S#Fnyo zu?+XxLB~8A`8VQ^jM8SeVv=0Ik%0FadPfmi2mmtXLa z*xC8a%vVl@gdw}ecgXqqyRI?pIIlbKuYt6^7XCS>(=Gf&75-_h?%CyyLBT#$gaNem zDo@hA96cK=z0N9@WH;L1g)eQ)cCfCXk@7>p?>Im1w<!GII>4q1Du*z>tZ69DqluMF-x<*Iy(Syd8 zng)Xg0NWjFd zSwZR7YkO9`_kyk9NSsJrMieTb-Ou;d1ptx#@-y6lR^j-+Z>GsK(?f8Rr~*N91fwU8 z4q7+kuw44$x$Ey8c&k~x`&E#;(=DVZWoaZ4#ULkc1+gWE9Wk^M*P7_H-lz`a!q(Qh zW|D5LrMx$2?yUi|`!GNbG9+g!Ajct-c5}#Hm6xk)UKSUAefEQAE9}cjv65T?(V7zw zZls)s9=WeIyiIP&g~7j+!y|5yt!>gdQzty5GvJlu*#au-lZ${{WU_amG37K{Zu-Ez~JV* z++Aregz1ke*!pAOSL{3R=F7l$^88%zY~K&<{5dmQ-Az8&VU-H2{h|xDWVbfb6Y>^2 zut?gcf$y3Z{1XTEYi)MN#@-6?9qyfGvqLxWbTHhpw z8`aSzOB-1XfGA|Jo#bR<$0Tn~e&Xcfyo!;nDP24I9hBt+uDAQo)~#Q_C*a?R?w3vQ zME)Z1eVXh|N5eNUF}GGxlP;SI!{x`<r2v zskDMyR16#``3%yZE;b||nUQ%I1J}hoed9Oyd8W%Jiu5a+J%cjHV_T?+CkwZ7l{<;r zaG^oRt#3^x(tnAJ)|($SFYQn98^>N7wD@%T9p;T}k`nWHdRc51H9cNP(UdUc;RBWG zO4Z5qABq-}Z~K=3a+FG2}#}YcU6s7#^H=u0ve-<>B8D-9;yltYxuF znAQ}O%9h}wj4so6)9orp1 zuO*+yKMuTeuEU|}$NM7wMcuN}2DpP5;iR}9ypJc6OM&Z-m5HtVNbx6xEmOi?IML*~ zvF0#!Gxn1qZm@|Fyv7*dU{CxrN4dlF-IvZrH?%8-hp6f_F7< z5BPh;+EuhZEE9dICl5XTl2#ux`@o}?`AFpYbpThJXf8ip(m&4Zpu=I|--y%LUHFpj2ro3i(XGI?aF-G}+RoxR7A=d6?c@@A z05Mv--uE<&dbCBOct=9D)b1wuM{x~n7*MJHg<_OF*s}-908HQ;;^i~A$XTl zj9Kg2GHbSlu^d`~TV_x`@e8q}k%wX-&PONHvHt*sR!4*v&kM5? zly$em0)L1%9`)JScymtiCERxYEYhsB=pPnHHX#?Uhao2Nw@4g}B-?3T+=wYFc};{=Q^7dg#u5ZoV1Z z8E?MFcV^7wM3*v)yEO=>cJxCGq-T+raHEcTRxZ8Z9~OA2+-C-v+dWC9vtwk)DqraTM1Ppm4uSKmuvF^K}b%`gpzk{ zSvq6hyF0yCS@8Y*E8_J2-_zpr72~^&+A!GZ4b-E|_Y4_I;9z4FjjZ_J!I~?@2nR&J zEF|BlV*6trO5$Q2LuV?=gn@&OYE)$OPeG=os|ybiYgQ0Nq4;RNr5BdpEv?Ed5hz^Z zb&#)=pmYpB-5#}VHOYKK1;>Y{w2Mr;8C~{U?q$X}kH> z`DMADI6#i_S$wvJJO%~UbVpUj82~~GoTxqW{6XUX01WuL+IcnNn!Uq?WA->6IZyx> zi;0X!JPZ{G;LM!juoM2#%I&OT+oMV5Cm zjBaV&^PYc$I47lJU3kaFa+$Q>?6G)|BAFWQ@e5^2H`a6v-69X{?ruYk>&Yp6`MHfa5*QXa8me+;>FBfG?P)(VRR72*HI^vv3mTr z$}x=KGXi4On9m*jntlB8Z&lMs@}r0kxwhkbWam4AjC2CIi?0nypm?4e z+sjLhPIfqoNp%O7akzZDVUdhcF=Rgo0hB7wmMIYN?i+#t;>^e)Y-vog<0xq@ky39)G|@R6zsQ0zIuNrP?AP8UA? z>xS2L?++%X_Zo(iX>BAcv?&gxo(AQM0Wv!y4ZK#KsixfCUYESTXrTk=h6ut)PdNrw z$U)HKXeZQHIjQQh!=S*Hu!$hDkh{xvjeOo;Oa_0INbGlGHQ5N?SE!{=OOW5(>mDPu zYs8vj%1DFlC@teqqjuC~#Cx&)InFwolGYtgSRJnB4G`P=mI*jR)R8Kb+6eV6j=ihf zbT5Keo;~n1emL=Fr(pomKrX-G-4o0$3*WvA9otUmxBl;-IV>}d0}NLmt9&x}dEvB< z@4~(=wAHRyKcD@cSx_FyiB>Q}3>^IA^%xbBuMJ{j7&o!*-wl2rOYxJ#cBXAvbqBXE zZftcIxiIi?fMW(BfB_kayK`Treii=!f_K~a@59R8D~3Hf)uKrumMeF7@r(rX+EnTY zz}XqjdspTE0PNY~y)Mhe%c0NZ>8*6ppt#;4xGlTOX9bCgiU!D1rz#I#EA>}K_?Pjw z!IOVx_&>!OSBk9Qh`L&8#!D%Wc2Rw9l0Yyy0NW39UM4Q2)3i@g5mqq#P5T7+)5DOo zzXZH{s5}V^B(dsAYk6%5Z2thLbOz;jE`I!=t~kgQ@gIx7XYGH%di&4uGUr(FB19C% z_Lq5L3lczp#)uSl3VnK$U#UM7KWT3ccshGqUx+rhFg4Uch2NDsTd61Rn}|>%k=u|- z>Hx)jvEsjoI$g}uc)P)VB=F_jFhY_OaXf{WaUdYL4Y63ZIbbq+p5mxho6(C)pEf6i z{t&}FGk7yb@eCT4owiqsDCDyd4(`U`j4lRnepVcxrF~=Y^Wx`+z8G1>FN-6)yReaW z{h2J1+G(W55SyztD)IF#h>?#_K(Cw+?T4ZGq8W5cjV$W3A=vvrd20T-&ZKkZj%ES`@*YAI@c8{===w_JOa zxA1?1Ei~rR?%L|k^77U>C5mtkB@J#o;KQz7Kt@j;MSP`o`%QSx`sPd9&3{faOvT)r zQgY04d16WDxg`3U$JDifrbxP#%tm*Rd5tCA!$KJU0C`q5*a0J)oDcg!|I_@#v+$q9OT#n3nwQ$GWDFveBrEcc8b2jK$m~~+ zF`D-KTmJx#Fc_|-@W!hg@*=s`R&%FG2>@Z5DP?Hp7$0?%76aD4>G-4jM*KO~p_jw5 z_;Ni)##ebF$d*4Z2Lzb17N!>i7?I<&lRW{;f zQ<1m;eR6BMKK_%5*DOO{3CpkTY5PTdJ};(fSLWgc2QMT=nZRMe94FV4jW8X5%pv628PykG=A@r(^iNai%o)FvqTHYbx$y*k3tV2hYe|u*7-*GwoWC zYJLFHuFP`k15*+gk7SnR9V5?Hcmo_abOiIqy>YCjo%C82_32wv^~zt{tGxEz^TP~-QVre@dsKfHO`vRt4!WgeXW^C zV8aO!+DAXaeMfry>$Zzb)-?I2@Rgcf-LDbtX)T0mr0y>qxWe_v%1@);l%sZHWf4C(Oc9wCo&!==k5#1`$_%#E8W z!GX>rFO1-U!5%rUw})@-AkpR27f!nw4F}rAx0u-ZhC;K(IuI0$eJO1GG2tPoM4#B6 zZSf!I_Y=o0!XX17wbZ_1f^qVmTc!pEYoTGI(?(>m4%(jCZ}I;CR`4XBWAOg~ge_#% z%d1Rm;+QC2pfip^Bz0B#@z(CA@&5oy@olPU-Z#^iLTDx}9mSo(7~}IkX7eEV+@5lA zhbOgoj)$-KhW>vm#gLn8QJh-KCT>AYe9Dm(Ra_p9Rk-AHQvU$L3*cWAOL?m3y7o02 z>3P#`9KZy-NElEHNKP9LrvtZ4)vPrn{pIr_RgYbhT7nxhccqc4L7m@gwt_c`M&0*F zpK%3xoS@`&uQ9*)i8QM=mkckf*v~i39Pmj$lz<*12%sZpxZ@+edFG#K;~xcI&10eI z@><0T+WY5KN}u5X`Ix=B#)NTZ5P ziUSkF-7yTjV}-^KLO8E?x%ew-cM415y;5sf+=Fb^QAT071ZOF9U4g*<6Z3J<917{Q zF9Ccnnmc_DTbA=(x80W9@;{b3ee_p9UDyEdKmxagM7rFbhs%0zj=mOOUVmr!>O-eb zld^crIu}v^GD8-^LF#dV?OxGu_MZ#dCG?hhe41|0G~S~{Z)+q?ov)mEvA###D%_r@ zt$nlbyWr2mJsVq&F9vHmHlr9ul-S(7P-+me;Em}DI?lf?HmWOUs5Lu$cKBsye{-eV z$>m*I!goh4myjGU$^&`dKV1CIfC0}=D~hHiU)_n&sdqeQ!TK(zt7#Un_^WS-G|S}N zus$bP;wONUplG^wNdssCI z8I^6XuAWz!2mw|pM2Ho$z%oYMdU9y?k?M?9H_@I^b>PLh->CR9==h4oLw%$7-g6_K z0Gi$ghDf=}kmZ5y#;fVxJMrd?q*_m9YQ7$5Op)8HsTHCw=(6uNIm2+=^qt95~LY>UGjPGIGk-TRF8rjjcPXV1mO<%_M(%eYsv5UPmOmakX zk1}B*D3b#jAsCLJWSZEa>qb)XH`=YCl5B(iu^pSuKn_Oj!86GRjBxtQ^LU3$wVKOIxY1->?uPNO88xK;z{6a6Oh*efQyIX79+op(u&hlC>nKCdx!mLII7$+5tR<}&jH1xUa z8djC?eYs7gV_(b)(4hFlJ+rW4mS+`}4-nIh$x0Pyol%b9hVP&aZnX zh&8y@d(EZV;U#nvJB}JvK&c^OG6}&XWH9Sr31}DI8@JJSQfCG1YkA5Q*i?WkT%P( z4#ynvayIUDrxm5oeTK*4wu!GBO;W>8)^uyhTt}&BMQkOuL%4;xw4KX1+l6O}S0#?( z02T7z#4i{42gSD6J`=RnAk;1G?jOvtTh*K^5)LK%!y_lTo;$iz2Yh?E*p#`(-4ZPcp=;z_U644MV~-V5=p82KGJmm020c8 z=Gx*08k`H%6}XaVW1j~&+vWNNIp^y?4F1qR6=%I44=wDhVUS=ojIAG;vOqbK)GVZ_ zA1^7BjAYlQrzoo9wU@!zFtP_jrCEL*aYp);v3> z+xS}Tm5kQ*7gEQkJHI8~%KCA;70?08oa$0-P`M;qag9Ff!t`3qF= z*TW5L3l9}tLw>OGBEG&dNgHPeU`CQeAP!0x&luws%|C~HC8Su-ru;tC=D%fq*4DSu zu(d+KhE%yorIANFl*ojh?SouXprtFxnkm_Pr{7*W{klFH_)6vA@O6}z_Q(RP@JSl) zDmn8ZU9&C@M&poin)%mL{{VuDc(cSaO&5cFI$lZRFo~s%M8;| zzHrj?`zUpW(KXEmT{lva-P_NR+Uhw9kf_nhrIpZb04Txf#dg=83;1nxirz83YcpvO zA82Qe9kLe3F%~%;ag_%>Mk?WkroJU{s_krM>AH`{?-Ja}sxG~8Z4Unc-Yv|6X`;gt z7|gM@^Ydfo+D~vRz0q__J#ORv5s!)fHodUAl5M8O?$|0_Dch41PR$I=LFdcP(azl0 z%=+!tpBjT(l}LMyA;Y3}|-I+xL(qnhvR{{Zj?J29pB3t6_(H5iCH;GluP z7~}J=pLOjw!Y!yOX_3u)0bSlrI?#EwB}SY&qjRlO^$@JGRai2fx>mrA#W*(Gd3k;-nP zMhBeb6KTQ73y?eUTiy`y7N4o>arj$UwX#K(gh4J`+{g|%FA|(D85~Hywfdv`HGD7d zYt63N+B+yjC$f)6$)7t5`Sr3=c(<%|B$zY@G5 zbq1mF14q@Ovs@3h?K9hgazH<3RVX{;p%@)|*ScT+&L0#f(U#xCB7JdWjIw`aTTBU4 z$_9`sFHXDL2hf`R`1n(Af2a7TP4NE!j6N7mV}CcA%c|JjE~lf&v4Tk#tNZwv1?4A! z8z&391lMolzuEKPUygM}@lLq2+4zKo5NduHyOPr75-rY%XNB=HrdZ}=D&5Cw^W~aJ zt620trxfhZ<@a6vn*RW4-w60x^HuRgQfbyQNQL2=;WFhn7{kRItTH-tjoglLUOA=> zIw2j8i43xhz;3!sh1thE?jzLK@5k*i;f-lN5YD!*b>dBG(l=S|WU{rk)aQ>U zVi{piD7Z{u0UEKx9l6bZ1&R1Mj)1wEY0(IPbZfOqJ;-`)h8nxh_3HW@jTWZRm$5s-dsr0#btI@^6;3z4)8Ll zXu|{iF{*>W$p)F@4~Bjn)@)?)1-76600`{&Y9e!~%BdXK!3;zBmjJKuowz+n9cu|x zi_+FMrkQpP2UhSdnQg92S~&!MZv6%^EJp(YT2uR$JmBOx$3aP?`19enk9GS!Q^pz% zw3iU3BD;!F=Z@jt77C74m*x4FX~@Sl!%L)i+uPH!kaO9@(M9~0VK zxm$6lHNl=2;li@;P_N#~BLXY1;ROZr$Y(>V7Da(@>T;*~=nI)(^Pt z2Wkd!8jk0h`9IKiW*VUF8mRj=)h?0bsadX z#KWue9@Ig=%dy+kA49THgzlH$sg&yTZg3a=D!$b;!)@`-&em9>Vg=2yA8!%>H++fm zZeV#EkoO}M#dvSw?}vP2rju`RVSB1GNgCK(%q?e<*pgR>);}@8gPiomH%7J6H4Dp)PsD1T8j@Y0Ou$O= z%g##$9&QI+%%q-1XjIx)L@#;jYTJA|9vQQb#X1J9FNhamQu->vC9*c%%O9OHJFA|V zF=uZecC4@XPNhdn*|eK0S)6kerKgp9b(jIpdCYjvL0Z>d57hLhwb%SVbuOe?R&n+> z7RXhBSeej_4?OJhsWY%K1y0N~rgxow!nPasvUl5~+(bP1Df?FUAoSgTf&wa~H zFLa!r6KmG#du4TXZwZqTJ?piUOrxVK4U4pTsvLBp{?A>zj##`^cVnn4mqwXkVI~7- zI6{&K5}Z!6KGd=Xy^$c{cKL0Kgr&s~WDEtaxFP zIRv+-Xc8^CMYdw6pn119DtRiH^dhOfG#gImF*TQg^xLno-P$gu>h0z}rEtR1HBNv= zjT}w~_nbKg+PV+;NwuvdZM6>w*uBYp-axaojjc9g3{~TE9AM)cjt()BD=Hro_(INi zMAFkuo>plVcnmUbfQ{X<5EoIEt|tvx3k}Pn@LR~d0-+l1cK)*ax)}I3W3uS33m^tCko5M zdg-{f*YvGfH7AGtTH8tepD8RpVyPKd!k$0Yob@$o`@~k4mWJEJR_}9qP^!J8X5LuW zu##yu1_1RQO9mYXuPfJ}@Px42Tt{IH?u4T@u|Js2fuENx&8vN|`Jn<@tR&ksLq9mVW?OXwMqe6eQ~u}poO`fG~X0x{{Y?)l>Q_9XBp#x#b)2@ntk9~IHr`$31wR-cFV^END)9F zj?Q@Nn%Po{++2+G4S&TN)#Q@By9?PF%B+{ZY!YlkfW#j$@Ib%>DeOQ3xal?5)Seji z`;?vF4YmNHBB6#dvXawnt41+}XN zgKkFqn{{<;lgcs5sQ&54Bc4r6n&=5T=rhZ-v6(KkmX6)_kbJ@CF$Vyh?o5lG#D2AT zC!R|=rn<5dtYG0otkN;*fTelQKg27M@i&P4C2MP&dyli-Dq&XA*v^dLb!1)%z~t^x z?OL|S#=4G=47yBK@P`Gr+^d;_?ao#N{_*Ma40jZ)Zy3GV6|LWfb!(S{M|dsgfbA+# zM8gA-vA|?2>_Hx!(WH+H=+i!xpx#AssJRU!Fy*I^lagJd7*Wr12W;k>rNwJMod=3F z882S(e|a46MGR_vQ)&hs`DbS5^0rsQ+Ehl@!nex{s8ma9NQK8t;4qCF1m~$?+?qul zmzgYSHlKG4VkO6zvpH2c8OG2K?w+_lwP#1t^m*<9vJGnNGFHx4fT+hj0>qB_z&zGn zz2}Z%(xtn#hQWNa-6YHBO29EV2Hg}K@&5ol2+wMEjW&<3Y&RN!lIC?~Dj^mv9D{u$u&TwQgVbz1UE<=CYr1%z7I58-|zyS;QCm5}LQ%v#v>E+(sTu*LO z%vmLKac<$b3?4@y4*OJ$b{NH6x6^z*q{`Pfw+z>V23k<#EU z2*DCzOM3&;n)mH5Snw~5JU6Gdt!J#=c&^ehAD5;?;zbGqtBK{2ZIHOm?tWp$D;l%c zRCH6PZO-GyUOD}=d`;nZOZP~0!x5F|)AXYEQ!9d-@pB`hD*{1vOcR2nV>RR65%532 zU0X`HzVYU{HMXS-4TDs*jyX%PA-2rpVJq&v3F%)^{5bf1`*Z916J2<0Y8osC9gsEZ zTF-SHAOaQ%BrAp(8@D5<7{@rT6twVuo#780TuJ**TKJ_dFJ$?yWJvGru1@3T7ihM= z)nA!JV}3d>O6N{3Xw9Ju9zr~AZSeC{GW;^}2=O#=vqbSdi@G3u50+)}$R`*8WQ?2) zRZksj9}(`Xp`TdMExbQx%lYxaG?Ep_%(-+J3%i`;_8G4G#+vuTojX&vyZ9~QT~KS5 zGP1^&aDfSlS1Z05kUE}mgOP)So+_53G`z+Z9qT2KaJm*m$acwO&3Egx0}R9Goj*NCUVBo^guUE8&<= zl$s@p3&0@F(0yAqs;3vbBic2#r~lOa(D;R;__x6NlzJzP^#r=INTexgrK4B~PI7;D zB=a#*zyok9I~>;$XW~BwB!*85_;PJp;t~T~2<333j#tc`m2yvY;Qn>*el_^#;7c2M zBk)Io{I?*m%yzN-&)J$!nCJMiGxV>SpHkLtwOOyEu}wBfM#8rD4>)2u`GG`UoNuIiP6DrK+ zF!7{Np$*P=knN7xEDd?A2>ONc+4za>N1Kd!jJB|s#^84#C$@fO$?09iu7PD^BiZSC zUDe`Birm9I+lL&6m*wZTIP~d6prZ69=Xa-gpTIhHk1m7Gw--CD)g-^=xgfM^RWsbP z3|C8}&8q5FQqAF{mKiO!I@?@>Z?RvY+Jgmg#(5_gtbHy&6*Yv(q`=nOP$${$kxM9S z{LAH+5&^XQqvjYrIi~n~!yY8@71W7qtR;!FD=de|Xr+&D$^c1Bl5?D|$>sOMXuTSVoeXNj$&@eZS|=~mX4jLZIv4cg2I%#7;BAOIiT$=nY(>yhIB008)Q$*rxI zUbUT^hlbF~_HoL7?iXZ)<%z&j#|Nl6;*!(e7Tr##SiSJhvp?A{wcCg#$C#FA(W6}u z-!NOIR^KK#QO0|b)}hlbv~3CHwbOK4tDDS#0A}+b4V|pg$%Ndaup@Epjz$-UJR#xj z66z^0ye`pQ$QekP;RV=ozErO%&wi`{`q#SYx-O%yw07F%gdS20g^7U4&%O$tf# zDL;33&rIU9R!c%ne+pjs!^S#C_IJcf2NssVrM2AU7Giig4G1XUjtM<6$UGY9t$q$i z1QY8&ZMfB}CyczX*tCCXML)t<=JNpWf~Tj;>D69*D%55PEtS>Iscz~POKT^J83F_H zsEzluzU>~~mfCisr(5{47#&FSGjnjH;14Q9M`mG+ z1$7`CdU4}^AN{TT1L3mzB;IbdXMDllBCoO$&K5YMP&W=qD}oPJBd4H6`$<7*eKemA zXO`wN=XIXA!rn$)@FA8E-ztB0NXuXh9<=95ONu~GyjStF;o+I!jb6x`2m1a=d`UjvgB)yk^KF~}+px21Wur}1-4NZP~4SF3i& z6+YDQMHR~sdP<>J%-fu(bpyXSt>J=gY97~J&(IBT}DMc%g%+raV8 z#N>I=h6)+8lOnGNj1K-kuKY~#LL}Okh=iA<5Mz5eV;0*-q?_YHKMd!wuaoVc#~QYp zE;I{9)oo0Si6l_{lMRlJtRlbzmd5PkjGil+v75(wy_A|wu(z^?Mgm2*cYWQMHwcS@ zdHctl*0I3CI>aSf=hsj1@5PeoKiGP@{kKn7J621XCb)#-pDJCul;gJIzpZ(PiF{LO zG|=i6={@T+t2{E!kWK(!;8bN-_u9i5`?)pdm-+^gqua@9{$;Jh0IJV(DnjHRn{>$H zRRgXSunFX1u=FcSOASq}E_CP&nFdp6W1OsQ)U3OW|l!M7CPc0-)l9ArNOByzx;rn2n!cwD zzwnLRPjcJJ8)GU&@(g^XNZq)B&;o?|^P0+~1ot%OXXtZ&)p{?4H3)Sr24=dnjpBK3 zwDn1q-9hsr`#;Sj0~~K8u^9laGhUmd{{X>Fblo-9<3;eCdhB-WN-VJh8e`?&C6Ez= z*KlFMz~;X@ejR?#FXFq#)?^cD_c4}=bac7d@Kh zQyuzs*_TsT21`lyE3ugnZf}+u8P!y6001kL@ju7!iGDHGhL@*aU+A|Z3k0`lmO-Dd z$jiNfI0OYCo`rgf`}4s60JAoQ;6DpmMX9CEwQFvoTdR!{-Z>07>AJ;QS(Fi<^>Mc& zlg4Z4t1p6Iv-gXh564~Va!n)R*JTxuU@jND}oUvoTVTWRQ7IqhFN-*|W9EtGc`&jk8~ zjHRTG=JjWd9Y8-aBXRU(OcT?J{pk3g;j2%FG0U%bCjKjF36fQ?)#QWhgDO9F8>m^L zD%=M7v6GcxMm{X~o$4#;MVEMIsJn3L0z0j}ⅆ8Hx zEn0VWKPe*B_4#zxwu4rb+T+W68(2%LE1pBEfw=YPyT?;px+lZsU$fuA1-0ts&zl=u zLK%-k7&!#{DFF2VSHF1LYabEM7OnlBBu0!6GG~SfRU4ds<7jVFlEnJgmN$g7@|P0$ zY2v(%Sj*+Z5QK~l%m@#jo3c2^73|Y-YhBJZnrD5cd|TH16KIR4=+?eMfr;(hENr6~ zR#LbJ*P~ZkC+!8{ZxUHs#p8buT58@?Vko05CV*o;WLFGQSjjlUDI^dG74txc#1_|v z&N!{C#3OU8@0R3p9yJP}k^DuDdVAMV{{RTal@+4Ns+jHEKK}qdB4Le*=(`Mr@z;Z& z!lqP{+#I@|@2GyzGTT{NS$J07JAILhaN3lOEYg(&l#z;~zhmYmN$zWtxcI-~xG$uZ z=S#a;ZV)G%9PMnxfx!VdX7&KCI)Pq0qfMr0^UwW_VHMQq-z~+sX@c{PHsyn0{{Ryn zbI7iVrq%UpF%{mMZ3mQ48D_Xs+~j#tZozTKBw+Uxl^7v&v2Lw(PZVEV&#%})Yv(a^ zxVK>$3<)I4Laa~n{pQ=8AE=z4xonOyPjO910IXNSR>s1#O zv2jn-^dsXB5lN%jTWK=t7XmdYEvi8*7WVslB+arJ3yhzYfm{&49xIT$w$mA-WMs3J zFbR!g^HwszoNgs>>)b04bJx9lUx&YE&yOD#EUoUWydUBRSN{N0e<*7tQ-h6y;gy|9 zAP^Lc@@vy){f++sY3&P1{?PFipW7fR7Io9(g|4;$GNGs06Rag|1OGYn!*VAQ1cfwPruVh!?0C;okzikHh{V@NL|4TgNfHxChH3)npC;950&~ z%8)=AEIB@cy*EJkRp1Ru=HpG#^$XS2?3InpwZM3;tyO+p%>}}sL}th=0aJmnl52zU zC&NDx>)M=l9ul_IZ?1g3u)`IxFqI9GtB1CXV?NUPRg7}a8zO4Tmsx3!pvoh3w$-NE4IF}$9{9N>Fb zk@&OWcf?N#!5V6bC8Po|BFh{PB7`H7(kKYI?UH%O`gMLA@CKhQgu0{nh+Z_?qmnrh zB#1^%b^w7_w>!q*I#O|t>4@k&NvQZIQnCKS@cgT%UB!}3vc~EQb&y5#vW)YE!RE1^ z&t9?9Uh3&m>d>flk~aq~q~kwIrKYBU*Jj7Tv!t*{Sz0B4n^fZ%^CAOd z6VKk`KXm6c>NZbdq(Nw!g{`y=au;-@$uvW^%;ZLk(+bY&KOVC5*k_aJD`n$7Pt4T~ zwD1X6ca}=ZLh?wP?|t5W?_YZTMEG0r7gx}{Ghw0pF1ylfr?HRAl0AAECR?B3jEmJc ziGkxXTabIVuYq_|!T$gawLdFY)a~q?#h3Hrkx|)kkKOqgG6A>}uec7_H9L4;#9C&d zCZphsn@w8Z2mJ|H+1|#a?q*4y+9?|t7(QD8>T8D491U!NxD!`>g(R?6sF9b)b=FZONC=a40co>k$EUD*KO%Gf#N zVDNem3w$>4CXi*k(lu1jOD;aoYST5L-O+>$?oJOvn|k!kaQ#~D=Gro*+8%#@<=kz$a!222&?5cr=`4(T`wuekcfma-?%Zoo>9=hXp>~TB4X)?r z1=|6A%!~_XjP$Ryd?oPz0KvLVl$ws44Tp&J3l+mPq=d9h8s*HXDDz^$>xCt725X%k z68HYC@(amPqDEtdV1=4rnUBg>0DANly*lnH&^cvhP|+grGH7$Jigj1g zWhfHfOC)Rd6GZdW0TaJ$qVqdn@i){FlD3i%|~ zW=7C;J7`$PJVB+ELV!0%ET?AIJTX-~4st6leRSWjM?^nF_{Z@(#4^jMeU2$)w}4s7 zC5P;f7(um=-Nq6~*?AktC&?ghxeHij`73IGRlI%n4uEj8G7H=geI;nO_!(BA!}NLRX*#k5V5 zS%NG~`@ra?PBxNAG@cpwf#6&FX3#uMqr~@DJDLlfHej+q82pU3(S?u9QVxDi_`x~N zVQ6~Zx8b(Ek5w19dUTJIHmr~}m`I*;Jos!}a!(_*n zJF+wKfI;@GDExP-d^``~KM=`t;w{m!FlteyyfNTk|15GrG6&Kf)W$GB51IZJ_E-V{f+J#`momKfxT5mX0OK;Oqo( z(PDc|c;czAdp#dF0Mgzj6yx}*dV zYkZ4w9L&cAdF_{WB#Z##f%kh;b| zA$D(Wf!{T*tGviqk+{bYXyML(h%B9mHPh;s-WAt0`LutCcJN(aBW^dEWGw^RsUv)j z(&9M)9PkJ@$Qj^AFNFLdd8WZ(@Z#>m>T`kQ^wIHdVQSTGBiLn53EBH~_~Wp~yG@5t^^7 z>i!+nEJfC>c^8K@5BX%!Z`3W(6oT&FNWym?c;nY?KO|>Yqa81Uwdkgc#QG+p+TYpK zBF}3l*%b_YA(kirayaWDCp?_hOFxM>Uu(FJSF*CWzTB|LEfwIo@|QeeLrH~f<9A$= zYjWRC)AWd=@jjb9*NL9pOm^2I`2OTSJC+zgTn6N!B$14;u0K-v!4$17m8|0P&A7zz z*;x+F(>0{m>8DayH z6;yUypI~bSTYW>p`m0`Qmls!vU1m#ogmBtO-+O|~D>`HE2HTOq9Ok)i6wUpu6o2rH z-9x6`OzXDaRa1sR_nho@!N+z#?2r#N=54R)9t^qLsNT;qE0Ezlt9us@&Q>K7IT_>U zkPl94c*e@cZg)MF{{Z4Qf&{Wkvf61N<7tyqhNq#!GvlgP)mL7bBCMxz9>o$?l3*OGC7{@fN)vu`Br2 z<~vydRr@uh1V{5P%tOc%3+NFJPdVp~GsGSsve9(tn?{N&IT#QgOi43i7Wf*}OpdpcZ*6D>@A= zZq`X|fw7WaacDp*&(7>!c9Jp<(4Zcfq?=IJ8pD0QnkN#Lb{qV-!jMPKj=PsX-3gzi zYv`BSrl|*$sJ)bttT+){D|x7M-a{sFoPqM1+n=$e(sqf*T>Lw{^NsS$b*)9ebZplK z7xK8_t(RDEaJ6PDL_ce?v(m2K;R=Faj6vnQ9u?)3s_r=B=C4eYcx7~vHJ+9s zzKMZLndTCruRGUm!1-Gosaz4y2d!b;YZsdJg4>&UwR=qYfGP=L$mFuf`%!lK=Oe96 z+@7MH_htr}r1+U_<&M0-<>B{dgO>uUqiWpJ8if44SuyzQYqP4UPP9%XF&C#?uo%-bf@j zL6L#MtZGeeZxyD8hH5?xyGw?#@zwUHY~gu(klK&t}-fO1K4 zst*9R-1CuM?Pue^hcNhYb%G$!ZKC<&)HJ(~e_ zm+Y(iMRY;xsG3&bxe2Mn^uDPBS2n)zz~0QR5wjUJw(!TQ`@DAU|7$uDi? zvAIBa`J|69&D@fRydDAQK78>n#;=HeBiC(wC-GawGU+x`I2KYhG2qkhW&01doNX@Bth#Ib0)y~r@J5L)V%+wxf%l0+9R zypDXS!RwsxYxE!Cb+3#yy&nGO#P(WL@fea=Z!~i|wZKw$7q*f#nkLBMaW?Udq>*3F z*TEl$KePA3_~P+?lj0-cZB0mXdt_{9x0o&n4-Ld}W%%#CwoxA8ntC|JtEJgFmmedmc;nB?WUSKi;WFYWpJ9(e6!@NbSRt+n+@3~dd? zoVS|@Y3Gf-rYirRcx54~_ma>o)!r__G9Bn~5Vf{zOG@ ztmINk+*)64f@oP(o)MUBBr5UGs;5#B(1#S=*^l5K_$EJ$ZnbpNJTUrKisZE*wY}uh zS;;ZT&yyjI;$m<@d5RR1$;E!F{4V{KJ{d2Dq4-zvo8bN3rRrPx_Y0|MR<{sJ0|mqv zR#IJBmqKy@c-t9mpf4QP!EcN{1NcYaYm1xBQd_-N| zjPexpubsXo{{X>Mb?pyTJ{i-XdF-Q)%#>+!6KKdwE*9ORhDfu?D)ILN=EhGINmi>X z7UcxAK9#!o0{#5L4oqdqaLMbWL^wyZE^OP;*5@_31V=0=Zt=I{A>76 zs>|Zr%ioTXYQ812fSbR^=su=qJAcFd|(M@i!0@ERzErh%(oCE7w|Se0ao>LNIdx;h5I z?}Apoet-B$wQ)2Wb4w&;7&Q0R`&F0{0Nw~@A5NV!#di^Fe+z6hi2ONa9;2kN0pxv6 z-dO=7Bng3N!0Xc-V*qnrV>Y#_>$AnA_zvd&?!j`gox7n$Ze+-p<>9bN7|6$Z^wP1< zB(_F9rHrCPzwr&^r7^su2#X$Ya*lG$asL2(`V(3SrTA`D5{*8{h8h0=Sr>o%Y$>;% z5Ah5>Vet+9q*3lusm;acA+$6Zx7hLs#7Y z)%=ZLgq|a|wrzV;f-6im(Dtppq$`uP(1rXP9Q#$@0BBwf)3t|#;+OV~mYQ=UetWX7 z&B+e2ZB)-(mFdvtvAjj`FI>Ji5No&XaIGnjGD(QaV?TXWcb+*Xoc6_eWZKV&mghbj zU-WlUC4i_wj(K9+4*>NauYaS2WhJJ8EjK>k@RqOerrPOr&j>%*?WbZ)l7@;ROK=3! ze)O^Jv^VsxR`4aSg8Vn)Gj-v=6i0I4Ig?G)fx9G}koL21%ag{&AQ6#;ug+TwUlZNw zs~&-LZMJ4ep=`(zi3IFmK*OG#@z;vh(EJsxc*|IQD9Nb(qSzzc#|iQoB9*XZJ5F{J z#^r9k^PDNsi+8x}&(O=i+N;CYFiE97{nmwX3x?*}+8w(-QJDhICN|_Q*H!nfNq=Y$ z*^5nv?#))>`tIfCkZK0l-d!VH9ptX)-B=@Z4Z^QQIIk6p;8%+^%Sd#aTYv3iZRXbP*l$d#^Kg20Z%mimKU6J@1K;oURrI&F+C1m%w9WQ9~X^(9VyROE{8G!F=Cw}Krv zNc$a>Z5Rt~URi-H$$u{~rtW@jPEIRF1#JeI>CpU4)^0TKFHy16FZ8x;(nlt4H={O4 zNmI%Zk@tU#X&fFa%=M3rT3&|@%X~l6ZY7rGytK2qo<+9=AHC+I#%1m{mQX?9*R$xq zv(WKon+=4wDDuV_C5zp)qzpmHQ6hjtl78zFE9ozX{{R7g6Iux@f8hvATl;d6Ts7J$ zU}OqPZ+CduGUTcAFnaYEtX*nx-%^xY*!vyHL6eetvlGRB&uQKi z)6wO$)bu+aCQZu~#EBQ$t$_J}hy;8cxB*E~jz(&g_lIqKAK^PaL&7jzc%srdEG0XX5J%4tr zdy4zMAB~;@xi5928;Nh=nbD%Uc@?23M(y#lZdU;Es}KP9_41Dy_}9c9HHtW_;MBCM z)nc&S>Hh#}OJI%3Ylx1^d3nZ3QhRP0ts|J#wWJQ0W5BHc0A+0lLDnvBu42@OmZ%h8 z#<5#GhXF#QWo0Difv^BR@ipLnG10WY4tUMHGY#3%ZYCu+Es*l1RmlPyiP#|{raZCr z>0Y(*15)^v;Cpqr@p8?!KtpO!TD*|?dHyvAY61pw6@bSrn(_^5Z~1A63FRVvMx)PqGWQ%UgbcH>FbwSTq<$#jbP^FErJSRgT@pX*Vz*!yw+I zp2`tVwS7VHlfV~V2iA2P-x}JR$l1KeZX%WDNh3l304=T0mdH?Wr(>f5o!s%^P2=lb zF4;$hG@0du0NhJI&Y?yZcru=>=Qa4jdiVbT+7e2r+Fb0LL~)k8j1mFefKgO&jAW=i>xh~=C~jU~ z6TYEzvVgG{ln8J+ZQ%$TPh}0k>zvm;Tm?C6vo?+<$Mg_?;HBOQ(Qg|}xwfB3p4&M~ zkj72?5uYuRHw2UOChuT#UTyIM{t5wo<7Bt8vxf2{h1x~9(j}J2D>C4TMaIZ(w-d_A z6M>AW$O69}?R-kwd=|QAhbBwwc_1I^W0|Bv%u6Sj${l3yxfrPINzHV6b&rhYc9%|; zGJq=)e%X^C_aR)I4#a2Lu~}U-%6P_opW`oyUMSaI=UJasI+eY-X+(CGB+jMA=XOSY zf$}+%djiZ(&<%KVd|lDa+*j8n?rl_UW_b}GaU_%r9BGVo!xQb1#d!p9#d&hE-0N;G zVI-S)?S9P2SRKqB=XfA?bpvj21zPbFcrw^D`pCDnxIiOIiJc{#iQ{tb7$=_Nj@@gf z7)Y%Qr#AiOb&K%>!kU(vx_*UkJ(bLI7mQw<&eb7P&ATLb5-n~t7mRjeC4Vyz2oZ6a(;!AZ9Cf@#HFax0Kr`I6n zs%etmU)~$5Rq9&HHkwCPgb7&UnlP>i3IL~M6s zjCsuME=G99Ggvx=o*IK&F>Qibh~_)VoX)S%6ce#RNx&c|9k{PR)%70=+g&xLuWaju zW%FZc9@X3di9ERWmS0i3>J3!VwS>?b2k@<&H!|G0@{-O3%!Nq@7+)}LJo0c4Ijgm| zCf!c!;r{@Ibw3i$bl9w}AeKiA8gyG_01umP=1{?XKsXip3*ayKC-#lvnPBk;iLM5l z8EwqgZqm786_mOd!eD1{8Oi7lO?)-s9~gM*>Ug|8sCa8n)omTrNV=0O%(?2qSiH$2 zk$q9qkTZ-|>VNFr;cpzrq1RvTEQq8r zW=W=UMm8Qu{YLmb`zZVf{{Vz%PVrB|%>vBnH<0;}x7pY{j7{2k&u%|GL| zoviqG!?3Ak*CI$?OqXsk=G{QoGFyR>&Bv9&&M<52Z5zXWEcjdC4NA+zGt2QpOKZ*c zG3n63Ykv0IS0;F7o(p-UOr6gW0ha+|-NE3zG5b$=W5IIdr;OK7v9Q|9-rbdM;%{gVC%c(=omYFbT`T*Y&4UOhwY z1?Om{!v}`xn8?b@f*w9If;g{{HE-F^Q1}_E>2_0i`qN+VvP#6-_^nkht%LEp$5Dk6 zSK4v%U2ff;7!l8;e$$%oiuK(tCD8S&zYX5lrpPXI$yse$Ai3Fdrxj~g9OF1gTyVps zeii(2@&5qFNv-A6ykB{5aBWK$axQG~{`+ceMXE-0chVt!9ZiAeZUi~}Q=10Vj_*XiTUF$cN zFj-AGRTq(nW0A0O90m;xjyf)5CvQsm(Y`2ZmR6_3R$7ntoHC8l!*~MPuH5Yc9J>Yw zJsES{RGuBR_=V&9qI3ZIV!~BeF7{V!U>-M5yBq);XdIDWL5IUSalDT%rJJ--mvWvg zyuS%$s;;GB846xPE#(BBNQJQ(2Lt9o)3tQA{{RvE5u?VITI|zYx-ZTmjhv=Gh)T@@ zp;Me~Qog)#Ur{gYzoYnIK_`e6bvtRcv)@RMaAJ1(Olaxz5HXTKUv>wI?et#^d?)aC zixTGRN3_;j*|C?m7U5K<-Hn-;s|@3ukM9m^N!Nw14MH^9)cHHZn*3I4bN>JcR+{t2 zs7Pgn?tHl}KJwCZQXN3G!11G}Uh%7HdGd;GU0h&$N$Vl0kuD~DQZ6{d}&XbWi$zoH{0nNaM&`Cx)u zaCsaZ`5c(?0PId{QvU$q{{V!1Qe@O-y3_PsYVpFsr(799bMq8sckkTX*B8T?^vAf?Y1K(cOU@Q=Y0zMI#|_F_2YI`c>@<;;+Ol7g28sLu>Y< z5Nl(mtXX6Y)5|EbOua_knaJ-~d`G8vM^dtQ{7R3b>JNm8Zk(~+G7#@T(xL)Lb&&%1 zJoLF=PG$EQLR}7i&*3(YbQ@Rj_4JqCLpX}n7(~NwIGR@Thzxp_h~qtb*5;Mti!X=T zT3L95Y}$Od^R4w{n&u%QjE#`X=BlDF9HEJr4D1803HX1l=vEfm#k9v*lkdE?QX~+l z$OjUEB&S!-VDcncmT0h{e9yJZk-g4%Xz~CVJkccQ zZm53Km00x4`~Lt7d~VX)QPwS_vA9<#ylih-c1FsdyTKI2Y(X=6T zqUsjSr`wYqs_8{#X#-<;cFM;W1N+QdrUh#0+Mw|^hdg=^GTfrHU`cL6W>C3ND=0|= zDu4l!G$*YvxsW-CcIE%7U5KO-v=g(bNM z7-j&Tyz^UwM)9A6WBU?ZTIq`>2##RVG?*Nb08&S~f*9jGRbLgq!|Am3*0moEPj@mh zEVEk69h`DIlen@oG}}fA7$jq<6{2@~>R&>ooxYKF(M#~#Ra-_fv0EYqwchQxZL$o@ zCPD65c;Jqrt){8s4-D9O(^}7EDft?GPG(4&ML5U~=glPa+!*@uYfxx2+UOUT-Wt1t zOBo@Q+sC9NQ9NqcVds_)BW?aIrE;f$4SA);r{h~4*SCuj>EH)bsBMlV2b`#pywV8j zR1s43W>Zf39=9x>9Pu=A{{X^Ttrf~DkF@CV;ffAQGBDb}^vbUTIK^P=9v;)Q;xB$5 z#cg_H*j%v^>JfmaCOGasRbkXLcy0$lUPG$tejC-Nw!UfK&vnf3*thPO;~~D3uQ7HvAK4XYv09t8PLN{H&7u)#PBXfP>eNy0RZKx)XeDX5fEI;Xps>5r6AXQZ* zMi)OWNX>8;{{R;?jdtB6xrO!1Si*rDsB~SwF~sbvvz|!YbBqDrxsMRd@Zjin8jg>y z-$$xm8_u-6MQL@!rS;Zqkgg3XV{XxddeEPAzF|`xiK_jP5RU@!_dPvEjQD zeQ-eXZzZ{TcAWgD%eV64=s)G5ka}akA9?X=Qj_W0;92ej$IXJx6>bS5KYkzGu{p=i ze@gNl7spo~AJiTEJuH^39#5Mk#J3xpb{LS`VgQ5CMgZ;2W@|n>({(%FIgQl!il@mI z5fY~?dyTPYJd?ogYqe2#*HULSYee-syRANL9LJ?1IqsZR0lXv%z3Up;CQNNO~g00s<;e1;ANd$ zbsJH(u>^M`p1$x}wWhIg1-7GkJ@Ye_c zS2}`P-m3=LWgiV8>ADz02F?#ZE_vW$o^L!`CYco0R<@GBRm$EX5dDeQ9BFZ}Y8=!7lFVe5F=r+&Yeb4r^&Oj~KUF<|`j>#hT*YX*9R5hS-EynBS@0Q~aES7`qLdyd&AwlrNkLh-cmpBmp< zSct|@Sb3K>8?%fV0Z7pG$s4_e9H}i!Qqsj6--g;uZZECi`&z=~mR&>lkAiydB&1}K z$Wi?2<;Jgbsy6wwsbqzah5I~SWGo{aT$V$%ear3V8Lz2rJOuzJK-jnHiFH3e!JZj^3)#&#oaWl* zNCbs=LM>wRW6I>J5;bu7c4M>M4?n%N`h z-6z8uZ^SD}Esf*B49>B-Cg|TFp1S~SuLEfWabE4t2iD zh&+3)!Uuz_HJMaMuCiS?OH4RBnMK=)K;w;{E_0r>g-UYWGf2y^^rytH5NUr4WV+Gy zh;A0ZIR^5^&M7R|k&+taUP-_h!Tr==;=V!grnm5)Sei|8&hFmPrvS@!Z{@_!ybbYV#(CAe7k3V~V9Xh1zgM+G8n8JNENG0| zf4VSFVP37S4~V)FH--FP{hi^f1QKq%xwn#AcgV;`zIe(hz~Eqv@snOJr~F>=e}tYW zG+zwDQu*WnqNXxq{Ot*0mzVnAe zlIoEt=OD0dI;|BHo7kHfHXjYVGWui5px;>7&VPITp$C@H^YbYxNJR&rz*CxoN%*s= z_&-_u29K*~{xVfe#c^UJg^=f`oMQ5r`zblcUe(|DGvQ~!kBC-lJS!yfN}5(zLWcik>6TEsQ=g z)2u8sv|wShy0?spV*?Bd$j>Qma#}19e~4F;NglVSNA^z*!YyK%c>6N#lgu5P1iKJA zoQ#^yw(!4?JZGsw_I_>PO~J&a-M1kFg>XR6e2@=p_T5lUHfAn;EPLmT{{U#81^91T zy@$XyGR`H~kzGM`JgFM0o!&^e2H|7Nl|Q^p5O$0KpO$q!Q(f0}F{)bL#WP$tn28Bx zc!O=g8*=T?;4_j*{43ia_#Lg>i631_Y-fQC#uXpJ2p@ay=Rd+2{#B-a6?n5w)5fdd z{RTVROJb6ntgN>&fyi>WK^{*7gY*p_Yd}{bxD|vnv zyITkV!x97&wmxn909gU;^7TEcefIBR*zjfW{{X~oUr$@BTWIZ3l*WG93&%2JKQipz ztU>Gm2m7Y7)51PG2mqf`#y^8ilW+V7k;kQdhu~|w?}!>y`i_lwwmw{Y!fGm@IsyDL z<}-pua6w{8uXnVAz<*_r?LH%lIW{i!Smhu#IRhs+2D#l=eM(Td|JM0S;b-gz@ms{& z7>7#IHCt6L`|vEr6?TG~zUU6)obS%wxUa9gCI0{fm+|+5^;mpO_D1mqgvutDKz2pc zC1qADu}wB0jhFzVc_3td@DeNafpooB_F?c&v#$7CQ1J(fd@XE{+}QYWp%)sxmhf5B z%{1z6ASy#f8*vH_&ESDq{{RpEFVFGcLz~9`01WS>OJ!));+>2Vz;T!JQMO48xX;SR z7$0}FXZ@);M|0a)B?rv5K5+PP@I&@o)?}N)+CGZ@7V!q36c;*%pLR&Ow~BQlHIg#2 zl3NT!nb>xa2qP7_Ks|GT*1lY{{h0nU_#ePm z*FUxL+FfZD9!viKZG6#vq{!qGDym9VkZtn`2#!cRax0l)oxSNAyfxL}&lHRHpwm79 z*gu4&@gAS!OC1*7E#TCEFzb8KNA4~mu!KQ#g~L0>BIobNkDT}CN#V-YEdakd1qiQ-OrJ#z)LL+#ih~e;z z%B-aS02e#B13Xqmyt-wx=7f3>${0I zf>$`NOZavB256oD(U$k)Dbh5J62;g@sePh5duas2<=HDJV(#N>M=&9BHlFqMuZBK0 zKZ5kvzVViqr)lqJI>KjH328e_0-<>Be2a^D*+vXAB9&}_&YNAiZxjC6&*90n3wvuQ zXWW^&w_vkE(d2#flgqam9YNFnS5ENZ4%!tLE z90uG-XwlVFf~*|pJ@bn3jYIYu({#z+>Mx+&3P^N?OE{y zTUj)#y*lecy@(`NR+mL!f+G1VBr`&wNUSnZ#Kayq0m|1^FKaFIFsV*4)g83{0Mj%$ z?rpVy49Vel)7n3^E~zQrUDSYWr$XXbobso5!*u}Hh3o$S8m{fMW8ps$=~n(N(Un+v zT7}B1MCf*hf^V91mj{B`2OMp$o_;TUX|nMahcCnZTwCjUAQ?*sjyYmkQHe5nk^J$# z{{Wdv;FI%L%GaqS?XkboZ?10Ql0_>7*z+P)0BuR1A(cz zMui8&-6O{FYSwa*9P!)AA&9DsY;hVZf`=iIj^#OA8uafF zf59^J{W2ww;C8>J=o-qITuU{R-dXwV0gc|=Du;+S-v&e^94iL-tIjkZ+n3;WxnY0d zZwy|^;7w~*zFYZqe+}9|&ppIoFPnd7aU6@}xKNTjC0V}qK_RQ9m;MSV<1dH)9`gPt zYI;ex+#t2ptnMX~PrVKgNS#^j>&+c&t%m+33>2mz_u5^ zv__Sq>2u3FS{*{e?Uy!^7jKqA65d5cVS=qJh*X`PndN+6`zL$|_}k#Li^RHxgTbhw zx{ggg82sV#{G}&~yq^f3vmN<@;>%DL^Gjn93F7j1#eu zp!;L z>8U5#Z>*;&sKQSHpt_BbfPSVX%HVv%7_W)GE&kRz=BoRxCA z23QeQBn3e&<+fP;-VO)n)~}@eeA0CoJT-k`t6p11{!P64N;AYEcP*JvC~+qw^w=|l zC3~;H@7WT6i`SCtIz+60vm`K0<^q%2&NBF9o90P6^T0Sb+$*}49uU?{%5A+8x;$sZ zKNmbNtlUo~gB+~*G06>`v$V^i+XiyoZ#UB$II@AD&FALfOdqeqd{<{{V(O zi{S5pS5x?wR`T8}fFrrmY^J$&fPiDUxU@`2j;A4nZo_T}Tx1TVnbVGl!C_?2#C=!c z{{V}wuFT##xwy5oK+7G?v{CHmov$bFAL@3f>4RJLz6{a)GvT=PGk+bz%&vwxL(Uj~ z4g|P_D`fr7eXI80!e6sT!EY9byh)<#Z>(udA9c-#l+fU06_d)$fbRqlTX5%ris$uz z*?+>2&R^lokZ2dNyQ(?2j{3?*950&`xSeo6xgz7QT2ajsmZg17pN8E<2++PFD82jQCP`p-AQb4r&hvpfq^@WdJ{;Wdb#R<#&gc_u$+laIf#Q!;_b z8Fo3w2VOb$(52I^rMmER5l3!~mGYw-!958whH?)e`qyK1;V3naF6YBm63UKF+iU6F zglIl(fwBPv5=QKtaf0s0__8Bma#39x)R<%d z^mP&tToK61ZR4$dQK|TM!!2@Q@jZsfW=1VCx%)stfJ(_0cWon$$2jVHR+P!`_Qyqz z>%#Hg_>Sra*|PBx8>NVHpvfXg_d9ZSkjsVQo5i=#Ue3t)zVG36-G%Slps={qti-r^ zx3u|Ar?3in&&q^)R`rB>jf`n&;Y|)}r~=4K!32{b-PD;g8gCivzmHC}>9=1QqtY*h z#+h#(mw5}9kg#aHkVY3TDIAmCcms^r2jVY{z9#XTiFI28G^5Lp?eL+1u*T8mnWR{s zuUvE2J&k)=HL4*(#9AfRt!s4+-m-tOrGdjcKu8mwKd9T5$etv_j%S z2_pnKNWzZH3j!(WG=6aFB0g4vA8D&Pj@b8H47gRuu=X+Y;$-3?qJyC8q$C0-H9mDzZ@PF)Y@k7KqTtaPf z!^7TEwD(?Ijc*D%jIfjkQ83Ruk&ZxN*1qQWOYpNv@YjSOzVW|`w7p&zbtZofd6HW` zz;Nv`^3hp{AO>I$@U!N=Qx%7%os+Ta)30dXbM{Z-AMH`_Z{d!x`cK5@Z!}>mAh*drq^o)h`m(;Um3@7Z)+Y%&O7D zbYpfU%Avpo2~co$=D#{7_`v=I@JxDVg7iprojPLgHLjz&=WyJ3lG&s3m(&o>bK3&A z9dF}ri#{W1QTTgDyS(sp@I+-@Hr5jrnG6~+%qtr|CwA2+RO5oR#~eFf5*w(x9hb#R z4~=>i)63z#WxQ7v=g4&3d_xYa98OMrhqp$G;gDc1AW1MeeAne4#@`EkL(=?A_PV5_ z!}jt85vs#8lw57Xva+Jisxz?jpRIP@B=}k5?Go8jhesERtZI_Oc-p zrWApYUAF=~tAE3v6&-Ym{5$a$_J0>?*Iy#N!bqDut_md5gpy3Dz*da5dCobnYK1OM zVEKIA)9j!GNwsaX&-Yq$MJDY{{V%Br|NJ%h4FM) z+(#%>RftC|=#x3v_V8~`3CLi{jyDXNv7~%0@ZO`QT-ulR%Ewxboa z%WY#6)^bdA$Rm+sGe}uuGs}|RYO)5#_YJ!&dkEiD(taegAMmuaF{Vo@ow|gKu6%#T!^-UT_#Ba zsA&PtE1sBOi#91NWn~U z*(*J~aey{%jR^=FKY4rmx^16kF$3h2gidwDUa6i*=IjORdCx_+oOSV8{b< zo}`jMsI+f&qXjNiYaG30p}1`A?dV?~$Ukx0o+n6*Dso0^3^$9+hprD10;3 zZ@ljpY1YeecnBA^m}#R>HmD_-xnQ7R#B+{uT3RQLB5ek34Q%c;#FeDMzIf6#RU|UP zk(QNnpOnikLBK-K0wFs=@ zzq7Xy1Xr`Sg`Bt?Z!a#yRz2BrIQzZnxB3^wFAvW(wv%ftvq}+XxlK`m#|yk~J?f8_7ni!6U>3af_;F62g&cL8}I7!E+eT?> zC*jVgsa(FbXz)o3Jm5ZNfno#}aEd@*o9_Y~p19!Bc#}f$j+dsT+*c<40V6bTr_4-U zK3M#?&&qRxNId5oK<2qrxY4|01a0AcMWnd59zw3N42Ceouvm~3g!9t@`58IIa2nr_ zej#{MUlw}1U3sJjDQ*@ek%8NR6|y2Q1A^OgjAp7gPRNO+YopsdE#vPL={C{m`n1rv zc?lM`h-aMq!v%IZe2{Rt`eL%YQK@(n#Cn9WUPW;8?B5Nw)a7mBR2XA~V&DVSLF3o8 zd2HVkwB26jIlM<^)+$-&Mu-74Ob#OgH4O3|ypWCG2Dn{K?lluU_ByLyo3Mf4jgsAp zj(>WA42|0aGJ)^es%rOWm?>_0UZdiL@SN{*Y>tp6O@`x3I8aL9Wt@pQC-|Qqjb=&W z{{RvAiZ44^uuVeUM>iKmVV|csWy2GZ&>_g@HRA)uX?Tmp8Xt<#i#T295+9z<6EsbZ0o*@z)Oz3()~`kI ztKvlV5bAmzm)a1Zcw~z*+%QHU;snnDfd{L4DHt`zY926Xm9Ed1A&|(bGN~MS$OM-`!f=zwsZ$5$F@Oj5>9Vgv!28mW(EV5Tpl-5u}gKagYe(JwdOXt?chLc6s%S z#J-Wn(;LQ+s9gU55mnw>9A|LrTH36SBqZ8tw-*!212l$6g}V>-rE&rF1Z4E$u(aI+ zSJmX5o$WN+R8PGO(oZPe%Hl!*B=eo43te$dElzi9=uC9IH^L~_dNlSLTuMxL5y#QTlb8`N3P@6q?5+ltJ)^B4W-7X35g>GTr3F!ebq8b-zq0$3VG-SbJO@R=+9|z znrdA{s=InHPN)|KeT<3?rs>6AcxCm9TfS8J5+iSX(`>< z(hJDwG*7emwiyd)HnPXN=l;rPj^T?b0Yuxz200~DJ#u;HtklejZlCam*uy^D2VF>c z(r&;xiegqY_dZ@p$s}gH!dZMl;z&HBrd#O{Aq29>(p*Trfe4~BAmb;T@mbeD4|Od` zqrTRX<6Md}xuBMP(g37zw!jr58OBxfjFDB;&8r)u$8V?z%=$Z_1foS~q0!tPa6rc= z*N;rq?FYg-M~rVt)!H8q+M!VUU8cJnl6C* z3iQtlX_0BAJWs2nl0|WAtZFZ%t3nCd@j6?{4AL^=DJ-!mVSwH1*kt{rKV|QR4}0O{ z_|l_wC5uK^GLSe>R96eA=sNt8VRbn#A#==jYLq+zO#{~7zSHgzujee_( z-Y8=u%x3up!5Lw>hXZi=vDN-OxA4x4t*&@;#W3mjDo%9!f=eIvV`bht4tHbN*1pL} zSV~IvKVbCl+Jiv4@Ry$26n-YvZLyoL4Ov`3yG}lTvD`YobIS#iMF)Yn*PB>)2ljaV zu61jhPZRi(#`nYx7&jIyvFVrgs^o3+pp{lw!xSJAyGsHAI63$W;h)C8h@K6%U0UAC z-dHw?8&H}2wLlxMbMNwwSFx|Om-eUdAI3il**}kTT_eO-wsM(mZj9m^%V|($N?ih% z20jCA^6`_3^5;fSe(9>^X_5S4{egT>@S{p!ANUW&Hrj@r9Bg8;)#DrYWNjAr5&3Ax zZ_Kz%`sThByZEW&eH%`fM!E3H-z132$$04YJD=Nb=|(??fzy#+O#E#4-|=V1y3F1p z@aCNH{GNL$A1b_R;wXp%B&cQ};Ddo%-ZuS|{84>pX{u^kG~P00 zk-&=1{{YXN5;9D7@&y3koE1WGz#QVLb5_xl8QJbq*1u^lg1WE6%YO;#9s!>FP;oOu z1Xi)L#vcp{O^t}Ez<;Y{EDjGMzIpI=kKr5ZDK0!kb0>!$P>ib!$#EgaOv0Q4>f4l# z_4XEtuKvgtJ{Y>tbb{=%D%)&P{wTapBz)SJ$p* z_+4#vZKKBTiRNc1jsCI~QU^?&I}f}CD8*QB(E6&=Uif1Nkp_*YLE1pf8|`64X&4KY|^s@+r8u<9Bs$RxtD;!cMR7%tN6CdPlgK{Sk@~m zazK|*MxJFDzyaGO0q&?VRSHSywI`b25!lP|JH;B*ml{8XUh_)Pj^%~C=bqd|2g*@y zP)!>3`BjRHbgfSac*n!O5NLJ13C5$TOCW#r0yc+__{^>g=RBRM$MA~z&s*^)hkQ+` zN2ls$^X&@aDB2Cv!|j-}yeY^hZgGs7-O>IP_?7R?n`%+dYM4Dn_f9kNY%&AK@Q_cg z2^G|+MK5{SUemGkWxwq^@h`+0{{WriX`#_{<0Mwsm-h%D@*|mwq>|r0`BihA5O6&Q zbN&`?xel`45co^+15(v2rkNv&XKC*&$RvdW&Jy7PZ00-+6WE&h`s>DCAG9|b1>K#- zsSI+3kX?m|7bG00KxR1ak~55beSb#rbp8;6FCX|9RkG4cCdIe9x3`)s5;zLMTmyhf zM-E0t;4@KDpDMaVbF1>B**+%8@e0esmg}xxu89T1KI=Oo*JLX;3nK(l5S;wjTobnk z6~uUR!(R#Yt97*S?f3j78srWoNiG6g`F>g!lQCTFCB9wALv;jTk}BrE@z=(FAn^UY zoSq-I)bA&D5X~LHYaqLM+iKvra7IZoZ6dtG!u}0UAN{6p65eT%!5g$qZ38cx9_^~_ z7T4Z~J#s(?p{Tx=DKfUJta!==Z?kKR){{u_gt%3ZF>JA2(SZAT0CGU=I#f}3d*aBA zLDDUl;Bpuo`{b}cm=(0Pwmt=pW8g{QiYqlHLvX6n6$F6A&misN037<7%pNQ8^yANl z_RORF%6#=12a(1pI+Ey+U%CI+{(=4-={_F0jz1M?o+F0xTZ?kwS_or>ffx+0woWiW z=O7W%q4B?fJO_WL>S^%WO*i59iuD_)uda2EvPX9X`^Ew)-l<64!ypLGxH$eSb@|W5 z7k8`h-p51zl(ai94eC03Pc8nHcbOAWmU(xRXwNR&b_!c=0rdGm=NH1C5;ZZVTgl_Q z3A{ITGc$_mGOPh&In8)+T>eb@hb~umyPr+?Q{#_|d;#E}vi{Ny zqIhFb7b$CFaRu5(XLjs?i$JI5JZI!wk;y)l>3VO)-B!U%#UkEEaT=`A$i8e6#z6$G zLaPj({+T}B4K3G%{wa8Q{6FK%2=)CwLa4U)ii)C8K39d~PnCe=V4QX9TvSi+ zI_*oABvf~Ho`>QmkF@^)in{KhsNKGSBufpvkV|tkJ1&)294w2m#E~#L@?=(txH!ld z_{Ug>RQNNaO{(75-=LX^BomP;T;NO>6B@DxgffnUE`hrr?cKm0z_ z=GQenTjHjTq~9zSPj3iqOHb3|RSc5{mvPwOzS3RzA#gaaFdq=U4*1VY5%@Pzwwl&R znJ#|RS}7xqh9rVmyBu)I^Ant4*JUc{Jq#yK%GSC+7ByW@$GWbYvrV+U((Vw(E(0Pc zUpO6vOCqx}$bRgRv5fZJ&OFatKM<2hlf(Wt)sD5Mw2YEkO>ibKV}cZ^$}q)oI&e8!rb4>>lGp zxO>?xSrkC=pq&p;ygnEKji(tSwOO_C?wBAte~q;Zs71WRAx3gOes_jZv?$5I&N5DY zE6c2WFK??to+6u7g5lKX60*kVdu`!Qw;Y3y!+J@)DGcz-;vGhHxj;-)M(V|Kpao)9RlT^vmmK)1uSf2#S=3=GP){r#Npgj&`2FpH6Gf^|bhpb*H8H zn(Avv@%zV!pyPqMHc|#UlB3_&wIuOu{vNgqZ)*kYU~fx_4%Ss{ZTrPal76HgO7(vX z=^q_+@R!~evb49iod(%o5^h!*06VY}oPGy5qFOtGjkY`=PVgqPacH{Dzlj=K`45_g z+9?EyxA?@-unKSv2jYFSbxVCV*8c$QekawUeMMqiOw75@`)s_DLFBN`Yv`R%_Fee< z;(43R(4x|H7YB4jB(w7oFn9SNV4NMp=I1^7S2^KdgEpQK@k{7G6Ld?I4 zLYx;#cINQ>~H%=_=ecaq4;{@*5!gMmdh|$%K^cOuY666Yiwq^v%G|cl>-Gb!781zs(dq8X+O7z{452z@Pz&s8n=h< zp_UU5nI*N?lHk;GJ&9$3oQXW|diX zs3H8#!;R`^aC6`NUIFMU=$`<7!IwV_w2eyR!|!wAt0#;}Z=;BL zAHw92-3c8uz6X3e)_>tDhg9&7i>~jyA2pwp+IF`80NNVupOUIp7%&1xbq`)+_}#})#cX4 zP3abOLWa8Pk2m-m@Vnqwh_x$?9?)Mdv8V2q>q)yOPrbE%IF{Pq%Pum0_+~?%8=Ci@ z5PS~s^Xbz(rfn|f_zybkNG3bE9S#sUg-h*TrIppd$YYFy^o56wJRRblNi`jBL{WKZ zYjG96tK}%vppA-#5lr#CL4HxWT$N&@jw{Eam*by+yk%|Sn_Yg>;x~sbrY$AK;f~i> z(_oO6GTp|WR1?C0Z48R6KnD%;8sz%a-jX(OwcJkt(EJJUzr#AqTKM`~U1LFt8;gOd z+?gQ1MOH&^9MG88%o0bxe2Nj2g~CW5de-pHv!r}T8kV{6*+FQMwr9XN(V+DzF4ns`m~= z^lHrf_3;Pn^?QE$=C9z(8%+nrm#C|Csl^Dnx7`=|xh}2Yk~pN3Ew_F%*tY__3r6@u z@%gon_(Xm*X+CkeiIy!>LyeA+KGh||+vK&oGV``yFdX4zEnleDz9sRFhj%^ai2N^a zK8ErZhU-i7E+<(2Y&^CyBFN%1%a|H$bttQr9<`u&Tf|z8t(qczh|Qt|Lae<1lP|-*V<#GsISDt)lx$vKWd`A_( z#9cd3(KOf@m}|4!d769g2ROM#lge^`j$NNlMRiil?Ci{H;W@NN^1tGpO8df6&!g*l zB$_SsGbC)6Z0zaZ1Aoi7=O7$#GBaErhw&rg2E9Dq8`LFzQ%#$2o9&!O9DP3aQ3eMg zi8cKn{8IQ6;g1mATx#kd)V|WKwoAyOxJeK$RK{N=i(`PN=EqJe@^|9L?1}MH#(pgO zXT$v(8Q{U@0&Sv37#kHB1SEfX4o-O$?9s--u3003SZ8~{;JzE_UJtRmgTnT{J+rsA zlPw;XcOjjLu;;BLrRO#?!i5~iuiNHJ|EY- z8R8o~PT)(UM6AAD+}A=0BOKrj@8%qEIE;holUh>6HlHIitx2Y?c_prqr+7x}TWY#g z^4+T{qTWiWw`&kKA{OB8%M7UKEA%_y*T(OKwsTnMe-p1xg9h&|-hC#>7`R>rrbu~q z@s*M>8mSm!atZQw@z#Ojy%yt5_>LP>S%;L@_7;e)xX1=V?uJ4SO|ksPw`%M(-+~jz zW}2_V%X6vQ#(~;f)Rt-E+;fyx+YkpiDh7Dsu*6m7R;!?uCY9r<_I9Urd*J4e#hM4$ z{Apn%u$UyXk{MxKAKf!svd)KZ2WrM}M&ptzue9-}hjd$1lgIk)mX^_nb%uF7`=|pQ z{{XsfWb2c(L9~PS0PFMD!w-d?E7uYoXTld(LU_snEN|sQki}Rm5XM7-2_!hc7{&-D zzNqmB!A}ERTTf;28sZx}f{bubNH&fYjBESsbIJKnTzc1?B^9G*TqAvqIKCx#6Gt*z z&2F;W>M^1Fd>ic5u*I<@syI-lCIifhMBYLD$i@yPx2&|@9G2$B`exF}Aj_nIDv;lF zHt*jfcH1BfdJgsL-Y@t+q8bzLpe5O1MH`wBV$s;{(3AW(nVQ}3GbO-*h5 zKW!cLsvQ~B31qmmbi0g|2j!1)th)zX1{lXfQwc}x>O`Bhj|S7cPvZ{@$utw(y``@% zme=wo&;|)p5X-Jf{typylf_%PxcGnLx3`k_QGFud1HB@Uh$J$fx{WW~`G$9F0Oq!b zfcz=(TK4*X5a|NkTu1)^A@ORqT*h}Q$s>akcexo_Mcz)8x^9B_Z(r<(gM4!|7hVg7(@)fHb?}X20NzZ-*}h{-tSqbu>zdC6eG;z`MaM^Fj-hUP<0m5HXRQ4NYs{ z2a5CoHO>66CY=fMKHA$|Bvw44LV?|Z>D6$0bgrksoP3~paxkPJ9X;#NJRSQp%ypZ+L&X|zkt9+i&wp~| zM+=`Zo@OD?Fbpv-C#X2AULp~d*?24nKD#x-5QTFZ(2nf^&-K^nEkp-Rr)A z@v};@)by1Ztl^4vIqI`;S8))T@20nSz zJ~DWN!P=kpYS`)i9a#xyw6=;!(YBJiZf8Ozmn3H|F$VxLo<&khOZR_?N*214JFPRv zK0ea#?lp*KoI`LO*ZWC;hDl6=K46uL({W5Qa!l$KU-p%X`LP1^-yxA!p-m&aLL<+?Ghl}lZ8eniU4Q@6dg zzKYg4bT)&;whGUQ%%^XA zrOoc8J+^@)rQOB0E!s&OWV4VNNN%SmIqlxMBTCEOMim|2hqddocz;sRj-%k%ZnTTg zrH!7hRjpqw^Ex=gA?^mz>wt4!IjE)AhIJ_A)bAbw6i1r~{HWQ9J8?9H&H+7;eQSue zzPft|wH*p6wK#4=?2ME%&o#hn7kh1ys3)zgD zBOUXG&Ugl{FiJa$NcKMu*m%FjaYnFd{&cZ|uwD6nWTOK-$o|JUBRpok5dO|SKC`|z znxB>8i+Dn_q!T^8>ks2dmQdSHPCf8;^%c(eU&dPIk)hB301CRs*49Urcbk-Xfh1*_ zR1_E(#vP6`z%|8cUl@KT9ZB28`kn2)qcM+k5vYh3{t$?}5a+oEt~1i2^5{6h9*5#z z4CsCf)TXz))orxv%aSFM(WC}+3_f4oC(NT6!H}+fD}}hQ_-wZ!t}Uj%x>h{K7Bpgd zGe(jD-x%M>9P?Qh+MmR49_hj>i+hby$}Hkr@IGJmqZ>Tj6Vp6mu=HIQLGas47QXlK zOpV2o4X~C_Fur`FbbNI?G5FT7sQQyq7BscZH^!O_sWqONZ#9E_!aHbM-*OY5m@5_= zuyc-k=DGg>?5`1DOcrb%h$<%Dk`SdcL!0@9q2z4Mke+|BWB>dF5A(sXF_v^_3i zV=7}jFqOkNZ(JbttVw<$+IZ2tlV;lELW2(q5YZ4w8Mw$&NaP-e(~79MJG&Vc^q++H zI=oV8_csY^JnW`HWB|^2<>bP?;^IYie9ft)bz)JC%KmUe#34e4ZzMz54yF5b%C)+DrO*_7M}oEIk{ zL2dGIFmMjuGAq{pC3u&^J|5Pi@a2W^YnWvs@LQq~cPQGcaLCHXo=RnXc^qeH9w6|l zY4;W}>F~hsw->MxHNa3g+}JDB=cYY9nvYu$cq&${f6g(f-AMR z@z;vH3#)Fh)@?jOB~7Un;MpKnASe>XcB$j;^*)1&sjU9do+Q>1e-8L}Mq9grM02dH z5;kpsm15&zPH+Pso2P1)Wm=BBq6aiSecY(C;32IR4R~CP5C6+sRZ;@^pGs6hwe8wHI_fSXB z3|6sD)+SL_+}{5Hg^6XQ+sAEeOtQ8@PXrGyo3w5wDM~630qn${*{+IvuMK#QS&=XG z6~CC34b#y=6X3mB!)ZN%2s@vMz7e<}qT=_@b{J#Yxmy=7>=3!B4NR}<+v zRlcPQ4W@kglLR=)-g3de;5?q|YKwtqUrvVuPo-@|v|Jude{w{UYmo`eS3XFW)bGYZGa1L?CD3f;7*}HCZXX5laWD*@h#`a0vh~Z0g zSr${090FS-XdDb2^UoE}U0Uj1F28Bz@a$S-3VCVfK|7Ozr^|g*zP`p?2WSv0HWWJeI>RT=c;DnocTPic_(nt$alI zeS54${{RZU*HyH?DuM1aVv$=r1IrNNG|0|Q0S70XSEKlX^Y(zY@S5ru+TF#?l*1^x zeW7dSD%*;`mZM-(&ftB+8uITHq#hEE+gk8{iK4a;H_K&v9DM8tA$FlsIqkKN878;% zf7(Cdu8Owv=(=oENbI}kx1Ev}WF1^SdX8|Udz@Bo8rd01r{;PW!0!(J&K@MyXP3uX z#ntYsGKu83)Gj1h*s0og8JM)}zb*%w3F=R3=6`7426zwQrSMMvC?d;?Iy7C4e8a)s;FWrRaKY}aVzE9 z>c3v5o8rw!UbxbulK%ifhIfWWV|{Nd&R7GL47-^LQNY3iGtaG1(X?+8Et$I2e7z>t zMPjKs{qPP>6mmv5ECKohU5P$h+`>-o0TKx;ru6-4Y(6>Ft5H~zG>WZ zoxQlv9O7y|AMswDr*81vucAc4mQw>0JWH*0q?>6Y{A62M24 z(xj2u#v1{c#-(K`xa6rldChcD=|2)}tuE$~pHI_BD3WOCVL+-$7J$03^s z@~qtx;njhX4MX8>uJYa%X&xlRZ3_c{+sXNu;N?(Y4i6+&Q)#UZg&VWhv_Fm!*(`np z*8DANqeTmT{!4pwkz`=Ich2vbQ#){3fCJvVUsGrJiK@u{8t~o4&|J#g3#ieaQ*&qx_R@||Wgb;EI7CGyK(}MVebMU`K z)Dr8%TA8=Lft6xQV$zVHZNlsvVYwT(jPdlrAZHt_{4&?~kc5<}lLR`D8{i zGIpp^bDZ}ib6i=LuM{#qmo?SnIQhS_ z(pbW_dKqF^)DSw2!20qlx=)LKEck)pt1S!mh0_iFq)Z;mTUmnZdU!$x==_9`w*xuI zVz~!7&3xti7i$;4wEqCX)zqxKN&SQIbHF;1=(p>r#TCYttiq}$x4U~zAIy>m0opBq zNHesq+V(FN>Rt-dwOvENekSof$nh?dwXSU9v1nl3BCGC(YtJlC78@RHNKsBul0zuB zN-kWITBFldoOWl?_x}L2f%q5j?!l(i@BDA0#~bd|ty&n81vx5biDP+{kq8ZlhH!Zq zIO!~Z;H0`P^EDl%f{#6 z+GN8;9jP$vJh3w~w1aMNxL%)mt7VbWhVl}}Nvkw|llX`J3UT9~4^Q^b1K2gIJR5DU z?{7CgGm_tDffWwyWr21aah|pFkBWE8HqfEH ze-2&gu-dsv+GEOqMIyA4qTsUf2Gw2NM(<;u zEB4>P{{XPJ!~5b!v!lnT#;dWUw}~SPPgZ8mTZ4iN9^ZDpj__CPArHcz3hO$L!HqI+ z7HV!_p5I5my7D82H+E^`hU7&vMIsZGiNIM13bKV9Wmh<+m69$v4sC9JA!+{rv7f{r z5v&P$Xtvi=z_Z)jPY6gza9FPIFakzC`w-33AlJG4CjE*0Lt?kuN5nr5Uf9nG61J-d zf?ErS6|uc$m5V~dAT&~<=lB`dCckq&23hzM#-1FO=DEhfJR0M`d;6{o(OLYU3fFac4Ju4E(sSYsg-!zCm14Ab`PASf6Fo*2<$qJ zDw)KsqB>)Rg3+x{$zK8f#hx9vi8Q3pt?q5)+a!@(1XU%J^vPxgfahy-fC$Db-~Jo^ z#C{a;ifUdb_*-pubv23p&*AIaksXJgNO2@mG;Si__Xu3@4pe5o#`tsar{RBswHxR7 zYvN12W5brVOz~(92)uZnF}waH@=GE-QRgv;i@mxHzF(H32dVJi?Mv{x#9GXjJ{AK_ z)qJ5W`bF?aHC0kJq=pE?d9k?!M>J0)ZG*MW4m|pp$5GicqBJ>nS4YO)1JZO)h#n>X z0E8dn28F2TzAj679kdNXCsZLDY4WZEEEg#r1e?%|0=WPjA7}9w>`m~G#ab2ThdfE5 zMR#pE5?vXbnMVOe-KPu30B!(|-RtW;BgeXixYznuinRBTT*2kq-b4~Ri+JT2aUI4< z5@2zL$RrZnSAuG7@oU0*>>6i-b+~oU4N3|y)xKR*OO40Ri6m(a+7rnyB09IsjKhJ? zJY3@WY!aatsy{lkANVHLvGDK4&1>-cUb)nKF$bG0+8ykEY~hL@DPfrhn8*$@7|UlF zIP2uk`#O9s_@k}g_$~ZF{{RS{w`@$eIy|~lY1gR{=vdu?(}T3_c-7Q&CnGib4XOUv z9}E?4JUYH2I`*NY%jMnujELlo&l_C3BPIq55DqxTYsmf}e$w6o@vn=t$UJAES$LFa zmkBM7pqEBlxJV!gZRPUNlmPt7#X%Vj@6`-VOA$ITw!5Doc-Qtc_;KNDG6a`8uA-Z~ ziFHh}$2P)4vdGaEU8j*42e>A_au%LB_*-pjtN0r9>$-iyM%UUM`mNR0nR3T$$){>? z#TmS^L57RZw~B4K5`ubunCkk6#amnXyg<>f#194;joU|}ta@&(V-7$N$zV~I@*)d~ zB}vj`02GQ+a=xK9pWrq2+dK~{2Usqkch1(@Jh?LXKR3#N17D_EAAo#k<0FwOjaV@?AUjdD3h(tt#5xM0$XC zH_G@Ri<>zX6hrcpo$s6;0mgBu&rvHx=%Z+B7JjT__KNss^ZZS_jvp8JXVWreEO`iM(Xz05m;&Vs^{PuUlDvE;JXhJNe#SLo;L8-zjGzxK^q;mmsZfFymxG;E}>4)q_UMP zL5GH^8FI|kxXL`+AJrek{{V*n00KTHYBu`Dp*8N0;wxK)k}YpXxsJ|ATq~bVc zRzk}Af!w?fMR1=H{{U%iSHSwRU#EtfUhoZ!QSH_ATf?YbTU?#qaJkarg=LN`Dq=w_ zrJ1tGfMovwJN_~Fm+@D_+C8n`#cf*eQ3XrKac@792Eoj1K$3QdGM)ib$>SC1zYjlX zpNhU8zO~f6C#^o8Dnqo-8nw)hnJ*lEWW|dk0y0`WgUFvLiUj z6~{U$yFD4L-skC5{w>o!A9!lQ*W$JPm8|n-REJJQ0d1XvBgu*7NSurz3o9!*+JS{w z*1jotV&6qgH6mkWa!tL=7m~_^2gp$y5ahW*$Xu$N0tI|^qKS!prN@fo7f;gaRvSY?;Xb#(a&h;EyHNCf#xat}aj$hE(X z{{R^EK;9L#+FfM09yoT zMhDLo)bA7LCxW4veJdAH_|E#qj|H#6Yb}$lu$AG}8dlVka{PsmksE>m3UJEU;GVTp zPyLnC#9EET{{V*X=XAG-NHmLa5x5(^W982?B9$QE5D6XgU9FFY>@06!@TQkxZD*@T z9@wq*c`n}JW>9gvatIxm50s%QM{;tQUZ*vl?D-c>zxc)R4)*Fl72Mv%cNM`| z_?yFefz|hbt8WNc=Li>O zNtDJ0IU%+jjz&#bi}sAyd<%OM==MvZTt*TT_J)$>_X1Tyf>IVwP+|ZRpL+416HBG| ze(r5P!(F?zn|40OV1*sR9sqd`{i<`hg6+ZR)o#zn4dS^i(^%0Z)fU&~GC40Sau7pE z@y4jFg*jC$9mM${t$TQ!?!DI;Y~_?BU%ny zCS+MkZQYX+F8#U2OQr(;nEhIse&exfZq||Y@_y8R@QTUyp9x-G%XKhjE^boIB*)Ds z$o^v$&p2qoJY%h5+=7sxhu%> z-xYi=@js08!KVC9I%ctc7=Nbe-{{j4F_z9Ylb`MkXSQpP9{~Jeq+C7cgmitdLJ?%0 zAr}|1$iKqIV%&O#MJJ_1DATo`=1O*Y8vZ2FHC=K@^{)-;^7zwBytr;r{?O!%sFzX%@ znm-=3v|;0lOOs-Xjlj$it4Mca1I;n?>)O1;d`0n|mv3{VXwzGGb>NaAHLbi6$15_n z0v|nOmCA9KBya)8YUZa#AM)$*{;p{%jjc~i@YMeR5j-UmY8piUbTS;&ffT7qKkRERRjzTg-6YfxTR9pwDe}Nc3K|ibK>6}_+w4}-S~Z_+C`+e z5=W@%ESK`0GI!4~cLW}Gs&IOam7m}*+C$=P-PP1>X?@}yBKIvUTF~F8tfOvNO>)u4 z5&jZXrZR9d#e9dMd`j^zf;CM-0CEQAdu`GrStEt{(*u$zN`p(^j-C3HrrX^6GJlL8 z1UyZqoij+);qXSG9LTp;V){F+HQbg`EsfH7VY$I6xmUj!&nMy^7wI1jW1i0Q!tx^& z-Dj*`N;NBKpN8M$N995W00FbX=dFH!>c0iNQJ`vf_Zr3hvD59qiDzFjcJgo^0^Ts~ z<_?S(<>+z&AbR(}qi1Vjc)E7Ed3|C62DY9>w~I1l21|C`CKnhjxp~HOQ93Y$eb;kX z%gFalANHg1YeM!q<;{+%Wp^2lXcs0S7*aMyZQeJGGh;22jB=*A%|pZ&+Kefv{3Dj{ zNw~HiY!;WU^G1>mJiB>L1E@L1;gAU!#eG$xe#~(AjtH&(8eLgYVvD2DWDaGrdQKdU~KMu94ABbAcw{L0UO;B2WrOLqtq;e`Ta(NdMkf+^a>5Kth z%{T1vt>4?nr1;Ll%Jn0dNetKGOSzg;%7~&n2_zGNw4S-gTK&8DhvGlkhU3B7hll*C*q^!4!#joezC z68y`iN@KQdt(<9RWSE6jvWen>-Ix&GW=zeyg&~-pdh=gzd?ol>;eUx* zOr9V3n{WRB2_#UtVvlDmn-PIHOQx9~2S)q5U6nw|KArs1gl^7slX{;xL;E!Ni^sN~ zXYpmOpCs`NDbr(dcZ1It3~=4R4hDJvYPFaA6Wijqg`NCUr2IaA7irF-Mi$b^E!DdL zz5K{zcUg!S+#&?$fS_0E=fNL^9}T_&c=P@#-x|+#pxoO^lW2O|+f6)IN~&NM_c6*D z@-v90VUj`KI2F^+{{RIx@E?XX<@k5vEg!@l0=a3*#x<*PWp63lxlO$G4JDk#jydz> zC!NIftYM9BNG2&$P2Hard>Z|fz8QRH@O{T3(lb7Ok?W2r(1$t|0t!`M5tXVb1fEp_i5-uPpB{4DXA z@nwW<{{SAE+!A@hAlrb3^zDv*Fd0~a!@peJCstn;hBYFTebd2yA$&5M!8(ymerx-y zbl$G95o-#vaLXp$>`2c$wkhZ7TAvDTyc1=7+H?rEse$r^VI+7Yt1_IIQcejifKKCH zZ}Cs!4~u+3t4MWSRdj`vyO^wCmRz%w_oQ~&7{g;~@Du^gGHYnMg{Our{@>ws`&_7B z{VL!I#v~YGdLRM6hXHfz*1bqVPB*>GWfh}7z_R!sp!kj_@jrvLPxwc5rcLq5Z*c7f z?&jeYUOXOz6P|wPuIpLwb>5xei|IZnUs!8bc7rZ7izmCd@=A@4(1W~WWVQ)Iz{hI% zQ2bN)lXYb0#FsH@5i^8Fl1AGQ-GHJ5WePHRA~HG7MSTb1sJutwtrJf1XNYC{AKQGf z0hyM{&Nmqw-a0^5CTW}q@uct2l3;0)Fxm*7Lh_c#TP39+- z_VSdGojD98!C759;ZGRPBDp^rX=&l@Lg!fU^}dgDW~i;?PGpYhQ4SpWj9Csr$t0)) zAPn`{Poa$I+f&GN^w;z~iq<|MY4Go~QzYJS z&ccCWJ5TXExybfas5Rdmd^XiInXjd?p5FCNEj)>0xK=xc{K#{?G50*S7(aO8xLr5I zF?f#cZSVBOTNIfhl6PkFaNHRcM$p>dUq3Q4Yr!M$W<&25di^u03W&Bm8y7MVF^ zb(M1i&=x>g=IZI<>}Jgn!-XY$aq;C}&Pr@5^U4R}Mt?+nt}*jxF!XcA^dNW^Hz zmMJ0HdFaQH)4w`so`JsSG@lWZ#n1~~A3{sqk|UbrxY$qecG|h+PnmP4`EDF7grSU>QX6@Z6kyzbH@!(wZ_MPyVl+6JC8*t<3gZ~^1+ z9<{A@n*D?^TuG=|#{(R+ks+Gpn2fRn%7Mom=eVPp>MFdXOjl|aDFcRHVm{vG(9?IYAByS=_~yUf#9&31E=1di+>!T$4-N3gAp z7A-R3=j|5~U21bW1S@*vsw;E}2i!sH{ybL2=8vFQ?z{feJ{@TJQo&LIyklnG3aJEw z06jpY<<$-i^IYO|9}j#}y3%KdNRe%p2_zm>(#1U6Hj}z0R$%7?g)g@~vB~G3M$+vs z*Zva;wFz$&s|VDZX#jG&LV*$+%U2ATQoNuY} z---M&VFXF4+{|nth?iIM0fd=H8{u>0zV6r?yMhVLady_){os;IJ0G>c6Kd)(#>o?s z0VBzF^D?-}WM&<}&3#3!_%Fb^{)csU;cYJ4PP((i;E>)=%*8-NY^+Kj4-?qUD76R)v>UsryWlm)NFK}M&V+-)uow?VP%g` z-hwtOlf78^i`XzI2YxzNuxQ#>f-UWq&%@U(98e&HOw%cq4$vH=fmDD=I2}OhPAjeP zMW&mnAdPgCkOalO#pz3CiCl72b3blAQSNvZ!HXPVQrp$+IB}Ix7_=8+T4h^IP{GIrz_I1hDE- z+UOB858gFoxS9-S6Sh?YMsRaE6fa)RpF@3qOt zZ%(dHivAx79-VimJ;cNS&=|bHbLcP%xBEck^~FPyXG?|4J_qn-m#sv%J}0lWF1EF0U_GD0U&^W zpyXFKrFav?zBRpB_4|D?)9(_taxyeb4u95{;fVP{@wo6XYrWI{C;TvvOl>|`W3r6_ zG9>5845zN(t$=^MgNpL~M_>4HEzDDVDqTt|iDdcZ)6~fTUUC?@*@2IKPC@NX*622k z-}q-X(I#C_L9>HixlkHamO~_)y8^fhK<+R=J$hGHYw;)H_lK>%&Et&;ba+H>3oP(` zqTeiX#WrOFXNqCU`P3MCAV|(_WgZ>r0GAA3> zMuOc?UZ?!4}OXEs`_x`Jd|>b_f|gy(`;% zTj7gqDenADFNtk*dw3O5e%p4|j#0*Tk+;bp4xEhVrbZ8){{X_nyO+bvnnssvspe7s znHxMlU&>cA1toauNWnaDj%w81tVEOOd2ITx{2;3HcsEFW1tkD8?lVgG>6Yb32LzGp z&myxm9b(7CZ)(>;wF%~d9%(|D-5Iicyu%}Jz#}{i@=A*8Y)VUe_WuAnOSxoGz64bf zo_YmvSSdLGoOG+A2sJ3$+RE5zlE_N=mc~9y_hBNY)1Owyy>AO|W1ggS+~CKCB7Y`1 zq;v_-lEXOw!Qp+qX zw|4Ook~Ok5#K^!9KXbSqSaRF2GoGDrub|iTyOaIBEEZAAw6a_;n%i5b+N6V%*kc~m zqe@yx%{y!**Nft~(`^3$wp>YNZ64i(knY*al1pKjV;Li!yjI?WaFO0NwcsY1?_*Sw zAZ2wC9O2ovt{Dg*5O8oYoEplyo5Ir03fq~n8tizov25g=MUcz$WFEOaPkNFy)V0g= zG(y($(iO_v+DMULJe&#si zjyF=}hYPd;E(c7yfzxp4eN)7r2>b(}Bzlj4?_Sd6vbeZ=c-3TP$!81;1o?m%9l<^G zUN`-xqhHt^55xW*xz;DNG9>pbjco`324rHvSm1HE3}+bPxAaeg{wURaI*oqAOSjyh zLp98iEW~8(iy_^PGn^u+>$$`~Bd_42*^LY!`Dxw%E6?#vWcgea50zOtZ|>>0N`~3zSrGtPpBO$Q_;XURovk4j_l2$-Pl7d&l0HBjk(B!H&q4)#ML&hL z9~}6RJ|}z`@l^g9)~{q}FT6jk7P_~(1Sug1lQI3!%d~A=@}oH%6|)+VR$3!!Sa|My zd!_#X!7ubrh#K2It>o#!z+i&vB?!cYK2%5yh^l*ej0S#en))*D_Cc5SS@3p+aq$O1 zy4Q3obprRqHVGe*Yx94vxrce2sa{${1s5FPSJS!&$NvC?8W)Hr@F$2oQj&OsN=^56 z7Wj-Na59e|jU~ti-Ym&4u-y8h46A^TOO%kF3{gqK1<-|G*^7z5h} zf$li3GZBxgD>%EJl?bc*$mKp1{0R7K;+tDP9C#gVF0`AZ#CP^h9Fn*}g=LytjGm;7 zdIc5q7Q6c>{5$x&;lZW+N=xl5!MbfXQ?iwyo(2F2e(6C5vkx5FlR& z>h}*cPo_>{fXMdXqdl=*f#YNIZa_}bI)Vjx(y1zr`yD>Zk#i?-pW)7n`#O9yU0dTm zzTP3xg~P=jscT_8@qLO#AL%#oLFQ~^84|ML2*Yh&K+Exm?Gy0+6n$gi?bWWQYdDOp z&8)8&xt%wwi;RnIrRWd_8!!7f!G+aS*x$NFzAeCmZp*f;xODuY7#? zv#j{5R`Gl4!t=sv^G{=_?vyR0Ehgl)x%)#jvKV7vhGCNXcMu81d9R0l1^C~^-YviI z&xpJ?ccbeTQE!qLS%Nuis4&UpEK(^alB_ZOKpOf-;djBEf8nh2Uh1gY7STi+M?9Wp8EdD$3cA078EiUg-*R14}+}m7P%Ek@z z07Ik3czvS^><<6|&3=ODddG)6LE?QH=f^fyPk&(?t8IHKMRO!ACgCWML_(-JCFG2& zWc=vW`S0OR1^f!|pO5G9Pk=9O^egyFtkxEjJUVUk@-ZqvVTF)BPVJ*Pg#D)$aZ= z=z8eWFRmu>K9_SMNojSZqCqOcUmjnT0<1S6WA}v`IpRVYp^bGPq{h|5PE>Zlt7rk|yCl7gCXa7x-gNw6=Y%EK^M+*Aqo5 z{Of?Ks95}?VwT_&!NqmcQ=jnlIa{`@`eptt>2f=N!VhyS4GhSUN+R3klgj@9t7KOM z9m8he4-5&-c_+nNZwGj~<#n$e{{UwAb6W`{R{kML?QJh^F_Nh*xFu!`a7b`e9(Xu4 z^JKptum1pO3pTd!p0|CWUMd)6@c#gqBZ52v2wx)vH&c*7Ip-DfAhGzXAD^UZ(G4Qq zW115s)WJl^Tj$-zWJY0~rAuVzHP;L+_tB%Cb$L-|_JH^e@s7tv)8g@j?LEAwdtF+U ziZh4L&#=tCVFx3T!94b_m32Rb-YD=(+IWXWy|9iek1!;$2cG2)dP=UuhB!SHNgU$7 z?C=l8i{FLXWLj;`uKM1YFxmZ{mdho)ZQuPSb^hjC-Lg8lb{iCC9^1I zvoZlBug~wJkd9lnNaKp;^&i<+<1MB9meS}Jts`N4_PmBT!E=BQsRx$y{4-x^>faIk zeA=pbQs(ikZ*AG47Pip3#v+sl-m4Hh%$)&FM&3a0r>FSC;#YzQzwvxF=S!75sUp;5 zNG8gRmJH`|@!7^bvTI1n_WjStpV})$y?+ksc5-RK3223hSnb>~#u1_b zv0kbef4mQWQ}8G42l4CSy@b}jD_HORF{v~8b~>qsSe7!12#?HjFaW8^3AZiE;=T*; zm&Lz`_le- zJETc+uE?NpJgtEC9c#@zaq;6_@a?V1(fl)Gq(d+668c$M?Z(^y&6SQF#Ag60BLnGQ zDQntRh2gzXv>%9Vd3|!mG)Of2QHhH_HY}_{Gj8JwNk3ZjM*XGq4~IHTaolLoT?D)P zI_dW}sXgtqQRi`%7D7??-~pFW-G>!x3ChVF#YD^D7HTG3{b z^7ih|&I7$Z(|Ul+HsBKy;1RKh%IWhSxgg+*gKw}o>7n<1$BDig_+MU*9dlaMwY&J{ zQ506O$f@QI4lX3}*nl!}1A+#7=CHLt+nd3%Yxb7@C-Bvr%Wl9yb9Z&-UJo%g?^Cox zAls129Gr8Ln)zeGe-*q_;y(_{;q6mS)qHzq?9jr4Om&pA9fVrVD2e5axe9!=U>M_g zEsFHd1^hek^tN%@cq_tkPpU_7W4f`{rJL7d*BL}F>Cqf_c_T+O( zY;-<8lj4uXsP4Q;@UO%-cQ%PBFJ%))X2mxB)e4aB$i~q5+zvw?{w1w^8~DfKJwo5a zda_F#zD^=}=qM$)IPeT!xLE&MO>#-2~cG>QwPRq{3T15dj~L%1F6;4-7(vag2z=oLR& z_DfOwIJc?zX=U&u;xCHyNc7JYTU%Zv?#*u~GF#l_6Z0!R)Hu%odv(aHi2nd)4~zZ= z((ScB3V3Gf?@m@`dFGBw%Z7IAvH^tXGDbI_PWAl_=)M`d_)p*+SH=_TQ+V{{Uzathons2UyMq#0I`n@h9!|;9U>HcOE$SU!cWiyOz>Nzgbr6&DdMY zdwAA0cSRpL^B=f5J#wdyZ%8Ye)T17#_~+oq?ECQt##3p!r-e1ywHO5QTh9csJ(MuA zHpfvK#~x&eoz9zFA^XH0EA4Gp_7(7My*#q(<_$jn9LaBgV5D554yhxO8c;Z9ESNpO zubp&%+oMzXndN96HPa-uOQ}WCz3{A(+1^7i1R=PHA1-BJKI@g-0LUj5^mm1He;62I z@h+L-IJGSX80EQ^`IK4ecI~%w3%H34a5I8{@=wZom0F~nudzIGEQ2R)dGq>hb)l6fN#w*l(7vjA)SeZOi;48a-5VTP%J;^(s)B@P^H?%~s z8TmpS4hoZAf#P2d{5Xfh_dYz-qJq!Fch-_5nwF7k8_5Jk!4kU1=SJX=yu2fCeb}h> z^1iy0Ix%Y9Ps~pp+IWLi@l1M6?w2eU)9qL;?5CA3%%MT^Uf$fwyMY;E2rHg&c(0c{ zRr@deL;Fwm?}4>8I&OEeN~NTVT<}^Y1U5OzWH`?t^sm;3! z0nS8t#xcco(Z%xWnVje?6G!1shkh4$`$pGfxUrUVs9DIQUNp{|ayKwx62#7fKPnNk zu>kR3OlcSXD4I#`ymO~VtTcv8bk%fJST5E)a2*)#TyFc|sm@4VEAB5Ac+cQBisQEN zI%qf7-`H{evRz9_h9q{4SVqq>5+sp#aj?XpixQ)ZkB`1Jd{FV!+JyR-!+A9K&|;I! zj`q_N%?l5drNYaT1{bLERYw_W)nX+(MaJG_P78C!wU2>X-kq$+;%@~*{j@fSw_hvV zyWsSiNl))H)Q4>5yqi$gyfNUv5J7!+uKxgG>Q)Q>k!_^!o_QOg1r(Ja^xL~&8SX1a z4-j~-#=a&^M#ECSxtvYpyrHII7j_t=OyDpbLf|h<@m`fb!Q1};8ClIA#I=qKl$J3b zsKG5IjZ_hxp_d`J-GEMT6ymyhxL;H68 zLHJ#Kz83HvgJEYSs{Y~brIzzCs6Xn^EHRkDiahPQTPM#BSe!;(w@^+(cYS{K7_4(Trs!~Jc1F*LZA&TT%<8{0&7zye6Nyvq}?+{buszcA-F1q806 ze_cXy_qVa|ZO81V;(dBKue>>RZ=yMGHe_fT-%e)@!7;OeCR_uBMk6^m86(qtPvLzt z;I@;br^E}ZHA|?1TwYmek9QnL06V?MF`*>z3NhQ*fm)s>_|x$lz}orn--ugH)>)+i zHEVDhIYXf!7=)x@hZqG|ebeh+eRums_{%}m=h5Jw?7wG0`?i2d6I)8f{HKO7wn32G zyB8j~uBvjICVIV2+SX5le`Xqnm#VJ2b1EZ46q_#`K zhB&O*gKt(bZZf7u7xW&r_3L=b^T1l2&b*_+vzyQ1NUdPH0^2xe|+eS5{CJ#FD8z@;2p(9lLvI_6$jnF>W57799xL9v9BFpY{6x6@nLlYy5a~;O@Yll^0?y3& z5ZgxEnHQ3=TN%L$tDYmu~MqpI4*Y*I6RDF8RER#Q~v;hb^K58e}<&-cZ=?{ z>#1zz^5oNC)I6e$K6B@gqClHEFpp^?83c;`@9~epKZV*2hOO}r;a0JI;13WoOFsK8 zNv`zSrrnnpR*mOIfw|7!;{Xcy&&S`kCad5N3){EF9a~A%wF$(rrT+kj;`>dRiAnOx zf{PL{U%mE+05(-}1!+qgIcXhCWkstq^QXb7r+gw?o4*$LNwioISzlJQNiJ>Bq8U8b zxY*<*e|ebURC2{nHS|}Bz8PuPx(Z%+g6cN@(6;jy)(C~n(?s7kWPqcgR~f-|&pdO@ zc$TC4TEF&_YJLy46K)QLt{6)b$0m29Tib}?WpI9V%PVo5;A6bH_>J*X##&eWCQ)17 zX+LLVi|j0+^yWgD43V;|u<`eX;yK7QtEWG;p_HPYu|9b5CxLz-cq8|I2!ieH8*(Hm zEI8Y=V9ROtlCcoq#SuHe8<1CrT>K&N-lsp>ymxf^d=DW^c@H8;!2bZxV9RcY85{oP4(PvbeOKY{)ZjtJ+}{QIqz{{UoHmPs)ho}O3@ zu?uxORder8m*9rGJ+ak%8GM@Ey`I&U8@=mb2cWa~9*cfdpkBeW!ub80d3eX{-D}@wba6`!9*7y10rE#iJ_djF}wyafMC@ z%9UO{Ypa&0T@0Kwz3yV_zuVe1;{O0`-$CKHs`Wn3qs}#EI`AR-IYDixDa&2k?w%r#x0pm8#9HMkCX-N%fmUxjfmz!)&B;%#&r0 zVhW>Tv=`yNi>ktp9<8Y8suyhVS!{b%Eyz{4kp>2H$OEYzYfe=4W8{4a<+t%RiDctN z)$OlgJSCitOlWb?$srMy_gtw5 zu6V6^d^@K2BH-WnkHTwzWea6*?j;vzZV%2%^ByywxOnPtYrX#fg@fVy>o?Q>h4<`hB_z% z-mhDHD!S4n8s>qgjc{A-d7f8ku9%*8A$`IzyU|ZUUbCfqCOYg*s{A#(xUshq2HB~` z&{@oj+9!4MLB|+(TfWPQI1o zUOMnxT1Cv-{)Mjm_Xj4%_hrZ-h6zyYA7CHcZaWNdS;neQR1<1TL+5Qvz#87WmWy80 zZ?yIQ099jd@xdrP7__WJgpPw@0QJUdpM~snZvntzw6gxhzDXJ;mDsGW=*D8ixhIzA zt#|j@2gGZ{p872&$4-JZ%(rq}7qtj6^M-A#an+ZS53OS9R>DaozP{A$d`7zhG(rVf z06Y)&$s?nGI_Pt{Ggq~l&-jmD@D8VZM~rToO;T1s9^GDhk&XrtLowj=A5tnS4Lijb zQL^Y4jSEKmLTZpSZ{?7Gda4*WBmg$B>)SQxmRdwtmQiS54upCQ+LA;t!v@)a!9ToU z8yLvacDy+Dsa1(JHgKw{c0}nWNy;6mZp4h*uDAE zyl<&r+`@Qh<{nL>1>t~(FO|C-%2@QTQ63xc{n=*GMb4a)l`SGanY}>gaU&e{$lH!a za4UhEUe~-yY}U5=6fwgx3|!yJVwFfdd1)WcI%nnt5!=0W8c&0Ch)}{@p~hYbCuOyH zImYBd3FMLiZhM~9l>EXituJGq)RS27*NRg~@b%@ku^U1qky3v;Slc8rydpEPPBN?{ zeDuJo8i$EKBWknxQC!*ha@Uk+R7;DAOL2va{HUj>$S1$3uSwA?uY5g?Cs5Jjvxu=Q z_K^&%ex((*{Rt;H>zeDN)4m<+B2VpPk5e+KU9qku&s8Eo$dR}{tOEC_RZ~WigKY5~ zAK{LRawBgL-8QPh#D+;Di~<*sr56JkoVGphiu@v<0>=KvD@JP0L1T!LfplmY5Fy$!eciM^UTkj z?!pxc06D-TKGpiMp!gTyMxCQY4}|RWIW)q9plUiT=Z55rNfpJIwhaouAmGHL z?@{+dBCu{cR(HgUpNX2pWv_KNveWOd!|ayLVRJlb$pz$P+EnA1S1eHMX4TA|MCutr6v(@f2 znQm?yISu4WtW%MnnTRYw;|u;Z=USJ-$u&(TJKqmo!z41{5Xz=022NPHZVAZ#4Cm6i z=~R!}b~zn3ouaN{Ykns29+#zoY=Yj&)UN9QOhY|SnHv%h)c#e?MdJ-)Q-a>k+0M8p zCNXI&A>~;C0O9#|_9XP~D{8|@)4m+v9kbqQ`hyYWK@*svS8xjj1nq1AoCWREHQ3+l ze-LHUZncZe0W5U+m(P~w*JZrQhyCY2T%DOYIj){{_H`jcUwcEAyYQ}(VYIsOCE4(+ zKzzoAXIWLToP`6RIQ}3(8OZNMnqP;!8*M$`hV)yFcIs%i3#g`zRb)SK`Dn@r$vFkL z5&2as-v;XU7BPK_{&thh%3Eq_Bx7&;48shk9Y7%TCZW;%3GouwP!Fm~G@Eg`+0le; zu``STl0X2F&pw?h6IRw=BTl~RI-d{xPtvvcm%{%56HKtK<0zIAVssfG;YixRjNlcQ zcRW@9AIFbMG9qMU+^m%Gm95;|hMABpTQYCDqhGdoStY zj^FwHdH#Am-tW(OyXx)cbhrae@yMtKW8{2e{o|(D7*N? zf~T6FmKzhKFLtf8$PR8#3AdyV8t~7KNIHHvGE3a!4chpktopg7#HtGK+#$sfZrgEc z^X;oPdynTaOuSp`Bj49|BFB4Ihb6NRkU8G z%xuI{jZk(yis;E>=hL^8C91Edao6ssk_QgsDYzvN>tXCg-}sgzeO-5OT<~E>t1HZs@o~N=2A8BQw0=*hz+VVaLei*;h51}_NA?icyzPZ}tu>S!^XKw3?q{&xpY^U62=}!upwQxwB#D`C zyUk_}ffsX1dM-!>3D>hWKH&~d5z=_~Su(!hSY@x*Nh0myPzU;iW1R|AzD4JS3*rkY zT1sybyVqbxKG-sO9f6ZM;KE2VFb}lv}FpJT~wW?NzT?OyWzOIe2HJDC!fCw zw-6`PjD@O%6swQG9C>hAwCmy^vI74nZ)pM~h4Zt1RM70Hn*jAHo5s_##e zj62$;(83i}WG_eT#dZ^Ep z!bg-g;&KWKGbyy*w}f|nOzIRhqu-bj34PHv^!q;DWV)?nm=3WnLNM#m7~3e1{kve+ zbp@9|wrBho88c@x=0BYuD-KVi0)$(SsK9wDFq{-&MA8D)O3Dz}2{a+Iwjq#gurDa zy~;^Z7~6Na&;L5TM$^0Qb_3JH8aqC}%bTHQn{?4sVDCag;_A`jx z7ghKd@4iBvN0VU+__EH%T!XEAF_h(36Ey+%TA}Gh4a8gS*#_=5_vCU?=>!${wI{lV zw7|VZVTGE)le3c5M$(wie>{iD*p|cWq}v#Q+(M)R(WK+b3KAU^5KuybBo3jxg5Rw^ z_W38TRG@TkkX;A2)>2$!MK3vtVVUw!U^M@duSNRxeWXXUue18D-E}{!irdM?Y2j!0 zaW5kjGW@`z*@`x)O&Znuvu_NK6%V{PeMN(d8`Hh4cTqQJJ(3ED^czxvs*jY1tqnv+ za5xS$Ikb{sv60?dqP=2shv$n@%*c~gZTUh0Ld{fc#L?V?yS$mXW`!K{ip3ow; z$khemobNAp4KeG5^UUd90@0GD{z%W^=g)oRg*De(3#6{84l-=GXUf zv16{55qBw)eZiz6s-zo=@j2Uw6@j48xCc~bkZjF!hGB6x=i0DB}k_t4UqH)%s{U5r3F{k zg)xHvhkzm#2p9u*SlPWW?MZn!txpCWHw;HzXeo3H`CvRMRk&Xni^LgFf%viSe{3X1 zc2`k(=W_;lvUD1m+MeE37wSv)VN82rc-PL`1~g8sNl&7mQ3WxfGur&kM8D|!#2;2Y z!%T7U2N~Me_a+l>)Bh#C!y!-0JWm&qz1VL=$bl`mYS0)3#oWL7gc=G8{3I~NzFXFa z<8mxitW0XHZf-D3VN6>@QzvdIU;XV`_Oq(5ZGk>b@yU_8!2<_-DoZJGHh0okxVAE} zJa$yTGs$8OrTXwBv&j8nx5rshB9h zYYl&JKkMQgABIoY3nOUIZ%iKJ9{s@*Ibt7qlA8CIZsM)29E20i~J`gS~ znq`wLiIvL-uN!mROa<6;o(_K@kjT$({X8+_4RYPHGZth|`CIXbxrhn-odR|<;c7it zJ~>0=>;~AhFh%#U8)6JTskpPYn1kPp1yT-@2;&UXfnt%Dn+@)^x!+9Tlr8@d*IxED zYZrq#c_V8b5^a9^?+q9n30$$(#A-NSNL~HY>56+m`E_#TatVD#Trlfaz3N2 z#L?e|GEod_S3Kq;5HeBUlrN{nJkrf{EV<)`gF~tiGQh zHO9kKmWU<870nNddaGw&br0^nP+2ytNb7Ll1(PW=`NWV=n1f2r8irN|NEwbre?4c}m)Mf8p=51n1!hV|Vg@M}^uv=F=8 z$Wxgzs~ZBcdQaMmT_r?9lbg;oDdW@fzCmx4-J8t{YTpTPy1sGdWSP#Abu%VTNF>>iUfmqW=wTBW zW1nBdY9;wlnnz{8)81R6&?C(*=1Psflj}1d&9JC@63N6^kT<`fcLhDEz~`h;&koxY z&Pob;$=WF1Qdq!NE@=YFwQQ+l+S=NnR+q0EDYYUu%bNPHxn?aAOBbj&u?M*b4S=${ z`ugI|o`&kWvMz)CE@~cS@JaNMgf!iqqpmyPvMwMGQr2vEa5I$0H_E7hwZIqB_UN75 zTt~m5(&ljdiWwdevpm)+MT`o4;3%Tw?pgBv&+(Yr3DeMp%d4yqLyBPiRkle&iHL9BEyP#VMz-6rr5QrbPG9Z{WP zZqm(#={q7H4-oWJz~z89Ol6`NPn-4jzvAXJw$a`n<;^~Oiw|1^bJiO!EZIPBUr6ni zn8F@^!>t#VE^G@x#$GlneRs1_Lxm*gxgtFbRMq5ImVa8fBoivEt+ z*+hs{^mHHye61kqy6SAdUptVuDy=UQ-bM3<8R9pR&RYeg>Et>6QBM^Ls@TY!ko6HT zPq5b#E4WWrt`CCA8!>y5bM=i4`94o&9u%}mkhIyjhqNlMb<(-rY8l3-hg0vgdb4k+ zn4rAEeu^ymK7-)&hE5d0(yfZ5IH5J5VqgcOAO|SQo11yTkCq(!ZdpSzPXFzGgmok_ zv#^uY#)?{*7o3|LamP7QBPpmH+3Fi29tS_}mz0?<#GoCAVgwXxb)DOl6i-JlC-HZ+ zV5jF5Ryl%-jAgWX5@`)DU0+9=Lw&&ngLfhRu2F#+vvnmBdkRJUo(`o|mNw@{Y zwM->0H2EcmcH34JAES$U!Y@x8=Ro(>E(g-bxAVV>$`AX<8-$VM7F;yj&`hFS3e(4R z4X1_Q*1eD$+#QfSZ}{PIUGKkM6}e;$_-Ph#2-Fkkp)^{9cb^9OdaEh|qc{qiN04dV zmTVrI{%1UzG}O1+glCd{iI1rC_FucJ$&pdqtifTP^}KL)HvKvS`adp)`)7sme;V~^ zdVJT2EIKJ_ExA=`6bTm#uhq!28nF+hEtp?osB!}=Vr6-Q(uzEt;AJ6_^-nk9V_Ck! zT$a`Nh1kEYj(E9&^4*6EE^z|S-bLqzf8Y{iJ0i zY%?gy8h!TTi(NBe@;vm=rvLweG^0fJp?qn^f|T;^E!Z`}q%Ql=O-!QUBnE{eDYlQ9 zkI&AKi<;`I7x)aBa{`qG?2LYeIe+UNaCU=Tt>xE(s@Nl`;Gfe7?{;Z(L+Y55;1*dkn$5+z;~%kWs&3QgD9B7UXD+6`P~ zTE03)va9L=c_yq4J#`*E+7K?MHSFKirW)fK?vi${A0a1c|3HMlq)ghd)F&hyzCLu7 z-0yjM>bWkl>j`S~MwWm=GGsU8{r7Amd`_sPZ|pkeB=zvXQcI1;U9|OAG>ii?di!Bv z%$mv-O}|j{Jn=VBxLx>{HzxD(O6+0*?gRC>JFv&Yf6%K|wx%vMaT)`z>(*g znrTtD**$3kRSt9`p^hWSgI;i+2QnZj)4q2SJB*{>I3J&>tk43Ny8B-Bk3-5q#i*uemBdC$oEI^6$;+I}ylT9ijk9l4lIyhq z&1Heba32%Rf=VIs2lQ$sL!@0e7> z-BlhpA`Kgy5+4Oh^9Eh;O!r!9^qE>2UfEeVM;SnKt13UC+{AZG&P+XF_^=qGTYsI2 ze+fkU`d6H!ox`T35>k>W;_n3dNXB-gWETs1-4p_H=fjE=w|x`M{%XR-94c^OaOA%i zarW4~qn#5W=_})sYuUG=*_fxGLozfy^Bq9wwPUh0g+6j|####7Gi^+`V`2-{Cl{A+ z4l+up$30)+X4Ci}LQoHHs6_OJb|8*fU?BGFF(OVxKt&@e@WV`1j9nRHZoD8nPWm|x zrhZmFO@f})vtKxkV#gn9vT>?UuYUaSDY4R^HXpv00*UCO0t^w%QWM8W_R^Wo-Kw&L zx$oYD2O`@CyzH+gCFx!=P~st!2Pjx9p|UGw+K2*`hV9g%2jH39A2Cfe+UlYXCscr3 z05w>_j^`toU7k)_zC5W2>+tujTD&z&6wdudqYO=!SZ84&sbhB)G@Hn4lwZAex%vO_8J`<(7~G9%4ek)gBbJc7EfbIX>&006f7fns9pMmZX5FV3_^J`v98DEuJl>O zk=9|7q`$HdeJwf5_mk^%_(1JU{DwiW!@J}}1MZtP-YD9f@$8dXBJa`*Du52AmpeT-LP)h>@3IG5A2mt(K zcUE{EvXE+%0s!@s0st`p2>^9$baG*Ad30%Gb1ivqY;SfoEn+z~W-~QoFJxhKVJ~TI zVP|D?FM4TYVQytEYH(*&R0RM54XYevocd=}Q{5NFiv|LOj+9`KfFMzX08#`KdQqBm zNa%`GsREHMNLMk0CWsgUNGJ4;h=NE$2O$(`A_;_!Qbp1C_&?*6FZaW}_gU-PntPA= z+iUGTpE<_GchrT0uVj{u)zOr!T|ht4HGjPGc%h2 z7YCQX|Ihlb8^FuTIL-_JGF$>M@-hH<8UFhOxcDzmW`_S$fd5MjjQ?_E0kN{NbNmZv zIR{{500J4Afd9+--)i)~bpR7DGoQGE4hz5KJ0{xGRfidiV0lZAi z;tDK$I+mb&LHw5#<5&fBGm08|*d&y!zJpzZKeG$Mu7A7y<9}%XC)xjZVDbNdk^Mhl z|1Z}ZfD_2@Z}Wh>04>1JKQ3~cAmq*rIDpmO)l(h2vo&%X+}Rkg-yN`UM691LI&Fw= zhiGgK7>r+zHh#vz2dN$BMygYYes+XYx<=K6V|~UmK%FH?`r&gou2YUNV6C)AS;Yjr zs9-e?&u7>T;P(FN)-yAW^D6-X?p=T~5g$(=+1H zReZ&0l(k#4W%ABVViqMMzpUwUtRin)tWuh_{YU?R(ETe|l{ljX7Ph0KQrr!_7ZPdK zXH~TN>^T-43D||F`d?`Ni2jkNW?_HG0Bh%X1yh5h*u}@j*)M(0Iy^^t)NQ0$;hmSC zMB;CT{^(^HknDlr_C zRCCY6FC|}7|93G6AMFDfm#+HLZ7v>u<`Zt1{Xz-Qi-fGJ*@8`tQ{J!6Ix?6sxRF8N z;On6-24*@{q3bnrfe5kIXf;&sJ}sDG)CiOo03WWr;&gAJ1K1?yOsfsnM=DG3g*&OJ zo+$HqfCCxmLS*Bn&VfLb9)I^pL{`pQk&Kj0v#hfcMsO@BrRv-3mp#A_GhK%6R?AHQ zdf})l3jN}xSYum-X7)%(=o`Q3m#%mTc?%A{2;iPI^xeE+dL^h3ESXu|l^wa`fM!%g zY;_Cmp;x2za^~1z_M-3n7t=;xcw~@R=l9brtr9)Clir(Y-i=HS3H-7edDgLES>0?h zct3b>GeL}DQnIj2y)0OW<_S-7CKr`n9l4M!{=}-R(39!hvv?k#?J3MqU`|%%$O}7sG(1A=YR|h?#!$P(eZEA0@js^HB`; z7)->x;u&6WyVB$dZzh!dz#XmYsNIj4a{ipHZXo0Sxx%n}YN*f)W-wea{(K z<9F0~{+<${Qq*$1A^|FIjY6qCUlzzTk}M)Kp`A{`v-=Txsa4#M zIVt>$Dr^!m1`-;-ZJJ+|{sJEv*ay!)6Hy^djSkb2LAwcQHFrDSDpm>)$Sm-WN1>x9 zB4WRXYbmDCGdrr~nmsipBwD|nbh>|+W~E9XA#>qlAmuXu_^fmzt&dSQR`bc}nL=ry z+tSd7sshT{THg0g7Nl(F&uAYvUeAve03abqJI>h=j>R8sIZZs5?JpbD z7m%M@p#HMbF9EAP84g5sNgsbgr}-Q@EfZ8Je2QK%Uvr^>a3QiYOR2xT>m_|{(^+H> zRk_a3C^aaZVKkb{gJdM<$UFvYacm2*U0^!^iG+_lIto{79kY7TdVk%&|9AEL7*M0? z%gg(KHO-iHx>l-NubLm|cOlKI^0-oya$C|R9HG2yQ?`)iz(2Q!&q|iKmTnu!P7Ltml11k8OnizLgvGP zia~jH*WIp|g@bmF>x#;`VosZMD_sEZsHvh9PeQmo8wj=q#gu%J{^Kre1;U-{H zO8D04iJ!E*A!ElX$GWf3d}Xgn-jvvk@n4gyvyAVH znvnPFMNcmpA5`@g&6tHzdVNDI*i*M7x-~wKk`r$N_GdZWkb92L%VJNV5}e7Jglwko z`Jaj67k6y=&9|FMjlNooP!;I+FQ>t#+*p?y@aeW{m;{Hc`6i=en!?yfpH+@H=j`e8 z8z)cp3!ylr&07YrTqZ_~eT5xs`Po9jjqyknn_b2X^nh?weTg=_P+i@>P&<7&%`BnI z2JIRlh8bN7l=e2tX#J4{Stu5&+MU;d$Cej?zp~=3v&?l$G zMTb|=T3z%N5j|tZ?__>n(eLHmG861c8|?fQ=-Z%_V{O>)tCuh!OF(YeNX9lda`NI7 zoQ3D5=0Y!4ZrIfN2c^cgL6^}Lv@Da=+8Wm9u>9WiTW*VvUVm!ey#4*!h0Th!f1vvH zbFFva7zf|s)tqv02tVl)Z}%RmRf(Ifo(?a5-*`z=fP3n>Y=apOkb=^v^`hC@%#WH+ zRNoT5o-1Rh+1&7nn+Fy-_4Cqcn1Im6M2D9w*90FT^xR`@pKZ&R08zG$QK{qa57>uJ zf(X)^x>Y478i-mi*hA8dOE%Jh+&&A&=EFupJA@YvpCI|C0B*KDw0P_?6qArv>bg3+ zj+MDC-V+dgpugRSPe+h8n==Beo6iMCXeb%`k1=%e7!SR=iw>zczNEcN4&YW(*6)cW zEx3g2a+z6Ulf<}B%d~X%^FNF>)Ach_zt~TiLo<;~M`JY-O;R9+T+Wbk}U4XH|JuD;Ckl7QB6HTKLKAYgIWT4ghlpc*$OB4zarwQmSQFcDfBr<}ql zQ@4|o`e6zZqVG`syWHbOup@9vX8LNII~`J)6J1iNx$ITyd*0u~F-+NkCb=la7i@Yn zU?`!TMo%xR5PqXeTYfl-{AFVv2y~Zs+t{%6=twMcXm97{MnHCbs$b?}xr?W()Tx0x zKPh~RJh@(2Oq@-28`2APDCrw-1Lfng&Y|UKBr7T{P)u(yzo6o{EOQRnBL)u3hF|Oy zx!TVo7X)}mxojfzM2&zARr^kzp^(E0&RJSa_KR9vJBrde`2q<@R~z>l;B>69mJ17B zh_s&8zPq~PG-=RaT)Lel+x)s6lr?kxC%&==2`s95-K!u`2?bjB2{%<7?m6wF4Txr? z&y8;flEY?NOzXkRRIoDwDf(_I2_PkwY5u^thbUSi?Gz}i5O*{diBWps^jD}1tQJT{ zZdd_O+HT_qc_YP@rhdT8!ARh*$)WtXXG0gwrbO8f*G-w0Md=8E{1J^x1cD@-wq?St zhO?n~qd8X!cxIT#3lZSxvsjwdbe6P9!tV9B7viZ(%-=pQM0BRKgd<>t0uTs%U3 z8sDnVU*m7D)D98H%uedLK>36xmF)%@)G)hJ@59Ld%MC3&5RMsOlj@V zHi3^+NhofL0l!NEfGTQMUag{t56xgpCGN3NR&e(nSB5nrd|QagpQVKF6}Jv8rsb_c z8rnOD>dJb#0ZkPHgav(FYTEhh+Wm`Kb0-P)#3XL6(zl~~%_-^G5rCRuyVH|_GmC-} z-c&h?EoR^0M*4hidD6)cHz^>II=K2%+|#Q29_neEST^_A?muXQ%PWMu5LWXy%e zOso?xzLObgR#DnYX%=SPskc_ zkR5hHnEKUu#|ER}`R|`Z)&qX@D<^)%bXdJFFP?uR=Gq&$NC{ynxFE#AMXcwu!Lcf{ z8x|JG#8*XTQ2qlX-G=@LcsF0)3K)qPuopE~er|Eo=4|%O3&0srQE1aA zOlOI-t0Gz#8lU{8v$N=&)H5t8?rr09ghzNbV+BPN?h`2)x~4!1C1 z^7Tmw!+VRbeLc&z*Gs19HmGCabGC{ecB>8b{{d7l$jDp$7WlJlZVbj8@MZ%tL6Ayb z@QYRZ*L&O=#7wIu)#c`nobhJ_(~`iz>c}Z0iEHAI+~cr6rd#OxfOdDtJ(6@5sS4r` zozgucwdr5)F6PrFyWz6+Tr%qI>+_K{L%Hvru!l6>xkg$m6v|9Zv%ag7{5JB{;3E4+ z`BSx~=4_27>r1&7P^edhP{qP|E2RTYZjI=TO~z9n7A>W`lfp60>P(YI=IsX=>xNq< z>8~tf5d&Kjr7pow3Y;!H%}-#$(la(34@6DMcCS8N#$?TU;&FlI4}3gV+9BN%*f4=U znZ5Q_g>EpPd)cw9xD4$X(5;B1#a@rCDA2OT*VRhLGiz4s(DU9Vy|*Mq9+8+Mj`H5q zP52i+KXoB8bU1=mw0qcI5aDUCcfg%6k?2|t#x$uPYyF8F)!g8tG;zA3ocQ<~ z)_qWOJv}6W6WWA6Ncgzocek=ec05m(q!0{GCA?U@c8M>Nb8e75S%+}CE|uh*+ZkNm zia}GC+BvI=p#W8iIX{c|UDzQAC{Rq>mGZOk;6qyCvqz);wM15*ar#iK3;Vls>D=s@ z5l$f|Mc=T1cBDFwgBjXWZUgdCo{0(Du**6hHzL4jxYTmlsJ^S;k>6zgYqS-IQ z1WA|M#TeST-*ieXp&z)#hlL@(j7#tIP;sVKhJq&Ffxx&u$MdYU&Soqz{#{i~pK6!o z1c3c@Ix3S0_gDF}^XVDcJIxbhpD22Oq6YD9z;wS!yf+$Pv*Yr9Sk;2=5fHy>v@m+x zqB6Y`7d|GSniyR(aBoa~I_Z<0ABMm>zku>Co;|%s3G~UD>0i9*7;!$hmgO&AG`^*# zS!+bqFyX_1&@8(=V5?<4m^3 zPOD2bnr`x#87haX=Kl5QM{Wkqw>%^{k4DI?C7$nt0OZR7nQFgLaTU_%I!{~4cj6pIDFN$Hk`Sk2M|qYt3hW8KSd38(7X^;LB@3?qp@2%)^c`yuK>R;yz+xD zrbYpvN<)O-1b_`CBHpj!A91lZ}ht{9l?@^9``9LSDkjzr*Se21uYRzdG>eV zSz|+vS&oRMly?bP1Vs&LHkq^bQJVm=@GZ|3pDO#@iA&YqOf>qI!&pES z_xX&`XzBcqNx?wy;%LxxM=9Tn!Ab?r$Rn~w)hEc}emY>AR0Z~MWrcocP=*EWFuARzsI~7AhA4tMSOGVKftw@o%a{VOeUVI;IBw9{}>Iwm~V2m zMb0y{a@{iZ5gA4EnkjW~bP^e4QA8dQr;mkm2~c_ibpyRpZ{zab-l_)I1)nOuoxdnS zDD@B-K5BtPe^rT0Gwx)04NFP+>|Q1;7SlrH&f(yc(+nu@@|oZ8c|NKG!d{%{+7#H% zY*?8gj)c1Dl1=kv1C}V#`hcsaqXrUb4lP{C1~TV@gZA={ zrD}MtShXhKR1Mv|X>f7rNZCh3IahIe)@FLDHkbS8OB>V9T=<#K_J!b2Dcstl-~I#4 z)Zk5^^O4Zs-afpcjJmCkt0kE|{3j{gqYGiRMSgP@DzV7Zr@Lxare*S;P{oIb-L>A@ zNSvIhY_6z02q{ADvU+K*pkhY%3p6hcok1HH#+Lh}Ew9J4q+-0=lg5S@f!v_!_HvGV zn=%Z)eS>&BSR}zM%f3w|3i5I>Qz3yg>8!l6ll@Wxmv*L{cHM(!<;a_9=0ukiZCQP5 z>U4Au1wEYJwc{(?fxs{+gI#)}D^>R4;tkH=eNSz9{fK@IqTCNQXfVilq_*s2*Mo)C zzLN^k_?s;ev#-}pQpz&RSv@a{MY`Rc@yi%UNSb zRf?;>q@Y3Q05&Ip5tEk&E12n(2CM8muH}o_)s>2)4ohdDU_}TgeVW*`3(>lIvBo?o zo()hT5`=obW1;elVI!fxwxp(VbTyhSM{)TvFAzauX8qDF;TDKw zOm4zJXxAWes!F0wd#bS7F* z`tYs?8?VQy(O>biO}0Xk6Fw4aYZEfQk`;zjBLY*$;DSGX_s05 zrm0^pQ0uBlEU|t*v!{FUsBHd|NJ21!ayjQsB}UzZ9wu8DE$pMn1$dH|Oem*&kadIv z2aZ8K+Gl_E>T|JO*#7wzhuha7r@0JfR(^m4rdojLuGu_uXe<6U*4K@px9iZe*dkaa42qM$vue zBd!=+pwWT4%D{=ipA?xkJC^%neX}JJdhV`_Ih4zD^g}erH9pQab(agb>@h_Hr!jXv z{hIMW`e81-jd3y<+2-?skw>7c;o{hMP2hGaPc(5az(J!=4&Otg2@r3Q;`5s>=zue=2 z6e8p1d^Ugg6i&Bc94`ZwRa|7e~1ml*f)i*4{+4O zXgrUsKjU;ne0XzQc(jbOS%S?$t#E=tk+HwvXQRzd?G5y@nr^KkCjTR`_ano=TJt3f z`KXiH&`!dX^vecCvH9%1=`y?T9Guy}QkZsQJZ5GCUHH71g*wqez|qUu6IsiNK_ra1 z-S$l}`h)_VW(3brY-NbWxRsSh%6+;NG$Ok|TA%Q9-zJ zz~KdTO-{kUb7&1}(N7%iA&_I@l@oxmWGe8WYF{LFM;#ZjfzIl9K`eof#P>6BM&;E> zR0Kl#aY}iq3wu`Ol3fOCy!a!bGv64;&7dLP@rRk`s9}Suo^P_B4lJ5v`cu7G-YEI& z{VQ=w4t;j3`B9AquYEYNoD^A2yR5VTAGUxSzY{1Ik`3k}-9?YyCO>(N{&3UjAUJ5& zrvCkQaNW+Z!betvrbp=gG7&vQ4+x^crE34KS*@Su!bt_2dI$p~ z*X|e;?wF@|5IE23+G#u{w%7AI*83JY-~kpv?R6D9CV7{!sf*?kP|C>fkLTlONd`i{ zCge>!`T<9p+3%Fya!CG@@26Sy4aC43+i+EP*~|!d9Nq=!F!QfDe$2WFVrdGv4B$4~ zjt;LY?A^u~Z3MsOQTTGs{g|3%c5?wBn}A~#TFbM|5l<6QK=ZTeub{dBb)IUXDEpR< zbJ(Z7d~6p7i3=`Veeb#rw2>pu_nPIV=Hw&B?$%g$ShrV704qdp`430zEqQna7U?iS z-H>IOK*e2<1oC=0Yodqt7}N1_RgJKlm}oYB)%^j)@uoS)t_#~T-UW>nlcLewGVBdY zm_XBYpSlrDV9{~{yuU`SVyFCK`(&G%?&{Bry(w?8VbRM93xopWvDCjh2LR01iLwLv z2tOibFU@Da%9vit+6NaL8!h2e{bP!xdxlyFTm!Aqu_%%M03E`1#DH#C=r2@*0&hC2 zrx<5T@Ljz-&K$h0+IJv_P@9H+kvL5LP;(>}b-&wN)eVFV#Nb-|FP*-6e)f*hz&HxO zqg)yM#Rw~>LsqA>d!(N;99UOddz0pq+Ns;BGoUq5#w+qwO6{q-#r&yI#lelBA<>B; z{4!N0Sf`NLgL5QnCa$NF1;W_-04Nq#2B9%!L999HC} z@;3vyB%Q@`{?s)KOb-YfEzJ)=A(Tshr?60%u1P~>Y_GA6xq zGEe0+?jAOKp7O_6Wo1ADhzm57EIh8AJ22K)>deR#0tLUt$D`JzwAQh-m8ovEHN7pS`_7bCbUvEK4|bD<%jgRv900J`qad5bxu*b z{~-OZJ>g9WZbp3NG=ABI-etC#q8EuN(6j2z&z-x?KrW|RRF;e2X6(xcpDs76i5Lpk z%U1=B`1CMHWB<7i4`5QoIl)u`@zbCKbbht*U{x=<(7 z2d+2$r8e2FS{FQs*n-^c(HjgSKJ$!qaaaP|Jxb(EgV_aw4L$hftXAke&%fwbVk`sQ z1DY+NSHt_sBa>mqUCf2ArgHs7%$AN8ie^_{q@>%y0exwbFm8n%hjSaZrCV2rsEDmo zbPXYwJ&8PMz671_tId`P@8$8doNEmn9~fTCGUM*J>IlRk1We1DGXP5QML{@+x0FeM zg}l+g)?C$XcP0fQt?;5TJ?KKlr-3p7eg`)=AY93z)LB5eq%p)CnX@Y z0UP#KrsV+WkGb|z&}WhK3ikykkRPKll{wA0db=}aH8+x5>O|&(cIWM@bjb4WsR%h> zE5k=>fwu20(b%=z%>EK7mm$(ZLOTu)VD$dP^jvRA?xT zJal->UcyPp6}fe5yZXU6f#XtjoE<_$FN~$RW(TFc02JK9DOlS(7IA!hsUFB}Fx?_s z-Kej>Qap)88K6C`9>etl(pWhtXWiEYE+&Z&-X5C{S z`_MMa^k|LL2Ov+(h_@Se_{TxWrGr_VW;QcLrvIDSx0!H=Pz};Dc&Jx_#;l=WQ)}@! zN=;w8r?$N*(+Dzo>wwmPuuQ;SsMP2%oo^iKRKv_Qud>>mcj63;nqqr;MQ80%F;11= zncbP&R>UN#e>5<#B8oe?;hJmzgSUm4pSF4!A=B=wt~{7-<+RXP-t0LVEn#fSexSt3 z7DLFR5R6U@5MU!$CTu9Oza}cSyWNWQ&n+9?SRJ>x8Ht8kHnseq$Pxpe#P^e#g}=}( z^&gXAIiT2EmdWywnRc8Rb1gCytYG)io|CfBruAg-pO#L)g`oII-lZDWw%mS%C)Iny za?V)zr+LvBI9S>G_s8WQq|Y;iY`XCoxyEdS^M3yvFRdvtYoOM2+jBuJ+ev1@*jL+#nhH z6~kzQL_!lzDJJ#?GTNizhc%A5j2%FD!9+#wcbfdh*Xd5GExp7TRQ6D}SY}3%c`>*k9eRh$JJ9Y7=or z3&{pUfr`>sK%oE$V9IpMXE|j-i;PTedHDD{`1kXlG%sbjUkLfs$om#%H*jFkCIUBj zL!se2?!Kap1@zzGixAqdcpb_f_Rj`q!gt0JFV^quR#xaQDd)}i3I^law3`zqY0$qR zb9Z98?+A)Yw5AO8S@{Smnzwpu_Uk5&1z_wC^nX8Tei34+r3zbZn5um5n90JrH}RhO zBkYX-18OqFajeN#P+@*gQ`f8qCWVi;)y$r_|FwQE;rb#(rDJ8Fywin4ugrVGkoZ-2 zOsFC&eld^K^6O$jjLB0Q0f{g@ob>%~NSY{or_1eF_xosbhF+We#Q6xU+=5cWGa z4|r_}@h9b-_cvHnr=#U#_pXbG&|QQETuthc%x3Z>g_z?fV}Y0O&|v8^W2aaadDW?{ zudHA1pO`Zbvq+uayY}dpHFGtwE%p67TiA>o_ShR`{>{DqQ;z{s1havD!}8Bb%b7b_ zyFP(pf3vr+(_BJMYK=}sUr1}PKys;)!Su;fN<54`u-!#bL%~XnBp+-cTDY6A4xag%gt2UmX^9SK#$uQaq77#hEo-+xH6~6&?5;(OU%^_f62CRX~m36 zzvvff7;4h{8{yf z$JHbYC0s%w_%k?~M>E8)KQFo$TTthaG%sT`qUqt}&d1|WJ!%JCrkDC~W%LmebImo~5T=A3`_?XOQM`Svtashwco<`e$rdO~+HZyhK+7u30k19V zrN2Ae+OesoYVcTu_xX_nbZKdUY$Trtu8s|!6Z5|Q9s?3WP}k-io6IUBa$U_WM!2|c zV%@#zX7RKR6YhlZ$*uvP-{-{!nVbSda!-^ieS@0sy;gSzD2;gP3-8rh(8Ufpwxzdu zOM)sr_VFi&}_hP5xI(E4*Z87B(i;00^m1X9^T_!@H z8k%|YEJYw*G5o0J_hgIE6R|W>eO=b&KyHO}18`Ot<>*r8G|g0uSsS>vO!;A+Ed10G z_oU17RlN-zaRlafT8&fZjGkO-u+@|rq?>w#mpmFFnTzz@ZOxWI!te(p!RVLw7_pg= z2ey5uLZ>8E|D!t9I+d=}OFKkW9YoG0BZLMy=#NwkCA2Q5^kt@DfT;_YVWJq6nvmDR zwYDnNd7lY7^YW_mqG+mQOxfZ2WW_2Beh2Ele1PVB{o-(OMguO294?LV@Z&;?DTq@~Q$h=n%;_R(hsT_c&N=nA<y4%98vXy<0Q(hXS7dgNb}cQJD;yRIm5V*=mc4zHNcUiRvW%mfN z>IGd$Vzv#YBLBTkHC^*!3F|DYw|%1Rk<-5Xmq})rl@&y=zR+=mus^@Z*}h zU+0Gwq;nEf^Xi{b0wf8nbr+gjI@YZm_;i=tapqiEWS{yhK^bVEDm1i$0U{Q?i4OrX zVS|?1X?vAlSRJiAuI}W|in-8iDt`ALsNz`6Ar)v9-S*Sug^aJ)f0CBJN{KYhq>%NU zns5DV8@beo_e$79zq}v*8PCWjn=##VZ$MhpuTJt`?JxG}TR3~2a#%vGeWI2yrLl~9%~@m()v2jZ&pLFA=G5Fu-C%R|a1~=W|I%VW{Z>Y| zfC2ZKTACTpqu-MjIi@8|+=(kCs6nheDG&hZE_w5ri?~rAr|rQIY_}sB8uJ2|$kQ1g zK30mjng)C5Hg2P2R%-{aeEDOg4V!;xpnjz9{BgBoNK{*>&(rL50421`N<+8wGKshG z4UI+}*uP|5atnY}3c-Tz)X4J4y-_M-=#`7n8Kus>A%HDPcJEO*!-xT|1sZys4mCEV z;$)0qj7STNvlIr}Xe4W#vLzH_+^}ora~~EFPXkzl?j4n73#UQDn7ov)YjYK;G-&2; z&aJ!Fw%m#xP0_#M&c{XtJJ>V54wsnu4^W4Oc|LssfTs0sSY)L~^lXCaT3lCf6$3T; zx{6psp;3mTGX0?oyUQT}ek&Q6Xkh@&<*>s2=?k@nPOUJ=2&So2A=!_y2NH?PJsGjd zKFLZ(O2XWf-AO8shA4p@TPTrrnwbMyO_%2QUV_J^vXdj@^|s1va#K> zd+h6-XcnU(uxu=~JLFBcI z2x>JLAy8ACDxc@B)?R;yfQ!>*Zi~{;PB~Y^Fi9E5dwlu6&ez)$XC_o7U>@s0${$l7$hP}hXsGym98t}@-xK_BpP)KhGW9MWe61IIJJ8NH;)9&Q%USK@m zGTHbvC`lb?`K9;0{O}W>{K9LIGdI5(=$0cT3P`UhtMnPGf-mY_B*ol0ee=ljAkXIq zvGQsmHDAECLgZmZ;TDgt`a;~F(`z!%QR^Z}w;R0it)(od3ib7XkfT~Ri>D16$*wl^ z__9tB{VUH3R!`%Y@W-_eY@T*1(lUDyeV75Kb!=_W%XFnDOw928-!UO0n}YarwX+u=;-NSr z;*8J72qaaArAa6`FvgmKJ*=+AJ^y;s&|^OhTCtN-BXR1rCd4&YD#xl8bvWjbY$P8p zhIL6t{z5;yYvt&yAAs%`i3A9~`f$1ToWl4uo&Nwcr7|{rwme(-AWK0fLYUiJ)wIIf zNd5rpHVn&l7<(JAvZ`AQ4iK zW2&qA-%J)qj9Yn4m0BL;p4kPaR}=8WIh5Wx`91@Q>7s~>;bQ(G z;b0pl78LWdpfOO~PpjwHS~G)Tpsg-tEz6|lss(unfTe42c`mlzzUr4|z0@qXXlVVe z76Aem$S-t2PQw9&mWfwnn1|Vt(@@*0k$sJ&2}1p`uIy7^jcdOfs42yI#LvFQpn zfa%K8m$90MS6+=CE)<0pM<9eF%kW7~r9*Awsag8f z_wNpN>{sJS<%J?$Qd@G#wKGARyfQQN|j(L?D z8CDyLz;im1TWLPS?QIqj2yg?;<8hj1i@sq`aHqa7Hg8E)LTbJ;O`Tb1ltmR~e~D|| zys`$F%?jf)Feg>z-cWlSB|-*&G263_FT#J98Z|q>&(cIDUr4t*PdvKdN1+UJD=~hbXZ3} zV{PM`m)tY@D>+tqR8xw&bw8phz`XzG@9zHqjbTY=A|b5pO@uuQ0}kdF^{0&;BDbZ# ze@Km5aA2kyfnv-ShOn8Sl^WR?;rms2s85mZN<;qv__-oa zPmGBR287!e4k&*LuWM)-O`q?Xi)tmZr{}#de^8(#a#zH#HUibzBz=9SO5u8)01s#= zqB5Llly|xt5l?q|adQ|mE@^#gYx(ByLXbh9&OJwmh04{&aKx zSyWR-tlbQ|&_Y|ky{M`JHd?-f1N^c%|CK2%{^&Kwi|@z8T6<|WQI*%*fBjx<6qwWP z_6I(M%o0gz1=>CZ&05J<-o+ms`SVtj+)P!YTuRNtufe%}bAOoQ_O20bHBb(pcXGT_ zowrN>sD2Ey&HtHjOH^*sfkgdwl$^$)xMKg{(c=3>)u})5Wl}?Fc<9pR)I&S}Wz1W+ zirVq~X!S0id2~L6*dw=c z!qM{jK?M-Ye(?M5(=gGC*W4;b+fy5f{O+8#<>5eT*poV1@@0Yt@Q;t;4j8(@)zh4Z z7z6(uyUYGwt#p!=HXicq4P0PF37YX9vG{YQ@2}RM?6auvWA=HZXpxp7K5{=r_H#;q z0+AmFKioq9xDj`z7ul-vD=9mtto%{p-|f14IqQbC&wJlPrmxp%ddogSaT7%s^q}3E z-!{e|HB+d|-fD%3bkp@1g)IV$3VKN08)gj`$eD8m%7H9YS2|EhHsAGZw?2@y5|*Gp z)>75;-Y0pN`HUuBDR%)YYOiZ=`W`exK($&U`pRm?$>?=__Q%Re|YKkLwF zU+B)+*l?JxjF*S2FmqseMw@reL+jNVW+}5K^Nni8csJ4P&$EheS$Y-;JZ)Vr_UYQ9 z?+P3i>z%I7_w@IuQ+9=gTLEk;SZKyfi(hx~Zt`*)6fOHo&S-&01MV|_5?f)7|4w*O z=Wld>x;52K3Z!NHfl(o7TsjkF@VLfnu6$VWlN%oOQ<&)9CIrP;M`gtHRjjawDbNTD zKhQT{n?-(?Z(k|Ip~SHK+fu_zmSO;beKVf~%I#+#rdb$*yA1aGyhd8woU6&u2fL=G z@;zKwTCnu1Yx%wRHB=Htc|e;U`1as>rp*I!Sm2B}_TbdnsGY3c4PS5wx^nr0pmr8MO!pZa-Yun-r^{K`mXmg#V%wpW}v$_szgy=Qm)?Ufz;C;;-X#?jNiO3jUl!C7GC?aSev zB5yl!W*a;{;O>_7^_!Jy+V=+TZJ5L^3sOZBDL5hfr(|Tx0exsI3XG4(CFSk;JH2j*H(Zz>(H-X_0SSYoIC;pQgd>uYi(K3EmIdprLp!leo zTXlDUM)|Fh2=6Ro-8rT3l23GW!%4U9*l>xN*|JCe2asNQjaGC0{Y;brBw5FF;e|f% z(Ws$_-AO6d|87Cp#TqrQ90r)^q8i%PnW5Rx=4rPHG4OUMg2>vvEDxZ=>U5>A^5)zA zjW`n8v93z(fF(@E^;8DX)!sUu_b1&}kPOh{G5Iz16XxY=E*w4z*HjcBRmm^C+Jx)C z7KV#6Bcc0JYF}L(;5p#l+WmG8^2~;1$ zyHcvQZrafTauGN;uPyv^FR$|9W}j{<5ogSeF(1s|!PW*USQxPZb_RmwRSuO~E_-2A z^GN+fO_=Zi6Q_G#yp5|!vIb9#^adL6CKe(W6YxZ1^G0ehXbltwwI!PEp(9$r`PhRC z^-OVTCR3r$LRDCnFa%Ove;jG|@B7@UtlMj1Hm9xoI$#RUUU$9X(wv3=>IdH2=g@wY zOkM$0(j2SsGZ5g%&q>}3b(xPKA-oF2ij2=#&JsR0T6nj&y%bVmRA%)rI> z*}-!?dJOoC_;#@L0&7V{WH6NOV|9p~0GTbAiq0iDOdHPe|6BoN92$iK-W(V;2 zwM5t*RqLG^k|F9e*<2EfPHGl!^)Rv|DI$N(_+3{&B?j0xCvgw~)kIR1>sx0{c>#fC z(QrDrz@M>}@zLibC{_KJtxkFO>tcAfL_y@XBh)&^bMdKvZ=lSLpuF|%Vw6>ppBH$CPrvT9ItR6L{`0K<+jhxQsL-ocKZOE*5_1{^ctzegp1aoVwqdNYQFpD32Bfd=kvvON80?oiGWY zp%_uMcOmWdFgzpc=frGKSY)m(x{AK*9*529slqrin~1YlE6kKnx8`xtuHB+%E&Q4e znYjK~F~1m8{@{NI8ED}bgGhX+*1hPs3ksGGxW3w-FYp(yYy`}N&1ukVmySD0f zfNZyDcBd;57N>oxKyIkD8oVX>uR`7FAcH@9+g^S$EU$p&ZdnAm2j8}CZE#Ky{txg( z2s~*IeWL^jR=g3ac|_hg&(<7ZWwzKZDO8&?y8iY7Y!~Jwk>#AxghrHws_->D<9LMY zaOwWx@Wa^CioAAeBm>Wh-&amLCsO(hIp#xYd5^-nVEwxXh~`E8XQ}S4nl6I|OFf6b z&>?FBH@HeW@u4F|$3?3|31&4ziT?u`K<2;Hd)9r-!)Z|1&p;||*nHMTW~5dk*xUws zZs(ip9M=Hy|h+gWnzN86#*joWI6ND$2RQZs#@4 zUqTu;LUIpd>s>~qRnhQy3y{RuH+oh^-Ha2DyVAMZI@GLknu_g0q@CY*ZR85%wTM9{ zAP{&J*XmKr<`qyAExU0&vC_GnRT+?wioE*wtR)_%(PtT`ZVneDw{R;C;IWXLZDZrEiCU~mUO1xnLmo~&fAxUNP)IM1ax;aK2&yzU3n+L#kOkDKYLOj?~C_JOTjZk{*H0s-hvVA8ted%rX4r5s)OywH(5h6AloQl*SyQR<&ryTU zJ5=)~3ME^KvM>S9eD$hs+qSP5&wpBcrI_-2bCFcq<8KE5dit7%%@Jg>Y|q{&j2}@$ zzsZJRF^piLaGvF`3m)FU zSBLye_sTlcHz0XRy@R#;=xVqEY>s;|0+Pr`XZQ3C2NBhT)eXCdDFM_Nzy-q7l zItPx{A?A6qIca2b*Bz_q%{M_?Yh&{HPQyN9V3GOOkat=GcR4%l9^1iw7+pV3vQ{?e z2)wwBc8+`3ka(u%{{UFqDyrYJ4B$(EG3j2X<4H8TD``%ntG1~lxnHvxcCJ9+5IX%U z=8uT_q;OAdaMzl2Z7JHZ!7kQO@6V+~rrRf$`EA+EJzOoidBj3D;|H2_g)%lZFD_8(-JNOx{4W?;Bs?ZPMzWF-yU2|aVD$% zoFtUU(XFtKGRLV6*AXC^*v4k!_2w5jSwC&(2Uc3L*S2w zKO8kr?GFb_C62cj&vR*LE}Uah3ImeQ`} znI!ph>?_6oH+(MAd`D?>t?0K=-WXtUi1=q1=-#~dtNN$I&kyML5?X7T-jAVbakkad zh3B0zj@idU?M$-pz4n@t%x;?h08gGm1gJ0o9R@y?DY$8SvRl8rm5+k2ZQd)FNteoC za8M7reJO@9!iUHmtL)zv{>ZWT&h7ObBK{a9oA1C*2t9L*dRNcC5Pk^iz5|j-&IMwz-k(QN_YZMV?~OkeTQ~HAZwKb;02J)|`E`85x!L=-0;j&1rt46|(NIkJq$Em++ z$2|xKjP^CRXu!r5&f(jfV!5kXys{4N2*Dj|TGn9b3aBm*T1{!GEa>gz$m_HYm^Gnq zH(j7_>OBo}@Z1nVY%YJh(zGqES9k%()bt{eHZ4HC;SL5{nRIpYGUn}N6m9Q7FKRVI`$IN*25{#8|^*nsai1Fu?7 zW3H3d=8?Dvcv3T*~$&x z(16OM47X2eyBuJR%bnh=YP?{U85uspuf#F9a>RO8O^ewwdtK+|18C0~6{7@xUm%_b z89i#OF?^+t2qPa#yA*tnEN=jFxYm1Cr2h`LDANmuVWp1=@!C)S?twie@%P6+g>5H{_^gS5Ba z>Cd%2e%i>s4h@&!gKpMcndhgyHq+3-D+&lX3xIv8 zRg~d+gV!DDL_{&lI3)3f;<;wiI%87AZkYS0X~r^5NQg@1PS*Z@wDpA> z7%b#;z~ZKgAfTuOu{?iOfW=f&yEt5eGsqx{vuxzQQc!dR^HFr+LD= zfHDq9$v71i%XdFH9SWLoA2;sQlbVc10op<1H7XkDWd+Xr?t^9*6DrV#QXQhf=siwZa1Dsz@Upr~2=;DvbWij4_7LlA*_ zFQKIK0l*B+lZ>#%cg1u$8s^lBe1OVOWqanRNEaJ<40@WmaHDol7#YAdLgn`cBjo_# zkZYkL97@j29Y@N3W6AH2N<${%4mN}OQ)C0?Cm=I&8s_aUMxM6xVE3)z3Pm zu5~t2h1v@TVo%Dw{>h33CnR)a+Ep~G1%NMY>}F$ zIaWJ}027MIxP&Tg z+Kqve&m-yWSEZABH?cSdvt@M(K;=gOXQgK;8>loRU@JGtoe~;2L!Mu7=G0)<@sc0 z4anmySob=H#btI33CJCVbIIRhRJt&nk+cFbqjpF5)_v{5N55+oKA5W4x}!%CDa&WE z;;?lMV631iTmX2_Q(0f3(-!P$OQ;24TRTTjbL&+`pbKDSn4Sr)eqB*X+&)$u_2V@J zdZRRh<{*z=_0vrmP2BISue_iR^&k!hTI#fm#&rq^5_;E~={k=iYjd7>uER>W7y+LQ zMoILp$h+=yOUU$FE3{3Z?TnBJZne=^Ulu6k$j8fodi&P}VL2}wBLk6-t#r0mA=f(< zN#i8qyOTKQ+Q(mQsA53;0i0m-TM=B9QOc^GmC4#%FOKOq8xI7xg)LZ2UFvkRzKj)=yU1Yf=V*@zvSQo0Qn8^#%cS0)}XlRaaQE?z*asg5T z0K_QS8?+22sk;eb5dkd6J}dE2e}@#gLY?PXFaOKl14&hlr95j zlU&vOOk+lkv$G?f)zn=D4S)&*k%8aoSXYq%nG961=tmf=S~ZEr>Jb@{fF#CFO4mPg zX^q@%9WZOQx`9)6NXu{t?N~a6m@?tMY;p?YZ3lZ4k3%CQFrl&~`{{SowF_5(AqXBYG`0G1~> z=OZ;{Ad2X$69XLo0EH?e1|*UR?mJQl$Qv7idEJhlly9(_u_8#S+zvrF$?5M_Vci}_ z1bg~=)CNB-;|B}~9QvAkUpbR3!GR+uj-9IcpF=ja)Y4m}G4ILT4o==qDmktJcMG|P zKpXj*t(J`K`r`gJJpdhv6>d?x7{hvTRc8l+$AQ|dK4M%-@-ZBO3j2zQ zt_Cxaoc>hVh{FNfoK;7Cq$wFaOhun!)v?IV1!1g%w^CaD1p@ zkE@>Kp2E350eE^1M^uF`IEkbSCdJDr&u>#-dHf#m)E*1ebZB(jUAo=h?<0gLCf*Ww zEPE5z7113P+2mrT*Se2b_$%;jwBNH^YQU?+s@_x)?ZNMsHSc#mAGfrV&$YF*M;Kq; ze4r?)Kcr5l8b3?7GsQ&$m%mna^?7S zJoObHi1h7b+{-G(XR2Dp&&gPina6%VO7VXZ{6fFIzPQq?Og6$dDLm2@cU8||GmO`r z-haZ!vb|Mr54E&vqA_uEID|UqfE9VJ_rjhQ9vZfP5qPz<{SMCDw8GsSAefHipPkKN zCA*ReP-g;#1$bP>5E)R>E*}Y@D)qNpBr_H%Q@21M}03&Sej3_ z>ocvpPCIN)xczI+b?=E#>Q8&(Z7WK%BHVeg>bl8qEk{5j-TDO;JIii?Jg>KI)E$DtXmaZib0+p`If6uj2mzi8{@$k>R^_o*^Mu7Mb$n&sTXm zpU$N52ZAiTHDNNx9j2kHMIQUx>6n<~80I*}d2IJJ?iN=*2=LaM2ZB5+d#6~$ZQA2i z)LuZZ0uD}Fu*Q1V%D)#sX`c-0H=3S_;Egz4X%-C84OV5!+_~VDUagb-Myi~t$4Kf! zjQ5dGPma%4yl1$(^KIY?BZ?9i&2~Fg7rExWX2u^6*k4}hclzC)l^&S^ZBl5P%rJ4E zDLWYm5W+b1+l;>nrVxFhJ>VFd+Z7{!vbVbp8GYb_umFfn%x;g950Aiqv#~v!Scy%bX zd+YcR{{Y9dY`bxe0a4Ib1E+jwwecLb_V=v>Rw$T3Dt_#Lz-!d}F>QM#h`#W;=~rd2 zl3SvW-kfI`>(a7SVJCK9BiS9VfW9+b>-Scc8up!N*79+(ctbN}A~yI z@~)pq)DMUJO{`yNI?TGBld8L1G`B!*JGz6Op4F7=I5v~}%T&3yM<4Oiz|!4WL91+q zZ*=k&<6s-63_eyT6-&Y1AiA}+x3-y{NKeeDPYcI-($+4oC$PRtnTvV3U!AfFgTVYN zjFwxgO+CXDLI>U+mCZa)Gg=)H!!;Lk*}N&^sI9dXjpN$R`Q8`+7rs4z8ub4Fh~EUX z&xk$+o>}yym4caKyNXOW$o8*`F173H8`x!vRGF4AilunQa%<@CfnOYFghywpN>GkV zkU{`^W74}JUy&(pjv3PLq4AH#?}1ld1Zi$!o++6KRanUxAB}ia(~dw~Wd6SO`pNN| z;bpJHn+Y!Le5;r*AS&w$Zt|FOzuLblJa3~-;m;K6dR&Uz?WQ2Jk(#kvp<*7H&URKf73QJ8)FsbjB-A-f<=|k;i(LR_67q5`dGytth7Q zn}hYNI2hmna0g#{(1KEOqy`^amwkckZraMAboofeb5{~$xNRGO90S_1QNCO$12twd zAV4#N`igrIxw5ya6vkAyuQ(MG-71zlP5|gR6+p?iZ&GoBDkJg|%2*HpnLuX0I(pES zgSl#1@PTqV4x=?j;$kFVtgDhp9jPUhx6E^%p!(G*8G&VD2*>L}OlT%{3ITi{Zfd!d zf>?aS=96-}bvOWz#;cb&0b8EwJ1Jk8vuIH$#C#Pb= z#t%WwLxSWCVy;NLdE3{ps_d9uz+s0YHO}6LTqz6)dkmjJQjN^La7S@T7z7eq81xk+ zYsVNM4cI(ZE!$(!r$*?W7|fgk%bsfeyNne%0G+w?s?h=?86a`cRhUs(21Y%NV|4c- zwHs`Uw*LU@3Y--j?FX%BqaXo-VY(km&$bMT0};(zgoS3~XvY}ls>t!0aVxDmF^duvK4%~1BN@K&9+E^ZQNep2=QgGctp}yvO zvFwFNRy#=p7^fKajFGcEVZCX>Lixxz{c6XS7%$8vByPbyKDEnIb~b{!St8^FJ3YXw zR^dPM@L0D{rCQ7p|pLL%5QGf#A}r1^J&j=m%<*6Km~G zSd4&8SX*uJwg$x~Cp}NnsxeYz&U~vAwCr(CqP5CWM(G#;V6R;AF;iQ`yeK@7a&Rze;EBF$=L8L> z98~eynNH-3d2#bLaa+1w&VOsw6+~`Jgdr3*>}P-~RkoC`+$9w7eX*L%Yd<_5Y;yC-QEc*h*F_N)fgph!;nsS9<^XG3Qp6KdgrILWY=>Y z5+`Y}5r_f$AAj(xQQk5U7<@SG>-g4Txz5r?Msh$MJ*s4xN|FKK;~j-^N-Fx6rPUg3 zHX{X_=4I>G6n&w#oPoRhp#K0`q-EMLqbLCD&IJNyb|e7Bx}McBOqT3i^NTR)#&SpU zt5)xn4qK0NS+GmE5yJjG4P3WS`#NsH!1u1WdYn^sG~xs^nF{UW82VM4RXfQmkUm~| zFTH0*`&13t&sFcATG5LxrHdBi4hAz_)Y0eEY3^-XV3ir<@H543*~lVg3g38jJXbww zhLu#Gm~gr8S8eAU1`CYio@=!&4?1n9bFQWobbnN*FS%94&bb; zLHWLJYc6AMMooLDs9m{i=O^B|%|lgS#9>GKS?ldfs9Xzm9310-PZ_Ry_VXu<4mqaS zBqi>!{{T1yj==Xd&tK}Kv1Wcpq0T9F3!u2jZuvRlv1a79I%A&ssETHr6UnM61Suyi zpPTwst1F`&57l|1$7U51r% z!x-g`G7WJ0P+-x5PFs_KU51*k8kWEq;1YiJYoZTJ9MWA*`%Z9%B1(XG0azc#x2

  • s=~br!13aM{O|LI!1ATf4z#Zsuza9b~)YLn$5JiSl4SE zz~qln^%Xl^NLS@;#EhJdYh|LkIrSZQ{#&l*+Ck2H``0&pbOemMhQh~_$u*;Ub;!xf zuQkqI-7sQIX8?5_jb`^WS{WLQ%HJxk&8z`zb*vk?Jmy#22*v>&aauQ$ncT7YMsboW z9_B_Q@HQ|faXk;EbIQ$~G3;ku&Pl;6SwI*aKMKaZUAv@UrI+}+*39e9S=V!Lr=hHS z==PO&BP<9NjE&c0BIYn6Qd9x!)cq?a@dwJmOF2D{2DR=Fnvc5*FgageOjdR0%)pL2 zgU|}$o`*~|W;BrpC3bSXNE}pAAXYni{&i*Y?8g8vtsR zBHZNnsFFR1ps64p^`#<(1xG!>s?w-%3EPzfW74fV7WE)sm~s?g)Ud<0OyCfE9z`>0 zU98K4*B-TQ88agAp+U#KX*SD>RxCz1WeQ34t1SsXI6Mpj8wd2LZNYFxFo}#D0d=c|ta=5_yRFXn`!cO2j`wDMUlp&Oi9G}*z{Yi>sGe|-e zBjz0eIUrRFlfE;PxE`n0wDxUw+@yMr=CkgTEXuzq^!2PJ?Xk3VMm^DXQmS%6=o^Dn zW%CB+WC}Wvr!{u!9g;H;K~at>l#t|?Esiii;*x#YWh<7*D}^1g?N!-GIL<*8b&yJ+ zaHFPusuzRHMj73XnH5o*L`t3A(VKE|ilc5Z!sFkqQRl@l|8zW_yppqtCWq4clkIuAaH9+)%PwzZ1v`|ELU+j#(QSA ztnJvY7~m7sRuYYl=xkoIjd7m1=lqJ&jyWZCU{1n5UzZhL))nXg2eIi|wu!f^6deHT zioyAvaZf>Fj4=vHARclnLrv3`>g&r?-o$*vJ-ulnfrdtNjB$?jwWL`YFAxRG_Q!12 zT&d`5B+|L;p9Fj(Z4LO;Zdc4$NMN|mNE}z#e+cvk(3-&4i+;1ZuL3g)%-yuvjEvxCyYX)L}rnth7|!7`=6y_Xs=Vg6r0f=i+}NB#J?3a zn>{I|mfuQ^e5H*LZGtcMM?g=huHVO>7B4(Ap+Vtq2HZW81wkstpvyClyz)uu?Ot7> z#V?2S^s%(sx0g9-Cg@dr3MR1@(EXaA({$}q#b7j3Nxs`nQa4H$o_!bIx~)4{ zvG{G^xpgTmY@ojZe7UbVX&b;x8wa?^<868mr%HHQ9pqdf4ZtT0<`B_ zMFOKKza)3wJNWOcc&htRmTQY)3n7ZvOSN6Lw&|WS2i`cZ9=N-oQ@QhX8P%9^xDFJ0 z0oYcZmxpIRy9g9FIL0woAn-)yU8EN0pcFZ#?%C3?uWJs`tXgQ6YfJdqK)_AC>$vcn z>nV8@ntaB}@+B+21|xCoPo+D-9}Y~@K=VY&8DWu}arCdQd;##MO#aSCk~LMv@0b8j zx%RI*wMaIi&gwWBG}+}|74UWUi2hw!e%W=`&UW0yo}=ksKzLKYk;kS+jyjGP91u9^ z>0ACE@Qt>asF@&vLL6`fdUl-z5&2Lxx)feA7Y7I4xuqoC`W>;ss3XR8Zvjhp35_kd z9l+!At^;52t7!z8A$J9~f~j9%Nu}G{#vO1nJ69d!9|GEVipir?^2jBQ)5-j6IV9M9 zUg_BQgI&;NhEFmSESUiBJmWR&e*q)WFEuod{`}js;CW?tU{oIvybSs*p;cIcmf&Pn z-+{4OzlrUw?hz5?U=fP){@&HqMtbsG`TR{DTeN!L#Heq)4QQIThndm^Mpqg;8T*FLrSQSnpZwZ^yL-K!uTK=T#U=PQnezdS!_ zO%1I)FL`=!l0hIwR~(V;UcyZ^C89ifQnc*%J~IkV;7Ki<9MlaPY%82?^sDj^$FO7C zqIChf1CFM>7`0>3lF-PK9l5~9JL9cp&k-jBj8{VJp~rH&6{wgi02*aRwfFn1{CLlI@Tq)FSPC;^}wwNB`QhkPwPu!dK&P{ zm)I2GdvjLN)T1yMJuuuFp$Xc+9PVDCtwzhi=OpLrM&z>GOSBB~NX~!8h7GlY93G;W zvTxitLJ0YB+J|qDs5v;~lUA2fH!Dn}e-QwTaoVX$2G>#xaly_i?ARW+IX$XbzUjz0Cp?;~BX!UJ0IsIp z4%JlNlsA|#FmugUd@CVfNzZD#JZuI|Ne3ClK_*Gy6OqOZc^u1Q?rGDq)P-_ci36UP zsZl^tyMgtl5EmeD-G`+*H#_soH%=-WXJlZJavZY&S04V=X;3g3>Con>q`^q%aXfUZ zNZVT{EHT=!cfH7~3#%58mO+7l2d!FCsJpOn-#)&TpXMLFPvufYAjbS;lgK9@jc*j* z=gn7-D|a+ifIJR+an`QIA(2r?Z=2=^99B#+gZz0pz^zDJqM>2XyMRr=sVT>c=nE@h4t%H?QQ|fGZ)F@CkLfjOO?m~f$BPu_}2`t&11SU zijIuE8tprSWS+k_6xp57ZC+O+J;|m;Gn|YN?xb)#Qtm9vk+s0Ub5j`FTATAl#F8c> z4g%*rdjVIWh|1k}5_|R)S^?)WfC?z*XyY}l3P!`H&&GC~8ttb|ZjLIIZKBw0HoNhK z*@o@>RXSR2Vi|}7ow(^%p||rCmgqUhrCN#)ommqo$F6!;bSa*Esv?is9z+E9=~{Ny zg(F7t+h%YIoYl)~FoBev$`4%U6{)9bhBWDrTdr|kDw^t!X-(fkrLLWf5XF_71KaCb zaaaaGgzV4VKBl$pw8U8B!QI@7(6+MQlY|ZYIOlC>;7_z`LzSOP39*7;=kE&6yVD7f zuHECgBD2HA)u73CSypIT6zumsU87+humZ=rfW#4%N=;Hrp7J z$UJ>3yt>n)*vAGxKt*#Jt*}vocI-G@_X4G)YtC`^vE@!N*Eu4wq<`Lp#@rr8Yj;#k zHdUB6Z%XFw$I4DdM{no)GYh-1%eo}#mi>ykHd`EgO3u_T;! z>S`@>7b_a+I_>~;?rKE1Y!SleuQiJm@LcCCbK0gCAxGZ%NaXd%tnBY{d918!dErzc zBphcVoNhQ`Sdczr+OmGy8==E>UMZh!EIRIE$;CAk_A%$s-CLE8J>-{GBY-N}To>SO z7#x-8E1Qb&02CZ2QJ-414bc)Rlet@hGm6>}w#O{zeU7f$=YUBhkA9V}1Z{dzlBQ@U?k~pN!m|ilYWQG{R6OK+!Yh#V4d!41epk~3`4my*^=~v>vO{9jwCnOy3Ym2qiLjXp1 zjyiO$2rq*b&n%~RCZ)cm!0gibie+*#af8lytC4Cela|9AWM{9wE0MImIRRLJeNRfV z_rV#CGlj-adghd^x!V{WJL+4A0htKPJ8c*S6iODdoS!v6p&j!U*G zM&;TDa8D#x6y}lH3T>MbYKIu$?&v+MI^$K$ZUTYN1oCSlOSUoOkZ?&n_VlXKPmV*C z2dbLpbuRZh)i#~cZfmBIcPYSQjP>bRH+Nz<-HIK(3oldj_NdIvvJ#Dj8R2>w%)XhJ zDzPdv#t-RHe#WXDSz7+_k5=8zGgwzQWtH#<{c~6D*vZHk0M<MKg#-2x^T+a`$3T)9&WF8ICMvLZ=|8=xd$R zEx`jM?mb&Q>!z?ka0lHSWFB)}aAy?bWOSNnQmVda8TqnBbQWXDk}x_E*jGDXRyD?Q zG1Pa(ZNo3hIb{c&j^BlK#k(A`iPBn5FraM&_U~I3cPdn1vYy=IHOg9DtHv82FFcj! zHKl8I6e=huZ$di?=}PA$j=Cv~M~{#{86Ax{-RutP=oxtT=CI?u3>OZ^J&E+Ei{ZPM z7;bQDp=@&7T??0U0~rS&hkC-im17UcZQSjv63ylU%=rT(l6e0B^;RwQ*e$yXqi=DO znuc0Tqj2Rsn(Jc0lrn`u~qphNeVJ} zz{$l-?4@MbODdk+W}+&pPtH4&jzA+Hqco?$<0X$jNqN1jE$r8rbf9;btATTs|ym4s(w%h zIO|6>fkm-n+AYxm1ohg-oK&mxOsXTn#y11nn+QnxU;!WA9YLv=AV;uccN^+c-o;y~ z6O~;3?cF_%FvJSB6m$GNDtRN^M%;$$!QlJTWKF84pd4cv#%N5=&9WtnYOHK~_u~~# z@i2Jw%C*y;7bwSI;F!9WW~yJKZy)2`vmun{v4v4aXTg;;Fo0$-%(> z@#&h_yM!-qrBryAaR{Vmu=T9D($wfw+cO$00tyTsx$jk_$Y7-HC!nntC>VUZ`w`rI zYd+08f(%4QGMGKIuTjlwOJa(*`l0z`;ImK#RzZn?G=Og;oP28L}Vn+n@ zuIgtj;$=;e*&{VVLPkb9_dTlRz#uaNxDMIxRHY?yTez;+>!Ih$I*|{WLC!J9;a9B} z<{Tb4#Zyhr%YX?Taa#6qeogILTR?(snpTi*_8{^zTb4G$OdYuZ;|8;=;8q;>I0m{K z8*l+58;HeWF3j{{7kx?XZNnDBDCYw{wYP0%V^!m*$jHtrzMUSxrNWRn$*tHS3|Om% z108FgN$z(>F=-@6X=}U?sB%}R^{&srT0pzi;z`_rk(oMRRu!~9T#Q2%KXh@%Yt#M^ z_)_Oy)ot3+6}kb2#~9*kgWbKBx!(Zz*7pAZQhgm`DJ7%@2_N#zV+S7Qy>r64MU}3Z98oIo z3|-r)C#f~e{pWUkbgr&)7C#MUL=)aQo?JAyE`H!*cva6~UPtkBM${+Yq`)I+0R`>t z!P=QTZ(;X|^yyyR@e9Q=-&)0{X?}N{&$RhNfI4LQn&Un)_?pY%pM_$E+(dQ55DJ;y zaJ4oyeFTQu~3xKGo&=e}$)8$cyGM z&-=pMkUgu_V86J#4sI~A%;lW0$vO9|$y3gqEs)|(*>)qR(!5z!U5~4!gm8t~%<4Kh zxx1Ehjbe>3gVe4$HA!_Sw9B2(1Z=VLV{S5W#deddRvKofxk;5!;GXBuSD#(jY8u6y zmnj0o&OYgEnj55wA;fT~?4!1Onxko>UMWMf03PFt z?d*ILs>+PgMys)~cQ->@kbFAUOi1xSE;F2n-#Eu=>74A9nY}7bTC)d0&~7r57@Akl z0Z8ZTT{fo-c9AUN+2e3B*&RO`n@!R+dkd|vVJvE+?(NUzT_&x4Xxd&bfr+p;Mm`0vyKG-W}+0@vj2?n@{m&xw!cX%Y|{+=Dw`fbf~p$@kqGFdUdZa z(tZ#@7O`@!vP%oexg^FmobW4xl1f?|rPSs9WKvy6VdX8&Rq8o-VJ;D?=DmkTZZff&A(wP;sBeq*BC@!whF{b52p7 z7v-j%#cri1jbj-Df_rzWlA`5_MIM!fkRW!r;~Q&XlIGJuxv?~1CY%Re_c{VGVO zF&vY?{x3@DTUj49h_&@D#L9zc1or7y?ZIT^XVaWkd`@x>N7Pk_?i+Jquoz$vIISAf zL&|zHO4)}40Zw@%y+|FIT<#ei{{Xx_s-%A`Jx=Uo9CfPzZA`QFlTSAw7*(ZOqI=3~j+fTVJW0CX(PYZ6^oYps0k)GXa7*!1=hS zNy9JzC%PXLalty{^+Xb|uoCAS{BP8OiAs88qj>DX0w}fu>CQ?Zn z7KFG~+zT!TJ$SAA2*ZXuPnn)E=xd+0Jb)A~PXrDtq|?Us+5uJ|XKi{^qoL+ilTOC9 zov~taPaG0DR<)(33N|*W8TK_=!Ysy{h6;al*2Dl356T#EfNQ!bEsj}A#fwW030x>{ zbAeknx_^|z_`Sr0L?Hu~{dSN8iR3fyn! z9<|g-ji9hB*g5p9Tj-G(3=+7`PfDJp-sT0=Av3w~yLWs2D-!Wl1kp{A;1P zgoaQ#jgKq^VrmLQoM$b;C#Muy?r#@nb2sW8I9vid@tWf`wMdnj6cM|eS8aS!O~yiS zr1R3aU0{CofgtC%K~n8wSjn7ju&w3r$~n&+aa_&&XDho327a~CYO)D8;QYWGLQAmf&%0^PGn$6>W4j|CQCX5)oZz0GwC&jDolazL zMSYBIIAP9vREGB_gOBT6?o8*Vw~mnt*oX6d}f2stEC=MD(#-v+UT z&d`606yZ2#;GbF&vmwd74XEbB7E|+%4trI|?s8Sh86S;cLv*EcpU2*;!*a|<4&P(O zYecm(I*WVK3b#?|io9=ku6L3;bjA&Ha9kV!$L2iMxbEALoG-0zjCVRH^%D5T(m>>% zf}S-IlaIVQk578SONLx1{1|kp)Q&bb)7*NBze6rlq_wOHHOf%gDRhjuVY=qpMEkx@!E{E$f_wR6f=H-uM1riSfSJ>!<{2RNz4^D+kIxyRQv zhXk&laCI3Zb^NN_S1PCoIFGqLwZl?YS3L?)yS0r8wE(AT=L^9->b#eRCCO|CJrAu> zGjDz1jkzNpwHYCyWN(xy;~ur=&ZW`nQ>CeQ?IvvR7~8^u(EVy7bj^*}VN=G;QBBODx8G-PzBE`yp=B0Ca!7~-=gJC5E{KD_f*-bdO~ASviidZ97- zF_H=6KGm#c&7v}t65OYAl=*vP@J~ThC0CPxq^RxO)wyI+i=UsIb5Kb*R@$qu;|D&q z(RP*5g|#X986*LNjB+Y?cu&)cXneUGK1V=#6(SQHgPdcfOLow4iDn?V9S7E}+x)CE z&{YhUVi)t=kEX@<%Ls3~^l5w1G;3 za0fp1u?5M<8DRWisU0i6oV7S-9V~TLY@S&lmdU_P*bDDkcGoPVKJCN~hrM$)w>y-v zBrwOyMt=&?x0h%jFvmXC*BKmAg^q$Nt!K)QF-;*s~586~GnFCDsr( z1g``WoPB9wy<+6==YUDBxW4Bk<8!P{O;DgxK_H$7T1C|S&y*4K9^J)rCsHvMR6KVl z`3hrd$}l$-QPUODtoAt?Nu4X-DUW)R2P0>_W!_(526!a>;CZZf)iIMF9N?C21yXHM zN;q~NU^pYOsgkyW)#_-=cpG*yz+*nA-m|YS4101${{Z5_;}w@KsKOL#S##=5 zB9o8;j!tWyO7BBxy$u`PL19@Kuq97p*14TR`I+2jjN~!rIjFC7P}_@RapaL$SDKDr zXvW^7o<(xYvCyo|IWJNa&i%yy00{n-Mr*yqV;q{zdz`YJ*&c?Wc?n`vugrSpxn#Mw zH%!}(UISzjeK@J&xhu|gp1JiEg&o5M18#Zanvt%WJc8K3&pmTo&Nf;dQIgW;qg@A9 z>Pa{`mndBc@ z%!cQ7GDZO8nzaSe$tKJdBye%liUzgZyqh+hl^Fv8xv7#pfG8ob2qPUnl|nPOYVbz~ zk(#|hBQJ^NOz%x4ZU^Jg6Pted3=t`{6<*1Dk3 zN|M~oypXUcxKK|dp0%5Ck`747<2|bN()^YgkLgYy&9n&~WK4usIGxz@wOC<40pwJwlNd8 zrhWeaolM@BJLy3(^{u*XLD`o$BavHHmaK&2033bq=~QfhGAg0@h`~L0t-BaqO9mx~ zBLsR^E4w=>(?y7(+S@WQoNWh;{cF{}5Nanx)-7dK^W@)!UV(k<&7q1p3bHOq_5O9+ z{61NRuL+9`Hvy8T0OV9lLUB~@Nu%x$3u*Q`4vBxN!1=wqEi951zyS6hrn)^VS-R8o zrnvJCS}>}FbAmZF%3AAp7J4c}c(IvgF`+p5LY}xDm0wfw0vnla?WI;#eVY*SyjL8h zeGiOL_q8I_Jalv$w3^v`-9Smd&UX1@P(Qoe*Ug_2{vh4>mg?(LXVwI~(L%ct9CiDm?E9qZfX(KJsD=u&GMw99R60Nl&e$a^Z+ zpKBg5zwu?VU);eCk>TjvtUhSOvoF%M!_w;}dXq%abxS8vWv#&K$AKiJNk2krj=SOy52Vr+ffNIVVCQoW=~;8@njO?^E%!qs z4nAz+ikz)zX-T-gW_pY_`rer;wdI+a5Q17Rayy*Xt=-L^h;)hA#SF3J3`)3l{OivA zCF9v`CRiH%=O~~LHv{snw@&enpLVlbTtp4k&rY+A z?$=?LYJi;d^{H;}QKibyThetKTdg@#XO-nZ0)}trT^EO}g!c%;$_nQrk&r#>%X~Rw z1>8bbmE}nnKX{Cq^sk3@Hj+N=+mvS}Mw`3Eti#?A(5JhUHK&-(0yyCSl?<9`h z%x#5l?{=?WQCCAA8PcRxfPF`l@(H_GyF*{ZoJ#4 z3UV`pT`z`UON*(4qOyU&2fc7Mmo6BzjIqc$VO^JmH6kVhf*kTib5W|JG~U-9VL|&R zV@q1G5n9TFow>$)iumvLpz$1D7Vz!lcWma`{Y(k7pS{L^4z>1|iOVIEIxgngMhB)V z^Mm%;@sHc)i$Z8bkfd9@)i_}Lx_(vkJf8Ej(D=0;X{3Bbsp-PX@=JK%%#BV2t<{B7 zdvb83{METVmL(v*?Y#Pt?NAF<2o5+LWDeE8J+wW@K_p^4TYf;NCaX1|!5jge1#h*U z814kA<2dP1J*MU(XbQXv6tuD*CCmvCljQ^udIBn}&>lz`9)`E2wLWh=9A|DiRV$lt zdJa08+A`SZbke(LH+KMBb z{V+fWu@whGGn{s-a;`>k)Z;zst0-0j(ALSBZ0tQ>A1Ue9r;LEh&sv2CUWTNJfNb!6 zD$@%Z*6ovn*md=*_U)W;k?+#65xO4P&tA2qZ2NZe$T_E|SlNzFTjnZy)#xQ8ZUh2* zA6mpo2rZM>rD)s8K^-yB3{<^HXxc{J17o%hDf}{UGx+qX5zGiDkfW)qD&UMM+mW2r zC4G#VCIoKFah?ZikP)yb&R4E^%|RPB%%7RMWOGhNB#)bnW9#o#V?QC!9uQc@Uz2g(QMRV7fbwFh6)uUt3H$>Z2_ zR3$m<_s_p-lxU3W(BlJwx%J7co1BiFN&YI ze_D$lDgu8HD)5Ig90EoTyXt8(Sf80LblAbd5QT;~2{+%IEc{nGOK{5O6uGlS7l=@TdsKRUq{>t;{P) zSb?O*K{zDf&>v~rvm+fz;-i!*9EQlKl;N0y7U{1ZS2W<0d#+f32SL)V zB*mjD4&Q$Dk#5HT_ceMFaCT!o$u*)$YR@URb7Im)EJq926a4DLpLw?ervMMmvlj0F zBL!@5F;-UL-8WzX)2&Kw`iZ;fT5!KN0z!J=bj4QkmBW#cIt(7PJ;7Aq zRxP}^cL7NNWaqVL!-A`pI9{i{WZ|x+{MuO7hGkEf0tZei;FK^})D|O=ip_vDoB#@y z$m5aCY1_1FpbR!S80}j|Hg_{`nOPU@nSdC%bh)V+de=j35}l|%QNh3+Yn#*L+832LIU!F1 zx{W;fi}P(RKm@NOe}!6BLi9DP;n^0_0b);1n5o=j7;KO`o@yj{B0SjWu?-|{d>(h$owFXoTlg>+WF`vew=8ESj ztV^{dV~v>32T@!mx_2p504T{*+$VgnrX ztjOg6hR7MC%p1Q7*>Yxz0fC>sDfmd+t01?ti6Lg?PZqin$u?W$d8wP0w~U68*SfsK3B?&wA3g zEQ+Hbv@p2&*d(k=agHYVHG^@M;Ms{o69O?D5i>aB@3fj-Yp{l3Z?3BU6s+ zo}TpL_VOE6WTxo$7yxx5qGkph0!{}Rrb&S67asXF1kAt^z~Bx@=C)S8hD}`&yI`*4 zmj3T*tvai-5>5x@nv-Xk0aiS64|;}J3djZt9Z0R+_Bq^iD>r5&t`5^uqc8++Bn~s{ zQcVGIoNWWK6rNiy&@tE3iY;`7sw9B`JRRKRfu4S~av+C*N&(pV{c5Jxjfq|}#z#t? zCLUNDm_H{cr7PH^jVnunId8rPAB}2T$+Ku?Id4JED+)Jg`ZpkCXT4mG;7DR%8CSRm zt#rlQ#ldcLmbYfnlrRJ_Bc9cwFLD76GTz;*kWEAq0|H1tE(c1un!_L6vjPW0j&og* zXC+9cj-+3pd?PU}?be!a3ab|Tp|OGKT=aU7c3d_H&Q3TK*VMotGjWr~dYbEtI3*LL zxV$d7j#0O+1yg-P_k@x1t}|GJQG~b$Ax~D%^r)LrDsV96@_6*^n$=3%GZ#+gq}r11 zljhD(uR&Dj)ZM`aw)azy=UFpqJdi?{UqjZjE;S%NT(M6>Zch50y!fb z)_vBZHWXF_=a9Xt7UNRF;E+H#B-I&jHiDqz=xY}za@9L*U%S*9M$*SVpnjE^CB{hs zfEnOtH3Qt1z|SMGs2$4l#tEz@+b@>IfjjLa5J~6jPFFj#xp?GfrBD+PrMGeIOnah8 z!Q}99Snr`*8nRrm0l4(*N7`EhkfpmC%W3zHc*jFeSsQTsr`+{5i+v4~v81;pm=Zov zIjIc0iNfOpxz1}jW()$A=j)1+Ie1am)aJ8l$6REYq?Zl~@CuH1e@ee^ba9Mh(W@0l zIT<6U=BzZd)GNr8zvkHV_GA0AP-vO6ROtf}|)@T{f6YGWTQaz^2{Nq#%>iskLDU0F_pDRmcm0Th^-E zVqh`cgW9s}0A*EOqzvV=-nXn_FB+YrBa?%i)IRL&j8SURHZgLWl=H`LrFTCM$%j|A z8+Ve+w{Yw8bgo($6hpfkm>-jz0Bff3q->hBZ4x@l*aHWt^{!g7wK+)IG`+J_-&5?b z6KRVVh9uUs>+5@sM^B9lTQS_D9^L+x;+_lfHP4H+o9NK9-pK7UtZR&tdI4WQ>7NpO zO`>?OToK&J_7U7MnI9xCIK_Px@Q20PQ(Ri=)~cV{B2{puFc{a&VDXKn>TG%Wu1^d# z{hPa5lzuJvLs`AR_%D-Pq{T}gR+v@rk_KvA< z1H@p$0yy4BZ&P0%{73M$os0|Q?vh54q+l1P<6T*WSSY0(+2dt2r#g>Kk1@6h7*H2u zvttLp|Qut!xNd5^HJ168_~Cs@%>nmRGh1J=0j75LI?8*AHZS0-80 z?CmH#s&~iMyeOw9Wx4hh8m6p{&&S^uEWA&tO>=Y^d^w}9mv3wi({(O>`5u`S^G}cd zD{7uC)Z}NDNNr)t!4kI$J8@F@lUG}dHM5C)xUI~3yPJa}%BVLo_w}z^4Tnjz z&j%M-$yqWh{{R_ZZz{y?`seYcY2G)I8FJ2Ycq28Ract^0NSNKu391uXD-GiS`&X|T zRQY*YvEaGXPWL@OMe%!FIDa>B9Y8fgiV07Q91vu-%a z9Wm=)IlibhD};zQ9dHe3_>WsQ_PSIXh~t?zBe z+M5WxpPP}#YV{ur_=irkKW?5hdvTB$z7!h#)YE=8Ug$P#mh%wp)Sh$eQN{a1_?Sa= zZ3X;-IYw1NXBC>GS7@NCi>8m%?K|TagJaa1&PijAW`Et5#uR(Cb~c_O(=`-%H0!us zM<)_)75LMpc(=tm&FN!zb34l4bqD4v>VJb@6ZH=cq!t>4Q^tpAK57t8<5|v?YHONy zW>{=RDzdZC`;G5@(-42S#PTuTx<3PIESiqjz##Aid5(kPG}bH4_PZ|75*R=t8 zCB$ZP3~F2DP^SlIuhO5|_u^Ram%>SNHp%YW$cG6_+Ffct zWRp4Di&iU^1hDQq)hTV6Ne3alL9T{C0}-&WCmx@TWnRUN`T0obahl#TXFQ_2oW0Ga z3ziu?;P!YEL#c+18Acgic`~Y|yA9`Z21Ot`l9Mi!W$s-xXJ&{VyT(FOh z2hEQ4dMU`@08go`xSa9<1bZ5?lI_QA)dNWz5X^8m1fSBcTgX+3ZhH=E8ac2A)7w0n zyKgBRmgA`gf+Z7n8M~ZvF|_{xIMe1N*qBn&=Qn!R?IFzhdHvrj=M{o|qk~gUiUs=ij{~lMd&ps*OJ9VorGGjdv|- zGVWEu%VqlhHI+LSVoqBxT~#9ixzD94$LBu^5CBQt z)S8!W)3p8I+0J^7)i;(ES3NR#ubYy6PtYk=YeJf#$0z0o7#;qV9mGMD^O8;pZndKD z6=YJN1vvmz4{jNV1D?XMM^`F`$o+sHomQ46+yNNK&jz(6g_({MuW{*F(4`U>xb?07hdb1|09 zf;l)o)uC<~_Ku#X6f7ZwmaIiWUAQ?6kfbln4%#_1%V$h7|%55 zk$l2ia4bLr-j(|mYn3KdE~Jc{;~n!+%$o-)PCMh1SKcP%_ubdMMJkp+9lm0DZ1kz> zQcS7ks({CiGw<{?ssk_}uHnG|RMM{CGTdhw0-$hV9XLJdrF}+;Ly&%4V?6rR*ozk6 z{{X;G6+sjooO9UpHKA=L)Fd3A_KtB@mteK`H0_2|1;}jjG1|6mNy>nkB;$dK=j_}& zZpk2aJ*#rwc+?M>uzHZ(;<{rOyD`0ucz}(!F$%qb@7lC2WN2KgkCSN5-p8=4>o$&A zaM)k~!kV|ZM&*Nj?r?bhYpx9(RT{m{i%($9i5Tufw5~n4#dH=DmD-_@9Cz#ZS0!g7 zM&N_yMo&O{*3O?eWj#!p$Y;NYmp=O>V8xhgh0J4px&(*$Iaas^tppD~62lea80z&WmZ+UXJz zwUhzq4?l%mwz>*%Hv5CtvvM>@zcCGkR>>Tk^P0}M%AwhT&qb*X@iCy@+n;tw9WhzA zw~DBD4WR!37Hcka%TRaJuXI3X&PN#Ij8`?PxG?_g1CB6x&lRtIav2DHOt?^%+A~Tp19psCTmUD+-4sz~JI05jK))oLON@BryR z7QYTj>FH3_iY~&#gPz?*U$)6*$j22%1yHyLBiGWjAO|2Z02-ca7Nc_f8dm^%w%TTi~zz^`(Lh!2!V?xv7W<{{Sct zgXvs#Dx|D>5TR=^v9FX@Xu&4~Z#6Qx+mcrRe|fD)1QEt8OO+x#hsDQ-56y~^~dWkSkA;B$-t$fXbjLJ@}M>Bm~dqp3#425`-> zlV~{$k6M7tOD|>Q6N<9dr+!KJG*CW{faatRsZu%-)9A&mUHkKtNR2$DcC zj2vWtT1jEcDFr0WyA8$n3(K zb!tO-ha9g5KX>q~n%S2X(9hVo1&_^)j8w*B5LPFq0l@xM9OQx&V*p^2>Fre|khoR= zgaa5AqJ08!TcYz^0vHA=LC-Y7e5Wiv^B(O@A@417e&8fJzpD{e~jDmQj zn)ea+r(&#Z`IBkU%AR16B(8jej+7YzIrjb&QiyT5kO@Afn9vnWf$hgn#;|klWhyL)HymdNu>Q2r z0dGz*^{EyztfcS=!D>^$;B)k&n)@8iot~s>3bE+Go|JAoj(MjP-H%LgMKJOd6xvUE zTinjqW5nf7G0E>!$2zKo&OfbG!HKs9Cp6@AE~Mj*276RVX{n@LnV}S*oB(Rgt17u5 z;ZHmYp&Xl75^{f?SdGcfae?Vv`n9Rq30T^;avvdp40#o;41^8i0CdK2T{<&phU(?Q^Cq=xt^@)Sd@iEonovI0L6%M@qxfXY~b-P6cgSsVc$uZX{!l zqPZ$JbFPw27QBW+GB$_#mj|s|5eXZ1)3X4Adm4%u@gQb7AY%uhs{vKYaraKqlh&|q z?^DvH8)%7ws<8mJ4gm+h6f{f8TppZz)XN&MUF4_-jC0K|mF6xO5;^1p+OSJq4_b^2 z$?Zy>LjZHaoD9_q)xwh5Y;%r;*6gX5U@{>b0!LF>HwYP6WRl*dw?|xQtDN1~`^S+O z88{iowPakyg~`EeV*{ouq0}tgE-(l@;2vu#=GQB@0;G-D^sVCbM_Q(=&U#e~mB@A+ zpK7S_F42N>oROT?#ms6|xlmYVrzWY0z+C;@40Nu@UrxporkRx_Ig>cX^V*|mj_eHJ z_9KeWXu^@Vp8oX5+b8}C}037?8>1-w}Rb7H7Ktk6oWhmZP1z7Qs)K>M3}@70%FGo?t})j&+xRZ&Ak+lU^9bW+7#`eX-n`z*>m?nSFJddN@YB4v z62yQxWhF}eE6&EY=t(Zeeih!lS=jhX!@51+fi5T1*jr7l>I55$hXJ;!>OCq?0NQB! zC&h@gog-6CQo%}`#&W9J>0UkY=fnq1(L6n+TU=~(w=%Fyjk}LL`q!m?!5<6c@i&a_ zHG76foaPkn|WLV?a*RA+_ zQn$U4BAhZo86ox_Tl1~WSHKYXj?l?#0>KgjL%GiCygZY3k)|0qjTr7yLq?7WMJX1AG_L@H^0f4y9 zE4HNW)MAe|G^V~Lb4KgT8*%|1YVMZJESpCMrfRerahiTP1ZRO=$Avs4EUvN?I6W~@ zHyEOzr70ap!*2>cv#h~tV_;-ERq>EL>%aKp@GDgKbK%>4e)a~7O_kO)nnFHiJpk`r zC&E1t>3Yqq(?+-ia(E`bi2b(w8FTR$_G-|ttQX9mNxezr!*W+{(sAuyKRG#9QFE?Bi67rzX$3`cZsd!2zUjm*MtI9G?FuC?W!7Wq3o-Hw*HsT8{MNT}Kzy-bQ>G*s* zrt6wl*zYalmf|GZvV;JPSHS)q{hs_rE+M?|>1gIc9Y8#v@@wmVg%_SOw!5~|JV#*m zR|)_!sp3K3uX_31RXM?PLRUx7;pI-eZBjh4JuAT)eb$W}w)@!I@4zg2SEl$n{Xey# z$SgPDj2g^~M2#(kyGU0coQ#rc?}D|sG@lfIrJ!p_5$1U$z}gfOn(-7PI+0JhJ7&3X z()2z-{kZ-wTlnwCR{k5)F4|jd0of%fkbLI*-&}Aj=Sz6i<=hu`IBbmbTmCb+8sCn5 zL3*U@xYQ?=8HX&a#EyQIRy$BYB;aR|JJ;xuf`n98L*?jGylyaCg}^JgV?L`J#h{RY>?eWXX*+=j!rN#aa(sWV6h!Bl6wJJ zS6jToOBMiNE-RudTQkp+(?bI8C2jcNlb$OQ`V5kLo;j|b;vQe3ipsdQ;OCCQy5g*G z&OOdj?gUlFD;oOPE0$lEwm-tU%iB&52O00)u`X>%e10|5wK-mn=QS=>h#dYE8JBMz z>h0_-lH_A;QDKJ389Buk?j+MgmGJpcFneOBNxI~W3af&njz_L(QciGJj@35kR_{|v z35OXO8P64HT;v_36Wfl}kdL);r<2%Jt04?P$XXuvCA*tY+?T?r8R?pv?d3oXgN`c= zCS~~n!Rm2NGvIN8eN8*tV<{a1UX7R}5`8E)SU?vX^H?J5E47#MH6mP++%^FnD%&%$ zv~I>nI0vma&j`nEFy5xKR_A*KAQCy1 zp1iOk$V&~_nAQ$YZ$AP ziUcZDY&|;URI#g;-UeKM6bK&Sni17HUW)9YEeT^gwBWwo$51pR$#lcC+n z%V+MBTK93`iiHJ%=RGQ%kdWLq3F@PeD&cu*DXT3CZ4a1O;kX}ke>#cn#_+@zQR`OO zfkkc18>b&yYsTyqf7v z9L+wbQEfhcRdAa~AZL?WUUARL_+Ft+b5{3c4up(n-!-XkaHW9X^O43ze_GlNEe?64 z&C5%$NM_2eK*}7ETQ-+?U7$Auf=_DX?XJ}cUQ`|k1Ep$PU8-~};4U%L{b;?J$kW*D zA=H?a1%na-;2sTc>H3SjOoQiB!6T@zKaSvxFxm+K;X78vuApJV61?&=*XdI^*wPWX z=#lEE8~tHs0C1IX>WHbiUlMm-^}^a}4f3-PFnRZ@i>MO0b^zx9_pWDGq135$M_6@Z zgT40#H~`dRP#<)&s2#_8=92#a<{NRhsN8x}+gBrhw>j)97garuh|spI(A2N@Gj17H z=S_zTwueb#0-yu_lRmj3W=E1A4)=X2rDspAwXnv&`0VQP|=U5p83W3^9C zd)F_0xx+TxWa7H5LMEJmq!-6VzgNdd?p z_pa3|9JaYpGq|2`I^wRzc*x{?b*R+@Y);-YR^n3F+uPQqzU9U@C$~|!1CySk6{QSi z_+|Ms&T6a+-)~;HJu61kHUM66`qmCg+8q&sEyEewTWMlB#%odq-iPEnNCc^>R_FjY zBd%)DLdh@8Hnu+sk~mpcYOg1b4_eaA?ox_dnbKOvD-toZe7}uE z+Irv@1hDE4r)t^zF$GX{bDaMGciNHc&zM=TMmCSFb;3FWO4=CF+KAhXmgEq7RMA@i zn}WVaMIBGQX}*}M0nRhm2Q@5qi5Sl2ZR>(hTI`G!v^n2n6|Ij0%s9ta}tH$s;hzy;Cq_emd7)W_cA<{DnSHp;_M9_T94>;gf%#Z|p zaCkpKQT>=?5=IXdQK*+w!>viCV#x_zxL!IO91K%@r3wZK_RVTE3LmD?kK*Z3n{YV{ zNzZh`$m5#?$G}zX(2fHy`{n5rNe%>X<;gH$E$;im8OEI4;s*SnBZuG6|b!7kp zxMz}jl53hu?Czy2BT5)E^5Z=YTCPPB6W4a(-=#xnn_~<>Ki;eM(Wz~?1$rn0^sFTt z9rWki1WMab5?>?b9gR-WI{d572`2`uTdSk(a1WrzBBVs!9&?-?oj(dugSp)awC{5( z0EG&TB9qh_%f5$tu`0fsd)Gy9r^{pjA7C+AcMvH>&jbv8YhGI(ojLV6tJu!s{ye7>sP0XX#fqU z(yEX!T>PYU1HE-cSnzQYzQY)KdC1OtjQh0B&J!0+!}30)pM z=VJY;?vM@G1oBT>+OuQ7a61@vBfVk47JFfc;0~wWwe3)@IojO`2a!`NvVEnE`&qG# zqrOQZwrwXXATN(%E1kCmae_$n&IzqsM=}5a9AFN4&2vfUZmO<_QDbq50DqOo3P&K< zdGP-HTk3n6xmef*Js;&b73OwQ=IL@W$-r#>b=Y`DaCK=UmYl~@`M2*q-<2}8FY5vaM z3;zIwFU23)clM2OVFv4hN6pY?ycoh7(+wF4Mt z@9pVamy0|(b7bU|Y#*2f8?&17j}yMBX{f+Z5WBPJI32}x!k;s`IV#QzNuKemt(K=3 znPp`p!PJu}akn3hc}I;S)NID@>~)eZg^&V5e zv1#5JiYsIgs2c|=2U^6lxrr1+ffTPm4<@}2!V4YrUR;h=TzsWQGg?l+ItqAhO;+ar z0ER8#he=zR1S-)L&QHv8e}=xT_;;k+c+=sf_L+OVt!0dlDN{++vtCZWOrwv-&98~GXH61zpne;{ftZaVhuRq#J-@7|1P-|_DlV6Sq}bot^G1wM z_l7g=*1cQD+TK)K7u&RM!v6p&@o$Pumj3_>JWq7&eAa~`2nP&Z@sG;6=`L(cQd=`= zQ{}@+&$03Kor?gWoVnOHKVp4rQVT^W6<7t%+!4VwBvA<50zm`U)~?#d!2H8K@IRe? zfYsH}^K`V(jVvVI7!?eslm`bGr^Rl_8CWQCIvUhg4BMGF;AHju>Pc+?jhGNI$N+Ta zx#br3JL94`$)ayDf)xa046aRQJ)4GRCx37~>!`c84I?@ES-$AT1yGvBV4hbraaMNO6o2_|{d`s8Xx}W$IHstEw#? zY}K?mYq;13z{wrYO2(cHHynf1S5tj%NZ=e}j1SVWt|BDhD8b~K=!)!cNpEA5)NPZT zH@5<@E|aJVI&sb`uDiDkF~&M%3g@rkJxBl!{c}TBGg}#JmhVmnW^ytqvaZvN0raTB zJAI8sismIo!+gA+z;~%cgn`CAaC1<`NYB=u7^&mw#Xf@OCi5A#fsTKbH|99)j+BcV zHXCk8<27X=7zE^g9V&c`+PMk>K|8WDinA0>%nuAIcr3#l<07;mwI_hQk=mPLML5%7 z9B1oO#R*)VgE`M}?OGAogS70)C-SQ?SnV0=N&PD}+h&nnN=S-uN}f2yOB`*UxX8vc zT2a_#xys|58XC-_XCH~ITd~m?^BKk#PCAcjK!*Wv4}Y7A(KfqAO(x%%6Brrep4FO@ zFOc#eRKg<|H~%!(iY6j(uy$lx%$*b==O9 zH)T~;3VP?QRCtqx3Nms5BffjqwD$YtOduUWB=j`|(F}#aJmdm-to1q?Rx+iDg5#=> z)YTh>Qb#9~o;y~p((cY2jia}%QI$i#PT3qGphw+0meF27(*!- z<~`ZZd{(`qs>-+rXdAu18kg?sD6VH><*lchP-6;ve~n%i9|ZRd6f#t&+*ax&y0 z!k&xiL`NjM8Fy#rKDg*>JibGWY+yPQ#aq29((PbaZ5bfeeD2Ii$W=TMo|V-HeGX|m z4U$hhGHy8RK*d2W(XN%9E0sxmiIe@ zZd?rHVy9bz0}@W-#&O84Z)2F~p}9gy-N&HfuSIxLMcT(1{VSMDzD5WGZ$LU#sIR_t zRvAOcIjLq{PP)@j+n<<#Nf{mL^4^?BmMr<)Kpq(kgCVm>Frlzy^%pKIR_*IoL4Ud!NzbH=Rb{Kit{CkAPPx2?kcgFu*%$E=Ofagwzm>W#4||w zM*jd?fsS~rtK}t+f5NU@~n#s6`C~Wd`fIUTa$3>yXD03Kd!U5yyk7}gx;fcWi0C(24W>iK5 z5?efdDx}eZP84nT>s=ho!P897Z@f7ptxpPuCw4&{4{B0`kVZW)f1NoHxf#IcwKmF( z3s7X0E6{Z(y=p*q?JI%U)d-Mdp55z8)m5EUJMuvtYX>Ba)Os4W=o=US5_{H-iZOk} zbmJ95&NlnagU+fA~ zN$eMIa=KgWWf%qX(4Lh%cBGTM0zf2ZnzqJ%l~5lWJH1Xpc1r=Z@5 ztd?k0GN@KP`ixRNswc|W5*~mKYi2tEG$D44r1d;vmP;TdP|P}D06P9P)Rne5?Q;TK zFsd*BBaz2ifvs4ATMnFMfa-Bw2iY?z4!K-<;F_y*XC!Dasy7}-V_Nhvlx*}lsjU+{ z02t&IYNvG>3O60Zb{u|n(OlY)Nl@EI@i84Ljn$SEf&0SP3V7st)HTbg%PS{zV0jC< zMlkv0=QSA$BqZW6-2DYpa5Gh4u5x(E>s@`^D&P!-9R_>V{{RJiB=J|oy-_XvJE2|bY)-<_AqoiYSnvg8 z^;ZQ^Mf=S2mr_^*k;niFak64JD&!N^zS8h-{1cB`k~pq>Vd5)I7BSALC+sosb-4b{)g#D1ycgu0`qv|^f5AQc0eDaLe~2~91?jc+NGlbX;r{@b^yt)a zdc~idGeQ}eob5R7d(%G6fu5xE&3&Qb@AxM+y=Jd3hP+j$>roH84xok^N%Z52`TNIT zv)9B=hYcv#JTY|~F}M7D*{_`uUtFzrEJZo|GCj&ziZkC&Q_F+|9x;!lU4q-@P&f>D z9qL%(3ps!fEyq-FLHw%h7WgA9-nlhWl511ar%Dr7LlW4uM4WEV@Q#MAC9zcnl&B*k zin6xp5EvY{OlOl;<5y5snB?~DisY28T&UYdXRWAb7+i*y(~;8YBOiP`dx zUe!^TbLKG=`jkvTfG2VMJ5l8+01mh{qOh3&10eLs=xN5x4oA#KYT4A~O6QiLsgNMZ z4}g1P9et{-)||0bIO&Ss@(EHEdgO-msxw>i1^{E!il|h()Ey*ZtYd3u1-mb)t1#QS z3<*)wBfUAH5X=ZWPI?-CR1(0F=bTp3mYNyHD&wO22iHKStzAgC%x?th(AfEJT; zDL{D~R=tg=bY);02R_D=cGSCE*wd{xCC2 zHj;31c>2-G`kO|iOABhuz#c&$5Km9atVRwBmJF(JHm*N9h!8SRA5x#zr`i=k;Z$|4 zBMWGDMxtFvCXHgo!dNjRj8;|RZ49M2#(6#Kap7it#WyJDCyZ8Jr3cIpJCpLks!>}V z)azLs&Fo7gUSLtRefm}n;MfX>RtJ!4rM&_;+hT&ef;xUR$!aoyN`Znp4Df5BoNjhU z5p7XMeYokIW1ZdVq{piflstOWjV9BzLF2CPN`csx7z3V9(z>Hf8C1nIu2qm6ADbkf z#;H%yv6JuXS0-_}k4*Qfb1^BkzUa?N)k4VfYT^}&^1f68_`&PyJt^=xUNOgDJJneo zSe$n3dsCv2xlpGEu@p3qE!Ed^YS~#&Dh37zIjxIaVRvo$xXydl9h88Nm=fc@YhDRM z$h&|8835KYeG2xs)Y*XG5TL1EIqg?%%7y?iEIQUo5~>Kpo}-?Xde&t*Rsb+LBOKQ} zjpI8T`exwS4UBZ%&P8>e9)?@3Miz)-L~!b(y>U>^OllXOrFUKg)uGdM`)Q>+AXXV9 zbsg&|-y?PgkzAJcN#h(Z?7dSbgw<`jaa73{i(y*d>5mgsyUZ zVjIB!0J}y!wp*fCqlSL&r&%*0lb$5~^L7sE;^{*}QWtFaw%mklzIUw=) zSEYPQ@vN2+3uq&EN6FkcvyCqbV~*SlyQ4w5ZGCy1S-g~4CeymP|;0JIga!k-A~);d^R{I zqr1>&woG}?846MI7<0{jVL!#I?ORtjx3_cLOzncxKLmCduc!Y2XRnQqqDu^de=rsw zC~N>bisY*)Q)*IM8`5yA8B>GRpHk|d7j*pt#1}dR+`=i!;Y+tcoOG^JQ`TVdC8OBL z!b@OyVmV{j*Ova&H`Z6a7alg#0Yy`TP3ZRn!t?pZiIVR&tDz2i8U=lP12p2 z?X6JG0zOnT4mkCtmQ(haq~AiZ)j4Q1x}H%LoR~i{f(CwJSFMnps)y&>*B{oMZ4*Z6 zxxP|xNF3s=Bzcq`Ji^|+tM3|5L+2^2H6)5P5wXU?Ir;n5!5J6_sT}P*RA~v?OKnvr zh0R@p9Q>e;a4LBg=VEryqjPGfEZ9@ro_`vlacoH38Mk*GhyMUtx(~9Qg?U0aDtV~h z#f)LRv&il^HF1sJhAv$WMq40Jj?|EF+?C*(&nCFkyfI6_0UY zxd;h>IXkN39;Y2i=x}$|45YH-=f^qDD-!Y|fq*AHGJ02ce_~b_eYgbY7{MR?YUi%3 ziXXTzPD+nT+A&PvlukzO*J>W5sOnF1Sa){291pv}8O3&Yc4G_)-IKza#k{jFPXIRV zD@EpTO(f1P^4t|YIqET7=Amh^k0)(+SC*uQ+%wc1j`hvzc7)*WIP47)Mh^QNZPYto zI0rQnL|7Bk6{&Y z;M2sUGXlQY=~HbqDVb4PGd2cJJ5}_sX24#Z!L5sJG!P2#pmA4ibkgM=QwOg#Rjjhak_LY19jmXo((=v5TOChI z&AHRWVN@>TpQS?ILuAv?^p!;{3u7aq)8)e26?$h%fmVH*!zj&oU4sKz&Pda136A;`%C7{JdQRyLrb5?Fkoo}g0XY1rnJ zmr{+(^la|WQ|VRApToEu_orOGSd||pIn6^6*gj&ozyUz%?^-2ek-NVmLK4MCIRnsk ztqXDyG6`H@f_m06&6Bi_0ql9LJ3;21pl80}-m{vr92#czw7{afHZpdWtBG)*ca{sD zI#xU^Q4}u=f^q6b%Vmc`wN6WxBoe_6 za8#elnZ1E5%rVHudKwaAa(xJ|3OYA9VaOGZWCVeoub!Pjt5)wU=`*%Ya7Q zWRH63r(}*gjkY@CKtbKOusw}bp73CZhzsl9nI*!2NB}YGlUdVUj05Y^yHqZ7I*!&f zW4SV5o}<&DrpY?)AG~HgNbI$emxWx7-@7LR(yU8xu7IvW;Dg?%CC(&o;#2B+Q-#ZNxyt&HTG`m za~JzZwnaKQ_XhPR@uuHFIcer?Ezcwp8$D`h?n{>BZBBqzI!U#41EC@LF$E`j&1dMs#oPzkqK&j;?nQTt-iGwpSD18PiGIGqJkd^8PKDDET zbO$*KKJI#otu$p(iNRBkm3q}BZ2{_JT)d@xv-383dsaQfe8?G&1_%eebQ7UNyK7*M zzV(%TZW*vwKHygHl3F7N3+l{Eh>A88miO(7&AH%~$0LAo#ckciw>>aA)>YepFnR;d zJJ#w~V5!|$#GW?EJr7_-RJe?lIOVgRYff>y_;^31QMiDxJdirqN_rW}os9PdSo%`M z8B>-R&owT}AOJCASBipo8jqR<*1`DH8*pgpQR`+8~>EDF+$) z*1f6*UQ`_PBv&lvjbjIL^|}GHjOVAeYg!d$E0P0as1=_8P`i2OraM-IE5QYeZs$Ig z#`n8NQdZc%2r9fcUgUSH*5e@jyOBpEdeuk^NwG!_1~~6mUv*w{6!q$B4R?vQi$=+z-4Id$&NDVU9ZwO0@N7LccDBt5}NT3cGqS>G@Wjy|4r3 z9XR9Cp|ZAUzzqA7B(_F!D^@5&uqp!t;=3ZWx+7*+SPMA7``mL^Z0$Z?dY*$g#wu}c z7Xu-P=%_LcUxppHEDrBXcm9>onuyzNko}u<0~iZ~kb6_(w9m@8+l=J;)`WK3_cL@; z!5z=0Dt2EnM*Jwi;EL&1lN-@$WD6Y0o(ba_>rmWT;ea5356n*>*G7=1m{>>VGMpS9 z^x16*az{`&B=Pvwtr?u&nw(wEoIJ+B;C3GV)tNoM%p(yP$IHcbmlhjUsGx>TVyiHG1(eMrHi+w1#Q^q zGiz6oT0w0jlgLD9v94K(HToO-FMiDSUk$X&eQQ~XF17g-GAk(CYzXK-+V`$x`J|$Z ztJjSvw$Ca3pZ@@0%Xw^|);xZtgQ~PzVjL2^M)TY0UsuJTY2FRe*Gt* z7(tJ7-n(L;3goLCO^AaO{gg&fwc42 z7&S*#@h!A$R7#m3{H$?Y(`xB;D3i|EpyL4WYv8JKrhbKoqXivV*v+Xf!Ljmj_kAe0 z)uClnb|}P=&r0HMHNW&{+UUfv#DL@hRju`D;rS-pm2R;f2<=$&SzR5=4+ghA5=T{X z?J~LAKr8Yw zJ${u@ld+q_r=xc(_}}1v!=H!+Kj9$o)v3BFP+i%NCO{9VUZ%ct@yF~PZ)Y=4;J*^I z@sM^{YRiM3z&QS9z5e&bMlUBI&dtLva7XymiQ+c55{7kkR3vO{kZZD*VOkfB?nEg% zPnw*Xe}Vb+<8OstD)?^bz9G@)vRv&Gpx+BHIQzqj=46jJRbWSRo`Szl7h1O0ZAP7` z!3E`vgZI|+C}eT?*UtX{8-HZIKI#cPL-5*T2mrL&4cwXE>*Tlo%4^x7i>F`RdP}j_ z48lv@uC(sIQ{>rxMg!#_6M}mG0Q##waIzfa3?6GoQ@5W^znaea2`p~mZL(X=n_e^S zD?VI#tPje2p4HXX#8;^q>ldL%jIc!`oRf^=m&kDVVgUo!gI1zlszxwJL+erq!@fZ{ z_Z3Oms~Wm;t1-@TfGaxUBBMCL9nEgdkmo7MKU&MUjzMte3yh3&`qrw~(4Jiki4UEI0D9z( zNvHzlx%FHZ3E7_dHZYtK#jSB z^y333H0ww(#y~!9;P$Ig(%`C%kxY?|tXrtSJ*z(YHrT|HPe4HFTC;;10^3*ns-m*> zH!#M>00GWB)~W|W#AtVRp{3*y0l`t)yDeO9M+z5k=L4XwD^KdY0CFIXwRW zg;bP=AY>0=OALd7oO9FGp{tz!)!##E+3>^yPJ15Jt8a1@MtSwFdMQG#4^E#-)3lT3 z+FGz`*ENMs=Iy+Sjg|asMk)Nq+*p!2@xiPJX61fxLF3xA;JG`Oka8=UOR3ihy^e=Z zo6KFrh3BB_TCm;uYzQn@7zfh1n|WL1`=D>-fx#bzYC&`fAme{#Z{<;BYt40I**+0! zziIIejjhez=o;Zvpg2yo_us}J4_aPnIz{9}k)=e2HV1_TYx6U}moA#*EgH7+=vTiv z>OCv;BgA^u_3y&XF8cN<1Xq!W5S~6|9DgeFF_fpvc&nqY2T~5KRGppA5%JEdzuG_& z&hq1-&MR-haK&!}{`4Kmk^!$e@jk3=*s&$0ECV|pMh{Bp{41=4(>&He8jw_yaroED zNxNA4cw3sx$oPS;MWtPV6q(-pKnv^MxwyPx1*N;mDB6m+KCfK&kGxplZkkt_8!`~1 z7$gq$9ALb>Ux7sD>m=q zBm>&EJV&m}b{l&$5_xR(t}6cf5^WgILGNC@INjL!TupmEQf<$7AdNQ`CmF8u!(IZ0 z<^lGsM8}=Y$Q6U2$8Tv2bIl_8joZ??yIoj$3>Hm`oMd&b$0Z+jJDiYQ&zfd$iGB~g z)v1!o;U67PSDVS;ty4{y{^^JZ1g=ecwwtUZ2&7C-MKCj(p-n zV0{Nl^l#aB$F?`W7cZK0iDQx>8WI2l1Jb_MxVzJ*5zlamAXoVmbOY;LHL(<&+LTRb z`$}y|GvKct{2K9Hm%`?^lTecNn5?%uvRJ6-qP$bVTCCazsF614q>aGjo(IyuRJ?y_ zWvXcYMZ74nNH;K1ocdiwK~#^&lX)AX;XvOMTXTUJ_v-_64U zMhHDPHEk`!7GS{VCp|wZZM;Q;e7QUjr1A8v2%%t32jBT{2T!F{v@Op1u7pt9p09;d zz#mTaGh3f?fs7C7R_&k?;h%|5a&v)JV~n(Ah{)}c*0hRS8S`m&bJrSru^~u8aknF% zrDWXc%^;C>XCC#|%WPzB6DWG;oC>aV)>j)qj1ERBly)(by7WBy^G?ZS=)_|Ov8)^I zGpGY&1L=&{rd;VoWOIY^oQ56i3hPM{GbxFgv$!$sT19Gk^O5IwnnqNp0}b3(1@4qp z&IT|!KjB`Rai@06m6u53FC_8H9aQ> zF2v`k1B&&l%_V|?!N|rv2fcFIrj&#^DUimKS{PjNT|&&4J+a#rRy#(>AOd~;E4$S6 zZ~<@#_N-H+xNZjTV_7silx?iof;i{BZCcm?fQF%Jn^}98DCOIct3&66i^XVyYQef=42=FLX6x+<~}bh3I|iTyAKk*up?UfDR5$OCAMA*^6ii zxH&&Eox#XehXRHdbvlXD3u*$PyQbKBmz{X_z?1CLG1>0K=B zS|$R@COMPS(ar6f2>}uTFc?+=X1QVx_qsO0DM% zs9qcU*y&K!(S`b&P%y#A>sl5hs~_QBqcxFiZj#y|v`rFO(f#~4yEkyMktg(-F_T;1knn#B%(-y+!u;KF=qs&9Lyf(4E6a9#z@&nGMN_z+Xd^kt6&&*H zW;w^DP@3pxmctX?x?*uob|#kKE-*-5xXntJ`(pqc`;LaPUgTtxfB~eAamn4EP%A~| zW6bwA667-iq&9y_lkGVSr=jCM)r)G`VS|D_OpAIb7jD?mcSMGvUWP0CF?ItjPEPvjtLkt72^AWG;FR^@~XAjn<}=QjrRfa_2bX z^ff#;044@A-#H?&{PtY&jPuP;1;+{r92|wNNu#C`S2cu%@f+oobin;8$dmVq$+=HZ zahl6n7%wbH@6B6DNC2GUxE%#UPTChM8f_~LxX1;*Vn5ZIm>j$D-vjml3SYTwHSyvQI^LZm5D4x*@~!a^~VCbBP}jAt+9o96J!8L z9dYSY#PpxWA2b$y^+;*rWw?4l?T@jVEGPTUVC~^lw-1VyvLCR!v=~I}-K)@t( z$g40z*qnkhpGs1nVxt7NCANSAoxs1PUxfzXR1u$E)f6x)>^pMZ0UXukgvF40b^L3Q zv}odq@0r_!_`AylAazyomSpRIGfUWW0~%(rZe8AD@$M?6)` ze8EQ}zB_wWco)rJSQ5@TW6=F8MiG@ffrZ8h#!sb1?2VA^ip&l&NF)>3Rm)TXkgiC_ z1fD+{tr-LWs=@o`rD$13^D;=I0B`_23aF*IuQTXs+ZAa3Y!p2<)~&6#%A{j!9G~#2 z7I6nv3^^w`Cy&CmZ6V%N40YuC*JU?-44kfst?dFMZBhw22OTQpYC{4Bc+X08x;iLa zmcYTO8W5|N&JPQ>y=@zn84tI9ae@zKQ^h@U9N?X}!NTYBsH26{lasi2#~(_&YZIaq zo!}05#w&E~sN3o)LA-9yUVw~a)}@XEw~zyM=e=2q*vK&KqyRqe1k~>z?(vNRMeKOiHp&2&Etyd*VUSn3xs$0ed; z$`T*EM_;I}Oif7Bi=2*hxe@E%vi|_V_;f~J5$g#PY7%5yM%ew*W2qjdzPQu%C@tbd zk-`jhCyM#D-^Q`&pSp#U%qh2N=nrqwvUPupQ(>h6q67D8!c2ld>^oP@Ll;q1_K`TN z#Z^f&>xpmSjt?}r+1azjc(28u6iE%O@q$#s9Gsqlyo`K&yjut@rML*L_$=KpKZtwg zxX+0mJUW($_jc}Qk~i5rj{LYj-GzEJt2|^?&Ps7qWz2KB{{W68mg&Hs%-k`N$UOAV zV_ETd;#gz<09fkn&<;VbHrISX3}?tmOUO>_uTR1N_CN{0soQvkpoeFjumgkMzJ6F~ zH)MSt8yMoZJ-bfv)0pu)gz?Mkir>V`bX2T`SPZxvX0){X`6cKw$Ozsz9e5_8Q`Fs5 z=8u`|7MknG7jD(mYrJ`!=qiY-8Ca^#|9rd?n*g2J3$h zJVkM!_>#q}H5+#-27XzGXG8o-eQWM0yi?}G68VkgW3DiMl@G+P3~3)3JQVsqu#5er zY=yL~O^5Go+L7}L{^d+W)a#Ph3g3N$!#~_b-ShDO{*Jus2 zW|lvYF;^hBwsBMJRg5Sbf#)Z+3E3R&6y{|`B|-WgwVynBS1a=4u^nqvp#*1c!_Ea& zmfUOrX9c+fwO#Dd8knyJ!Q2zh&^R?;$t=6J;Pb|MR>Y9*UIqy5>rl&TReBr|_p45A zZe_}>QMHBG4TOen{l#=TTn!tl=Q#fGtm}JYk%rsZSPUPnY}vq6fW+mo&(gYS*_?G7 zS2{=#ahBcyA9tGCi1~AU;lSX5+Nf#hu8I+p1mr4?{p(UF{{VIa9tq#9B`3j%_5y%Gymyp0?1dI|#ABVj)yCB!&eB({aQdWMqum(= z0mvktwcYCs9TkF(N$JSXt#O)?oG_DNZoe-88fiNesvMl*nYcLz^feT%g#@k`bt11^ z6^xz+bIvN60m}f{2fw9nwt*?T8P6eQJ^2_Ubj4JiO8mijCbea=+`t^*jAE-xW_7JR}D+-cERbPqXpZeDaS$7cCA}i^VBnBfI-LgtTa|(ka=F1HQM+i!|$rx z5>%0$yU4+;smGbvxlK}wY}xSb*Y-X2o$Q3GM<8NzkVSr&d@j{3J~jLVy3pX4I;NVT z;M_ib2IOJ&Au-LVuq2SJQK?|U zirD=>1&R8_7}V?3`OD&0iIN>^=}92OyoyNu}PGDz7fjt5zPHXuEPg_iuXYbn9Ci z{fTiHLO9+yBD!BIO*A@Dlii(8lW}0k8cXy6K;WKFwR+Ejydk4_mqwc9H3;72RD?z3 z=ia;fSQ`n};Vhh8>Yur$YVTR7VI&N=B^bEMw1=6dv!w=AIjPipvW z;7gl78myM{AeJWk#qpnDE9&U3b&CxhW0qzlkVLz;V!jvAd?)cD=HXmZ&^l)g$*<1eg_>0M`qireoH#fmrG4e#DbMy?1ePd>2E*LfE-kKqbE)(> ze42&iXa3NBB9BV&F|~!i(r;u~3o-kMc{m=utLN(iqsqY<{_!0Jc0V1wPIccGrIZ94 zI~4ukJz7F|$Iw?HV1yMbw}YIueU4p6+0a+&csSbL*1VcGZSYhDJGOJX9Yt!{#pYp% zDx;7Addpu~^Km>r;o7z|D^_*J!tyk&sF;Ym^l z=}MO3LgoJQw-tITeStua7{)LvtnN&zG>R>0BD$Ui)6deP`xba*WZH5FT!yXGwFSq? zmLsSityo(V@~-@<^v`_!-5bL(CF+IqUG zl_iJplgX+wX=JusjoBxrF;&WP&TXD=aif$Qw(SglW>Jiq%)ZhJ?r_C{;Hez`73lNn z<#%Vf;E~#~ue9v$I3R=96{VZ9XB4HW<(GO`k;wq38Qaq}&g!}@<#h#9zHyrME4?Hh zSxMs?s}A!=G6JDh!sUQD{ONM1p%;6eMW|?uV#5$wSdW!?BerWAO$fwGd1Rae=quIl zG-loMt4W{sIpVTzygHJw4G}^P>}2M$YQt}_!`o?0vS2A@7zAUbZt0q8OyQphyzpy& z4HO0BHtx8_GgfW%v_&{lPdLYV#?~z|lsb4-Uz89}1Pau)(beTw04rx{c3#zb(#fOS zvm_8Or=YHi&rc@`3c3zU4!NoI6KKMVP9awb)w=%xD%i2ngYC-lr!1^G{x!RArT|nr zuF=Rr{OexNNLCHBbpVoS@{rw(2((N@Hyrbym%p`Kk4aS{_j~cxtE0EDCoBNtr)rh$ zFcgj3RBgcMXm;2anSmaTs2dTZ$-6n}S0l4lCx8)0L&a&yX3`9ioS)X6Bq4?v0($}J zSv_?%OvZaObYO%QVcb?l=ANPs7aeyGTI!lTkMeRrzS zyuJZSqURqd=b-hb$0TI03(qCJYcO3Lg2!`#kC%#;HzSZ)M^#*Qu0*xe`-fy{yOaQ| zm{K#0ew4{oa#e;`?__uOs@utNfq+IiJ?R=>Ra^gX_DSUy{j(K~NiV_dTlY(kcSMcOOobPT+#7z-=IBB9cJtx|w&MHy{(=HHUhv zRFF>xAlCKc5=H^R=xY}FgGZ7vj=Wb~bVnrJ&UWSBkVqo4UyagQ5_ z&PO<{7O3Nth?)0e9D_`c=4^NLsXUY0@x@6DJ4tRq9P%pHQ#&@t!Vdhf=ComKwit7d zTCE%mA8m12vnK%~V@rkKQQUa(=ZmV;qm0Z)!;50AWXd zJ*xB;o?Z?C$mY46taT_hMQ#ZhsG-iM$pcquNXO~?W4kg00;G}=^5BC!;(#Bw?XnYI@k;y$2rL$ z{{SkTPH};Of_UvqebTC2w}8< z$2^?YeZ)B+5y0Maidq3hT17j*ZYjWn_X#*jF{_i=c4Y&x( z00o9|-nDbS<5cuH_O&df^RS-ebg3b*>BBU{ez)(5lvG46sGb*?w6$gRdrE2ccja@b@MY;Y>z;m6T zbv1g}ZUb^)=aNq~P9wC22PEX<9V*lhyXFnFmf(^6=#y^g9P3LnTG$i>FA5Gi@mKBC z#xj`YhIZ8}L=TYbyte?a82l>zx`uK3_Q%$_o3^J?T@45amWqB-267KysH;}T8%q*P zbIHxgWs$B&k?cE2&IyU`b8iapzj&JJ;&exFLUW&6L8nC|P-0E(co zzVDTRR~+;6Rr@d_*}Rk=?Hu6Nse*dg=q+PYh8P=p$E9ysp>;x}p(7t(ddkyTRdD-B z;~aBamX^wrtby5B3}YDwHPsCar0=P29LCGeNBwo8;os?bOX|cdi>!*QLIiXOk-zRSa=l_Mxx5D0hAJ=mGCo)1uMN zrul!mr<7Qc%6}e<5<~8Tf;-;2XMw52zWFO^OS9j|p z@WnrbDURNCV zV^AGs<=S@wdKLbZI(s#_ag~mRb-a?!z_T$q$0ORbEIeFMRwJ?%ASv6=e|qBH>@w{^ zjoowD&>i9X*gSAWb5w_OrBsx4x$4?yh}G0b8@pkNVEw%a^%b~v8LmP_FjKkFBYxb^rKE) z1s0+*qBht@03FS4+bY{4gk@8o;~W8sqaDAMalH_fBLTYf_N^H7`0uTo&Sq>LKsX~5 zMO)o6t;~zoXtTqI7#Rh~7#Q}eQQFLBV;f<4DyQ!XlS{K%ZsE7dourR)fHFWGL9Vhb z1{nlf8bTBhMldpcYpGFk*5{Wx&OWEj{{S95A$O@+3)DrH=Fo54SLTs_yPs~g;0U1@ zs^pMs@1GNRG-_6o+e!t(vf}}MWLo%#$6gViz^=Jyh~WYtW%p%Jk&6 zCKWkeok|Gc09f!k;;fB|z#RJVRN)}VpbuTuX&A5{D09;?xdOLRcUT?I%rUc7Ya)Ax2dgI04u)-f(}ouVp^#PtO*Po zt}$B6mqH5x>&`RpT`C8iH+z>N36^8DK6hce=AI(*Q~>Otfw%*jg$@}5E>7O7>FR34 zTUJ)V!k%{n*0sI#IkzQNR6H*JdV`D{RLl<2+tpidL&?w9p^XX$C6CNAk&18vH6(^{ zjzQ`w)U~lT5Xw!uqc;Pb=e=cJ%+e!aLCL`9`PJKul?8fZl^soIT{5^TMi}#uYVIp) zb6U8@OA;~p3gdM}1Ub%gfnAmOFT4?uN6nMXa~GE0V-$7Uw~Tl8s^%#x9Hf?}Mqr?p zClu&ximA$N#~cpzy0!)6V4M}>CydnVrU4!h65Y*cnjbC92CxUGJG<3pvKw#)?tbn$ z`qx~VSDdSyp#z{4r%M1Immu&mDzDKA!Lx`ub|ieRBm0Q(4j2mkY zl=_T*HB#qE-b(po1>>h$F3}D)-JD!@rGW>Q?oBx@uyc&yU;$kf#)=axgCq5-g4{*` zDp-TYDM~KR#YaOpMYMDzu;4dAQ!aCX$zJ`9ZdmwU?^BTdoeMA-3I$@xX(gnNl7cYU zBL^d%Yn8#XRaHl+x8cn-^()nYb#gGHy?b|sw8YRPSCbw>kKQ(N0UXzv_zzLh?Dfkq zv#FWb0k~razH8EcEb7r|ejB>Cw3`<*A&+QpyOH;+YION^dz@A4N>1GmHt~POAwP(& ze2ayWHFCV3wajWd-}cEjD9V#5$Wh3^73A0PKA&>i=iXa6!Od;xw=%4I;%(R%>sxg> ztj~GyC&vr@JHx}mx}1wHn38$cl1g%I*!5AK)#_RYiv-d@Ni2i{M{lisYp7oqEs@Bt zK=^m@2sk$LNXaq|OE(7<^ZA|^+9f!jSCivaC+ua^>Hh#}D;Vyz!*vj1vMzdX4lC!$ zZ6rn{{&nttJn<|#{iIS#?#~|to^m@1^RsUS&Omh;>w#RDIXKf%XzIt)Q>fZ!BC5!9 z`qL*LXpkTPE*hzFksd%EZ^jwMgIV0Pg?D~De+fW(QYG> zCOBRLX9peXy_bTbzqnY-h`{T(_55q!J{f+^njWwASG~DrSq9=1WG;KxHCa=7Nb8{t zR9)co8SvZVYEP-d732;HVpk2{+P;p^yiaecqDdT00|n0hp!-&So%<^3o*%SHY^4&a z4dLD}Pc^Bh_)F|_Gzg5IUNT7I@UIIJwfA0!&`_0GuihR}`%P*~r~EqAW-*c^8&f?A z_OFn<4WXO43lY0GVr%pp;^)IZ_)a_*b78aQE0oFVdhuT?cxU0I{{V;OyNd2Njicaa zl6k44S~Td&De8GRx^h*Mmd4kBv>lhxF4fAAOLKwv*S%}LHjly{7HPp>v~39(L(#~< zIP|YS@Sd9{pKtc7h4RsUW^>pN=Ujh?{6{Z|^;soyMY$v)N4S;YI*v6KTRBd@h#S&uLP&R7nLM^Ad`EY-pJ zoDc>_9A>&>sx!OlZRwGMa!5oxfX9m3wS^}|;B5yXiL9+K0&p8FzcI&J=&co`Q;@5i zV;yr^>>Tf)^s^|TNnD?P)p8qQA1G1L*PtCLSfMUa_JmQ+20v z5QQu9o;sge(2mh0+QAT>!#w?IVT1RajtLn8uS0BDfJgvzJ@HL5Cddt<;n)AaD)`TE)84BrbPlMhgZ}fIgzV z4*tNAg;F`dBvxg{nB|TDVbk9|@PXE~q0S;^3C*0?n z+iKve9E@|x&-hhIV)Bj&1QCt6?_1Xv>amVa@^BZi{A!f8s%B-{81gpz`&LgF1kyxUkCVFNtyzLYIRxM^<28fseXFRPZp+}xLf~P$20R*no~RBo zTe!|@C_(c#t7MV4C!AB+1Z93xlfZ0ZrC8;iORWM=oEG4L)aI~tS;#KxagG2rsdF!s z#~WQoC5NxQbNYktB)>uqNbOMB$9H>}S0&$|7(TR?(4RCbgV!GP@f$YQ&PN>jR;8V? z=OqIZ*!KKu7VHsR+K#rhL}f%$K%Ea@GbB?vBk)sWSU@+_4 zQdZP_r82t#8#A8ZQ~bX%Kqy-raB=z6oQ4a=H+4OIg-0NH7D7}Vr|#o5T)Jo+&Am!f zMxc(s@Fob4{dkw`fWG#2&o&s@_WyryS#)R*l4eyg4`? zhowc1hd9T2wsJ`}S4gqddewm*@0YKwD#N|UbDnWl;8B9Zpg25KT;32ONU%5=tI$CB zLO@UsK_0&KByp)A3~gSdRmFgixMPkpSxQznR9|6{+L6uyImtC*J9I31;~ZwL!wF{_ zN6_c3N-e%zleFi(V&!$KHjO8AMGSv1$MBEyntzm~(44XAcAf{dJVM2>fVl2E)rjCM zayEhM>s;o8itDdzS?$-%ZzJu-HK)?f%SCfuK zTDG<&im(_wVEPa1L{JqAf~SBz$@Q!7sbCZ;f-|_DwGy44;q2IvLKKDDkWU$@MY|(2 zI+YEQqNI*3pl%27?NX9LuT~&nHD=|mhMbm2s_TM`fae(m9-^wgP=T~BT;x`SrF^ie zc7^mGokMjASi>CSsG&QRXJZm{Wp)d`PW^w>02jmhZLRNnG{j6Y`6sXJpmP^X9;;TfS>|; z_Nc7TF~%{D*v>0L+5%i;_f@er+I7oi6oG|i z{_)^eJRTlR3OHxD9#zNOkTC~&&t2VdUT!v`rwex~rAGb3H(r%uu_TC~n;}6?r1$!I z*Op$(BHqgK$-S|`CxsrB()hX=VY$7DinNZ{&g}j!Fja!6U+~in~IV_Rp zT-d>As~qyh=bY|k{vT@ZP7R#0i%8{l7*-}jxujAvl{m#y3Sw6~&fs%`YjXZLqGdVW z4jhIHzvsxUGb21FDBBoNYK2 z3t7cwcMPhe#>eE`#FjnJxU9VcS@W$iEQ+NVj1DvJLDfUf729&gPTo)HN)xlxxzbZT z*Fw>)FK!{bw~QsjMijE0s-wRZ*2m%HRdo?I3BWlYop|@dzY|4ss@ul$IZSY`(NFcS zr?h)pOU*q^y7`P0e)OCJ_*bbya+`&s-I zlf+sKx{j3!+uhi&+7U=4m?+5r`WpJDU(>Dh@b2m(Amr`fHx-X_b8UZUB)W`T!v6rc z+D=Ez2+6G-PFeF`W6zBi*OB=<6~jC+yT#=*sLwqOUX6%cs^QcCcXj8zc7GZ?65a~< ziGO9}lVvCGA(#)9xjDshQMZ@(Mh9%ybY;$yT~7Gk#GgA53CPAXj?}Eqh1rw$Si-nC z$)#5$ggb)~k&cF&CU6U{%6~!cTE%Kpk|L1t;AZMJKjiqlfh(5!2 zy%|@LkdRq<_O0Tc$26MUdI#F2K;OtC99FH8=V{3gpI!$Qn-JdkP;-x^Y+5J{wIl(D z3`px;)YXnEmeJhNvtY99Z0-PZdJ$Sn0-}7X9R2JbYL&hi0iC$&4?|jTpFLGr0k^m~ zBv#4wIOMlX6t>hX#AJcEbRUISjy$233~iNc6TxoSrHUqebrPrD8SBkm zlGx{J+7}`U3*l4&zz3Xq(h?cVfKJ{pdJ*eNG3G05$JBJD8Fv6Wws}#;JvpqM*2P;w zyx3St7%$E}y(=2)C66tGjO`Vy6U-+7XTPbcmk_K(9oSBUd)A9YK3nuT%ez3UDFBuq z#g0v5UBk4JxMF_ysQTAcc^8zyLEZ25sy|}gAt68qt_M?1J#1gIzQ!G%l+p~gaybBh z6>M2(qD5VZ&KvJ%jC)2 z;12ys%?HEe(lVd1E=XrF4-cHmB< z3mNIfU6NXy6>2E#T1y*Whq^7wNEGU`fE@??vrj|sUMJ#xQ6;&V&?h~B?_H0GWxmz! z43fKT&P%a5VtUsre`ReN0MY_|#T)9*OSaAq<)wK9kd{|dk%8W?-}t{!zl2*|NhGcp zh9|X6s$U`#+o*f`I%O|`jd=Pj+QtuZY5Aor_28r5C`$lr9FeAOPb zeAYO@7|6wAMI)ieIAD6_sd)|got5!ItU(M2$u*Y+%h_ECqd4Q{0QIP>bt5c$81g&P zOn`#i5z>Z~v|yy-?vBp$P@S~s<|8)mkDuPMEwzavl>ObOrxn@!3DvZHM*2?*c!D%d zH&nzacK-l+-co*69@UlcpW!C4@MFc&>3W$n+DLrMTeKe}$a)ZKig-xb$_VdQal9QLn~G~G$0pXXuo9Oo77e+@M!hD(1fhYSZN9D3Id zA}uXXTL)S*cDed7;ja)u03JZ$zp7X@yv&ROf`>Rb^sLLYf-OPGLFG3)n}83cc$b7c zRPZ{MkjW9q!nO$>wcP3cB$HFNKfN-G5hB;CR4TTOpWZBzYaVOyL&Y&WrjushEJHFdai8~it~S9FX=wosk;m4lOLE$U?31=P z$WC%QX0&ZlBz7`4m(U9R6A4Z4l%<6(ATRQGtX?@($$w{REFDvU5Dvi4WVQhT&n^yPaultZKgqj z12FCm20oRq1>yxDXCb{fu9)qigK3>MoZF>R%be$N&j90!+puPm1aq{rcRtn2TV4Qm zmH-@JcP6(j?v#PF{oYTZtrNJlM^9}bQH9zEOoP-_xEMPfpl=7}4b5TO-4B;1p1jr6 zoJPh)BWMFBJk{(?-*ajf+JG#BEZm;8rEj&>fD8#IXdT62L2$&4r7%AC9E#Ypx=>Vu z!8J(EPockQwc}oJz;dIws}d;M3aA)40CQBWY-< z!pp!5$2~=7+-cw^Wx&Qj0FRHe3%{lqP}@}%?>-oj5)l%CC9oD@GM zGnL?qsd1->$pSU!sV9-`is_sM-Z7oMk9w*{5JJlKC z+`D%-7#m2gg7z?X6*yt(+*VxMP@FMv2RP!nnWp;{ZSB5Q3xM6&_04SBTkQ%+$F_f+ zX9*dVN`f}==uK>Cz`4KAM@g*qtUGW)3!vs=Q{0kQoZ&13ivKQCpC#RC6KZ1J;z>i1Ww? z(xOhlKH*(hvhBec!yca1PJEI|02zqdbJNt*r@B^r2H>s%U^%E!_mtpzfO}NEb}cel zB4;~6-RjNWp*nbFV#g;PI%c$Oqh?hy00HEXYFTY}1|Vb}nLR5ujS>0t6yidscg>7| zYWy2h1aeO~tcU?tP0FJjeLd?^+>$a5GsybaA2IZ@sNKt{A%a!T2xIi;(xi83S8$bg zbMmpM49p4J!>$SX`qWcPv~S?CIS13$oTOxDL|_X0l5R%A6nJ1O|qzL0y|U?#;}qb8SC^lJ-Z1MlyYUt5k(1 zkOyTsE;g~i47`eC7GZ(GBLtsHM{t972N)!0^rkeRfEhtoh510^2d!h>OP0aGC!AxgTvA&TCTHBrNj!8Fmo%LV5~n!$;JTvYP>l6y${m0EuvuGC?|~M*Cgd_S?I={_ASE(F@S#oQ$4cn1xLzG zJ#p_&vWpqRbUcIBvQ!qV9Zs2RNu&gM%Kf$K38Y1Yi$LQ`;mcLNEph{g4GWy^8S+ZZ`jJOQ+Q?EBOgUwjWQC5A}sDe^wtvS5-qBxIU| zg2%20eZw?rGOGvjfWVD``G6VYwP##gZqCvaf^tav!`ikQCT0VGF`V_!rA6gQzC+VL zHz)a4vDaf3?V*DtDgjZrfOCV*HTT50VhXoj{{WS1PivLr4Xw^|)~P+9QNZt$j^dh0 zY;(>`%`mt@fH}@Us`5p&kfSH5-Prq9n?htHDGH$O_xGrLws``D^&F4Zv|F6gZLJCc zFi0$?)b|FN<*VV8hJN1laiVOv+NTE`^{8`$hESz`VZ~^#d$R_}?O|wlZ2$&ex_Sdz zP~tKN-ry-=%~XOkW@Z2=>T2DzVO;We^ge`EbrsDi>S-Vmv15Wr01RU_dfk9vFuCoX z^+F{qcDD=BeMh}$q&vXRDhMY$0CC#6UG1^c9nA}(!RK&1Vzup}jhILVF~Gp&)jMl%EQ}4y z++(1vdpJZvMpyuTUTdNe>WpWiCyq0o!TTRUTe^5q$a9m=Juy`6Kz;jxVV|2L1lFaD z4aXx2$2lD1wR$v_v^c6aYnxhgZ(=gI?mC~XY{D{xu)xj~V>zr%JxO+9k?MaQmA!1k zaAhY0s^YuitZ=sO%^P(ro3Nk`q<5`LbWTCZ-@>*qMO3pXE2#iVql^K;&1qXkOneYW z-K}k)c_N;vrY@rPmiRkFf=5Bl@I7lA#?ec2eJdn!m|{`4u?MiOvi@%(-E!!LILijx zmQh?jsdY8gurs2tnZRaTjt6@AT*gn^TcI&-PUoF#+H+ptNpPPi1O`xg9CfTF(+m?C z6*jx@%n$2bHm`2SP!aipI0IzlV>M620LPhP1s7;V{^@V&UUGb^Lit}Y%xdsGz_*1) zQ5Pk#jGp|~MfHppazy-<&RtyaNbg&EzWaM-b#21{5&ZF7mG#psZMcFvZsgL8w7Jt7 zZ0Ggc@|SGlK_K1o?K}Zotdq-gdd%NGI)T*HtzJaSl5vdXdWz>K)r3p3GI9VUuimc6 zN-24qbt2hoRFsGL%A&f010HJ{;F%`@4(>VuR3^T8WNprNjzBb!>Lv)m1ZO>a*74C; z=aNrR(ld#bvIFM?^{X>$4-zs4%78gMW9d~qoJfRv~JFiCXk4ozsTi&Q8NaG9qKi4(k{ub7v zl32vkK#aU2lau(@rRiE^UL=)6-R*JrOl`p)wdPb-cj$c$I-b%uj>n{U8^!jPnyN)jV$Ye9TRh78O{wy zES_4Nebd&xG>%5}6ODk3gVeF>Q(GqHZO0(>{{RZF8<}y?gWuAwK^c&#$W`gniq;9E z2{KzqgskkKlb#2qYrzWcY!i=h%~pmXh0iAkjiem=R-L`0F5WUdO?O3Ta?8+?+m#vh z$Wy_s8)hNK27S*aptnuSo!KKjN9$6OVkkk%9@wpHVJ^k(#DbuPQ^N`!L689Zf$Rr* ztdgQJEAsQnKD8i_jC5cJ%vZUpwVjA+<+!CWu{>uO$vvt$0TQ%r^GA`@dFks=J-|i? zrz$!VRs-%uE^-MR=Zw^H>PlLSC=eWFaxw?4R&BB&bT|j5eQI{N+|D-Sj(Dn~e74*T ziOvr|DqCr4YY1~a3i2o;0R}x?FD#^J=41F=5#-Bc(kVn2y6%&IYIK^JoyhEqyHmq5E*HMz7 za4X8S{{R}@YLb*tWmY&y&|m@YLT>g*;;&v5m76v7e-l|-G>H;5%%JBAy}ff>cD3SG zyOm>^URc-?kU%m4^d_C=NV)q|t8MCu$v)LeZF1L6UDoOrPC$HfTE!kUTukMnE=Mf$ zpmS*rq#6GJSNBT}`K;U7tl=3^9$S#dow%-ZR`HaM9Y#X{ety}mFHrGC#l)E}p51y? z+~Z5TI!$w2Nu_m1-HsTa>FHc`{m|s(fI19S3AJaD@Z5vnztq(U?%iDTl6x8+ri)$5 zx`4|TQ^Dk@6@h(klbzd0Ju7lcoQB+eg=E}2F~MLDKus;mOy#u#@srLfo8iG=2p#Kk z`qgAoIN+YXwTrOC%!F~CxSM>Y26!o5>T{i?nW-1t9RnGcC{gw2ek{O&QwUTfjOIF>$Jn(KZM zd`Z9fTjPrzV^6qv$~Y1Q{x#1lO-aSw5aOPLyl3DISHQaU-kE)GBFO`gTO1#8SW!M0 z?*&NWze2tw_&-PZ=iqBE7HKIToh_)6ZG)qC2i#Z1o+bEyaiv|l%NEuRfK+k#*FAbk zu4t_br(c!wPjii9yAAhFI~s6cz!u|R4|i&kKHzr~oE-Xn zD~A^~2-@47m{mDT+!@HzTn9|4JayxW_iYN&T`t88vT`sS@sGx^G+ibc zF2&3{8Z2c%7~-|=8LpV5O4!B-#})FGHM37rtlw4-r`W`z2Ud~mQ!fn)VZIR?-adV|58)(nZ_$CT)aHF}~$rZC> z(-_No1CV~Euwb0Xp|+j4;E{~hot)qmCPwE20CcaSrmS*J+}evV1tfggCa+su0?HhO zc0L3tw<+W!ECdJ5@E$3Hcmr(R)9>AiGX}vND|&j>r236ZL%gxnJkiNqXCGR>1;Z7~V;u(8>s*DM z;p)Txh=9$#vJ3d@)^`|}0m_BTdIbd>6wP)O1ZiEAXz~dsaY|$>I zYuStKDh|=tX~kpQTnsYsao3KuX8LA`HZn3t0Cui+_UGn!##K*3rv|ZX*2c6~Jca6e z5O}SvHeKt3Ai*6o$*wLtrCe<)OAf}h^!vjI0bF2?nB*GD_ZvHFON=Q9OKogopCpH3 z1%2vIJaj(wffl5}NXSn6g)ExVpL41*Y$SlV&NEQiR@C@r#1R$>lDNkvwBcdpDtx<7Y}Ht8_LljH9dVA8VijU? zyMf8bKhC_jQ(X_Ij1nZv0tyc5(0NBJ8B;*r{T=#b` zlEnszLV^e+e_D<>d16mq-EmgTECA>aQUIhewh2*_$0xt7JKbs|pJJX+5Dr-M9P~8x z+OB}|M;XsrTbPU-V;JpJB%27>$;rX3;*_mpo=vA_jW}*t{DUevBhsz;*%%`seLGe( z7aNp(+$~yy?YC}Umm?hatyfme-nOxDuw~txVDfSODT?7x<%s8stM-DAoxl>mF*OX= zK4{3~0mf;hX62|{-7h@tKDCd1bGYRX9Wzth%2ebL^A1L9D(^d(sQ{jw^sQ34&naqD zxVa6%81=_`$(rD?Bz`1!t9LnU?HrtB)gL77APn=4z3R3wTI$Gmd7Fa#wLB`oFZX-W z!Ed#QJhAj0YIL?`eDxh^J@-0dwI32IHZV>P2en^?8~eZvRb-6Da7J=+FgsPSqznPO zp53b%Ssm2kXj&EOGme~!)V6)3m0|%LgWj_3n{WgSf^Y|=Y1<)X?fLbtDV~Km$=b%f zp$SoyJ2J;xM293CTQ~w+gc`Pyq}&XT2)GLk>qAgN|y%QGDZ}1Du}c(w>J* zH6}ylq7B7zdB=LWZy-fn9N^&Rl4`MCm@YH(9Qk8BRI#x@qzq@Lt|=s2+RV6RJpg>=PS66dfIr46+Ecj z_dw#ST*fxG&z1U<+v!!J(Hzgr!IIB<XU+ar+sxXl6EoWwj`+mM?8%4^{86Zc`Brm#ky_D{Oe(36DVd}06yU3@T7Dk z;3i7(!R=b#M3IHA?u>Pfla(Bv4hIM8Q^ykp8P85VYeUE@w1M-Uo|yNgw~3=wDS`5+mtKKz60SFOg_%CPs`JJv1P-0XyP zB(@}tz+)$==tXPUL>Yj}g2RmCj8#~`SmRQ;P%?uRa@J6%J3$2sZ1uSS|UrtG#gtO83X&GI1` z10I#BYZ@RMK`J`)&MP*?FsA?<9PK8x?G=;(!(?%T&37#hDXTML!g50Z+faf=2P4w8 z(TWYtfTV&586@}3ar)PabT0;4$#bsi_F6PbH!I#;EM)x`sjeQ^_Ph9dsd$RpK=A#> zsp7p_>BMl`X*PwHMm~kHNy^IRZg5LhdfurcYLiSNndC@h^0t`vs^D@n-nkDJ->sdr zNw_29gj3htj@8%rdeZI>4BW|cZ!8zrHf;7W>d!9Oc^2EMqk)P4qh572CEejrM^{{V|7g=Tvgl$fo_83@}>0rky! zM~nU_ct6F>EE;EqG+*qgTM@@+4#^aHmg;L7wJB0cN!`AP_HdXA)vxU%%N~vO^gdnj z4Z|=y7;(uYcCI%5`FUX~VdthtflKr6rbw*$s0=;-^Dsri42d)6&XcrA?{*#2R6oCp&gzAE`C;ufo3+>lSwq{h|%F`*6VE zZEnLA;Nqm(c1O|Ro7(5A$KyX0XqORvufwoQX(EWl!E`bN9Z6dCUj^!#M!N&t8&9#{ z0GQkI^PaVHz+M>Az9Z;u4dgcW^Mw1Q@ae~Fbj5MLDDdKZE!Cou8Ffu2*`!nrcs|o^ z+3C+!0=eT!$~@87+ErIOr!CKDOW3Vol`fTco_7qIj?VhnF%hyV<0O;TsOa59QXrKj?Uml zEMgY{k#e#!oZ`L~f;N#C1cxiTYY$&a{WJK%;ilHU8|$`~HtiezfF#f-%%rxtIJhT@N=GD7PL|Wi`1fati02q*O_7`^77`HV+lMb8F@&$_~-X z9N^V4ZdHa`1rOfFe_HhxnzMHseK2eMiYB|6=Fg{WT1J212krj=tilqdy|r&eD*0Z<~>v z3bb4_JGugR$gIS64gf$`8<_VMJIIRyZf&^E257dH6_At8Wn}=a!ZXc8*CtmA#JR=- zj+v@2aKVdo{_=yGvuf;5DVFqJzgo$rcT$PdX(MXnVoYOwW0sa@YZS0rK#0Ln@wh8-n#t6BV4_n8ny|&m z2R(k3=bkC}ffk!#Ec4yR2vi|_(~^G*@oiJ%8c96iz1h2sNz^#(Myw3*}jd$gx z_nyJy9~XVKr_;2MZYNdC9Dg%jb9b!YTdbeDAc2-*bIxmmm*R!hv@^wGOfpZ8GEhEa zS+`y~mN-LACUe&v>vXJ-5#CzJ?QS*ez*rT0H_l6co|Tz@;w|xvxeh^W4_e^wejvT% zhiTZOjyuv@c$F^X%)o8#4|-Q@YAn~EUJ^4SHtZbj^v!2Ybgs>o+s|WFu9^vyG;%8Q zou;v-n4@hOBzN_z8qu0_UX8_%Ur|+Lyeu1&yBNtms)v}tNo*Q75JCIgXK13sxipsm z42*p<)|g1(jy(k%S9URz)EY)3%^-~N)OV(=E8j*_nliu+q~@|OqF~$%9PmYNk+hOd z4{TLSn_}fhcK7K*)J84cvRy9aAe9*)de&r-x{w)2HK%o9C9|0$9S%tKt2S}LsxH&= z&FSwz%tdBW1`pPl?#keUf<5b@o5R}yY?a4)&6`ai|NpwP6fNOwrRsD+N;M(?Ct&n-1sj^jkOzjEu=sRV!Uqj&qH6SnlFYl zjV9PfV{066{{XYjX`UqTR*mA#9^*^Y^!RQp=3T6Xa7Va3jYVuVD$(U2ieh*;dYX78EoL!sQ6dG)|T=at`~n91J<@YS^G2G{4&-J=71&CbZJ|5*$HQd zo`=`#Q`n&p1(W1u2dT!Jev@u%Q-iZnrkCDxlPTN{#(u$9l^1$?V%e0*Q8T}^2IbO|SvyLt_$2lcP4 zJ`w0I;g1LE7dMKqLa;NFpWzBgCpGjLTqO%w;Lg39i%)a$w#nKkHb_sM8!|8--cnSL z%vPPWggTZuEIafSmuY2yBy#)*7)<^ADAJFzhPYT(ES=%CN^?-K(M%NH0KXAzEpaZ$&53bPVhur<=OMlQ!s9q!4AE;`_2n$WYYEfeP&P{=X{u%sl1V3_Jt=c^3p3DS)RdJ+ZgZbnvu~)97z30!1XmSlf3cQL zXg?| zvpZDO1d$Qu4w*b;8jkApe5ZP;7~Sn$Yg-}Q*oSfG5Hvq-Md4s;*GxV(P)vP~fWp;RC+wJ*+kj!{2F;4q2 zW4L|u$0x06$!uAlfZvZwQ4UTqli!Y&<8#>ho=cSy(_%OWpy|-(>rpg8!6kO@>sreL zNx>(cea%$4w*-!GdK^=XwA9nt-qtakZ6|K!40%4LnYFO&OJla<(yv`a2p?RKPkPV0 zk#}_=xWF8ad)Gu~bPko4g=@3EGswW_1FdCCHY6t`WMoy_#xcZqXCtWxt!7N%<7otA zn(L+5;;RP5SK6Q+PIK0*LvqRj^b5!YX0ln%?Zf3imTE{ zv6_MI20l}s-DAdDy^@(5gFt;GsPiU=fk&uYR_y1Cm9qQ*l7Y_`GB_o+p}ErM~J z9z{j9V|MwD!g$Y6F-Oc4f_HI`#<^|WZcCv#k-WwPa7Q>jO*vJL0O~m;o+_r|j56K2 z0oJBfSyyuqqXRiTY8vVaSJ1MHi2?H#G281_@Cq&%1}6=UwN@nE9__;!;~lEV$2e`k zcckQR5_Cin_1<%znx=_M4uxDEq~rlmD~THo$s7agRulzX1_l2B+V-TGs=Im?Ae2bC z01c-J>f*H2)$6Jyk0LP4TRA;FD%30cjF-+jo|&dw zL`-UU&qAJtr-yO_xrWkmR~4*ao`x<~V5_STV&V=1Y|o3u>@zU>{Z>$Amf}?HgY=S%MpnY^1{0k19Z(@ z5xlq=CZkXHxs+BwR&{vO>{VFV=(JSE1I@QR#2tO zWDl3Q_pOUITVNt~-%6a01UI%Gg>k$afz*eFtj2CZ`>oFC;OPa=0@Qx!%1M zPF+t5wqqStG;dGhYb_St?x!!YcwoZ-ekY}Twegqs-PSE$_eAhZL1z$suc-wN`0fyq z$JV(|+FRpw)RVV{beW0(Gk0*OmOtDdO8KDkTBuy}-D;B6vrk>|9;xD;Nw0N%Lg!Pv zbC#OsLhbt3=#Tsoi{V5c+M4ggO-9{Y`#pZerxs87YUAf{eTD^odU#jE8i$H?m^AG+ z)?3TTm@IKbyyWyX`@Qfx;Z#2dehc_(!j{pjH#YW*J>0+Z(&5*0=jeF+E6L3(`x;!a z-JMt}UfQm^BHxLutf0NRdDjw7-eFLAC)E4b&Yu>%4JG-xo)Sz+E=K%i)w`V6uz1^E zxV3p2_T3_5_tkP$$4<57TF;Mk`w7F}OoldH&acS|y)j=K3XUr0vFy~PW5l1~MZKiL z>7s4Kmyj_#MtUFqwRAoR(d@hzr0ZTWzKlsGiyIp?kp|N{0wdu1b*%3fd{mC}P?{(T zvN7(2Uc1*z$Sx z9ZTXbiSF+%WowD&k))ndGJct=H*I&}$1MZ81vm_(f)Ay4{s7W{u)H)0M0@MvTXOXZ zJ63;>wf#F!wHC{547YA_z;aM}n&{?=lBX4PcjEC9NzJmy!~Xz`R|#~mPR1EgNGt~u zsp_V=kBGWur}mm%S|W(2JOpfo&nCF#)LKnINRg~c5AfCPPf&Y{WL?>ebB{{hQI#sH zRP;}De4Zy0?c&t+B|1p6OceyM&pm}!lH7TQG3k&y(QSM7t5ST@tq|Zb&hKiuWiXN< zAsdfFo}kxql)lm9I%?|0DD>%EhC%YHPyQ<=>x|}jf_b$h%Upui|rnR>W4#XG?dsfby<9q!kDG**uD>2Slx)JGF z77^}*EX(_#Hy%1w-}p^DBjLCeH9)SyP*no%W?uEilAO6zZ|GEIDt`Ahjmsa6`u>2? z-Pmi=Sl#D1fkJKJ9PBx*kZu&THMm(&df&o*hXpdv+zt$Uy|LJ;COyG7aPdf*U1G2<1YSCnuf0 zl_M3EIsn}de0>deB%8I&TkB$Y;YLtc6jRVIHK%J68L$D`2PL|J>sj{E?Njp(2ORbK z*5#;Kn63z5ypvrq@-dMjtFAVNE6}!i9+f|kQ3xyZDd%-bZ3C%Xl~4iTe-&9sN0dMX z%AT3sU9s54*E85GYqXu*@LHg_&i6eZ(>$!rwB8P7`SNXhG? zD9R4tNl>722V+&G3-aWL2aY>c`P>k}v&hKE=~UeUC}zVFbMl|(TS6(Aw`~YZ6x)DL zW0O^$W?*`dJ072fO?5KFbDio2cCQ51E!66x01_3rIpkKnx71wr*qNqgk+!zbPXyJg zNdg=@X=T{)S0!0enF*p^JqkT=3^xWZEb_BVx#>JpR`QHn3J4~wbeyEAPhk&gXqQYnSXZX^yk=aXDaQXRncA6~V$q~2wKW5+?B-qk7g zBh=nh-}8)|oM6(3@DE)5YDj@4Pw<}Jl{3Y$f`ENNswZto0_|Mjjos4E&}Nt8Z&(?T-hL7oSvYUsQ<;z@ins6%j!-)D9S zEMVgU*0BU2k~7Ub##$pA5P0wW>Q=0oM(Fzs!CLe)TElk)!IXehp0)IM!(WIk8G$_C zEW`%{<0ij9{s{QYEX|}(H}4naP3PsseJA1j+4RZL!;+^51B%j7)7?Dg+Lf92MuqW; z`@@n(%&m2&%0XO?*UqhP<-7jqj57E7R%W5B z>OKVVAbUw1+dJ9cdGnNO$WjHE%n&(1hN~sjkBu=;@h+W zzuv}iUL*0x<2{e;Wv5&Ca@R+<)jU^nrdX`*vV6Rs^|IrhPeEKbj5pS8&9XiG207te zq_=4L!{BGbjSs^b1Kw)aDQl-$jLUgD1VY{NO>>{LzwK>lru;7Pou`HhLt!3^JV|`x z5hyd~3M_+2dv)7_vkj&%FP)uwaf)8rZmV7AWa57GFQ5_D)D9v4LSQjiGEW}~D z=k%vZd%-G49C~qB*Ea#3TX|dz=hmq{rO(QH{MEXV$kol&zmg^+j=g;;<4`VDnStkl zo-3Re${eoa^9%xd(;HCv!3qkf?r}qs+?1?!E2%U{cay13>9#t|PFIb{Pf~vEbozd@BwyWyGBG#i-^@+qQ*nLE~`mTt%Lu@AGdC z-Ff2`cxvq7TOd9;!Qj#DIvOf%>UIl%u&{{d2a!!}O;jvDOxqd2L!6Sl@l$=VvUagi zoZ}o;POhf@%KDl&S7Q^3mFM4HVo|?nq;?b_-+V4Fg=A)xtOsh%p;yq zb{@4p(Y=av(nF<{LqX)}j8=AY^17=QU4PemPcl-MxtD0-RSB zWpG4C=If8W(zfkq+5+IH0DRqzWSUxB*+a52O`9nr0PXLdzmIwfh~z31Gh>sUm7>ud zpfTuix4jZZdZ+XqDy$CX?#HEN+=%|}c9Y(;CEo9Y(4K;*+#RE7!8z^TyJ1sfj;HQrmT2%XgIRcAY|v0?aej0+@yU4KHWUC zfWeo)y-v_|Dh>y?O3qR_IUCWG9y|bdbDo2}ShBV_IOE$DVmm+?SRcm~cG}$}1OiKr zPZ+6k^Eu@aBC-I3!+X`ZEP-qy1@$=VR&A_#+~au913fEB*4VfJ4ZNHWK~r?}Gq=5F zQ-;L`NIkF{(ya&!NUGTiah4US6^a78kYTvTsi~gZZUV$SymYLkC9&BC(U#W#03cEO z!ZUz-)mbeFkd#0WADchYw~ec^kgmN7(e7Z$5Ov%!l6uq( zODeZa^&K%<(m)v)?D=~h^_wNTdMR=v?FUrQI}F)$d0Y%v+nQYuJ}@)Y9)WFDC` zc{xS>-q#(+y-Klc+mpG^N?IaQWU!;NAm9vVj@4~ZlmsAc9FhlmY%mg3@z1Xnptj_$ z0-WcAo`cq~aysMOfIuB{ij{F8SjkW`%O2De&T+$Z$mo8xJWvd)s38gH!>v-ZtZNoY z0{o?v0(xyc3{}`il1s+9>ON7NA4)A^Rsg9W9?UC77!)$F0eR&5QFd;n%dtiU`S?Hx z=Q+(>F_Dd=v0?Xs;2z?h@PTr`1I8QW9jb?owZY-P56Ly5GG4jD06s{^a((N%l{r*u z$380+3^hJ!J$oHBhKTbj`LaiBt;lIxX~sP&*zm!U7h7#c)_Ig=BWA$%ubUIb`i;%| z%O%vT@?bvZ$-wPe_8vLDigkGI8C_0r8`8aK(2RN?8;H#7)s^Dxk45pGtFL%z40l>} zxu_q_$d)E&yilvevGF^eR^M>i|T^yb<9wpE&Z1n@Vq`^X`ED!$xUc572ntcyc zAsnKv;L#3*S3-j5k2Te)CwWPo?Z?Dh`)iCP>wbM|B>10tNZoPrXCY5o;qGoN7AWOI zy^3eljOL##dks{my0h04;$6ZhB7UO@f z9E($hn+HDJ^r?TeAwiw(oYMAidbA$aqw0GN&%`UHQRT|2af}ZB=ANGr?#d#G2;-BU zbL(C?CaSxGdBpLIdQld*MnlM~x#FKBdLeVoFNpS|@d|frHNy}SfO)~Gzu`ZX*b^eY zc^Uq-<7upu+#kk+tjajw#ZR(Zq#n|L%+F?r;u|3$=g#lpUWTkiX4j z+o@SQdsl`xh_HE(;Bm(os9(jb2GJ%#9<^MFYhqNUx}Qba`1aC3Rkb4z00SxHA57PG zq)Bam6mr9L71l-zBkuZF#WU;vXa{iw9_PJm_*=y~t)k3CPIs5L(s>0StdE+;YG>Tab{*o>ljXWqVikKz^Vo?Me%8Ks3b zq4hn@S8Z-hYf%j>gr27-H7T~q<+9xO&kXDL-YwLA(SAhml{kcOtK4F$d|~*Qo*3}8 z!&_XRJjJ#!2N~(t+PU2aS6fXXWQtZ!2e&ohpBy}0F1M=-VpK;E+p&M0TUOX2`JK-$ zx{`fTc`m1sq?%SP?%a}1cHam73HX!aAB*igKjG~@YwOwFSNCa^jY;L3&y2eVmVnHVknp2BxbdY zZ60ZC6P@I#$A8H3KiRYPW$@0E@o~HhqO#s6g_UnSQ>>hBxw_z`x*p08TzXgA`m#eW zoC65TbRhSynEwFanl`MT2sK|4>ZOje;!DXd?q`(bxGr(erF{Y7eL^_Qk|`3#!0mP9 zd)L8cmHn+(2q*zZ37QCDA6eeP|xB^KRA0sb4E57k|vkVryB%ke$*#rUi7M=VOKZ!C8T6#8+}y5%X#JjnI1a!{z0jlTz*Yp)S%7KS`Ey_0zaaszGP z*UmcJvP~n&GwztPZgP6_(!PiAeY~xIs_J%fmV0|vkRT&1k<%UP<~?UpXP!ZTs#%WS z;OCJ~1s6HVnPv?rSZo&-_L3w?^UEu3+1T*Va#%@rb!y~0_ z_^pI-f}m~PjMuMGT5*SSJOh5=b16J(BkS6jQVeOiOMnYm!#u)dlnPCi> z+!PLj6y{$^{z!$?)?s5V)yEKKAqtCyl>)|^cb!mOM-M8CYECYEw41Fu^Pm7U39^u(a9iyG6 zwS5ur`^6q5@LrDh(pt#`?-`B=*|GBxjGX#ZpRsm_rKYy=YVdi=()nduk1UbY*T4SQ zKM$ht*M|H#tZ4CW(_?0~yD{{Pw<_)IdRGF9ty`4!qY2^Zsb6#DnA6A-d9rzvNX;a& z6OztONi?2dkdOvPKuGF+Y5XSa5E0Mb1FyY87Ys)%Nd6l4+)`FJ)3dmNnB%EnFh(lG zJNA`G%PRH)ltQc(80788PIFVo3t;jvcq~s}rE{%UnX9<_FP(!IP!A+yk?matsOCM` zIV7AK$8@QF$vsO}$R1Z5Z6mLGv>#+_yoMYA z02%eoHW9Kd02e^$zrZdDz{N&q+Zisbz?^Lu`D?ltu@_5rRlCE5+ms;W@zhpyvoU5y z!si7_V2{SMZoqJMw$FTZthuAYJMQRtqD8!?&D;cz*XOcIVaoNuGz}511!IFMoSOnSx6RE zAryc{cYEfsyi?*Bq90~~xQw0co(c7=XV}7ZG%0wqU5a_8nOkXYa5)3%UR$i{o_x$R zS{nAR<~{+>7_M4IX{NvcW**Ys* zs_tB49939XMiQq?obkm$JCMgXQPZCFt9lY5RDJHa$4bk&0s4S(*EKAqxt}grp1}90 zKs_)sR*GkSIL$+|h2t6Ob4Q_D4By+IUMkg;g=k8#dOx%IGIT5-uu$QlVJnr)G9+XIGdl539fC4+fMa|!u|NyT*jEK?j&uyVsYjbd8e zi@4q_f)8dL1s1a{Hqlo@)Wzf*OaA#sLt7zB1|4|G0=PS|CWosw&{StQ_O9Paxm)N~ zV0v{JrQ{E|teJ6-mjkJ&xC}p)Uz#<+03Nkb)Bpi*o7Sl?Ad2nuJzCQG7TK}EFJEJP zH1R|}E75JH1zp(zW4Lu4tK>N?W4nQ&BoCD1zD;^J?C0XA(Y#8UCFGt|Gd|QO`^Tr} zTfyjX)~9`sv%D#LHkW*|5CnUM;(a|U)bF(2KVSPJ%PeJgfJ*YfdVZC_X}V*5j6}zv z;2zaS$9I~qfxZ>^$HbAOvVUi3(wMLgJjNRnr>1j6srES`E52DD4fxOFezAA)v&9}G z@cy-XqB*^Ldr2&1F|tCRBJ=oX@vJRtR=x3#sV1qe-`wk3jHBnhzLd!+1E9(NRpqcd z##PJZzVk8aN#xgCq3VKUL}mo^u6C^MdtAC%9?$zfc$fYVuZVh0#i&Tt z{t3t9Jq~$R?^4n&*7iJden$O*09!NoOQp?{PX$;K<1 z@NTLEi5cKvaNRktR`B1$tyji(DISq%_mfNaVug1%N{2NSc{5iRvN`r~EIW{{;qTJ6 z^bKfU#pFAU=y*Nb+OVe6r_!$GwY!Q)CXJaHB~q*yb;zu5ww*IpUD*i4VEfeQ)zMVs z)3-y=uJ*cy13aEH(z0g+w(P46=N;=-$wl>|&Yegk?Z*bH$!5F4sU>+Vao^U5D`<6c zC#jvhmnC-r+i}fBxtHbY3CSeYwz1om8DKdEqL$NWW+%&RbMH{t)H{`ogf}@Lcg;m4 zrcKxYWAv*A+>ww8=N!{g$%Kah?L6ldle$+lQM(x&vJ}G(I}uuz&H~1y6VD`ds_@&L z%yG3q{LNd2ClUo8QV*qJChT-ZDA~7|u)xS3o$*_Cm!B+UNnCy5-nrXUZ!BPPeesIh zvH8aJ1gEYrc&=GblT)rVlRA4#{K=ioyQWCywPU#`dJw2M+%gSwG0JyF+qhAR(v8e< z77B~k^D!u;Zhrs9$GeM?di=>iT1hPcN5>ztlOw^j80er zPDd0#sR6B!)_6>*<${{USv(1%^4_(;nRewCyq<%vhRX~7314#uiWY_cI@4_}+N71>T!TC;|5 zzK1VymB0v~`0j*o!A<23`X&PdKrQVng(rYfo3^0s)-b5&-5+l|WEU;^Zf=iaXOGxl!!8EF7O z02{Y)&0K&502Kj;%bfJ58*{ymbCZl>rGgFu0rK?(jMg(Yj4bR}idRPxz%lKC&{YeYbqnS(3b^Zz_4EBtu!LQ-F{Jt91eGLrJPOIX`IxXc0Of|> zPtexo>c$Qgat}Ce^_z6A>yi#Y$Uu0lW1;BMrE{O2d~h2qynq(7=gB7+1pC&l+&?P? z%H(o$(y3f3upz>d00oCy(lX`H^=aYnxruWV7X%PldJ3a*hap&nBy{gvS0XeU_Z_*& zP%;H&&a3x!lEnS&bgr0A;;V*MGhPA|jDW!4W|)z)9fV|pImKFF5Mw+qKBqM3pxO=r z$nJaBd}n2;^BBB6t~%Zv#yICccQt-HH<3o(amLo~Ot*{$O~WnM*0kdr*>iwMBacs7 zIi2)AcBDB`1U99%khoPOW4NsgXj{vC5IG!TrH(Q|Q_2o^4&tuc4fqO6Mg~dSiqFlQ z6Sq);*Uc9JRUC2&Jkq z&9eeAfd2r*bIA1Km&*A}OaneM$6?;IUeVkJ11E2;4_X$`hx@xgAd}Pq?^53~vo?og zE6MW8y7b2&R97(W+$`#+n(T_1y%bjVG8Zb79ch`rS9JS3u;YR#1L=b zsZcs&oY57p-pUe3W7id`ZB&OUO5>@=T8=ndc-xG7j=t2JR|J_HQ8ANgCj$+G&086E z01Tdbe=1asqU0x2lkO_VlrpSN;16H%td5kLAxm|L;Ejiz_vuqXAMbZ6^cf!crZh!l zFR->r00W%W>m>6^WNrWuPI>#y=7(?Dgr>pYf>FNy0(7k9sARC_*F;E z(DWqs?N;?s_G=kkNn_bp)}1uxH56+)k);PYJrT(Gm&R~u7j0)8izVX_LT%CT<9*@(02CcU@mLujED1cH{{U5X{v+`eQ`qTRl1P$8 zB6I-ZJ7T_~l_f?tTc4lfF%repb8k+EmTNkDY1)jjf>-9?`%=Rv?!g~;a2wXQylWJ5 z?7e`3vMzWT3Vkb@hC?6+g2S-ly1dRC=xynD>>Ma;9OoqTu7BbhE69?eIc}phZ6+4v zuml`>^sJu|NG_qtegMZOnwO~7r!xi9pb@#;y|YkE0c@!t9%)?pP6!zk$z%+;3*V`y zYiMYl#u*A{4T>7&f{f&hcJENI1Y`r&n8zca$n~eP4N3gMq-P`n-i5l!8R^tjQ!W7q zuc)RMBm>_$q&ryA8i3DSFdZq6d`KZ&k4mAu^(UWSS`>qVa&b?fSh}}T44ucGywkqg z!AH%z9nDc^IW&2MCu2xfWyZdFSmfj$)eN!&fwe_eW+VfgQf}aIPADCTizZZbu7=WY z?5#91w&`vGP=C6;&2yH~?wNCw>zcPc$-0zrgi*CddsBN^irSq8mGck@IRmA4UJ+ll zTn)n@^!Kkd(~)I$8Nl|hOYr6`?Z(~+9Fy9fiCoS{ajR=74xUhg5;Ver$3Nj;J?pnG zsOz%Ho!gtBuTAluu(rBeD#*aFBOcY}dK67_sTK-djyS2+$ZFA7XWk$1OOM(9A0PZn zJ}T8MeEl~>Rhdz_Up)QK%NehwKj5+cHj_d9o-_{*Lgfy>tfEL2vHQ4`z6kWrE7<=4 z;Ge$=7vZPCJsw$L@^7_e7jteOF$eC~$zSkVyYkxK!ksy?(QUi9E896yTh?~>S43xq zPD#!6W~b~|@m?(#;NFpCa;#D$5s1)Ws08Dl=Dmww@!hVYr!>~Li7DhXQT(NSh_4U* zko*s6sC+Q7wYemTHps5Y_X#}nUb*8h+1l$$)2=lQCsZ-X{Y##hxsJ;iO+IERIQ&a`eZcuOrv>Cs`S7=2=xTSSxY`T=7)8-kGahTU}Ys z0Uvz^QGxCop{_D(3(LnP$&YyIBP9Mb>C)2Xoarw!nehjS8dhcVS7Mxub@~%f=uIW$ z>`9PAD&j>0KQFkhxO_KTh7(9uRdK*5S2a@OMY_>iNZ|xR20@Gy)7H9dqJ*6HISD4! zv|HmXmBYkiKPJ}3MPOWLHXb39$h?g$FWrgrmwlV>Xr!DMK0Xi{RBRmy9N{VuH+vU*Swd$>PI88^vx|WlyeT?8b5LQh5q#lNk6gt~O z6b$Io0y0qNHDg)TZZ1%nC1+(E5_?xOVp~zX4D1Ri&&(^wej!7d%MqwzBbikRQvgjZHEOh+m8L~>)(oAC%4e_nWfq%kr#Ol(;r&+S5o+i zZ>IRJ^Ix}UlWQ}w?(2@6`ikgrjk#B;rXDFTX*H`iJQ3kx;a?Bl-E_RPm=;_B{C6YT zzLV0m%_rk8!i{UfGPj=hmJE?dtGJ0k%8~RUzA%sCB)&4%HGA7v5&fg*niK>A{WJ8% zd(Z62;&$-Qi6dtN?1os-D)YFXPtLm{r3opfIYm{cD7ES8e7yyv@S(H0S2uR<(8!^1 zLm?pkJXC>q9l?usBN)Yd5A9vxRPaZ~oqh{{lTOv6O-|e|8S^-N9^BWI+u4L&qyV7c z9Q76SmcH!yXw6#b4T=HI(~NVT{{Wp_hS+&yKfG>mame-*9s9Qz7R02a51md+LMG@zc263J~ zxvtuANosR8Vax01Kyk3$mN=A zQl_P+yc&F)a3qm?4nXc}$^1T|{bB9%Wmn*WP1ho=rjHIz_=i9ASl#Co?pQSc71YnYWohmtrT=o>wFL92YwH9>^`XMIaz# zgIT~UkzE)Ft4#c*(-BRC+Qwb1x}_v}|Gl6H6FCXSjC)y}}Va$7k$&H?F93^wlE zc{!~4ro`D_x_RcLX+&U>cZgZY9^4i04kGe2%Tn?9YvfzyO#dp3i8??3natY*&X1vDUU6cO+ z_32-sY2QO{#nvBcv`dK8VHc9UPu8+LEv+?#{!wGGjtD&~sI}XuY3&OTaywTCs9QFj zdh4`|9x9sbR9^8tT|k~QBJw*CRp)@I9CYdJR6G%@t@Xc=BZ9+#4R6gBeqsounKJBV zK)YNL0UfG&Wt!6B9YV?cyQrKxu;Anzii%|Nm~O}6S{hZD)nyj!-dSbg&p>I%MrTsa zC+ZjMuIcg9!5U_*3`;H4UnR~utco$uv9GJ4_*0=jfi*7;YPL~LX{bcWIyeV#BEKyE z0ALS^n*RX9kBfisjYV)phNgVKEzS_Q=ttJSSY*`Z@kW<5x|3~T0l z$PtCG1G+&#hPHTV(n{{Z1F@4+97o+a>Y;xQU^(}_ejti< zZ8YS!TmJx=r3=9*w{-UZ03sb9SQDcB!yo60_uqy802?iQ0pM>J={kn%i%m~Sp4uoe zxmrdTQTo@(b~o*3IOlFS_O9l`Q%n6krwrkGn&eI09de4b(Z<}{NucUMMgkBSPCD1n zUjhCv>b?TjtaTkKb%IUXB_#pM5rd5M;=BXIQoYI|l6ORKze?5cR;(hLH8NuzaoVQ6 zDAbFLwqvC!MJBgL=?BLjgFY7c!SFj(_=n-EV{76K8WC}G8gjDd0OuU^=D$4k*j9Tq zn>i{ok=)nNz5)HEej)rh@SdTeczaN@{>aoKD=n?e0q{u1?Dgqh6{*1T+e#;p%Pa0@ zYyp-hCb7fDRH>?R>9g_^SDTu9@9K1Z0lf3A3N8s?AM5X3J;jPMWFu#;YtOzK%JAIA zrBnrNg-Op9>knl9X55BupFv7V#h$GnekVIEwmEN=M;NFjvE$`d1GafJ)IFZ$A(S3) z8z0W0HZB#uP}l%u)EmkPY;zB$1!Wxd$>$lNEV9jyr~}fvfu|Q=nKxtm-_nvTF%XfB zw6#cT2Rbaut{HKT#-&SNoR#HI1Y@Oa{{UugEP8XuIp&45DS^tbOjJo5L0GE<3m6Hv z=57uu?X+24gpi}KJ?YWgC~`5L>%1T5SM8u1*p*TPbnjk$M4is+cj!qJTn2SG0|YOv zYuiD%s67gR3v*Q9M2(Z?{o4NkGg@#acmp9wBe50c&2rkurB7YS64)WeSg|LMZ(6@; zY_4(}ws`4HfP$pp0(czutJZe>3@#UvKDEx?wr5gHp<>qEBXu8mvEwV=tV<9i`D^n6 zcMy70lX8W@RpW!yVx@hhf|G`BNl}50)i%4h-ip>Uni9xLrqBj??@upGjtyve zDcOSq#!2XECV@bFWOm#JKPv2m&UwQ^izz5jjFIza9Zght46cE|8R&Ws#$)z?;BZpVp*^c?K3@!fhN``p4Y_~^9Ff|#OhA#8F{+$n)~npa zLiu}wgWU8U)zKO0V?Sh`tjKFL+kuVG*Ko~IxwlqK00GAvc*pqG+?Ko*#!tEVt3G(b zpd%oIzy~?}D*2u4jg=VRV+P_D`BbX{cv8F?8W9@>bpz&lR<0 zY+evT<8x;xjw=phPh+7wks^XNhCB>&lTj4&l&MTGW&o;;_3K#oa14^l z0V5~d>07A1k7kRp&0Jf8aItSSn|6&HA1*0wJoV5gxYo_p3w?lI62_|lEyv^wfWE*B}! z7$`CV`qNZx#@<2cR$c<@wv<3BhY0($*xM$z&H6nnO7 z9vhLpLn#290&8B*U6KHJLGuHOnW-dsGJ4qAu?1Lk13aGfy>AZo4y5h+b6Iw11|-}u z-`cjJVxcw_2r+^ilj~fS9=AFvQj^@CHB*7G4mcokYGDX@4n9>pfKNe5Xrz<#9ofOj ztH~OY!GOR6k%N<1%3CCNs#esdw&N@B?^W*N2qY@GJ@%d}VMre_10-M!a%!Z-BvuMB z*_YO;EKMlvW6B(>Yzw=&TB^}tm&gs!@x^J)Xi)A&41c@Qt1vqOz#I@VGen|_gRw?f zcY+Dy+tb#f^1vmE?QiybRk;z7a(3sYN2Nw^qjxIU!9KaEOQI{ET}=6vSY!syae>Av zx0b8BX(55g=Cr3qUzS2hT=f1~st*andY|EA(vwLQdyP4ek`4|yQaSq6<8Wf2oDq^p z?^Vex${Rd#K&v+LsSXB9V2}q;D;Al&TDf5&!-3RihUi6TS;7!6%DD%y>rq)@`T>k` zTa0^((})5@VO5nuIUe+cL+gAK~&OJd9OaoWA=%Tr4mv<@Ad<0{9c zai14_GJM!PL#9Rr-LrX)5OCmi&3jwK`Gnd${{X``X{uVwrOnA;LNOff9<|TvmQv|g z(l0{4Daq+pwJU_N)e}*+KO~?w7mOa_w7f%g7P}l*VjzS8pL0^3ib~rU3$(&B#yRBX zu(cT#gDK{SKY@LBCJb*NFKhmSx3xN40_Yt zv>{CMo;r|fIR~%lR$ej`4p<)51f$!LNM%;ZEsoU2IW;7_oMW1coE-L`Xfko^Y2Y?- z$4ZYm0-mkUy#f@FIO90$Ox{lvj4)_X$mW>rFHyxbWMiCWq~Ute5Z>xP&M6>7rTn;Z zKJnmV(v~iH#YHIwLymnZ@vh_duur8MiJO{W+QF9q*K?)GE64YMP%DPh$C444gOAp_ zcy%@~tZ}B_#;-(-nz;vyZgT+)!HDTve*pX}{xbNDq3NhUd3SvjY7Zmt4l9ZA70Wc( zX36X;=>GutC+>s&ulqoFP_lxNTzRDZ25PA;SLKANVa)3_MZrs(b>TP1JpGa#?HjCeCa`3CQEUesO=nX1qSyr^D|9>*%>%Gf{YD zU^9Ur<0tT_ns1oWjN=s)W`4`M@>_T!z^fdjYw`x`$6EHCXX2~N9I=okRZY7bbj^Hc z`#E^H+xQ~MFc_-f$~fcFyX)^7w6YNHLT3j9k}LCCu}Z9w`b`=8k(uh37y1UF6y9nS zn5p0ZRz7&*xNTnJLyIT(F6!W505kYk52^T!h$P!1pke$kjANyFwz=XLmf}Zig7Odb zhd9rrTsgM5q~UwBz42bZV`m-2vBrp4^;t4hj+hzZym!Q&HInd{5uA~bOmDZZt}8EG z@hrD0@v224Ki*k7{c~K%zCL3~8VJ*l6xU@qN$;`CD$8h|li^8iH29#s)C_8Ik($=+*D=wmN|{oLlM+Fkk64CS(UCz_>2tG2?X zDm=WgGxckEWVe)HDISNdV(Ch$I2b1#K<{0?p=%pkzt5NHk80);%k0v#4hA!t?WHyB z+B_=l%3Q|W4YoDf3GIfd4Z|sK-GI5k=cQ&?$iN&g8P8gLv$oUOPf}|q3q4S|m9;Ou z%8q{NAJ5j0w+20O4*-wrStd~G4^z|HoGwZbGm+4N+Ou@-tV*k?sQ&;sAo4NQeQFoW zNs@YY1FaU)DODI5&PmToyC9Fr04U1!u4e4)ZOzTAVWr>6ZE^Rw$i_{2zk@aW%Bkj( z>~oNRO7WF_vSbYBxvsCm_iVRHGr%BMCL)rOx!r@rIL#*XKFIiGtt+-=k(6yL6}y`H zC&1eKV{^#H(SCA`@`d&0zDoFKdQ>V9((o_`0GxHNL)HEzTj|zmXAHZdLJib}oF4dJ zrFgKro`=~&s;L6k?K|e$1tLEoDCSkd~j zPD<~&;&Vp2_a$p|IG+UgzU#w!_)_eF*d&Ng1y8kol;!Jyhg%EsSIYkk=3wT6EqUp~NANlKW^Ip{yV?_CG&lko@bUmScQ zh04qJ8D*PubG6uGBk-&!B6lE+u)sX^K9%$sf8NtoJD)j-{l!N`eVbp@w;XH&;5RwI zJrA`>6~5MD0)h`hGm4Qd!t7GRan4BVpGuzI0K5UUk2oVgiLU6=ve4z`atmmIRer6` zc)+VrzCZvFppl>FNfc2=K+7rU26(AtL}fdet{XWAfGeR!>tU;sMndH6%Hsr+kHVWi z8Zr=!;~4(wr!W!_hv)PlWC4ne;*nLG1zAQ&J;h%mM{E+kjLU<9atJ+`jxkx&@WD%* zXCEl!R-M9t3Cjc3PTr=o?ocxpE5QC1IM3r+CuVBtt6iCsDGEaj_XqqdHtiXUI^&O& zk=nNI5eXY`rw0m8L+Mm5E!JpGMleCoy=bJCtmLUq??aooPb~VLatBdd55+$d4K~Fz z=t=XB%*{MIEw>yFu??Vdg<^5}9m zmy=z}Se&2hQ|bCV_mT~YTRlkTy)VGu2roQKI+cKw&T@Gb?YbAiJwHL&CC0`mH#U2F zeQLQBeks#i1Ir>$bUkxPy8!h+g#?Dq56##gN;cdq&|t8^;Df=T zM%LOsZs3|yHwON6oyQ#i0G=v@O}CNGOH``{6B)tm4MziUkhlZ2Tvi2x5uAHc*feBN z?o)y=I(=(rN{C4!Tgl4V2!~f^fg=UVB;|$sYU>UbEts^7OK#atAr@UO{&I zZb1b z(!XdZwLKQ<_*z~qxsuZ-_{ULSTz=0#33X3`{toe%hV?@vdZc$Tx~!*iPYC`ruINEZ zD$ic0pHfaOt7!HAvNtjHc6N6 zmyD3v_r@#r6X33+_WuA6Tw1;{1e-#SPfGds{t9#O0DN5ioo;naJ{Ff)@T;9d-4Sxn z7fBcL=kTm;@49b&ja9iLQ>Om_qdyO38Zq34>0T{VlHtB`porYowB%blb)K|e6+;uf+m1B?o&vtj+yRXZR)eGsQ9nQRioM)wWQ)%T%ETvdujCH6Q!+NuU&nG_q zl~%r^jnT@juLlebNe#OhNM;{4IL9KlCbKZE;)AY8BRo}SfkPZ%1Kjl$!%{7s)V3=} z9__L1L6$9+8RD+OLY`aY91^{1w$sA`z<)}S9gKM+=jQ|(^J*rKLY<9BBnCorl^kQz zwBwOTUoMU`LMY2+PdTSEk}|*y@q@@8jc*N1=8Cy2NWcoiJGT1vHCxHVxJUVMpU3N3 zEg5WM80nBHgUd!7s2S%g?Om~wOGB1a`jpX*bG2D<&Nx4XGT|dIfiD>6J;|$5pejK{ z1&8r=6CS6w+}%ZJXCMc8<7vnkq+5J|6%Ih;lY#|XF=A4=Bq-pp=kcjTWJrgi zw^2#E70ca`+CU2_br>Hg&!unMMIPi%gQ&}JYc3F`J;4=NF9aSwm9J#c#zt4>Zk%+i zlDj3w%Ec%^k9Nk~*~mZEtspF+oj}?$b5vD0n)3@2$5vmgoDZ`?ME(&9_<>7 zp~}f-r;UfUSD~!?t5fC>z_Z59M$2G=ySV`Ott+UAkRaN=q}3T?Sjj+1DtXU(+M2$o`P_W0h_Etu zbY6g-MGH10R?3~Z>)6vJ+JJyUpGt(QNLoSi@tlF$y*g<$d>$p;=xo}}h8ZA_(zf*5 zr6qHfJUsfUTQ(&M_xm0+C!2v)uLJLQ&lvN1j=}U{5@I)`huQFuA}B$JV*H zuMA~35yL9<@m;9hwRe$%ImSKfJ6oa9=(LT+`Bx0e0mnW601ArYJ*m5Z4@2Ie z7b@$6!?2)CHs>P_FiERdzNa->R#&lF;qs_{QWOx~xUBhh6T z@IK-Dzgo`1=5o|?xszxIb~z(GD!U!X(sCFaWR8ZETr{iz89kJDsxwGHZP^_2NykkM zRF&?=up(6_=02d-g`?wzT(4|(_pHw_tb-X`{+_0^t&8p(us|3aO>@m#V|qwn7FsGTkl-f}A>0C9| zwzsa6f~=?Rj>4({D;YZ0nJtkPmjeP^$pIdjrSR;f;Fi*C z5^__Hb6n1^;#se?UDC+SwEVd|4{E<0B;@*27-NiL zuUtYD^Nb#qQHcZT>q!)dfWO0$R9lqZY$!9lEWN|`=9;^!Dz|x9xH%w5)*ZAlK2B7tbA_F1toQ3iIEIcNW@? znROKCt|W!y!*n?quE|rfk>^HyvP}GR{hxeKBz_-zHg-o&06hje*RfgLy~zNb+jz<9 zGhaSk>DONhelqxn!;HI8ZrP$&9Z`-!2l1~;wbgY8Anm|B}W+S%&0o9BlycS#U!s8wt)2rE5iI2?0SZjAIp}wT!)^dKzhb zvnWJ_5;!fMwV!tfmc+L?9jap#kl_YF9F{#Pw~ge)L$a15lbXg!LD?E}T^Z!<0DygP zO(D1v<0Ba36%@A~WMC-(XB^aCYJfoJimN#-OkBDWG?>WeZ&68-UvlKHr8Xd04_xD+ zppd6-ayEHBS<5)Lup;^VdBMb>0HjQsY)%GC~6YH>W&%*3iPn2{YcOh+hN_XX2N@x$M;H z`cZl8=R1P8-Uq%ttH`3$Z^L2G|b2Y$a`7NS9dHa1UBlfn^BhbHSZxhE1YZbi71ki-W zHkiQA>0V6?jHdt&JD#=IEEOz7Qb^4givB9q92qCXYN$>k zjehFa)1C*^4y&M9T{hQ{C{BKy8u=IO;`+*X4=hGU9qZ{Y+2>PDW5TNwVEIFw_0L0H z-pNJ^G1(kZtvZ!lrtaD5UP`E72I8kIeJF}IAYh!HG3{17mXVOD3RLYl;9`_TA{7rH zE)MT%s6icWOcEDHC#c{Y)xm6hvReS-?t#{ZMsx+pUt`#Q6=gs`o6A1qw*Yb0y3}?? zkeWq!VRM7Ia0UhkBkSu@G(?78TO&CmrD$8(#27STgA!SXrAYSW(SrT#{J%;$QfHw} zyWHpQ?FQ1pGB)v8QozVEyPa3mXBF39TPrDG06YMhJRba3CCpx4Lb8#7O99{0>rkU- zc6tj`bCbcmDf0gSct;1?syqQ!LU|o=o|V!`Y?2j`knX`Fj+IL4(ISMo$zS3atfZep zTn{wy_USx7aRNGqn5wP`$rM-Q}?~ibCGz5b&Ag=##oMw-2N5jJ~r`*oRE#2@sB}Cw$3QUM8@%Exh3Vx zlPNsc8!f=zer|j7OufH(<#Je)il!tO2lJ$nwX`Q`OA~{DdzvF+G2aysJPdcKp^UNp z4Oc-H0|Ei+arx5Vs9rK^SnbL#-r}0zDIjDYeukSJ`v?ZXxbl6fKQ}5n`kH?4l=K9O zjRQMjm|~AIb!fE_E=OUW^=cu7JF*UVs?fK~!*lejA+ovdJ!oR;T8j*zb*reVxC{pG zTFkeU636sC>p~aY2HbP+Qv8DEq+mU>0y0403g%>;mE17|gVWNtl4A~3gS3j}^+#y0 zT}Z$uih5W{+e2?jyAiUHo=+mZ4jGtf(UJ3U#(P(kY4=4Pax!yXk*3M!X{bT>8Kz6U z?u_3Q%->>=5OM~2HRShH4jr5ZYiz=oR_oLzNrZoLoH*&A?6|UdL z8dBXr$+Kt!a5d$YuKI4I8=+Rt4I3dRbz|OcAy7#GbI`3|-$Av9%ex?+yjH%Ob^W8K z!7}{BsOV}Nm@-Ktf_R}=hkcJp{g!?%T>K#Tr=@DKwk_6mG9f=M)AF`|0&Di0SFy49 zm*BM3G^UN`y0kJ`+<&~e3P|mm{(tSqGsK9*abHnS3_63~X&139 zme&y#DBOld7+`-o_!Gr8AMl|60BsFM?@@;09}f7INq`A=hA)!>|z*Hh1BYg#fwS4h2Md!|SS z%F!{--1@2FzIpQA-LS(ar%sjoo%?`}&Mq+ozg0{3_<=CWo&6D<@X6WSV%`a;GbvwSU5D zAh}RDOo5u$@phl~dD7+_6>)|gtDg5dovv_NWz%W8f&zY0eQVnMJ9wA2So1PU^c^e4 z^_u|;2~=QXBhtGMhq}-tMCC_dO-oHXj><=CbpQd5NFKfG)IJ&OKiU?*XOYjJ7XS{X zyyogK!Mm?=wQIr}zxFP(6s;kS6>ppU+M1E(j-}C?rzK9tIl0f^lHf_XBaZ_IOapZ!Tyx7+Ocn$ z0~X}tjlPwo1a28}pCS9ljFatBt-js+4hYUk86R5SD#K|#QIgi1h#NpS8Oh{TX{;O) zK*Ix)RCKM`Ey3gfH*=HFk7|NQKybtoRPlpXZm6zX@3G9^*{o*?-<(zj+$i!k;sG9& z*Xk>@FiwN!`ewO%;n~9O&R7nnxvC?2QM1!xi;Q4_$m81-jD|)b#?n6zr7Jcg#AJjA zs~$y0gh&`S&Ugc!ro7pvdNECEP9`J}2sk(xJxwfg5FLwkIU7$S9<@cL0OxNx!5;p# zBFP$zGX>k-y~sp_p8e=SkoUc z$=W-L$weAm*h!p5HZIeWOA~-0=fdKG2W~n^Nah3|J z*9QWlj_x2%PFwE`^ulg`~$awF<2H7p`3i6#ySzl z(zb1xk}@-u3&*Z=UW%l6G;7;)N!7xzSiw0Tl`=uJWpGAuwDzVfffRh$Z%|KKGFXM) z4;eV9aaPd!DizX2TgZ#TM$%aG@}8AK=GA0V_kmHs9OU|wTCt`xxmzrGW73e>jl`>Q z`c@K(N2v@$IZKN+BNBxx*w#Jmij{1Ew>=LP)z4XEOyRAaaNj-2r>F#S5;>fUVqX~?UQCP-HV~Z10 zog9l>WV0|Jk6MGt-s5)*p4HLZ>8ex_(Dek>8En~kRRr!UO>P+@mqFt1dyJ280%c_S4Ys&!mDbHcu9{eNe%7IYuj9$h9t1Y2qUF) zqFt&p@;T~#1!!5y%Az)H!8)Im?m%0DiakHZs9W3; zV+Gp`yIGX|(NhEUmHa!0Oej$Sm{0+wTrYW$ITk_KW3=x}gq zu!*)d;Apz97gTT)NHGVP($87y7sY2U%A%Wq|S%>cBhy)CijLx9xJ$lxC+>A-|{c04Dqhp};r>M@vYi#i- z4cizM&1$!1Nl7ic2C99af-=XiYKB=dOB1`AT?V_7!ol1Qf~VzVCpgLJ>s2l00H2g~ z?^Y5(@;S)e&|GG?d0;JY#*48wM6zOo@wmZ z9C37-gJ|l}4eoYV4^qxbecVo11oSfH} z{6R^ix0!aZ1Y-pLmEK!k;?6eS8;o(@xgQi>BdZBAszDe7lU?&^s~%RY{KfscJP{_3 zuV{WVwp@_kWV$LbxBIM5>0Wo?{{R(DePJAFDBp~oyjR*^w2y_X{C(hkcSi~&l1Ny? zk;=M^uj(uFufY0)SV;C)Dr2~X%x}A>BZ4dCvGkPH*F);^+(TaDXKk(Dv@a(?bdB$~pzoXRjj+`Ua{NouM0wv6=0TBCJpgZOeA zfr^BYa+BE43{>pyIjIwnI&VI;A%g*U=jqm(V{B!y)Pe<8jL4INp2TrZMJIr{=f6sg zREH#V$8OazWMTm%V~|1XQRq_8o)r0yzZJ1*Vq}&$!tc*KcdW=kljOi$fNP@C$Vdj% z!)LB~S1oBZ8>4D=Z&PuuqtGa?vLiw%DAJ3O)xliIqk59&9XVTyPo za(ax60xQXl^!IZD$DI72S8<@tW=hWMvw&i@aI%7lHo( zYyC&y_M>e$(AMmzAH0rjrya&Siuwmb{{Vu3{5klG8%N?R8GJn`K$&oMzE3$d`MIiV zZGCWCaFZjb>G)M2Iix(}2hx->#W-3`rguj=l`oDeO!d#&yT@7=#6OO@wyoidgL9&# zyf)CvR{)h>aq26{hI7{DONeqk(J|tUt4?+(?l8+*I+1F)c_knyFv2@1=|(@uSe8hsyxASx08`y6FPbvpmw-N@B;2bFKImI^9?tl*@VBpq;wYgWx13eTT^}JU@NH#5; zDzO3qWo~y4{`F_bX#p%oNXFF|$KzHY0hAIp{{XX!kN^N~S3M}TwLMC0n75W#0H`?Q z=RFp%E-jRaMsS3d&N`awZieXkkaNn8p2oTDLM&x?&)&)IY8&c$bhT+1#th?PkT5v) z6$Ynewh}`WQ`4R*^gH*iT8Vf)w|znkj6PKzyf+y{{Rp#jn|L0_Rd4yH$P4(bOu`}X1a5aEq+nz)b>9- zt#?vhrvCtpb?+i+E#Q+eMmBt>jEeL7>*ly(#FA-s8{=_1Ic)Ccs1vx8oYLQOI|;b$ zB=x5t+y`^%LZM;n>?-x8nUIVr%~s=Na9iX9l5<)%_Jp=T$i->dXyhj1xgPa++Y4ZF z27M~+Wn(?v%y}U(0&sF_oP#Z&O3=NO5K5d7I#yG&GZT@DhQ^i1sET6SoA?8d{XJ$u~=eJ@a0nqCRx+G6)#ryo$nN zl7qpoPVn5`Zk-|IY#AhVs@NU&GyGd{O{+ImIs6TIyJeh{j%%~=mChmwyMvxRYl~jg z6%}Q3Uq=~{26pGEuUYWR7PAVYJadZjtsP4`5z{^E)_gY_t-E9H?c?5^`Wd~)YZEIe z;ek=N2fcZxh;+jtd65o5uR_$-?i`m4ImS&;I#HZ#F_!Kd6e|&}?o06E_}ppF0g!Kx z1S#~cp5_dzI5|DQ9V>*;l;|EOjTn&}#~Y78Ytc-n7|(oj+)~>@ot~#RaEy{LCvuU; zwRb-VekE!j4E#-Ns#&{7<+v`2e)8v$T!s7rByuq7#FPHdwL=iwAUVP5gXvGDjP*Zb zb)OGtf3|19Ya6>M_G@;r`PO$}jman-4mxCvR)51Uiu#qW!<|z{@g1z~u4%EpoqcMN z{J?>PlOE!}Fa3f40BMK#OYs#vEv#H^&^0H*JGc6mKhnQS{vr4R%Ttv+S)|A<=VV{D zG%LI9FdnBJ&N>?E!_7+6YCSp}RpBV!v^VSN-1G0*@5Yg8nvKSfcKL?>10R&fAe<53 z+P@h-DEM~T%i=eUbn9>oHX6;;F_r1GNN@#ysB7`h@N35w+VrR`bhlZqEK8r5L=fXX z_4zk{tjVc(%UZjc%bh~*Y1omDS;_vi>!(gnvnvlJIIHfiVraqauE1fK!*kf;yS+-$ zFZ4-BQdodgj%$=Ki0)f(Bp<}rXQRkwvq(uBNX8Fp?{nI8>Bga_q=euc za6g?_xI(f!FJar#xvv3h2IAC2TX(TI;<}r}F$@8?T!Tns9>lL6^9x6*BN^QCVuNKPC4g4TIQ&gj@nw84jMTyr*O|KKb1n$ zY?N#r4)AHx#+i^8bx<43{=PSW-l=!aMixT4p<;djbxajp|AR{0CwO#(x zF~0#w&OTGr*1WH%Mxt!&ZSK^_6cWm#9+)1rV&3pHZ?uvL>6+ss)rvE1$r#UH(AB$L zOzzwp803T36&G1r z7&}*QQ^Cb3)V9ZDR;HZXvYcde>r^gX8PX!bk2vEP_swTds20hMfXU?JHJd)QxNyhi zI3uM*rLED>mE&^#-R|TlGr;F7*YT<;eZOYbC2@ccYRkIST1!iXUAh%zwbQX7g6tGZ7By-JhdS&{P%XIDOT^+U7P=H4#HS|t8 zT=*!}X`9jAHu4#mbMtN-W7e)Ki5W4|t{05fBr|7zHxbYmtIQH1U$eK}!klx+W73uEdk{$>E#PM>xP~BOo|SIeHd1*c9tL_;$!)a} zRWaW`<5LJX<|4-#!Q0pHq@`n?v~;^4YD*x%3JAsPmC+`u^ zf-1@&ZU9r$8R?I$Z_IqoA=pV^7?qi`j&KE5+(1&RyLZcwG5DI$l7FWpN&@$ z?v#L~NjL=hRkwAa=i8{#3~%N$6x)Ho``=n*%95zgW$$OJj4U2Qb)I8_*B+b=39kEV(Ggrp5muy)b1y8^VIb;?E)jL-RiMK z!M@26XTj)w2fcOSsq@s=p~Z};?5WvxIS&)-hHI%{j{zej0gk8IxocUzX%Mj9PeV@C zB@ya(Ny#TX9tf-zxkSC#`2!iveG*)%=gVEUc0sG%7@e|l&N6#_D>~xq?Kb((IL1M$ z+V$9);E)N}1`N4+Clv!U(nif*uTI3RL)KGj|+ zFu5l+Xm=7u`P;Dv2BDGE@JC8n7?MtXxu_iE3SCBrGo85|J!y=0crdB589w9&z%4)c2^E4tDi4z^fvTPZ>2_sU7oH_GFy& z9qI>DjDbmLQ4;VveiRdec>F2d$j{QFbB=n`Oa~35W|wgs4hN+%IQJCe!K5*AdY{gM z+quuym_hGK4<6J3AZ!kK2fa5VZZU!lDQ(MwKN@KC?@bJr-~DQnz$dkSgnz+4ZcG}a z(FZE76rA&4pH`SR5&e2%zSaGR^|PjUvP43Edl&=`-1V!3tt4>bQgN~RlMTQYY5WQ~ z;PtK_#!V%{u|^?y1cS|MX?mHK#eaARUzGavtbKX#j(2B0aqC`&>gSauZ4Vmp4WyDy zF?1@WjtJtvJ^uh`UkDEa{7`$#NXl61pS{mvFY$hL`bXkf)+UixC5XZIua|#muL6%3 zcuMkk*Eg1H=D<{P2Puy?^NMi5(x-=y#?{~GgK1XB7!^7o9S%G3NT3cr@jle@r#J&1x#?b+@(c@c z-|J70o-xEq zM&lwZ^>OKn@{*u9JxSuP>M^|j9&s9Zj~jv+dVqS-Yof0DAD|j#?T)hw&7|DNs9MeU zWw&s_hBKbEV38ZFgb+Go`q$?^ovmGXYU&HCE6baE$iLN_d5Y}kum=_NXMsOzYiN8a zBt9jB&(>{6?p`5}v?>1gqY9|aM{}Vx&!sKUJMcj)a8E)8I@YbHJ#qm*Cd(1Ye4%k#Df4V~!8VOJQ*n1x-Nz?ADa@r` z01ue+yMVPE49KnAH#sMOJBpJk{{S#K0CF*$)uwk-y|gP_#HENi3)3T>YYS3@ChV|0 z@#|eB!Ve|5`AE(?*EgxiUjrM!=%bGleWfidCugre6yYVwkHop|L#gqPfnQ}Xd<24J9v|Kx5cQvBe{MxVaB)rP)^Rdkc zpr2}0h_S7mH%XG=*J^I{7^aoXTS$vfu=5DxitKcq5Cjg&0PXKrbUzOmlotWB&m*Nx zs%nX+ua*ejqX3c8wA({FxjP~|w~7e%?E|qjhkbl7Npf?|Q@z!ma(8z1#=XO4oGz;?s zoMZK-B>EFZ7?L^)(YIny1B@@HdaNU97v&pq-`1=kD5C;_JxPpga-VB8|V=u8K`D;!;;6ewEGmmxz=w zC4u~^ZK-LT^gKvDwdlSUx+2b4_kHEh73T}ocdpyRGpbrS2l#juSF#+;j}_0p=qbk? zYYHXZAgh|h=4;2#Bpha-vy90m1q0a~7l-Z3$;ieqewExut3#%!QuxPGyw@dSjcIHS z&`2FcRJ*u&Se*Cknor1$&f0GjLg4Y1#&Md6_@U(g08|8P>5AgfWOp2%2S6(PK)?tm zkTXKQC-hnpPBd{F&&Lnuc3>& zE9w^$Y1a^5+k%ruN6paJ>u>xM_x6^D;`hVT;eBf5PPeAUA|gilq(i_p`8BD)ZY`u! z&KDpLO6b35{{V~nm%+b?8fLp;F;z(d%%hFzoRUh2J{VVa8#`-1y0D`=2d8Fzvy}i|?!$Qd89D|De#ql<@{{Rp?6{CDY z@Q$G+yWiT2JIA&ocn#B^;UM?-ug`DWm-cGA(r$E3M$kujuib`wiyL<{P84J3d}QR4 zUe)7>!rirXw|_Kvu)ZG?%9FGEypNT3tg94<1&HhZ6}6vtZgKcm)1C|e0D@Lu+bk0Jx5jo>4S-q;7+P0W^ek{I!j$6$ zcF%oNl-;6_&u2u2%#_;<$q43)Xx`27L$52T6i2qYr-*YuOsqzPtkAg9a_%P;#O9` zFhtBp;01j_@b=eS*ZetVWYTpnwZxuN17{{&j`+oW-9N`41b8P&)2>E|VWYj`m$uWQ zwLx>YI0cjsm+`D`3x3zuH`>ObWp}5?8o=PAp&2XqS2Xh)39J4`tB1-lkxo&L-e~#1 zOZai({Z%suhIL6)CRnwr4c|)Yw6EFw$9j?gz8brL5(eptt_R|4>4?8-KMlM^wz*{l z>|PJ$T=$Cq0Bo-hXciN+cJfO;KX$qA?@4ADdtE=kw}8ht%gJw=Jgq-u{{SDlb32*+|@V>F9AZ%}%$@YWakO;+j{nH6| zv}I&DE0NVbjeT99{@Z>lw{Vvlgj$Rs0?Tj%kTn$fJhNI`tKruL;R3S)H@OR-;YSc9d53di}@5#^Cu%0~{W5YMi&Y zUzFpvO$#BC9JW$Hl#)FC*9Qzg0xLH4ut5ZI*qTy~yBt%M)zHaxEMO{=*n8A1s-oxR z#(Rp)yPFJf2+vxi?98JBD!%xxg-tYhbEwg{y0O99*g3{e8KpYIVMz)XpgqlV(K8ZH zKQ9BG)i5j_cXvGGRjO-apW8{D1XsdEY`!zkT-58Rm1H9<6!z_0`jkWR?q>DJO0o+O zPI~q|>SY#=0^vymw4oZ`>Gw>a5<_x29&uiIX?)PD?gaZ9==AIC#0e!y9Q%4#(#7b0e$MvJ_j?1h4X2|XewCwV zJ2}X5o6k?Pb*W3DmMilp!8OM?^*uUOUqZ#q+epaC>5U@8eA z%K4wfI0v;}jxty70?UxCoSJNrgA$Uipz?PfzlCV0ZBH7cT%N{UvEVRq^0y$0iEV=( z0V4wgJPNxc1%vQc1oGTew$?^9-bO>?r|}U_+B<4t?Am2ihlWODjBdxLrAlqd!jM$= zB-P<>z{m&*?l{NRtSzFkDp&)YsO)Q(n_cuZj2-OE39S`lXKn^LQhL`l;QeWA^)C~# zQwT1DDS{402hi5{1&SJ+DPS~0huWHZjwRGD(wUbJirQH}ET&(@mXGW6rtpCHKT$n8--P&1L} zC}mpgi1AOsAR1xh(vFzT7e!bQ08ceNs}+8|dsTXTM-DU6fi!GJ$7VYY^o$CVj&s(T z3zkd_Q?s)G46nT!Za|%Q=zUE^DJnSN;+$V2<~((#uq+SE2&J}w$cWqk2M>ylKtgkx zoOnK)9m_|-%=NQg8rZ}guNNRP)aB27iW}6txA6l0LWDqHX z8OI>f9CoJ_z}=ca*&Q%x02V&E6addaFu%J%=cOh$14;=8lTP4hXps5Zj0uy=0gPAC z{{XZ8vHt)F&yQ>fW92-X4>%`3&c1x`d@C-wY8xPL2O_uRixpzQZQI=&|ON&FGxi`#V{=$9?$z`<}79;@{ggsvS) zJdWoT^!M!%@c4L_MrrNPM}23Rqdm_VAp08mUe@b!;DeAk9SA-1UKM?HK8p)e+CtBv zXr03YJbLj=*m67Py*-;G@$%5`@}4n{Fe{NiBcM=&AoM-4QZ{_NvB}SRruRsUcQ!{} zIH+aRm6Q~aG0)xWn$bp0s}ap>mLKGDah@_U+O)Lmu`mJ0&O07Bs@hJQHnBW0B4D}3 zPI<3b@u$I!H^3hVt^8Mgd2{`>dw7;sc6l2l9bEeGE3Pygm6?O8l#)l6%8TYV&4xX@ z;-Yxi46ZZK(#qRNIT<58J5-F};bMO1{Of{oblsWKoyzdrmt)S;-`=*gEivxyk`x=5 zk;huhvrydh@5fs7--nuFnMBPIW7OlY9rIaKZZT%mh}evE0_w}-wG!K!%6TGn)pH^Y{KORa&_$uGC(^rrivIu;CHTSdKgB*UyNE(Ho7bKwhy1gTqA%bvTvV3cS;_n>>nOoff{FQt zKNBowB2}jKVHqTI*S$*3_s1JYN{v_L!8ks(E)Q%TG0ksea0oGxfO_&xXj?>C2*Af| zR&zfol?>0Ru;giYm?ep=uQzx;l8~Y-opVCVcR>EDJQwJ|Rpmy972p&?gNfPBCn2IcmzkKnpwAc2A_Z%@=% zAkWtr%_h4SPNbu;`fXu*2Ct^WsAQjQ`C zYok7bGx@z2jCMGztC%-P*#mDFCAl>phdf`Uc-Fx#^lRAemAP0>1EJ#SH?*V>KMGQqL)@B@2tueNk?&HxKo3rMHA3G~jH#B-UYyhU$jJeZYL(+qn83&D zQI-rpQ%k7YLkQ&kdWx9_A0!NVifVu|2Sd}nPEX3b4^PIH&rn9Dp35QtdwW%vfNsL% z3=Wl_r;N#il24(nsNpNnXV8O1lLw(v0#&j}3+PW;y9|Y8K*)N2LZb z7#tjS#TyA-qki4tb-{d*$r!F5#>}Qw3C2!wTajF}CmV=0%y_C#GDJE0(^njKFb7)d zG&%gM83{NbcCK2s?BB@KreZr{hOS(UiUILNHvs^^|X7q?hqqmoW)q;rxoPZ_7s&fQH|sP43%F)|r*CGsv#Bu6G|SI0MtYW?A?T zU-6EvmbxyHcc|RT*hII4yE*m(n?j3B=;FIu_#u`(hX_}k%s!yD}v$F~r*mY{&9l&!i*GCADCfPIC11)}^o@W+LJe`loH#c+$w)Tktv z9`4ySL&e_}w0{Uje${ZH^MPMHd{q6eV*bsV+ewxwCEUXyxhsyC^{*U$V` zx}{q?Sssbw@7iM9!+PYJE}0B>)5LbW2IWU=0bM76u3*)z#<8gC`^@CB#Up{U*oyqo z)P5~ClW{kQozmb>BP%P9-m7Q5XG8l^YB5ZS6tW_cNC4oEZ+h`%h^a4$T>4dkrOV4r z^7)^y$*pPe1&mxo{B~e#C&cX*`i{@X z9v`>SZhSqW$1aOycv(_dShU$=)C1Es@$bZshkhjZ7x7Mgf5bPD_=``}BR|$+!M4((mr>HCyY)np=VLOK~A-=lT!fUuxoE z@f&}_OC0)E@e7iqjsX?l_!IU{)NLN`Rq^(}Z*OM=tg)L`^B!f+S8rt)r~F6PygA{> zR@cJ58=mEC(6il4rzhO;T``5y*7r4@CNQ1j)43qF*DYDDZzd7MK-hx4cQ-noq2jwJ7WY$|?5_}E4X_Jf~oyz5v6gUrreHj@{2cm3>#G zX&P3Ma9YnxvbEjG5yGH*9&2T9T}$nppvT>hg~xjIBZa3GW^m5EYMQoufP4|++n+9I zJU^*iZf=VfFh3f0qv0d@@ybHfOXru zAFWrhrifFk(nrNJ$>N(im1MEht^WYo@)+}L(heW)ePs>d57LDOlG zwwza4eY}YzS2#a=oRj$18>-ux+D0sPj>oH4Eo?P8o{k?8UX|08?s>h`9#hXT=1FB~ zoP&|Qi6nlti*w8Kw*>aCn_Yh#Lk;`^V>bDEwdDxXv>}wic?t6Ew{{XV&gMbJ7Mx+)PBrX^DiN-Y!J<+D#nnFc7hlPER=l`PHcG+E)Qd$QjNv ziqd^N9xy;6o-NK)o-@M%#VJWQsZfJPXtzGS@OO0lDc(UlnTFLJ$gOWDZpA2epOlh1 zQ{%CD2^|-qu31erWO_8IJ`^2>MX5 zn9DMf$~fA1Cb?PcQHw*POzvU`#tAHXQpkiv+2nT~m0}BE@3$MajzRBElHYtGa8Mq2 zrEZ6z2;FF7O93uG8&oe==QTm$`GXS5ox+|?ZyQ2a3_7((qz=`BGFv3&^Tr2SBDpKhMl0wO?0$aLw>!IQ{-bapft|-0 z71L?@f($TXP@V{{GO)bCUB5S}W7pccYaLXKo!D0D0qAOHQS3Obr=eS4iC7#+#GGwY zjCt@Z!Qb`>49jnc#dsMaDx+4V<3Eao7;lQgevm=6| zvB&bN=-X5fanC0mX@1eTU>)Rffmk(lq1y)UuEiUbjfvPe@1DPnW6d0KApxHt_vD}c zwQF3>u>)mKcKquu?qva)m=eu_$9}?v=5)qNB^gOfKH-u%&jb&8rEtvgaNCp8uTABR z%sy!wgU){n$(@;%fDAGGBBRjlg$uarOFDXkBC*l;Z;=5&Bh_m6%|V;fEO< z5B|L?>8m(guE`^euG|rk-?!sIw-1F-*arX;!2IgW7S9?ez~K7z6?q{^6gC%e9s5>M znHIl8G}?Kj9jpQBbNW_+wL+<|9ixHALsufQ+EAzj6PyaTkeMS0-!DIOpX*a}?3*b= zOS2qXH!BQFI0yRb+04Vt{TH$E*JppRFyd5x*ZQ% z7B`pCCE2q}-b+UR@caxVLUQpzVswwZ2tz z42^|c;;Tt^(*=-n!-6yESvT@9k)~6CPH~#BU5i?}pE2D|LG4`pu4M!s3iPcxbsx0a zU}JFUSrV>WBRhTQ)q*Wq$`loIl_Q|-P&9!b?;bl;YJ9Q|c&5lVl5vU(C&J0|1IML9 zB7jcOfN6^58x=R2tPdR1xNKL)G^4F6a7d=r6}TRh<>zfQ^rsJ$ucb|am+iPCq(?^r@YCo|vdRP_!u_(HuCd4-+$W>s8=C zyc}k>1YzR`7;IouNr~9XkPz5zf}<)&PL+OGhSeCucNJG@Tzcc0khvb;T2P?=6s$3i zS^xs8W*0iYhjzbf*AYkuYL@(QUZHUv#0rnJNU6`#xKD*P!fX4PHsumApI%LRu!T+l z=)m9}^}$|AGFdM^7S|!E9xCJ%+}HFAG|yjUe)>i@K?m+ z!#d(xmUN0o+!v=k`LDEe-yUfCH-_fE)pZ+vKGGD-m$xm1jCTjr`&XlfterbPhXj*y zv`&k}5G+x?{3s(h?rXrlGJIU{&%)a^mtE8&x43jWEEDFqZ%ioU1L|wYel`BxHyX^h zS}()MzR7ILVUxr+Xng5MLSRGpN4e&{8`pJ9-B(w+y3{Ww)Gpo5`-_(@@AW34bM}tM zbqq4S=6lzQziGR#8C*)RL^QoP5E3uFE00!h>0G9*b*5|fqU4C}Z^u4lJS&g(hpl-A zPCDYH7c!^-NZ9(<6tJtB>7D8vuJJpIbiKSo_FGA=I~GMItK3^_JIraPT>1<|O> zBGjzF5MIj&9X2*9&-^C3{^iE4b&=Eehl;4-;~s|G(q{F)g!PNJ4K2LLJMLUyS3{+E zJrJUoiR35lE2&}bK&}YtdhW8}B)z-1W58c9^sbk}S|s`wr496@yyWL@disM@;il$N znoCEi^k>0;h4Sj!y|Gw4*n@L}$v)Mg`(xZBzYz3a2HI{mUKX$hL7angH_UVH7XrSI z{gy0rnS3VRESw}deVx19&e-7uYFWAbE95;={%;z1hgULAC4x4MK*gR)1BLGJj&$W0?x8dvW49ygG zYIaCIMjv#K@vlhuCF0Rz;!8N>WqV-9a<>@c`B%to8UzGqI2f3^$;@>KaR;RN(B?&%$W95(A8%@!^ z80y{$@OOr6p|ZHsbm4t_cz}7b%_ko*{4-xW_=mC_@CpQW5kywfVyy&=_lSuSA-vzKaFsY7na21D~>Dc>C#Ryl-8%rRIMc`Mw@Cc zphG4I0P*yzMT;oO+}*KMkQ999f_Vn4M<86W;eUq}(`^n$$Hv%ym<_|eXqEamC8^57t8WnFEsWD%Q71i*y)s4xKp8n1`cw-hPtvDTRk>jp5Kb^V)z~G@Hn$yq zm6)=31miVnBpzCf;(*rYL1BFH$S}kM#w(`N@04Hw3C;*S*9mPXcg6@9`^TWG-`fjq zBKbhGkNIhyGfzN07T;EX58Nf%UCU!CHuaJxD&K$|YkuqYr1861t*xe|8Nk{0sbLK+ zI#-Ds$GNz9W|f{&e)AgB)1vd79;T;~E!~w0lc(^z9bMnVKNjk4X1ehnr0##aF+rc8 zuR`!2?G57p018Lt++IGrXS*$FeA(j|`CF*`YsoIy~zIf@M@N$h^jT{cB&vpR^V%3PqKb z)a2uX#|FGTwHP57gl@+fJ$|)Tc_O|C%}wB(e8&}BsT}is^5%N87sft3yVtInq?Mm` zbMtXrY_q)YxROt5^eMb0rrt%vGz1J~d90~?3vq7X#6`?!?u8gM($qFbGX=BA26^YL zXxr)gm~+y)OFs!t2tfmro`7^Ue%rz~MnZxj53Os;Pd9U$TV;wa0Khd;>A)NiE3}iq zx~$_7KuA8GwLttd@dT^^)0n9|zThxDX>y58Gm(*S4o*q+sK6ZlSg%8e;RX9Q@9!-w zR{^(4C^-7m=i$DKW_R7|$lXa;6FoiZEVe5BQRf&w*c?@eVdHB%E0Ty$G_0%&c6%QqT0!Q>1#9XMG!`IZ*y6sRwD<|3-Cah*PfK{1e|)Ip-naDc zf_@dW^A>F_Z(BK77!Cw#PHXFk zd>^4{h@#iS+I_q70BD0BuQjozctz(=G2yqjjxZUvqAEr^l0fN6*=jFnJB1!2QsD2^IR8rD-;rE}spRjk;Re!l5IIF@;fEDMFgNjo6y0TS&Vu=j3;T zzu=Ic5$_CgYdZd!rlWo3RxZjv3ihuL{{X=s{5uu8e{1;8@vaKt&8z^A!*za%5rM$0 z4-M-FTT9!;Y}=cMh8{TDhXm)`=BB1G#x1C&=)cb492{?X$-kfZSossd-|$Lrh29&~ zTV@wFbYJvwxvv@A=jMilK}LiIVWXHfC7!tSc-TpR#BYn}1`0EkmUv0@2T zRV;Da72yNozxFrUwHu$B62PQnWVd_@@@HPXOSaEyjusKstDi>Rc-8Fm@pC-F4eSv? zJeKzLu4lxaIJxkbhhF~v^=@6?axwW-Dee6$=Sy#kdRLG2cb8tCeHt5igpuw9ehXfQ z@m@=H_;@a4DR-mBz^m@b-*k%Y*0XP_hB*15Sg3#b^VUo$5PLF5`})I7tqkQt8!tLUGDzp>__ z@e|?U@%FvqI}ZhTJ!B$1OH)GfTw{afMmm6a$*m(wJ2SD?f=S;~$n@CE1lQ;5%42URJrit>XF<4e7WVjEO&M!3g>GM{wZp8PF2)WjBLEj z4+-k`+D59T(OC9720GW)-vlq=g83805dQ#ZUAWyHtj7x$e(N7zJ6FM1ULc#pTFzSK z?x6&j~#CyEF-lypgh9bAp zb$e@rrrKTUPx3vxF5?(K#52~fd`kF3rFfFq>iSG^dGIMOX*k4lAs;gF?Op-!gZ6{a zXVb)&m#K6i1hVhK06OHJ^#1^cf3!v1{{Ry2wENed=Rv=nj1iW=jy!M|*0ZHurOMD^ zaE@|QjJkdPN6NR;+jvXFcOD(NxKz20;o8<5ZOlcE0QJX8+O?SgRqv8PC%thW@KJ3( z&L5BV$)UWqhwKquMk3(GS&#TrejMsLmDh$Wq}3+#W&{G@V3F!;>*+bll5*;NOq^j> zP+b}5>2lnB;r9=i1?g5q%@7|c4BQc%0a$R|`EQlRF`b}w9=_Fn+E;0FlIn0WJ0E(c zt*O-+{gZazB}(rk@zcMxJ0X|@y%n-RJw^|Dt7;?zX~G3LJWsP>*Otp7NHf9iE0@)5-BrlmPdEf*X1gbg%2viQ4*-k-p60Xet>SqYC}M%W>b5~X z)r)!>#_glZwOu^OrZe*Vyn(>_*F7ejA}ra+C!y_LpR8#c)xJ^z=kU#PdY+UEpWTH| zQfq=zZ$q_toT#(}F~`ggC;C*;Te^JM+%PgT{Hsvd0>PMkz-Nx)p0*9YJ9x%%St(mX z87u0B+FC4un{F869QCQjpR@)lBm!}?>JNIbEretST&Nhz@^f1)rz-6Sl14Gy)X?d~0Nc($@FwQoP10MB}cN>&L0Y-CLL>U^@=D!K~+EcLBlv?RNT}mAD4L z9r){9_2!h&w&9PP+P#R>=zeuln_8JRvNR_u3F8?0*6o$Ul?OS%#sK{4g4;5YoB~B@ zT0qLmiZRfW)9Xa0V+h&mZ)xnR1F<~ufO=O+X>*3)mdNYgxm#EYDIocs#ctb8<)-Z6 zm#7uVEnV(<6qhciPh~qpjDUSjZ`j@m0Q;&j--_a3xmHyPxEzDYttfBX0J%-M!Osj& zYUY$1XLKr9?1kDo9if6}f(8a@lHCCOw$(id^%a9_s4-R~oxK5GMru2|^BlR~&tj*K zrYki~_c~Qutxa3Gz;BrHcn7X(g!2~Qu_w`bX0xT#&pYsY0p6>9y&rJ|u?LKF6xmK+9OL&Zx?X=5i}n^s=69#{Z!#PUx( zcC9!e`A*GHa2^+@)6P#)YTM%)K3OPX32A zr4A$nZ7Sq;JPOB(W{d&1IXM+&Bs)I&EDzGMoPF+Nrk&et){0e~ak)-bS3-?vK6Vu+WAxAl1nN(xc z*EE-52|Kgv#!ux}qProKsNi6J6eO>6OZPUHgS4} ziW+GMB+}7Mj49=Dw;!D_)Qs5!BLq-OEL)G1oaY^?#^5o9$nGk%EH+~t)c7He4@z5* zM*I`{Q(1;ENe9xEi6=DDa((@2405+XKb0yXkZGZc_vudFb_{+sUV?krY?um3;;Iu< zPT3ss?NA`u52;&VHIL8&w1A-5wbXJZ`C_`r>p{6O2OCCobol|J~;c{zQ zL?Lol6-q#Ia4|ui+muRRV1Rkznp6YO@!G69kU=zoa^9ZxC3ZbW;Qg6v9YTGBXk}Gn z*VesjM7FnsN1Mse=|GW%+>zr8D9WkF`G=+1S`#OSet3KvvOy>$vLe>S|9B*%U>d zXv&!h>MNAJoG4X{V?9M>8hTpgMI)2e5;TfQLIv6~Ffm?XGZ&SZoaB?5^nVo>i%*j+ z%XJyAIAq(_y6LMUww<{~l>iD*rKwMUYJ6x(&N2OKQ(KYjIRmk-yTQH=lU$rTDe_SA zNbBuX{59dpwe3zDXybMa*=A9|Ugo}r@Rx$6)Gi^?G3 zCYpzE%E67(F!sO$@vkjwM1t39ff!H~c8}36krTFwFnayb2HokdDETZ!5F9AAy~MAoKwl|0B-<_90jyy|P2yg#Zh z*<0rWaQato96P1o&Pc{_T(^j!;$76S3T+EciN|N@-yG*T#`A4 zOlKIYp@hT1^TIY~qN~)Y8#Z==Q2RJ1+zu+F(1M2}n$NMmY;sNy8LcIdI4j$(Ytgxb zx@Kgc#x{@-aZG$5TxV(YtJerN;IK7Kl)uZ3q#ADHUB{y{uErlJ;;BAik(96`9B105 zIavndz%;i}nd9Aoy+2wRNSjL_OOgQQy=O~o=&-)>Hw={{p|2p*WIl2na(Kmht&E#= zFvRC?DzqnKIU?l9ZXj?-`9^wmuRZbOZM20mx97=9>=#oa5IeBWMS0(h?3iM5oh-A#WXmn&o9>x%B0-&>T7mUrD8pb!xG;uwA@^sr>Y>y70Rv4f;N`lY}}$%tbk%7HjYz~}(1iSFi-c6lT$>~c*jvbWs!D83+R(Yq=t z`9S2T>Pb{1(lUa2a;*f!zI(H3dElHqRr^oSssyp@rzNAIzYx1 zZh?6GE1aLlTD|*iGq}%OAJUgZ@FuCPOp(KEolT zSIO0xxyCOegFGMmKq?a%<`@2z)f~ zufkmxZA$Cxu|o=OX|6D=dFnG>HSvq~&JiWXm*B(pbbO=S6T5f1(RjyV7c}*~j>6aA z*MdG6yeC??x46D!%G(A7y7VWtbvGJ>GU>wF$syD2r1_O?SE`ZFp7rrhhdf1jt9XKK zTT{4_>gD+_D;BR)KNGHm5k(_Ns}kW@9x87lc{M%pG%W(s%k5X!$iAtJx%_JnQ}~VH zZ5cqbS!a_Wa&h_nE9UPO{872MXGo;a7*;3xS2q^Bb*o$`l0tWLlj~9MwqGi-^x62I z;rp2zd{aZz1o?h${8YM!#GeP;Su{f4Q~^ftRA=z@=DvE4+|GZC80rmOn$|5k)Vmew zfw=dpT*+OrSvOGT=JO0z03da ze`j4HLl2jGtFgS5h`}q-2j$IuLtJmdm?G1B1EASP0;Rp2aezIPS72NYrmm&=oz3XD zs4E$ME!4(~;eA^Cu}`zw$tYpig(QBphw#?W>E92uB!7}dv{|Ij_n+n`^EH9{O8A86 zKLR{)dj=j@G|3nY_UT^~Yd;>oCV00%((JVBmD4Omyh<9@Pu>OC03VHcnAtefO52^d zc*d-n=CzN%^^Y8Qf5Xx4)HQocUqJGJO?W57-`mf?ehR%hZkUtnxA`i<1^wC)>TBcK z{2i!j5_!HM*RCXqa#|@RB<`#mZD+u~7Hf&yOP5;IH}jBHN3Y{v4XW(gUW;G6_9@Vz z7j~Qc5$%2^{iOB3h_e~xwM{sT)#r;nD z@dlfr!(jsv8mCrM&>zaW{To@AOwz7yFPbRtf+0nJn+ki>s!BT@%Br8biJ;c?4MO_u zZ_y(_6}Py;r_k09$6wkRw4FK+5BO`uCjKZp&36Tes>+WJWIm52Cean#~Npc z^w=5o9aiK)1Z($89;J_92PFGf(_T3JhI|e1&Nyv+P2-JcRn+zmJ`D!J8YmBOl5*HQ zX1vGX=8LQR1NgCRuiiW@6}6?x#UxA^#UmjIaopBljs8079w^tM)g`={CJ?G}_yCT- zT%NVlDvp}uf+m$1OZT;($nW%T*&pF2iYIu};|8IpOn>Et?v{a0Wxe zoU9lt72^X3lTD7^d-qjrDb9HnwWoLkSk)skL9+wbj`h41)up-ORm9FxZERE1^eszQ zQtYlR@)vt_73iK2_(vNj+NQV?qOZ(@rE~V)3fAnd63Ts1EcYGTNyt8iy{q6i!87qA zS=2O}uNPif+(MWV+JU!m9B1iV^_1gxbdeOI>Py{D=6{M`PVo1K?XB!1gGz-LY>so6 zKDqkU--KTkmfKslztnCaO+QUt!sr~}pKp5lE5kntJT34pD@#3Y>rC-2?d%e*-Oq?3 z4IE3Hi2x_%AOl|!{Alrpi{o#Kz9PNw)wQ*!hs1)`)h(m)KQS#(;uJ*!lv@jrJjic7S(lGXEMISdBj;!3}yE?l}%Nl&ZE->IPU&gm> z9LKaGki7;v3gvYB(4|3f80)sWOFOK9!vwJTh;A`aCD!L$W^|T_OqnE{^%>*qT1b4j zMtb9n`c@sS;CRSmhF?Sc>d)JEZUqV`#sN7ET(Va?VN&Zt+>-o@lnin65$o7hR#S!m z0&-h8=x7%p76fBIFi?2<(3ctS*phL9isqB$dYy20S`{yBy!e0vAmEc+{q~+E7z!60 z6P(vlWC#fafO@GP%BoyjkuJqx+zq4*eii3b-&4@0^s&dwqsGoi!9Ua1nzjcUlrb5{ zPPNyjnhb~K2X->YwJFn?Toh6ii<&KGzINB8RyQussrN)%_EXq}f za5%2(>}#-XK-)*%98?l%q1QQ9LV4P2DOGy}sU&&i+F1mF8W#Q*KhRZKEf_BCg9r7l z=Ic&RFyb+QFj#YwSQ?F~jF1n?I-1fmyRoET(z`jS;oQYQUze5ya6iVm>)3{50YC>O zwyrCxyKWyOGe>L>aX=XQ|9xswNKvgMrEC@Tz4kmlDo7sq#wqCK)G$%CM=hR)pl!}RZWM5F z-lvZx7XftXykb2&$XmBc zN>^4zDBE&H!X2xRnEG^}I-vl!8P0twncS_lSe|<4r4mc?u>>;r$4p|bE2?BUBT;V3 z<7nIOyMijM&GU?wVn=M&U)mV(z_XAC2ajqdlVJmYPC8bJC7}*Z+m?;vOi5?su+DO6 z>vC8#mkYO`J?kLcg>!-_ziI$7w$@Ar3smEEV;**yrq?75=0VB%Rk6>tMy@4hc4Am{ z!KyDXk(HcoT>QLe2Bk?tu{i;F9CoOctV*cb)Y6EIg0;+&9?6orY`%NR_&KW#$54+{&}k{C=ax-&T=ajJCo*(tX$xZ zcok{xIpcOmY-YG8etX+Pz7}ZHOOi(Ip$OxXPcnIdR5(+Qn{nid#%qnv2i`(?!NC zuPw!QasD>fjfR16>mf&E*b4G_ubyvZD94h^*PgZLe-O2%xV>9NJ0gv8*z5JLJG&u? z?goCOd)L%pY5O{NeNTw9X}TO$uvUos*wyCbDyS>9k6n2ZU9SN^o%u1ds5@^al86vdem|Y+os}BCPUhW3kKsnFnLqoYzDaPQW z=h~lf7?c8l1MO5CIzK!gN_;cyCnvA18xF%6S~ep;T5!X!91&I;F*wL0rBh`wwhvKD za)&Z);+SexA=93sq9B9M6zm8}DBYSVjSXI+rG9CEV2X3(x3wz+EZeTuTw|WKVTJ+6 zU(nS^az{$IGDcgcr6frcvB4yBP;TdeQqDL$oO%;cfHsalI(}l@a3iKVQtkseKS5Eh z1NH4ra=6c0K*(h|BA8CmO8)?QnfHY>QrJ^n2A0F@=m;G;n&*MdZs{Z&Z~^(f>D(k; zcic}r9xAh@;(HF2VZc}CoKy~XV+T0ROVdL=8C9bMwoY?R3PbcYD;yu|Qb8Y|DyDXp zAOrO@(3$lI!_7TxybGkqi5GN!VOIC8dy9m&48&zf?sK1|Ie*bKt4ny;A1dBBwvIUp zGhF7oaQ626l4NtYBlv5IO}5%R?OVBv;tf_y>w>G6jW`95^sH615ytY#k6_2GU6sUP z_na|4l(w1`&aUh7z6i)2jZ`51BSkB2d9RI#+Oe?OU9*AMR}*y@0OO3B>%Jhz<@lOg zWS4)CiiaHoW18h{{TaUSu+U$Dd>MXx!RJt-11zVO=NgS#2M|pY2q0!p3XUToq|aQ zSSQx1qyp04$$}(`GJq1G4CCIc$7dC^Zpz0jFznpt+OV~o{{S*W4ZN-M43b9zxMLRe zX6iZ^&AQ@axnyT-sXchjbsih=y76&xHlX1H9)Bv2!}>X9F8L)+FnIjEMPKn2w;qpZ zcCcv*@E543I+39pgEGD(_=YVu)+<;Xq=fBYwd1op-Mj7tvH6Qu-npwjr*!j3?n^gA z(Q6r(b7T^$oRt;iN~g4UVP?`A{{ZNA-eKS{z&($xayrHO?<<3zz#7%@4zLwg2tzSE z0iFeNm!xEqpD^=`)j@YOj>QQh^BsXXEuIOkSHutq@jSeI&k`J{n zAaAJ+v?dF{qmX%8^s70xczH?Z7#YX4aF1!e6qEv5J~BGuyBL{&;U6J@IAMe6Y3fTe zrJbWpH%wOz;s-B$MtTbCZl@nPW09US+PIxULoMX2PI<;@7Xq~uP!4F^&;Y=tq@|_< zf`QcI*i@q7@v=OiK9vsc81+8%t1AJ;8;Zlk5;J6j{_&@fs0el^*=i=4+p7{iDl^H= zFCkd4ZZI~W!0+!(jz^J|M?BPVp^<CLg zF>hSfHMgeQ zY;`OM2a2?k9*FHUGLYJ5I3uqeX>|=+P^D3rCrsyzR5k?c2&Z;BW3^d>NSg9?K%|!I ziqMU2W?NZJbuMsRlg4?j^F;93jxf)Fah&>A*M&YGxDLX&UcA)vTuKdUb-xdM9=d>yrwI^GoxIBSZ64Q3(k)SPpJ>V5pVGVGd9zm*yw31y%>}%Zv1KSJl-(zTpD`LWwf#V z<0vO-k-xxJ-@*7Jw(%W|yLn0D$Rj*wlU`$>lYH+xkkUJsIj>IeQSvTUNcd!BBL^8G zv6Q)FjH-4&W&RTUMT+Ocwh_qXipB=~^%$>3pT_oZ#IDC6@BloT_)Fl=k0k!ffccwn zqvZ|ISF=UpX)csU=8~IuVa99Hi&9r;;=7KQI&a!1#S!?Y;OCEY+en*inl-=-M^_7; zzlD4o;13-}{teQuUQ|)`IMskTVnD|=_GHkVS5MTerjvYERnUX8Irv;(%AL#>8MGb{o)TE!7rGq`?K?IJ$|+3`oD=1 z?c{jyg`4p;$6ac&Pc}F0$jIihXVjiKclp6p1~3L|=3Lu8hBcEtA4{Cw%(L9wsuj;( z1}mQNw~wCZQE08FCKW*#=dE$KULm@0BS}^@J$-8;=PpTdNzW%eYU1S8nJ%(R-91m> z7NW5D^5O10vX2mb?b9IiuUh!A@oDeba9LxFVG&=959wbf+UgftZP2;3m7tk8Cnx3} zhP6+M<-JyGhcY`H9Q3Mjmo?VMRu>meF>#*fMXdO;_f~8fT&NswZr+uZ9)qUeXj+8x zTuUCO5m&a3JZ)k8L9_T)Y`Tb-B^c8NFT3X69#t zL$vqC4_wo&T5E>d(e7@%cQv)Gcz)enNpClp1D5O*zH*11&`%l zW&X?`v!BIp2)w$z$A<0N8;0K)n(-rYeNVM|SM0Ikp9X2#{5npPr0Lp!o*Gj$Q74(S z4(xgBUrtHlt2m|dQBtN^*xoX(Ddn2t3~ribMwFc3Jc*682C3q@ZP7d-`P8B z*OFUJXJQV>5fdt#`=94u7Fi%dRYugv!j9GV5BwDG;})OdZCApd4{RA_n@W|nO+cXp z#>IA`A96XbhVAB4caAXK!2K)e^7=5NMRF@&UsL3<(v+*oN!;uFJ#yB_>$nn5a(yeM z)3tGqGB7%m!8O8LTo{1>U=h@It6FBUg@P$Sg9%90F?c zUaWDk^BXJoQJW&TO*d5y8CLm!+U#pyJHhh&*~k@}T}|oC>R`Tj+>+e~ez`ShT&tj5 zkWX00YUd)oZmdS**V?CB&)y7^w1dd%aa@%n%(Xk|Pn769_HUVo-Q!}O-qkX?FyFa@ z5#N*btXMA)5~^{xt{cClPi=e;m=%{f=udyGd9`-;k4BW5)f=$JJdzc<^YyDM6D|+m zJOYI9D>@6o5CTq^hudmgPh+|#y!ALdjCKU&eZjn#Mql1^K( z_pFq=7+s))>7FXmU;gn?SOP&NJpTY%a)g``$MUJQwi}i7WOrEdWRncLhSCRm=kJ)h6#fvP)%(dFK*Mt| z+8B-9>l%BKGq~XY00{^A*2z6CQhf|fPYmIHVo!7HT;`<%6mradUP-Q|^ItW-N%=9^<8HL11H7Amo$I(SRy(r>w4WtH)AXXcZSvVr2%587)GG`A*~f zdE+&gHMvAiGk|bA8tSer6@Fl>NeAv84PjkER2-5ICzH)|#>r@M$y;*1F444&0B*+|Q?200&E$GN#=Bw!QUJu7&o+GhmiZ3{kl7$LbF=RIg^m2BfB z@zhpHy~gYeFHB;sM=J-xImpg&+tRvRZK;*pF97908o$SIM0hH2KIj!RQmjRo@V!k_ ziHIu0a6)=|8nl+%*k!VL;PlON$tLW_tI*Je%Yg21qkuDvk6O?Ym6dUwnaDo8RVV}F zaaG4cK1&8qC{;QBzaO5yMK*K3xm>HYi zNwsdrL}b>3+23yN4{^?aDtuQ3$_=Csy@Swx6&U(w`1;t+=opoYQLQBcV+t zp`{TFjK?h5$OEydC36f+=0F0eW0TO;K`;k`Lms^GS$-?jmeR|}Rs(oG_0>w3J5fee zt157EX9eOr<-EVToz(opsqb8T_aZi882)vut2rT*e83ZiCb>JANq$&o*1o1ON;XHt z$@59c?n^Y`iR-(#Ju5Qd1iSlt`Wls_4%i0;Mo%=cV`<6co@+}Hp@S@M1pfdj;-p*9 zPS@o7R<+fd>@ByG`ByVMf;rzD5Pd228q~9M404dceq-t0vnGVAAC~}C=x)LL*vS1V zXN6`Q9<;YBV<{zQxb0Iq`QvvV)~24wfJi+$@l=5*+!_kp4p7pU-Y`csKg)ES5G2Mi zRpgAJ!Q&JFhMGoc#L{Op6e{v*NXe#wiYkOn3Fp?W#z^3jK^0CuG19GrnCejsY>a&Y z_o#^{j>El3$^q+-Y*Y+!oE&!MlXuWo98NkBpL#;W1QFAvH3-QBW`<$^0M??&WNptl zq!hH2`WArJ-ikL{kU2T5L%^+#6X%JO-iwM`8gh-R@{!F|l`+q^YPE6%Xc%X%F^a0~ zw0aZTiRd6}8~&5A81z>Ci9*8sPyXbQ#TKvX8yVHQM|rvs;f8+JaaF22uxn zbp2?!q_jSVy17MZNZYqO1Jq)zBw=FBxs1V4VB?E9tL?Ujdc;Ie)2Ne(u83+FO}q#|o;Y zh|i`4QvIL46U(k&TE-!l5-{8`jjLZt{?<=x@RRmM@!i#<7^Ra>TNOPUe5YW?;7xk5 zrlC&e3-^^$KNfXM;i~GF*I|nZ?j(^(Kf+k!^u<(FaKH|o@mB1t&yyZ-aG-t_V`8I> zi~@0xE132!Y_%HHCfV)xQ~P@##8Lww7qILR< zrnz9K?8pw{2=(hQg~$Xgudr+n<*T5czyUX@==)6_QNT4&^R z&o#ei;hC@Q(`H&mI6IDbHLI%W(Rf-kh>_XTm1&m-U-6$fhT^>X(~DP|8V5_jW(JwCO^YF5b(^6!jbt4ms=$LPiaAkI1#>0JEhuq;XS>s-<7_AV_g z8JjziD-)JtI(k-h#?T2kWBQMJ)4DlQ0u>nLy=$7+wFs=CWkZKOO?JUMn?*TjQoq#} z-A))cyT)oSZ$Bx3HCl%<%32t`A9HNp~l6f@cY#&d0Z5^vy7R?)Z zKu|jUYT6RX$TgD#ZDE62_QTE{c^#;+1n3Aj&V4H4##jT?`kvI5_Q9BOk~tX_pwVp# z%0>vm6z`!AeL}(^B0OgexDl1@T1^p$Kxp4~RfkTzRZSU`UTipAj{P%RI^M&iJc6inP8UxPd&l+^$7nh9kW$@_L>rTH#`8?AWe4(1Bqok18@J#kYBKpdU{r?9P|qiJjchQP?r6|ZFA1beS=v#@3%?xJ zRn6MUdNVNSOJ<>`&~{x^Q?)KOMgcX7WdFd8KaRS{HuQPDXIuX&U90G7*mBRZ>z$ zbNJMeP4f_NX@k)3JRqg?`0z&I*R^^_hb8jPc{@hqft(8R&jnnOYVn37hu{<1y&uD~ z5jatht~Q?4#Wk*{B}J+A55di3vRkMH)E%G!gPQtRL1vmi-Z)hwjCIX?Yw)*H5nM9v zE1kS69!Nfw^#1^ayj&95W{Gz)ova&>J@H+XC#9rt$}Q}AMu%x}_V~iNSi}9|dXIYi z$oSQwOW_ZX9}qO{yAbMaaDZ?MN%IQ*Bh$QI(A}T1x+6NA$lQb^dRNAuwP%He@5PVp z&D*2CvW*^MxZdf;ez>W{a?YEH*@SL0NuNL5+{=ze!VWW@wN^&?7@P(?^y^(b+61=} z2(8r3AwHg!k>Wi%Zws}O>X!1@wfshVQ#@sS*ulYM&rzQB^KTC+E5#n;pDWdw6Dvl< zVnSfANa9=}SUuH?TUNg;lGJfMv3b@Y7^MT!&l(xKW&9xt>x(jmyt-kycQW*azO5!qb-MajiJ~EbF7x z+F|mscJJ*_Nk5v~H*ycJdd$=AUN-}8%72QcyoY0#M!?TClyFds(79q{)~x8X4JT36 zt`;pW-dpRVmROR9=-K}OXn*aEF52oj9(kqz09h1h3pch%;8%SNs||_LPR#Rh8I~grX9aZ1KeNBY z7`zwahQHVCX0Zzf!F4(mLJ7`6HSGTY6~AsxC&NA+xwr7u%o^v2XN>)hJAaxRbN%@n z+pzVooV;t|-B-r8Qo(mTR`AZ7MYIW?Gr;D&ms0TU#*2XVj|>>dI|vx4#c=E}@>Nu? z7trd%@f~bLeUnKs*Sf}`uIieOv8&xaqpRu?8Ln<+IcI<9J*uj+CCDHEr?K^+RH!>j zmd<|)W`BID0A{O7+9Dfm-J0?pmhR*nth3)d-bl0&h>%81&%uQsBpQh?043; z#za=-0VnB--LTY&MF`5OdECdhdf@E!1x5g55;9Lwn%A?qQj56ck;n&uP~qHaTIhE$ zUpp{T%D|t`(yxo%fME|;Z9D0aJ(k~yi8^{}C3V#+dk88znB zhL%UCPPV609-vZ0AnrK(opVWl1BodG#sY zM|5hZsyZgUcNrurjxarH3GP)_b93vvoSM#(P$ted00G^eqtc^k%BaRYd91C=b4M$( zTg!r{aM}s%Pb2AB5?r&mJBBmKsVBJ}Tb4P&$S0n?t19MoRKWmpRN!3ek&l;+pyZ0L_Rs{)d z(y>2Swx*gmNcxhXet$~8Z6H`cVU!&g(y>xfvJgnabDv7R6ydN*Zg}RY!rK!pQj^s5 zxglj{CkLOeHBRc-OCJly-&Y~2_+QO|06N4=PB%8&uiOxGK2YC>t8_x5C9 z?**HY%}Z~m0Vd_&$5V`xpIX{B`Im0h$vvv&t(Hm8%EKHH!%*4_X=G-{riDJcy+=9C zSZz1SJFqZMIjy9G4W}TS^OMq^*6kWQ6jIN@3UUQ9Wg8r|#g^2@&Agn7=QS%P0rre9 zJP+}%;`jGz6;uL8LUW&b=Cu?qtTys_%e|Aqp+Pykz%IA?$ZgXiFUzl<;l3TS~w~^aB!6VIlR zw=AIA6%>Pxm>nyUR*BUeOE6hHYH~?@esyX%mL(e(3_v)>4Nn@Pl^7e;{G^&$m1UG} zV4p7pj;6flO}RO4bwR}~2U=kc&k(>ZJ{b=(P@U69vY;#g3*zyB5 zNe4Kry_!-w<0We}D7I(8ATwhiflQ-P)j4vcsC6XuTw@iR zg|!-*i3>4CUP7F7&T19AP)JaE=jv(;nXt!b9N?Zfs!2I6a0b$UhPR9p^e5Xi^feY- z65xeg^gWOCt~(LM;cEO8KyG!seU51WmY?gu3gx(7S2hl_i`6MN~Tnv)W)62e-dhF zZr&FJ6M@>JDYqVmnpcd0Ntd~(m%?DdfWfM_cKZNzA1UZXRpbh}XLO+Km*!Kz&uRr{ zxlLH3XT4l9rNjgf1cRZcTWmP*v9CJ?_ zS-_So^TsOVFzy4M4{utTY_h-tcV@Zzoo})FLH_^*n$eow{B@`*szhxehki23OB0OO z*548JaUNrhfD7`1I#$VGVhLD_fZ)#N~7^}#OYoj<_Qo~R9f2Sn3h$Nh@5->n# zIQ~`Qdd|0Xs_HUc+-);CI8*!s(xun@MStQwPD{(_+F2N%mB$D>0a#a83lhomWOO|9 zUL{(NS8S!V*vW#%3%jC>XBpzW)5RLcpLoj~ZA@SwIT@{=5^KOj&_es07y}$**Xvwr z+cfgCka_1KxK!Oui%$EL<|0Nod}QaRG>>Fdv&`V_>D%+GuL?wr&Y}ir3br^7KMR zFiuNnk;P`+z-^x@yaSw6x32ek1;lE&!WKF0ibCbo^V^Ax(i7XYMyb823F5mSgxXDp zyW_1hPt;;*t!Hwss&SqTDLX5hrF{{{AD68a^dE_TXFFS|B$q|IYf@Z=g5#6}>t123 z{3G!$j#$2)^F|LZ2h1_+Si-a?vow_{!*p?UcdJ(#ZOy9{mKTkOP|8R1s63~}cAv_( zOv>XaX?79RVw=){xTNz*MHCEDXr!aPAqprwQc|92=mA9~E_kFD6TJsCccOr>@OUG= zH>k&II*+9tcpYd2ICl4|kO2~Bj04S8R0r!)OE3$yPd(|}mL<&obeaAU+tQ&Yni!m# zZ38Eal?Rhem4_JgsKNB@K{=yvu(+wC`B3C`sFdXM)YF}@fCdATr#KFWL6Mc2bypN?`(qQR&po#Iuul1(Kp2g!3fjEIRnHx4uFUps1_whoV{ ztcjxN(?~$VJKH$61wIO-M9p6}Lw68pB^rMXdjICz9hAW z?4BL4MborPEMP-rAIhA1x86Tmo8q7CSMhV>ABOFGH{%Z+-|Ct?2)<>Kg@q?0p_Hf| zVIS>RmZE~3s2pPz>Lio8M{U|$>S5}<+%pb@)f&;&R3wZL9krLNILx~fDF;hUH*no42=ONSz4Zghz z?OJxXod7>lJJJ(I+5j**fm$&{C%0s8znp_v7W0V+VaKg&MIjOePC*?(s);vSF^In_ z!7Aiqu4~f%7W^FX&b@B0Wuwe=>B)4sjR{-;PI5YM4SD3y{{YKW7-j9->TC4R{t4^* zRQxp4d<6%CJWF>LhvF80va?-)Ael~f5XYu-TGOxWB&TDO5k=RJDt0~q)IKU{UL6MC zNz=czwJ2o6+(wySLp}BZx4Jl_|N+-c#Bo>EIN7Bq0#5Mm&n4)YMxOb?dk|& zUpjmw{gwxX{{U(YeLPd9CC7v2zmjCSg#*B2c@E#7px}&iUg!IJd^OR3XK#htpNRYi zX(gk0h6V8b#BsJ^hB!g$2x`zW3bxys!i8uzc>osXM(# zYK86!>QSaX^7D$f6{xm>SF$eLlj&UbrPEz&xd%8qM?ESQr=WH}df4~JrE+r&TrnBW zaBHoM?t|qy$T`5Sc1vO&L7d^TPg;g;1*^Fn6CK14l#aQsg2wGafXsfYSW1OTjC{hb zTRzDTPr|Js%R{WRx)=pcNyx=(+1xV_0aB#(&o#+Gb+rHhliszg=T-qo*^Y;`Cmy6J zS=j5Lyvbji80%VaT?LUa&9%CKI#($T-WY>|4^L{p1?Y`-=LGV5=CE)z=R0d#)RStH z$83(3rS|CBCE7x_L!M46hPTvwt-m+G3o_3;QXXu z7423d)sa92l}O-pIj$YGzcCTFgX|3-+W!D6VMhdX0=VTy>D=q5TF0Wrey3q(QaZAZ z)p>Oj5oOO#aHpE{Yh7K2bGwt!ocxdYY`9RLqCnp~D#(!>-F}$CboF3ikwA$X_t+*9YgPypo6&q^xI(@q6 zbypg(+Rn}tV>^5OFrYSqn4&5 z(QE9ncQ_g8p7iT^M2b#8=c)dcg7dIAQWOqI>zdHEnV9f*t}qTUUHpnD;`+te(Io3C z0kCn@9^$P+#S0K4S!LU~u?~IzwQP$66Wm~H^Qb8)0 z3ar3>osB~5#J0nNK|eP_Y8!inJo%eX@l|Q=%%}Hw0lF6)(p2?!6RW1BZAT~%%ovsa zE;jpDDR|o=$!*L=-NUtST}({s$8N>!e~PlM&@wnvyaG5}3h9MA9CN6fY~}AFR+OBd znRw5C!m+O{#?loDQ<6_?_Z8FJ!-m1e2OCdc!m_8gVAuoZB%hn5b|@xr&Gct6JVS3h z5zaaqujT#Fpl2D}I%c-7ZT#YJs>B|+>r}p6%x8i-+C|0gih8DWWusjPQP3d*-v1D{5D^V!r*dFa`f_T$>y{wo;Pw?YFwc8q&G9g7zKpuvhA9CTM)JJJi;)e2k^BO*;*)sH*5u z%KA}3`{%tBT(G1xv>s>yLG|XIIU~5H0iSAB1D=0M31oy2M(#oBOfA4XVuDUFO(&WF z3FeUWr6b;qW`Tk0Nks>NK*F^&2F1&Bj11wbFc;+R&M}^q`qTR**x$FnG}Say z5B8MI<}-Fep!0W|0)RY&xj1*IsymFo({i3{G;_IzbM!nM@pHMfi1kuYW1~P{PX1)se)8ez^ z4~+WFz)=h~q*=!roP`QG!TRRD_S7}6h1R|})I3uTr99Eid2@8oGVRKcNHzJd4eDzC zB-L-%B`&VznG1CRoRRuhQ?-%3H7#2!<%HdPm)`uA1rwtk8@hOiYW7{ElYn8{wC>P z46Pd4!Wi`(dD9CPaIpUXwDt1lxvbu6x|F(xp>WsNvX*C^jzZ`7SI|}MQb{JbmT9MJ zi>WfrG=!4G`7bo_RIsP^9h6Bf6D4E3s(^%`Fw(W2h+z z%`FrFi`JHaF-04IQ=?+655G!n8Nn1VI&B*GtK^*HpcUF%+!>H$=Q#X*tIYKI{JAll zS8=0VmsJA?p5}$2jFGK%XZEO1?(#=}=~Qiyc{4)aF5p+EYUto%ASC0S)sKB{W1lhn zpz?FvdsROnMDnY+e2bZ5>9vTjQ~jMhJ#nh|>I;+~xwVPrbK4ljdG@z$=Ic``4j6-) z`n&c}@MKHjEl*iscTI3Dq2q>C8E$^H$%&t{rrFm;DNS7K+e{HgnNmhZNbOc5fucuX z+lQbYwboo{#Lhld10A}4by4*A;spW{AE*ha(1=yA&fO}}?T=j_$^2Py0x5S#50SaKi^Uue6@cRf&;2 z+=0ZZ8~N5Aq456zLDlz*ogxrV%+f|SF*)@W=tCJ6wK(O0pV?=~%^6&rbf)6IjMhE^ z==W_SSY1tM+53_W$~gS%&HPR9i&4=d^F)x#2WD31@~*g6g-?Z?bEQ(B#E&}0JJ3dP zR;IF&CuC(il;Gl`XdP4%r}3>!QzD|AP=n1TF-)O5icy*|M@j{_eP{;`H<_=}T#F_T*)-2fawzO!O$_R)j8bk^V(NJW)!G z89PTo>sh*9qKz7dAfH;*kZ<{iJC7&UksBD=m&896M{6F6z9iL`OGgg2e{6p&Fz7(f zYW3@%j2=Dsm*Fi3!(KP>74EO${W4!SPqUEmyzm*w<*}YK(!5W^c4cHsl)x%^uh9Ph z*vr6P0QlwbLs-yfwu&DR+FZwU`je?Hw#&K4EjW1E{X6$381h7kH@ML8e=1wwCtkV+NmU zNmW?#rOO^mF$9zES@w4S0J>tp0#8n~*4JlUCw`|q)*D-s^JmhSZ88ZN&(gYyEId$Kuta!%bk~3D7nR4uBM5P8;_pJz=?$5tkYQPh!o<{?%NgNq&bA{=e(#f0> zc9Cr^FfdLBw`!PQ>~aqT4oy=$Bsuz z&XKam1mU7XtYr2z*HvZ!6$B1>s}X8BkTy@LtN|(Ah0i>e6y%-9 z&5{5(BXx61ns+**QKO}gQwrG(Ksg!BNSe6YjlkgJHP0p31$ke(delpFLXMuiS1hQ- z^g5wgtqz>)3|J6JUAR2be`<0t+#kxhq@0!`IVPn`l12*<0plXGR5^4;s_TFD)b z3g9oV9M!n!LX$OZ!!FUt zepPU!9On#rd)B;HLPb{HyKx|a)K?t@>x9b#(Brq#wzT~~DddMk$OE7?o1(9=vaI`^ zTFRgyC6$jj9+e!#Hze&K@srxJBD+~PD@e@WPKVNo@5xXUly7lIvNUy7iKZ=b+jnDV z+A?@GR%rIOLWijIB9yTl7svaEc*DqB=T#tMcTd8#jXh3xJMLtQZQ(vpGENS7G>c{# z$r0rD=k=|~>_eO+d@e!br@dN^?Oi*Q>Q;<{83mpOqQn~#-A1RgLkTDFmx2JD@| zzVG*jD@Hv$6Y}7ywlF&rR^ro07%RUAoQ}UrUd%nBGgi!%1Z4(taoVKV6L1XOdY*Aw z^IEgH3WbOrbC1)#GFx4%A;4BoQ;L^OmZjLmWCgN6A9L?jqzjpLj(cwP9+jze5apL? zQ`C;W^_Oy`k%kqA0dQ%1F18msC|piX0ALvBe%{8YNiWJiTpz7kx^Pgcfq}~r$I`PU zm@e{8=D+|Rf~ir{LS0g5qzJ?nQX8C+)7qpAVMmatZHt_KHBuXdBq2gL0E5!1c%Job zbSsjiZEeb3GXO1&V9E3P*Vw~iH*uW&zCm?m^n`5!F8m-hlIUR*&OBjnP zK?k*3(k{eOg=4`rZ&|Qt@hD%Fx#EI$b}=@UVa|TFqiGkKgda+%P{;;G2&rvY$0t20 z0~>J@B9WduRYh&5rE6XRBzXX19jhg>8iJOi2`t8x3{noXw9#Qj6j9U#pdQ)9C*hhu z9MA&iiYX{O3UA0lV-%u+N_iQifr&*FQDKE?XiQf05%jFuy`%AXrx_xGWwF-GNm0n- zxaumDl7$E5!6P+lNlbt#=~;JA!Q%rQ0%_=si@q9wUTcwWUzHC0de^9Fv7<<2+Bh5< z^Zx(?T7uUXYzIsXn)Ho0h^^xQoRgB7!8`Nfj|5$4 zQqHL_p34YkBmz)@#eDmzW^a@Lm>A^nYoz#V;<-FKbu%lHR#@Z0fSs+4tIBz56)n-Xn=o zbt{{=Z2ZL>x}38E^u>H*p+XkfGIr;v?_DxcPu(}Abp_42yPU+l;Gfo{vm{)xI1Eo7 zohc9l9yZ`~3*Ma)2$V4!&h7v-tUY!7~F+mdj;{>5*Ow@B_px;r(*{;KBBmdl@50w_pNDF<&RTLqKfslI|7O*rhq7- ziW>sOx+zjf%{E91^yZ&wGR7P^?ZS$d+^&9d0QAjf^kiz8MEt#YqdBX$OAAPLxNmx_ z@Rc1$;Y~a4Rm6?(;Erpm&@R?VR1@=LV~XT~+IX!kF5}9WbB{w+Vp=^~+HvINh{5Yw znw{5}jtqfz^ccxCR@YE6Sh2|CipZYqyoV%?FlfEZmC-`zui6Zm!-2sArGAY3D)2}A zA|DC-F{OE1Wj3pIGbrmMpD`!%74Y}LzlSsYR`{Rc{{Rfz5sSN(Y02uar_AT_75aOr z>8P&O@Pe?$qBw?gwNzk!g1r1w(#-3i?JKl-rN)!I9OsV5t!GJSMic-To(MeGd3|JK zd;k}=0pyy%yRg9fx$o1O@uu2(9^59kM;Cu@xtKN(o-p0(oYXDUkVeqMrr%FW?DZ>I z17lzj^yjIra{43z<5of21Fdr}dsU(6MyE14i6L)0BLp^1IHVAL{FVeT8(8(LS5aeW zTy6w~a=fqj)NVjk3<+_Mm{s#8?o(G+Au#k(!H7RE6b;F}S#Ud($3E3+HU*;_a7P*G zO3@e2`2z*c0X$}@O52I9#$53;F9>sklh(Zd0OBeozL@2D;GBEcs3p5g7{EB{K^O+O z?})lm+*mLuQ5a-nr@eR3w=!tq#9x+IK5Nr-xo>Y<%u;gScz3Sy)511F(VF5Vb=#0} z(zpCO;aF|$MZ<;IIpkv><5+$#@d{dpNMEM|9C2SkqSX0KWX>nWI$oJ>N0AXm?}Np1 zj{ptFPg7bNh3UDGj^ajp^{Vm2WjU$6%~qNf($S^+qo=Je_GG|kZbfX_TIBRDz0F>g zV~RZF3~)W^*h%&|H?(-i%!GT?Ml;X~-@Lk60T={T2;)uur1lh_kkpLgr-4cok@!}s z+D3YgwQegIN{p^W77k;d5x1o;l;7R_Ypu4^Eu_HMe+t*K(d|)z@>3YbUW*CL^X0RV z`YAZ)flm7j#N*3s_Q_Y=hg62pVa&hTMES{+Bj1kNT01=Lrn|GuIT!r`PNv7)HjjTY=1lI4Ek|yQH zPMOV8WZ9hMviU_=3>xY5%axJ>j5_!9tozG6g=Jh5?M<_0h4Z+9>52r)`n|6EcLV|m zz#vzz{=W6@JsXQa& ziyP%Qcqd7hKB2N|B^4;NCv)|!ekgoC@n6O*KTn>*<4=P{yE=WOH&c%-F_xA>y@@yi zxSxdDE&To}*R;!D72WuEM%Qm-Mwo7LV}b_J-HIKjF(uh%`$mZPwYR8S{?coH&*L$;$IEj3tzEWINx(_hvsd=zB7-dd|hLCXRF-m6Ij|krKq@(VS-6Fx}Z1! zx2<$3b4KS@9k)JKQt}nl;dowtYN>T<2_Z+Jz^&7430(Yy0CU!vECN6d!bt8a)97^1 zxy!Y)Db6v^3yzg6P~$s}-u0(Ft1O3&*&LD5qZZ1HcPStaqPItzDQk3P4B!{rk;gqT zPLTve9E^`zz90>e*CVZ0lGyhn2Omt*W@|-uWX~3J+!LJDLc2yXf2C_p8DLHq1F5P~ z#zNp@fzJ*lO#4l$9|ta)yVGI7O3zj)^y^}y>UJJJPv47z&mk{oK%t9=bQoG08+3rHC%FYkhAu_L(iaO^fQ;Dh}t^{5KpJ_tMo9YCx4wTSlj zGz5Zo!hjo~C%s7=ZW%W?V0b78YKk~iY{57OAfH;%iV^07VsX@*RefH@UfWX5oD9yK zgN{JX4t?upD@+iiscyU+ftrrO&*UsZl^qT_#dH>y;w9R^lx!TgT1t)f2U^QhF?7+i zlD{&y2X9|vRufNPzc4>{IbMMJR=<+C+IelmX+4El7F@AVH*?9Rp=2*^{RpJB?Sj(+w$vH5nW;F5a!R!rzu z1e}fm0=KVX%az-?G0r+>vMv;or)GJ^bNwr2LdwY*DvxrO#vq)PB=xLs7K1LEBCZDR zx$BDE!}*-x@yhyE4~rWX>x`l2oPL$hiKWX;v!;~Q?0EI{x;b&4hOy>^E=a}&T)(+3 za^RdC^c2DKt~kN{E5qMJb}h9lqmTi>01m$OIU-~@Ib+_K@f`D#4;ZM!ZDkldbQz%o zL{b8;i~>Drg~l*P1EHtNLlc4Zs?_u*fkpD-)5}(Qc%nB9rCAXX#Zg7i$tad(`tV z$sm3;QO;Yh6-kta=QL0TD4?*SgU2*b0ZEKgg(WQjD5TFyQ_mD23R+4i+yan{($PhL zD)x>Eyj&br8oQ+D?Lz}3cA!sVqmY3R=kI5qO3J)!XB~Yy)|AXb5zq?C*w;64Myg3> z1By?%ncVn3*hi+@q=)@u7h*eCa}wm_9HBm#z^vUO!Z@K_zbdK>3}AzfYhDD}$agUq zA_N%1_CT8j=BZB>;d_#L5!w(5~a&?hnmig}2apUD(zt+5` zOZg#>3II{oy|?z_(EkA88SzJgba|x{-it|YXV`M6S%3h3RpT~F0;pe^MlcUr>9(g_ zWcg!rPA$7~%t-5+P~f0kbM&h^W|=Ofbp@;n^35xSSk-fqdkVGUUkqwK6V!gse+QE$ zP8T7w_>T0`u=<^s!k?1r>6EDb-ZI0Ft$Hw-?&M{Fa;F8{e4{nz-w7>}>T9)?S(Q*b z566n{buCsnWbz?ZMjZn6A6nq9;-zznZql&Jxgyi~E$3WvJyd-Kb9$A;nZJ(s6|Ct9-3UL!U2j}4+4O5SFu4w6bfhpiYTT7m3J^6v=lfe83VmGl~}Go z=xRh1;v6_IUG{OCe{RWsOj;k&$UQ2bviZSc$pZS5!<~(bunDFI(l`i z{W|1C*<+7NFE5L~PBTsDXJgzyV*PjfANHE?Q*PQWVteZqPZA0wkSwnQj?5X4$ z=e%F0G@4_`#1H}7k&5fBkdT}V`s0c<4LU2ENdf-=R0eQITJEJDT~11}=2kvwz1P~_ z##mZRVTdX^1MOZ{u3yP_I~Ht=`qzK)GBwlnnc?ZtCN zA2%h-CSfEED{kAzt!rA?;X{#(9M-IQWLDY98;5G8eR~`Lg=`#iS`oNQaJIt>fO_Jw z?=OoIrMdOZR=K`1mLMGCgH?|_p1$<2a*`)94Zs7QIH{xL3=f;Rs_3Pd0n)GATC?DQ zbKa)RTLeLmIOC@^a@cP?f(Cf0BeU6p#GLidb5^b4!*W2yQ8%`wn>hA?miGp(o4tS& z*FACGstHjS3NmRv(4#ry{hampp@X@rZ*JE|A9;@-jdb=JOm+|kayNP&zm0O18kBb6 zGag4c2CmEEC!Go*+zw6~(v#Oz7H-Ee@gC(Qo+L)yj^m-OX2w1j-sd`&ytUyb|# zI#hOQBL|^4>6#1KYDs%Ji2|uOBav9sKJ(L$TD5sOcI%Khsw_r&VvV#MQxNcIJcIYxsKG z&ASXnansteE2Qx3UQ`lFeKA3#wjYi$%N$oR52=g8L2IK?zP;;e(s3yJpq|6hoyhY?4q}$p zLJmO{t)^}nT88x-3>2X~|(x4gi?_Av0Qd=F{NCTxe-4)GquC={Op|qTixE{3o zi#(`w!0n3VY;PV19FQ|zE}y6^#ubl4ochyGLRmeWZcok7af-y(WAd(}V5b4=p?LN- z^e2T0t$WjS2amsR64q_I%VMwfKQ- z*H0u?X5r&7!;o7ow;XaYT^H=Mx>m37U&Pkdi!7SmrloIkS-9D6gT06Ht~0~aO{4rv z)e_P}35w*&5eJ=w=M*J)K2sK(ne^7D@fPp)J@L-5dVCuk_P!z0C6i7!ud~Z#BnBhC z3H)3n3;I zB7^{Tg&zIuo$y3O^tTOyH;z5P>scr`tD8}ZjEzGOEDIcDa-*lxqI*ynqWr-1z^zX& zY2$NFSv} z*1;T+$i_XZr=^+Y$=+8+Scy*nW4R}_SDx8?&%873T9Pje$2*AtA8N1Ud7Fpc3`rOi z5qs)mO$ZBsGQCLks#8E6*9r;a0~OK#0A~@1`h)47`91XUk%wE(cT2X=$;nUb~ovHW>;JC#R)2Tb!>Pcjv#- zv|h~TZtM*4x1bckY)h3m-JFkl#iO#Ew6RTX&N4FJ8;^vy4KI~0%Bt7(=wU91S)F`Q)M+PkeAOB|iM69G!7ZGAKVITZOzKE z^UYAc(9mQk&wr(Q99EIIJnjJCW7ewNXt4xk2yvc$C{Fu>iR1SW`D!;I#ySebzJP^b zR|IsfqWajo6$_9FI3AVHUB&^zjz~Dk?O$E&^gJle%)~h|0IVB#7(KC02*?7ELLN>J zCz@FSW@W)3bvX5>#)>wgA;OG&)vRgRT^e)qXe&YhBoaw(ndwdub#8NxHuFgk%XG-j zI6W!EAe4nHK;u0zTSA?>89C@pX$qFzxVGb*R<)x5?a1f|#Gf%3BY}?9t!|*mjl7eMrzW#4NK&L7{CvTewDdX+9uldr;NX#;QT48Z)&+D>Lv3HW8nE=jsoAj0%8s?sTDB2OWPyRn z=kcy-D?6=P0MalRAi?>7m#X_=*4vPIeYk# z;a~v{*-#H3{;KEiCGtX?a<~OR&o$IvL<=w{4aoqGb66KKc_m38t~vwx*71n%)aS1X z%+AE+w{kiYSQjd#iNhf|&U;r$bh|hO%X%M5!?=XZH*5eC_ksN@u9Dp{FR7kVFvZS$ z53jv*o-c(=C<2hgpO~L+E30J7o(h67gIFFfw=wCfDFK!#75@MX@^f7H+I-X{Zidun zYKb$zH3+<$rzG+i=A8){$OPx5YIx61YkfvZ6;GDOa{VhF)a0BK^skLxXScaKw;qGJ z^s18g9DPBlrf{I=Bi^dJZztdNqh<{ujCTQm0QRcV4cN~F)bG#?;Coag;jw~g+d-lR z`@~Qkm%a^HHrx_=R1Fyb`+Cy3cTBSd*=7pduhOhdY_j~r)6%mC%UhZgM{=eo#{6(i z43@hUH2c@ExW;mX^Y2<0YaPn@u;VBAYKEg_A#*C$!bg}Qrw6&>yAKL{ zI=t~VrE6hh47!Eo$NH;#W!%NPXVSi%(m!OAYpPj2!^Vi9eXZ`7<$!$$Qhh6=`!5kQKqM@vhBb~`;dFO#YWJ_NN-NQGFZdG+RQ7O~l zJLHLp;4$f%_dO@W(0FT3c&EQ!zi}oR8pKdt=vFTi& ziRIL9+hmMlg|ZAWDR0L>3t3?yZ?_HmsU$*7n+I~M-+V5veT`m%&obtqzUSV$$ z2XX!{TJ1k+$VvU9wWuU48Vh((?>RZ!pX*$NDZPL$2Gd-xbJM4Y&N6*-SpE<3Ww(Z|`vFC8( zf<1nfYvMnTY`j-3lv-uGL1hdmuErpqV-A=dKop*`u?qW_{u;@3<<#3&@cx!V{D9F;ly)%bbg`-5w(>C=OThUzB=9*zxu-)k2FNn)1+62TOoQe#tG z^<#T7Tehbys6JGJG8FTJ(z)GGEO|_N|glLi!QfxaSM# zYZ*4qTKQPdo{X#b8s;yfJDB7yN6ZQ28tSz-1h&vNo;M2SH4KCsPnbv{f%F~gj!{r| zJqmJY>Pe3lw)aVIZDdp_Ua;r zNY(MQ@JY!B&{MDG`#rPoZz|h4rEHeT#wtS;k`aJ^D!*r;O*v2ywtM25LQKexHg1Yd zU$xTYl&{KpJuzL5hu|6J8{H1x_!ZE}q1xz{!RJtjI0W^pvWwJ?ZFD%h9}T|U(t;Pi zAJVV1R@!_$2I6=<@lfjiD~2~IY^MW^;djkq5ZVLpFnL zG-cs@W419>w#2iH)j!g&gJ9qf&YLR~LC|{o;;i0bZ(DCfJ9AmLcL2L`eL7V2(6XGb zxsN1(YARm2q@#009cTi8F-khq1_Wa?&@eMk>PV)JDT?Ei@&KnvmB{NzDZr31*Xu|J zA>0pR>sKuhHaW?vaf6n~&1hIC-lNynnJn9lSz`_x01Rgtu47cXH&;yA$Q)+6JNtoa zVowTjz|C?yixN*<)T@mOgL?own(QrN7TRhIeg12ev5(B1N4<2{cLVn@j4sd)XzCJu z3Kv$q?mQ7xO6?1b4sp$I21%pH1+Y(1S@$pl{5a1_d!s$IBDav|2d`Suh02h69-{`c zRT?~Gez~jA@^hLHT-Snr04F#el>3WBxI#b-aniHmVls2|=C4C8(mHWeMVW(lro0Y% zu6d{0%jL3;K^4_pTBYnfD9>UmpS-a!z856-z^Soovp1l-^DR&lyN-jkMS48g{S?-2 zn?IC7oM3dVONJ6c#1K1yO+MsFHhl;C7G2ME;y)31YAH4iV@aAdE5R(hfm8ngV*#pt zx-hFGM`W4K@+KI3hko_XyVL&+GU{B$Azxpk>rxz$Rmbq;fo*2v3?&R8Xopt z>%WnXhOK--jB1u!w=b3xDvB~e^ri3}x0B&pa`{$fW+S-gp{%5=j;JThY)B5x1%f^a(asf0xd!xGu-I3lEl74X1r9dJD;OdXbn ze3tvj3ZNgoxc;?T;>iv&gFP!Px#5=m~E9Ar~ON~+oAy5t;IO&#!BmEnV9U=xAehu*D?IusZIc9~9Q*42b6Bn^{*27mh1o7~Z)wntN;TYy6aJBI`??d@KJr0Ma=9A~b3j{!vnq|MMh1OBsB$xsT}=pWnFa{oi~zW;1&1uVkIc+>5zykF2rz=o zokjpBky5HSA1>4_(6aRPtW#~=$?3R}!mY87%B18kLQP2a?JB+(1v(DocB=|LMr8^H zcHy12|F0stKkT-GJi z1KU!ccb51Cd=Zy95T60IC3v($H zs}&jJu6tIMt8M|f9FdA+TA0@?u2>xOsn#PC4Z!@z98}JtXcE^$O4>kGK?H(+nXRii z{J@~+YWjBetQd!uNFePEmC5PFXj)tZ1$N-$Ao`l-=SG%&PQOdI0!0`B`;Thgx4cv? zqn0cKAnja5z3$`;+_yvT_|}vft1l$=<2m)LB#T~WVFlti04U({K=1EUo1-%2akw0F zT%3A|+wzsl_dV*$>Ws%Nf)5#9#-Y11(z(z+pfShZUZn6om7jHXv9l6(x%=BqX346v zI~F@a`Y-dWtK0qTGFxw64O~{YY=)B1n(lceV&f`=5L*?`PjDo8BXE7V@9k1vTsds3 zI)FzFRb;u!NCM%B%N6cDt9Ue)qLs8L-ENSa1`-9p2C}YEi3;2hdyYT-b*V1WTW;jX zBb?+_3DawZ#~ctr%GIi=YEy${Bu|v?Dn<`Zrn3A~7@tACKa)&*urqg~REyP|%t!|fUzzxK50I!K%k8al3=3X_G4goAV z=CfRU2WG!ib_EuxeGIRs$S=zsWF5*)qx~-D$x0n%)|6Yz*je*uou?Gd%b;-*;0{OmtLUzk4!d@~=6ek5pGRKR&t-XWB?-3S;K z&$cV~cf&si^q+=49@O;PDOPM6&h(uw{{Xs{LU$_3j!kmEv`4~E z5?$!SS@4U=afacc9)Y+1$J$RgQGn7DeHPI^>Gzrxyg4 z=Nz0|wmoA|@uU~GJ3P!GVTFirM|!Dyt3(x&7cm3d8O{$wTvnTHI!?;5^PCN%kEpH5 z&{)Q@O8Xl-h>+s|Q6|xGwuk12?E!w;r|li%Y2=g5D{vyn?S%ssgJ_}f4?r{c()>Zb z8mGn|8)^!{)=f%K8G2wG3{qR30}c*3#dD=|)RxH)m}G_E^VhXT5AhMtKssaIqz(_u z>Uk!S+l-zDdeONr-C7;r!_gdRbCNd|9J6B;wX14{B4tB?{7es8=6oJp#WKVhn1O}H za&ywJYbq@yf3*;sMs}L=F-`NFRTsT;CjRH_+wSgP%wW7A^zEAR4;^@c^&6ikIU_k> zPI2vBZ;N&IOKC1-AR_#TqxioH@|mSG%JMhfW0O~hrFYFEvV;>{%w-f(6N>as&;t~- zQ9=ODXrK&HOah81pasn(6a$(!5V#$v+qlwIi%WL7eXG~4HLC{fM5sx}deqQ7E2?;( zRJYS~n=6e*{&vK6_R*JiKEP3JVBc#mSN>HJQ1V2og(Z0Mq4WWoRIOi45-&_y@ zX5Kl;Bi69xzNIG2o9Tkc#n1vc2R$p8)TRK)5V~&1&DOTHIaxStD97GB^{#ID_DJBI z^ec{l*Cj=%+fG(7E?hG)1Qy?%5ztjq;1k0UkXw!vdsU0~Kf*V2oQ^V0Qz{}%zDQA$ z19U&uvGqG*?zAU_9__ar24j!N`Y`&|Y)_q|j5j-g!Tf66G8OB+0UQOv z2b#4Np8r}-GnS0`R{6ZyODh)l^{TPypJ{M=lTqAU6beVuuIU=QFtGCmMtU0d zk>tCxb3yPxymdQ%P?7<6-fVS|AZ^*g9jaX6n8>nZxaT zERVRh?ZHS&F>x&<2eTG3`~MH@?KuHKm&7S>st0=V&!YRPjU*TZpXk zWnuFYI0xFXb*%`j0(dtS1CUNgtXq75K_pa^yO!QuM#LPG$v*X&D;9E1Se{I9K^dxj z%>|?elYvV`I~E3tD4+$!1EHXr2NW`FIR<$qo}g}~0#~+0Dg&J3npP7gjaauIm#u5r zE(aqZdscO_Vn9bVw{8WzZ2f@iLUtj$nY#VJbx4BazH1t+UtBfC%dt5FfmP|6tr4Z5 z#9r}EGDkdB{Xw_gGh=BTy($d|2;-Jae86$_spJ__#N?j7l+wAIdXBZ9%NRX6in0|Z zQ;g#ko01fBx7^k1SpmY3c<)BU?m;9R~TKuY_)< zRFo1vLU|^>xbR-7b>e@7UJ2AF8qp39{($JjTXFIXaTC)tlI2a&w&14&Z8MC#N`iiv#n?^I&(zNtB zS~jic45fN|`qkB#v5mJdJ+Nyc8OO@JH#~~CW!|~K2N=SdT}azf@Y)$zmuBawz|Xx% zueHDjX&{V_n5uD2j!KZKIS0K?vXyU`h9Kkv!KOCRX}IADWdLVBwLU`f6r8R(>MEK@ z8FB_n>R!0#GpMH9Q=}yGj`w4UcsUY!;b6N6`k(?&(GnG9vR_2fh+z@feJHMr8 z$syRdDo;$F^^~r5QGW3R&A8woQ_xfjzr6XBw>T9frCGs0HaN)RH4C;|X~$fUJBsIR zEe}>Bk&Bi9oP&&3mYBpo*B}AV6V|eUS8NV2GgfUb3`_~Z!Sv4+oR*pz-p8Y8a+N@2 zWh@Bk+wu7JZn%A_sP(Ue$+;Yc^)^7Sc9NHHl z#!ln)_M}xP^zv-k6hVWiO25psMCui21_iatT023FMyCf-^jY zn4Bof5rdOiziD{~4hScwa%)#kjE$~Wp~>2J0Bi15T@MO0w7GiD&nKW^fx)edeK-KF zLgWsV+c-nGBb}p`ZZlg}&|yI+3jY9m^{gjdwWB&6EsBFlNj8v#D)ac!CW;12@q@yi zpr1hmLz1H4mj^o!d0;0y;SqXOhy?`7*)ncN|{!% zs;1clilpQYIO=oFa=txL{{RS{q{MF96CMUDt(|u&s`5xbFzH<9jiK{ADXFN*Re_m- z?~h8(rEX|i=8&Y6u6*luyWkv?kO%~ORvd_8lOxu;OVQ-pBV^!?GxV-z;!W&*b6!4& zV%!qxk%0_&t&Km#cUJDDW^9g!HGl?ADtmazI5`8>f!Q6bJ}$m>3iBBg2j!4%$LBuS!5nPqs&E}l$jNd1y@Aajy(|0h4XwN(mPLf|RVTU8VX@64*?e zaz}2|T^epxqKYXLCfZOjMHFlSMHF|YfGDDh04So0U=&eBAPOj=ivXZzwJn{av?OB{ zmOAszYQUvJ1;#Kqp`$q-yZbxawYIH$ss$c$#pJ^w>WofF{Dpqk_;bdqQxvb|#xVE>JPcBK}G9zd274)w;*0eZvuNB35 zwul)+258i8E$dw;#tEjg)Vw`&0y88`@s>GLGwR7GZQ#>*=95c+#lkQD)TLxE*upD|1t#wCZ z(S1ic7EIt_xaOE}I4T%)`c#r~oPIc}<#D@kBp#Tm+(&=l4N}iV({*dRwO5sVv2F?H zc5-oC?}>GpHG9df=6#FH70&=wT|I}8LB`SP{cDQx_lXRSY#?9<{Io0ltIeDo>e$Uw z=a-Sr_>)>Xwc!YVaGWUh_pE&8iU7rTMJTHyy(E>8QJhgh8K7ZB6jQhb6j9AE3MitB z08yOMiZB2e>q!Vfz^htx=H6}Nt}#_>LqpS~)b$u`p#i0pf*>aYB;uXzsHLj0dGDmT zx>sg7$m`a=i}1`I7}tC+;Q9P`y7b-~(2R%5)29dbOxv9lH$um_uN}GYL_Qz!Z}v8$ zt!eSk8z_0L)xWJMC}#3 zFo$+_pS1!hwQw&JA-qh+()PKKbcgb?{NUcF?K@?DhO>mDEG|jDTTONBJFBwNHYP()D^*Q!6UCH2g&lJ}C*z4=< zRc!@xLM!D^0m%2OtEj?LsO!hQVBnLEgS9zw20x`PgEo!CM;QYnxTdwzk$?jC7_7+n z@6Al7bAm~x-(pE#ssbaT6!^}HH9z#QPy=LOVQ0d4W zYku2aw0Q|@cHGC3#-OvZvuOBVoOS1|NhP(vn~2o=mZxsPbGp*3EOm`NnL$IehEtF8 zn)6Q*X(vX#bsVWbDX#wj!o{tuZEAH3Lvf7l=tVcFo~hjPnOw-^ns0CG zLv{RVDIEbt6i`rO6j4SvrXfJ*tr+K}B`S^FP%DqlK=!AqN1& z%}whFJi9D)-OfcdlRXCNo(BYo$=IWh{=F-q$pGMXKD3dOE4*jQ0OOP1k|y%l@_h$1 z_x|pBcc{)=QG+5lH|l#OL&+hv+><2TW$BwV%p3-Lz*k#zDhmjL^{ojxt9)(Yh7v zYl#H0{GXwzK~Z6|iLxK=n{Eygl^ zfu|PJxThP&$oF>EuI0Sa-uX-@ig6=H%laRsb=FX&*MS!n&uz?-^UzYe=wu{{YHIkmNG- zEzNsaiYj!~SO9H6lD~Y>&t_7}_BRMD1yp4|4sLKyUKD0Kk6%udlPRXOM^Kk5mckL}qOZk1=`tG}bT!IBf3;KwJf7WaLL0!jC67Hw zpp_G)jzG)zk0U&D$E8ZLq<{iBI2*g>uvP*i{iY*n#zA9n5n@<(bmA;(i;W&i*R zoDgwO`$1OD?Zh6HksRs@jDQ!Q$Lmvls2IyI0dc`62kB1jAW_h_aX#_6*l;=?wUI5* z-dBNxoB>eWUVOcSbmzC@S@K>JCPNIKGf>&J6=$iSZgL0%YUjUtKGM9g#t8rbIn8IR zyOq#jZK~va?p!IzP}n9E0le3u^4=xT;Nt^--tG;XJCZ& z8;wJa&|M>fv$)*Jkf3*5@GGO!7%H3vQJfTBGwv&mvUt@?GklrH9ZqYk($AC-=cgHN z{{UL|XI9%8Mw-~^wC|My;4Vi)*0<~!V1hOtiny+B)m7LwM40N??de-qvJ_Qk;X%mf zCmpMu)o)Wr1ax+8#Qg2)hQ=z(#136?wez@V^{Q49@VpB zINGG=Z%`Vz+iQ{LXL0A6=`@>`+qZUD^aOOL&K$cP6fP90lz_gYwrc&k^7gOaJx1?J z%eQv(5VHmt$-u2hCD?Zp&!#)pZgzW`CEU=p+6Wz4x~I3TOmM`U0uNE!+N;1CLP^0) zXO7inNC;d0Sr1OR`c^Kp>S-8_ZK}BowfdZA1KPR&02Ct0;k{2Sl3-=ep+4S~(!7OX zBqw5epb~89Gv2+)*|Vd-!}3I1m~q& zw1{VwHJK&QB;Xz?7gLfp1Rg1D8ndW|#JAnRUb*k|r>(GzCR`kHN$prrc!p4RvA{h@ zs~6Un7n&e+hx)^rY{c($WDlnkWMlQvjgRMF2ThEHlv8d+@J9hs1t5 z(KPAt_E)%9n3K^I?mx=7SUzSM;}z;Z3pClFnq5LBWsrQ4u^kV5eiWXXob_Fi?*9N5 z??1HsXD#wDXj}wB4@4LMei*Ny{{Y~h-Xo7m_^+th$v(lT>5mx=^9Cw%E9E;_o>{!> z!<0eMhg0ibq3{FZ0{lJk^g8k=mODtK{o5P|EVu%*jJ4)xn%&RPKa9T;ygT8)4F3RV zYL`I;yQz*9`|~*d5nluRMfjnsd`Z_IP`D0?q=+Js@{q4Vw0%0&FCX}iSoo3R3!PtE z)z!g}{hLpPcEtjA1JwGO<66qzB2U_-l}I@OxEb`Wdez+h3QLr;EFj9>b=Yix2o1pc zR&Kj-VPT@)kjliy=PEKu+fv7GX$T|B0|O%`ITefJT|q3oGkq*-6pMFE5yvAH#qmir z5Y|Z^N8y;t>CracTPG*$TWyri2OW9uSy~_NG|P1h_mpD>v_qC(n}g_U+(_=0JDV7vbMIZ_&qJRU)qKYbj z0L2thjMVi2qJlZ1orEd*O>}+)yoS$P^CiabCP5iL!uxnN&EkxZK?jlPNuaT!mh2^G zk+Rt&wtAmhu^e(6!EkO{c*Y!`oAa!}cK9NiXLH<&tt@3}UiUQoMKpJJ>oRih7&08^ zE$dlhBRQivVof!NH8wOrIOu9cA#gfp)|rlYsZklT(9kWuaXXmtwDVn6%4LWsGIO~1HH$P1?D;IR0mc+@ z?NIeb@kbkVW_GCn1B?(yO3iC>rK89PsmT1RtGR#-mI~#;2OX<2SWsmPF;k9BS3_$U zVmDRWjzfIS*i!vA3g~X?@$JEgOm8ygDwk=!)lz4e_Erc&O;oxLBUhV6)j7cT)j_~Jawj> zFT|HhRIE}y@0z*G*)bB}0glz~UllwkHEk`fqC2HS$lJ;MYr${P<6#?u8BQ9#T65+{ z4M;dkQmM-k&w75+MmVU!!+UyEk*`ynpGxSx*_T1eqjx=eQ%M1jH0|3|p4Ar{jQ~6D zwn(cHDRaQ&b1uMSzR%SKa zD5JqY#fp-B4VuzSs4KVW&$Vyp`cmV25s}XTVAah+F(G6JZyuagwq&1k=FL{u?056S z&&tQGRIZ!H_9D+-lN^Q|pL*tM4yf!DP!4FJ6fGQzDFMi!L7Y>uoMMoSVw4`Hi-4)t zu3DgT$j5Ffvh}Sy7{>e)iU?)&D-2D}FgdPn;!`xt-ln#7c}!N@K{+SCrC|<~1Xob2 z`fMaIZs25QsYW-xD{|W3WLt5T>&;fZ^Z*kOm z(+##UZ&MO5QhIeYjbU(X^#LGa8BTch9E#i2atZhSE0~q>H?TaKMaNV2KlUW}g1Xnk znAdS>+EX6UEqesFgnu@Asx3 zq2~v$(zv*_1H%KsJn>o!sxl|t$@l9+?2Mj_>sIg>*aL)C$i+c6u85_G3k5<-o0_@Q^z1gY$?xdp4E+xxR+G#$OAa(%|Cf% z4A>rkRb-PYMn1mvBzt7Z-@7OL;+3wAtV|zbratNGpIVVGS~f>qaB+ZY6_Bi9ODM?a z9MW(X*Vs`MXCt7s)k7dT2cEg>S}j?wa+#2)_u ztx|$$;+(lz*S@$_K2yjTJm-qbyVn|Bsl1Xq`c@~}By5cQsxj88%_+#|Xy+KG?9BP^ zxu>SwZ#*^}bH6yQvrW6k*$@RMt`2g2YtA(J#LP4Dl6s2k^r?b2L$*M`1EHkbvFO=! zJL_rHqgD-xGJ12s_4KWq34kg_dln1MD~_?dC{&{z=K~q*>sV++uMn&9XdgYlLqUWPlMct>Ab~y6}OD{PC-nvVWk|^A#EN}vzm6dq_jRJsFb>on0 zKW)sdbEoRpS2&GY-+H$jv66Rj&2f5!OlD!bw>9W`m60k-3_ox>S0SiaFj)ZvU|{ju zy$V$<)~5wp4|9&b${Z1rImoPQ$^Jw09Alsr(qG#F5$YIlO>-KICnS%TcQxrkTG;a? z8$Ak^_ead+;En}#8Z3mB%Mf$HK9$JZsS>`c@vB2xkBRis&ts5rE~(j1oPo8Ldqdv2qdREC@pLsc|f%4tHmOf1PJZK5O(UO<4KvD9yyY zitPM5;jpp!(tv<;+&a|W6!4GQTkR7JM5jMm(D84GZS>_f*3L45y%naXGrQ2s)-_1% zA!S}M#~tg5y1aX-Hx@YUPQAZt**7u#D!Qp=z@yEYC1fUZN(OpWt8F#rQtgzDe)AF1 zmOzo@L^u1IH4FAC5OLD1*eS}3Bbz!YZ`9t9^_T|inWqKg1gLEumhXh0NEMKB6p)Mpf{%>pzuTRAUpRw&~x z?m{R7B(dNOeQWf0Lj9fe&kA@C!qWG@jil3b)oohn1<2bMDhchD#eRf*PVhdP<7??$yJ^>OO}V9qfhg^f?OQ@F*GG|w zo#o1W^W%?(S`~~@HNNLnA1?p~2f3~r{t+u{c->ZG8hzl32j(li@yCSqD-BM2HoJF> z0p;ZIK<`{F{*`@ZNNG18;UoIj4BVT$MlexJLkm#T;)YBIJvbq&GAmKJus3$C8=XFG zH?b|;0g+IP7h*>sWF8OeUUbuKniUeym2Jhq707&6ltbX_wjah;GmhCc=y2IGzDNTc z5=SjwbMf6)*TVLZf_F`HszDt9=9M^eR7KLfq<4NS_zLw2 z-;xFxdL95DTJz^C$)WOfAYi8m2Pz5mIQOdVPa|p;Kz5Qj6t8dwBV!3Mo-m|WO7MwG1L@EXzl~72w#-ez&IrIgaaC*jmi*3I z`%ln8O5DmaEBPe%Zfn1WbWpknpbvXOG zFk@)hO9%VIwtcJTFN!)udS0%=BrCm+?DVgwnidY}xDax4-n>)ePK)P8w@SDKo}Sgw zLTlPu;>1ImpEBrphBmhE$C{op3EWRU)f-`0f;07{RSJ67u8$#XIzx~#`qH9c1Hm|^ zXXXHm)vbUGg~(oa9_)qu=n?Jq802@LO?4}<-^uxj^`{~c z#yj?@<3WG{@18|Ssq-9xk6NTB=3CRF%%B2TXSH|QG{W2fKp}bNxXmE}l}7;fuHMs6 zdxcZCU<0rBs;rovi0bscb|15_+7$Ey9M#cwE<)^0*x+WlD{VSeoDI#~oYwuciKp6S z+!n_Go^wWs$?AE>#oaW6706s;f_-bug?jgoByB^(_cJy(DF+_a*RIX?|tMJmd4K?t(nC07*P&wHN3mv1Sn^oQ{=lRNNF5z$5jjSvI!d z0mr2zAz}eZ1B2eKLg)?)WS`Qh609+fPp4ees-awG?=Yc^xThyTHl5zRtMzmCO7Uc; z;y$BiD`pGpa0YlAhkE>7_C;i3wbN z!aM%}O4c$-G|miE-6<(_J=6BH@EZ8bz`BeP!{#)Qv}A+BWMc-u4K@8He-CSVhL>~- z&u2Tp;~3;0s(ho9f`{voc-TQ zbboj0#YK`wCkNW5LC7bi2sYHRj7i2g9qPhLFiUViz^dtx3i_N>(WxT}I26cwmQnMM ze_pinBMgD}Pg79>KqqJ>g5UrN!EQeq1d(TPAxPkN8L5%^EwnT7flv-u9l7J6s|a?T ztAn0uS)@`-vB>$tlY#ehRuqzhIT`%wxKWIQgYQ-Zc^z?)*0RwZaaJdd)j->o;O9K# z)aVpoD8nAusA5&vI-jLY24Vy{yE+x^bW7!*Ec4TjX+{un*RClOKQJF(ttsEQ z6;qHo=Cv}Iq@CM}{HKG1QbxgC9sd9-gOQ49LYuc71JL_Z(U@bM*yQJ>Xp!dB-pp${ z7|U`q+zP8I{KFf7&q}c>p zJ4ojvwQ)Ai+lMFWD^?luLC#HbC*1XqMALOms+n=f?bqvFE|+?N!3-B8oY$7=`k;tq zum~IxTUJ`;9ObjlNIk_%yIK^j)b=eqQ&v;}uFwI_I-1_KyxfieUBBM$E68koKz9aa zEV;_3p{>hb5j#4S`A&H!xUV{@ce*_aDISd4fsBQQWgwg~o=G0G*SlAk5UG%uI47t0 z*CiIRS;^cFY>ubiu0wifP;s;a&Uojwd9#(ZXSGV7V|2^7Ba^g*lYJIK{Jb6yJw5A~ytQ{O5QDViKjU3> z#9m^MRH$Q-^{iW%5km|R!y$lPb6vDwv}c=$f{WPm?PAYvcHkYyc6wJQsatI0bRUR;SHXPWv1yS~9s(qczfaekEzZknH1V z&(fo7B@PJ#c6*+cucKP9eD=t|uR&;!K5wzm>DJpe6SQN1eQTrBp+gA(G0DbQbrqkd zp)88Oc=WD{#@MW+kO^U*rC`Bnp$s5TBnY0`R;4V1KyR#MxP7<*NErH6t0#6h%)S%K zZM->maUzc_;GAa_zTO+Q@bo@zsC>CG@{2a*_{T9`(tFisCzs*c3-#yBRd#!Hdc9;dxBUWD<*l^N?@H-@ZMSqo$4 z3P>35SP*O+lgaH}R);UyloRr)Jd;Aun{#e9Z9O2&lQ9dsIn8r7m#uwwSG*?UOtcmlHH(&p1N=`P&~U^qUM4`yTPg?`v}_5dHPRLG@vE=gmOPD!Q_ ziVaZeD5NI_fr~{HQMd>ODQKdNz$l`MEC2>5G@xgvN(jNAL5yS9y*@ShfIL$N12r|c z+~932N$o|%-H*|4_$0NAns!=50Pa$|Vxqle5<)>#{IU;E?=_fH!5iqczAGsumwlB!4FNj+v-D@L&7f;2c&VxnjkM!CrXoD%4J8AcCq# zB>j3<45rf56S=7z#JT5r2RT2=ym$71x(qa1aO_yh@-h>V(}P}^_o66+vE1W^E8pI{ zKjRJS-S~#aHatfg73Vw?)~=IIX&n?-ym4~AKpiR>B?AgN_2P*bfO2^B%|k0~P(s(F z^*e26VjGFFGuo<5_{Mrv^1eEr52aQ)E0QuXPeGy&;-ZXmMH?E06j4QhD5Jd~H1`2$ z??L8@Kon+>aw&0|05eNPB|8Wxqd1@pP%!IDjx#_wqnse|5#%tC;XD zBa4geezHvftz0=Ap|Z1;Dfas*4ge^1~n@slRAh^1hP2f4Y13gKY&OToqIX?5*DuZiA!$gYp}#8V_11Dgoio)81>Y# zhVbTud27NVg>T_*5n8_7Wl_k7O^R^oz^0z+Py<-%)}pyDRf!--#t# zvuvwj)>NyzApN3`Y@$V*x}3#$h)5-X4~!Iz1Bjd$MRYY*JR5@tE|+1ibBk?w?9pdE=7*F zY7L}HtYwmw=Fzc6Ftfo-^ATwZPH0PFR&j28r#7ve3)}#F)4HH{e6Cw?<=(kyn=MlGbPP{QFp? z2H}hDPAB?Hwfrv31qq7+80*1K{XP>6O^a6`5UE$JT+-a?4E)|G08b&rWDY6H3xWP& z4$nzPQ%W%m?0bX9eP78R6D!?#oVr}TK!}HgWe2ONRdN$Q9o@k}A;)iJS?VGk;AYQv z*0qs7u&mnv)ZyJfl!3*+Tz3nH{&57|0WVMdtEG^btF(>;M?@csPC?>Yf2t!bl0*C} zZ4*7=aU3{XRp}-BpM(j{^=G5Brx)^6(aYjbHEKd2Q5BUg$E=}wt(FF%6G-`i<$_n! z0=FV_Fy?!{B4`6b6ntu(ry~HwGCwBziuLQ$0gh*&UaU$@xs!FW>_ynJwL&Qd9K#tv zfzO=G7K?Zk$&e&U>8feL$D#lc%?_i1bWE@1GRet~VWGWZ%wt#KK%H2H)XG%M zmdjy9V2+@Lx+|D2eJKvn7%~`Z4H4k73O`poqagFknt&eUEA?kx2~pR&n8GwXxjdE| z=|y5@YN;ZV>6=o=JM^Z(^>esujC))?H)yM(PszR93i{zAbl-(}q(-*Bj7<4He@RFY*51|H*jyvWw0k zsvJ~(detn0RoEAoWc7*ngN&1&3)R}?YSvB3U7y6hnZ-|iNpZ%7dUk6G_QPsc-s3PZ z>C=?QP9tyFBawP$?_TM2rE=l(Z7-rfZ4WkBVb~o`9L~&WS~r=t!+Ken7qoPLzvb5nWPeaD>DPDQP?!t>FkHVZDKSO-E zUph`i7MAG-^SK(NMn{y0&~-saVvW;cRXW?K`%mibfqxvb6+dVu5FhPW+kGdjCcn)U zb#0|6 zJmLi%yG{$kjLtmHRz=!@slAoEsh%ml3B_bHM&(DmJb48=KLzx|`T$kc8lf_HOZ7{iDVVXGdF4E{LStdXN^2i71YecoY(Cy7gr zBA#k#QUr%1*oIB$iw?>KGNvzA>3kpFatCj+ochEdg z^=FsM>1z9FPK!AiYDS52iC$7xCzy&*KI*{|MG**j06@DVD?|Oam+^ctFa3(hz^A&% zvo%GDe(t>NA-nDOg#s5SA!lfsX6c-MR+EFQ=T=!giQJ=Hf~k;h@}ma|LT`}0=@$1i zYt!N-vTEdqtVc!)Cvty6x$%%pF_9IRVzntXzp3e&2f^u%5E~b4T3wn|X@1sqcvkU% zYV}h8paEyiW*yGsKh@eWj*!#=jC^<2ugG1>-qo4cm&?m{l$57o_^ckd-S(x)KhYgv zCz>Q z-_nKCeDj<6m=+KBWxRftVJY77E&*49P2EJFf zD}0qe;yAI5=@TQWPP5Nemq|2AM;;f~lL#&MYbIfC6^uHR_N|aekoJb*F@pe!M$;ti zZxLcB#E()h7pV8eyL0qs**8~WiQ+5m0O6zOMohyl)hWHWCi-BawaqtzpygJ+OI6u< zf@xfur=lmK7U2mI3MW#(u~w51-@S@6qkO1}xY09X)#H#luS_tFO|I@nJogYrxePvW z`qOWK=chE*x1T|I!3^V9XqYP6KAP*W%0hcj6Sq_RgM{11MusS41PSx3?sf_%DxPvB}rbI{AQ$qj~@AM_RvultHw!>>D}c^?Z8azDvmQ5 zY`<~)J`g_OBL5OM74D^*2=Z)qV?OIJE&PmGv(2~sD&sl-;lo6uBIcLBCRF7_!!i`= zbjK7r>C@nmf?8|SWG<{OgM<-a>>c=!A%I2oO1;8t^e(<*6IWL(@u8IL6RG(ztU{A6 zVNrYy9gHdG^-xKl)*V4_K~hbiwUw;LpaJToc{@X|B`@?bdJ(JMY|$BO9EbGn`7|@t z=Paf~TK{KbK3e3n7-7A&QtXXe9Es+p|K58wVp1ZsyL!j(9k=@vRD(D{ zpA$Yl?VWyEiESk#^4}yx^pr#Ku}DAmDvKKOVutM%XJbeMdZ$0NT3C_x^@_I=-eKX1 z_&n9?jo4L6?GHP|yF=s2y=y%6$$tA*T^%-IOwq@^H@$;n(zYS?K-*a6|Byqn5MO%& z3T_>Q_c9_7pwKx&jI_pQ(qRf?iR>KS*rgF79}EWz83ro6s%FGlQx-O-5Tz8}A=5`vU8 zz7<3Ht<`l;axe@NFDOr;%FJ<4ag;vKzaBAd)5oq}FBxan;B7o)KYn3}Wg?jofdHj4jUSy%|1NAb$t3*R`7>g9!rEao7&XycIem2 zGQKrEUu2iR1g4sC^1SI|^zJ*O;a~$YCJ>k4?;JSf)LF z-K(d%%I5?JO9Ga03)4ve<7|i`6|ANb@~~bYA_%4{>&a^3sg~2B{LblE^;rdWTsC(o@|nbz_jtmz3AC%~K1V@uWmo za9Pz=r$<%kKVJScLdm<_1h(zZcejpVc}xZVNVs@?sqDp6oMxTiDB>O+7lw#cZ-ljI z?vHJ&9ZHco|9;UqB^{BG4pSeOM=C`bhkD&l*|!q(3|ch+S{9K!#7@i=%bkTNztC7$ zC?Y}Nkz?!)$7K9^yt6*YmgUlf9G{h(Qx32MQQ(oDPL|U@E)7gen|l#qnH{VC2at#Q zA}8BrUE~ArA@<>WzB*A6PaI7HPRBy=Odpp;YRzQRKl#zcIotftyg$TFtrvIF+D zM0f4uq<`SAuTwlMlJ0qS9EXUl3BjFd zuJ{WrR~*d+`7JVW^E_5!ORC2ADT8e5K={RCdI<_HB$rufoB9xL%`G`e?C{jt-#W|F z0tc^K9c8A>NOil3W@(%}zN-cEK%WD@S`j(=8&B@}rWrKKm!&R;cq`P9?_O%}EzzDF zYbPx-;}PXG^(;~Ysr;<{N_6zhaytka7z;CWDtCUKYOS|tj0eD3vvzT*A!uceU6jQ_ zLS-16iv*}<2xIWukDW8_c(ZwWA7i}ksNG~0>^YGkY5TAUF-ZYj_Gc~?y4cjrgajt7 z_}TS+B0hs5i+hcIct1=CwR$rl)|2--Cp$)a{5h&Xd`au%k|Gh1m&UrPHaXV)RiraD zuQe-xe)-EquH^N4b0zs8Yt=8e+P0XzErD}dX_fN4T&MKP%XeIxAf$NUQAkRsgvCeN z@~J)QFBw!cU+|5!`UPxuDnXHs`#!mthA!nDt)6>y#-7j>-WSqW&vP z@wti|;3mEJRDS~gq=(y_VGoDaC>{;gSrPEukZi~7q#Fb|D(k{-R>$8C>=9;UiUWU* z6ef`DQPm)l?&YZq@G~+dkG7|Nx=0)gFHquBi z0&umBdbI2ocF$N^7ARc>fp1$N+0~7R0PV%QWR3S2j6mpvc)BNTSN?qRTqB!*pU~*v zOXEoTb<&hK-ep6$TckkfQ5iY{60jXHQsNWB$>iJ?hiLxxc-7+{H7o5C$(gBV>y9d5Ya|5wYAcwkBZxWa1F9f1@?{l_uy z9S<-W4!0PM$llN9@FwX{*5)akYO@8UCWm0_C!zsH-%)XCkxV`Me;A6LP{UGh8Kp_ z`9}?T!U`$@fluN~-z|s6g~vuO#xvT*VqJ=13)bsZwNE-b`?cQ5b@%#~?wd?? zyy|K1hX|>8qrlGLL*BoGB4s5w$2W2IIxdRt#gMOBIno#eEaF2?4KtIfQ5ex61|H!? z=TAa_B(L~e$I?kA87Kr*9f;%9meENS>;yb`JO#PZLUueUDrz?32qBD^e$-bGC(om; zt(Z-r3su`m1qOc8txzO@-F8ov;zjmdR)Xt=wPJZSq5>%rH1E4o<>Lo7-gxx87TeZs zur*sn_?p-6MSSCCEG{OG6g0>CUC?kPMcTy^T~*~_r&VlgKqW)AvyI&V!tG1GW4)-E z8a*KI7?R%qtK38oKRSI(7l`#(WSk}IXmhq6u|D0Jjict?aSVA_tQ}u7KFu?+Sh8iN zLApBd_@ysW^uDpzu5bGvz{ewxWox(;s7KIyP?N%7MRve-;=pfXSsxreq~BHbLzc96W>eXY|$Qg_2E zc-296eX3pP;Ky~CoSnT1C0H+v(#%;D2uNIfEZWmcUK76(LDCrRivxY!=%{L);KTo8 ztI~+JT#zKU%7VDpbVZl4);qRpuRPGphqD!@5>C^;8yk7FtLa;n=(U|QA69a!P*tC4 z=>=T~!glIdwjANh4Q4)nOOxXthm%6dT+L5rMQW znwSi=P{R0)6e1FCA?l6}JZ4ddXIgSv+%rl_KUVmPGqS~R&RRp|D?9z*Jz0Vrp{9Hw z2jVPhpjLgLc5jI?p)~|eY>F27gDy8`r{(*7m2>tu>6{~~*V%f2;C?S2y8z<lltk+PAwIx1zgKRIkEHPjN z+4>+*AM}(CaUuTVKhKBe7zLh@7%%3b^0Q)JaZ}2X1g3UW0FOm;qC>}ehrL2IF4}Dv z%Zi>8I$*=wt7k0ueRvno(8X#R>FFAeb`%2-RYM&iUkZ8C>T`9u{uAp!cOM6vcT%EI zzxuB}G4bnvD`{vlU?0t`dVJ)VTE6@3O1f<>9s57)B~RCf9a^+_Q-`!*A@ZZ7b>SB_ zSp>bq?m^3+DxJ0Hwz@QyV&hFPF=zy&A8x%1u{ZC_Sq`a^Bdb@KfW@AU1?z*I?~a^ZI}v z5WkfqXKS=A+~3z{j4XLpPs~y4X6!yY1j#R!@^w6uMozepi5^uc(wbCZJ%LZPrw@@s znBVk)fky=%9S!~8JRVNxyRZB{gW9~)>ayvXM_;~vPgl_&|L_$79(Av)6TKz3ut0y@ zV_@hR9=IEroR_`;l;<8`AzrPNK%sV(66zC8HY8v{CL6vSiGLV7&Dr>tPNvL#4L1>v z@?#162k1WVCjH~ISf~v0Hz{DWp$PYNvUmYi8_b zWtdgt4Ie@5VH)!jg)ziwZ|$~Sv8?`m;{WRB2dx7*A75LO7v1F^evaAgVW3HIJXWaD#$eUO$!PG_yerZYUU$ik2viEU@F}qt*xC_Ki@bN5F$D zTkNd;%Lh#j3`Hvb0Sswq2wo+W?y5`gbg99k(@xrZ#FdYiHcN7E)q%^hHId3L<*k0( zV+KcoXL_0~$&h=VyA%&SayHan`lk`cgea-_m!;E==)?)geZ^p#pU0^tFCOkEhcD5D zk?9kU<7S$XJCC(!t&9aVUk$t4k)e8rwYPl!C&Bh-%FJVypDYnx9jTiY;)PuwYZC?_ zf0yWnBZ9YOMKF(ST9*ceD57b88Vdw&o(@>!2QcPTSZVQw_MJG$IG^+cYTAZ2SGIOQ ze)_^zC%FvVoh+9rvet;f%3<6qiNhUVgI`uw>J;mqq`F@y|WNqzWq=V9J#J4I{ncn!9KL?P$nW-#qKrg85Zv*e>OmL8dC!cFP zTU&do-4BJ8h+GC%RB7;dfQK2O!ZZFtM24%t*hY%z z#4Wg=OGG^Lu+S8ZiozzI*r^Exj5fb=M(9+@^B{^k(7Mg{C@yWL@Vm`-D!~X*c_iNYYibm0QG)ev32-F~#b<(Fk*pQ$ zvdw%lQ)JI7c}3r-Z(3??D@ETApLrVKIGxT!{vcu#RkuRTt|5#(d$$3sDZqD{>$3z& ze|ns};l%1i0Nzm@{6S7?rB*_7BGDZ`B4i~`9CwyUOdtvp;0bQ(d)e-J!FYfvg;XJ) zF8(9i_f}o{N3C?+ow@mbsWJtRJE{nNkQVKUg8mU$6nD2w==lk$wJR2EyD^_uKZ)aM zU=@qssBY0Eh&|#kR{p+Achz0-T&X|+uU@Udx4=d}9_2d6xX`{vDXt;BtKO*P-MV{y z=mksJEh+-=XHMX#{(*#`)r`?paVI(5tw6ufa~Jv70GDz%vO{^tk`zx=ceKj#LQ)!6 zlN)wfxHrHvW^jCoUQ!Na^#$n0R@cBxRwY7khgi+S0UxUzy8Pj)Z>nj6!bLr&S zTY07ARi69)KWa0DkY_aT*`&R`;!0_%piQ+4(bWXlO=#g< zJen}QWdSX)zG>iEUi!2nAi9&+UQ_JLv6MF zI9(e8T+^T#OVgntU$);{OW}%&aXrl%TkK{vS5C>#?|jEwpyi3S!&=;u6f*uvR`lwz z&UeZ;<@gYJ$NZu8t0D#y7mq(k6v2eo&(4&;tX#Q#(}e}zltx~gvZqh?!^|~dTeB-< zE}cB2DI{W@m|HEK?;?dX&vDRBJr?T&uS#tS`;4<{{e8paCy&D+t!ZaJ#}D9W62|^*^~yYx7Vno& zk&OpQ*EVQK-<+1pQuO7cOu65E7J_`T*=abvFEin}q~Hm(%ZXG}y6jz77@Y|$45*+8 zzL+GEwyxYKS|Rh1&*b}^CaPW)oU`VlL%@ot9HgIH!yfc;RMVhwH>MA<*5sVCa!c){ zDJpI3M2y9l)qBpX*2W}XQ2%8rKNJ`_DtgRcOdDX5p9Wnb)1cjyz++l%NvygQ1WV#$z?Yk{<-n1N8W(Wj=BKxY-w6g;fT^O?YRU3sUN*?t0W zpzu@r=sr==>P~BNxOjX-Ml{u*&LxtCZH8mdQMvylurd2urDsmC0S>$NdrNkv*B4R(mm?8zJhgp3|u? zy+#PJQ)mR`Pi+e8c7#KB92}_=mc=Ix1GWU16(~jWusZ4|TJ-i|ya$jOEqqa{ z0E&_(J(yv%B1r z_-J<{^Q&u592$YkKyqipKFf5>xZY6BuZE*us1aVtPj$Th0plY}9^MUVW_jV7$k4G0 z?oBhUda17q60=H@VE{YSwv_ABbCZnu4xZ3RtK#ElK4>Hs55~i9{eGS58G*Im?81&v z{0m#Lu3f({ajTS`5y$Fx&BHo0R%hAA=cYiteGl{ElR)y=YjrlSD3P>V5rhr?l)Q>} zY64y0?+D6oTdvrOttw|2*Yl>=NXf(|aL8L1R82$DSJmr1bdJL9*M+}K2gP#Y6pe`Ve$csAur`!hncK zPa^MIbyZA3f*7O#>x6QOFB%#8o{FAIP>6@t1owR}5&-vu(Fm-I>98FuxdqbSljC{v z@zQ=RWlQ*yF%MP24E9hH1mmW>7jC8zwl@~=DDTHQ&H zVeI6nmMI(k zM;*tJ%{SKF9A77%?!j=o_<(#&`qyXNzg*W~qJP!aBe(oi)6O&1`KHI4_*?qSHd_F{ z-n1M0bRcQ)|CFSWD;*;XO6}OLLboPhl;G8J8h3-guv#?rMem_HEhjlkyYFrPC48b-9I86?cMavlNCQc zb}z_XePv>F(Io2G81=osoHEL=AWx0=9W9eb94uL2q)n=Xdq8B>SDajV_GXZZRZF9c zi!i^FwU&3a0YTDX=0~Kfc!sgdJvRde9J%FVc>%>hs)1gSi_t*o}BQi;+)`P=b9)jxmtt_JlNjZA( zo(=cDDpL~m6zWIhQjBj$Mz~-(-P2=lZ!6NT?9uyB@frytouRCDdXX>({N=kVxg^u> zJH1q;bF<2iTr0`6N6wke*{bblHZAd)a`^RW?A=One9~q}Fl)`P;-IoK!5r1R%+fL_ z--{Q~)X3NFEd@2dAb>DtWaxwyt6bb4WU6n)v%0Ifwe$qT9&~>ePBra&TOr)>K;Tj~ zVddvcNH$T8$^jhcN84#10T(z0OK5d+DTF@>iZpnwVxCGk24TE<>@Msv7x0*_GrimY z@U7!a^<%XgTSiKCp#&p{(rM!(_Ro+rakB24$7+_03?%#s4tM$QJw{(6b8!q8w4OTi zFxt)G@~YToJnVRgj%{v$%Ym6n^lmz^g680Dj$@(i^sI-%iRx-A4oN)l0sCCLCTNr% z>lpk{0YWmL8ULJasCftUriu*XU_eh|-uaE=@C(ZqZt0Uf%shl)QaLQFbun&rL9kQ#(+u95#s`u{S;icgHG3o5QW3 zvW}@ae%zE>;p5@(a2qyP63|CY(9~VI;{@tdorlg)Ry7VI(BE>aBNNi&1+%a(ZkfQ2 zzNq%_h>+)?ZB~us;dtrjUvUJ0pi5sw&}ou~#VQR{n_gYIeNH!)OXClCxscG}flEU9 zB8vNQ z>1NSsprg@yc(9$-vx4}NEA6zvjwOr{HBm0@+wJ6=q&J^QJmE6Qb=B*H>Jh00(5oZV z6NUcZlaDO}{w0e*2Ha+(UcBUk%v}72uk%uyWgQLz{nG`j*}8j00T5^>v2Vad&90e` zM1~x`xb*Oq)bf`m+=i%*%yGJ7jS@?1=OFi)=55|mwUftTr>jYwr|JLdZeRz;p4N^|& z`e`Fj9f4^)@>);l^K$ao?YG((3O~-#ZqU#}%5%Rf9d^r9epMET=2o-=MxG5Ux0p_A z8per0!vZn)UR5hN3ah6we~>3r;YvYD^le1OP7+y~&-9z*J34gYL*zw&>undhXUw6P zMIH84<#@BYxB^p5JKrv1)>f*~`%y$&Y_9lD9}~I-Pj+=Rz6D!tS_FN5sLuS}fy?PN z?WNDpS_a>5!8&>ZEN2K|jglUgGO zn#!kE{cptzrJ!dIo+LrLTFqqGC|PwPb&hhLn0&2nDl#G}T6w8#+zA&o+kwX)Rx3pq z0TAdl(qoD5hmT9d|LuPDnT5BH@NrRXMBAt2dA23GD?KRG6&KqtpNZJSP zD_Kg=R=3azPx1s8SX=u&@L>oaXiVMt6c>yk(1L};suaeqSC$J#q;UyvUIKlJ`Zuhk zx1s?LluoYmKUF~V2n&b&(;G_uq(}9o{n9WY((`Lo^x%W9(7bZdx2lq&4eC;-=eon^ zG2y>`tH0_XW%L4}PmiUunN}nk?f#o!Gm4HX9~k?@WS_?^Bm{om`qHM2ks$jRaeBR< zJY#lX&H#h&YfUNSzv^`>Sjo{Rr-gEM)hn)nhsx+@G?4cK z7xMW1#rRIJ%J-gl6h2~SEs}&Pb{s&NhdjRHtjpzid){JUr33ZtLEK2~sjGtJwTxET z4&D|&WZ7#cEkRLA@9mIE%#2;?N@CkjO#cJVqg5qzYXOk@X)dnt?b5c) zL45RmfxFQ=d({a_4$<*6oMAjpiuWhCet0Ff2&dYT8Ow^f^Q)A{sa!bSFn)%Z(bv%c++w09dDDI`<;feDt z2dd|@EiY8^dt-xT>sy{uEWC#wj*OE!|5o6$Wp zr=Lu%vz7vtR9^Oe=zQI0yTo**5Wq-}se*4C0umavQ8OWeVfI&csAX%Tps5N;i$Qt_ zvd6F!Xt0vri0$^01`k0zyY66}ex6{3H5IZn`B7FkabOTDv`0=vdwxjXJHV7sQ`@V8 z=^W0o21s&Ck(CyuhcFd|@yhL>rcx)c6aI$^&w(I|7AkeB0+?kgoub8nc*)uu8_QP= zgY?!s#dpLg)+-g?$bwk0YjDu{>Ja6+Rxw}nAEj@y=DYa=YI*9jefPGx^iw(}fPZyw z(IWX^J}yRY{ONcUt_WEm<@4X)cVm~z>?YzmbUI^Vx%VPnQ3B(0etIc&x4?v(*Tzp- z(qW}dVmM>H$X4_~s({)cgO6kA)}um)9d&*xU!P<^Z#Hor798$w-iF$2gpjTb3wj6l zC(OeFS%Ke({HR^~%Y*onm02DR;=L))oP3^%V6;JYwMMcs9XNSgvbLpGy2ved5(CKIk)VwYVbX_~TG83RmiU_`|) zqo6buBBb^Y@V8UfWx4~Q89wSC(h76wFhR=exYpA^6$xGEoyEE{67vO%$(txuQt7rG zc;afBIqjLsUy@&E;QsCy6V)#~8yRgGaVBO{^{;l6dl}TP0|N+=^Oi7tPFuyD4Sr@#@`$xJ-u|C2pt?gi@M?fs9J%Oex7jeS?$xxG|;bvcbmqz-y14n zoSu=}FtSplRm>~~-&^kOJoW(yt|OW!d-pzK>3{Nd_#P-w4MIft`Ahd9;BpJI{;VZ+ zQ7u+0OfX_`K+{NG@F`J@t3%;$600-@z-zVi)-+Fn^)e5a=HgyU4gCP1cjx}8Ahn=L z3WS@94NO2Tcji>qa`Qc>F!XI9GMa1JQv6|AWNz!X{3^Qq zW)N7EYaeO8xs@8pc(Wxr4FH7nu(~db1iu5Rr)SG~M#X+>Zb@nxmu~-FShZr|MJ?i= zDV-{{NJab-mFA{t_*h|`#KAiin3(8Ye`z|TsWT{KE~1~i-a9)gH;=6>*O-x$gM;0g zErgsLYV!JnEte~p)%DC>Ax@OjWQnZcPTXSFuS9oFQO%@)`J>TNjGxR zrI6@x%WLW5j=aKfovB)B8~KY}20j6oTSSZm^v;)?*wfptMs^(c#^V;P#M97oY)LmU zUd0@$c2}UsVl22qR^dPH%PQGvd)HeY7unRxk#`c6(COU^a=gvyuqS@-(od=LlXh-!uu2QRnMZ!1H{D{F&!wR+cHE^==6-4GC&Um68l1Y)_;j(_;FaO0qF;S zaYF#|POy_Os7Y(>x|cuL;7{&m!>(dk?rOGje?v^GQ`8l#kEpt04PcNAyUTNo3a108 z3w}%jKh$0S z)K)_4w#KK40=?D?-=#yu&4g{sXc|F>$etdWE{DGWIp0APj$F8%B|$mq{{1*o_dBxy zniO%jK%%flkUPB*{1lc1*PaPsr>sae1{F3nS%LPKG#acr7F#+R{;s&vwnhJ&7 zD-I8QZuCt_xIk(nD-jek95hR2fk!FQADSQg7~~K}=*iu(2=g<=BQxZ5HPFdK7v)qu z2N)}mdTggFo)b-)iK#hX=pQQO=Cdv@bzg@pQkP3`Z~!j@aFqdD;q9;UxjC0t-h-($y%@4r6$-)~F+41kZbx2J`3fVYE{7khx4vzsqJyCqn_mY3g( z)7rw@g44^&)4|=_i&Iwz1%QBE4YdA$mP7xq<<4Y~tK1L(fDl9gK;(b1oVA;utFxPh z^#?y22RnOjFAgvJ|MLwAnqtaGQh1k7`tc$cq;upyK}kUA05ufw+!$OmMn^A8H%?zP6& z&%m@wJ;0hAsg)`>SJI5+O%;+NhQKcy^(;IEGc` z*mJ0AU9L}@0z8!M3wgG4gI0Ds`B8;!Ct4{@7K;}Ce!ssoxVCJIy*0ZuV%Mxu|I2g? zb=ReD`_|1DTvxSpyY}GcjNw@VJL>#`BN+vs!ha!lSpV3Tkovg@`|Fu~z}^KvsN*>X zKb?Zf;&wwuurMTPt{SbfEZSD z6b3Zvtt*c$a+2mP{)T}*H)m&}B1M&&(T2?`+=q+Vk-pC_gCwLap*C%Wi?gT9sc;0si%EqF0Py}V3TkKL{lUu3%I&`wvPWkM zvcQG+?U*^T#j&C##(4FL!&n#5cg`$!+y)n&_JH2iaw#G1(wiCGK^+Rdk4W-w4@RU4 z^}zS*`a&0htb3U6Hq4vmQy>(r=P!53qQ(@~!7!T|hN3kc1yc&k0PoE9+_N+n z6aUmI^J@1JZ4to`iCk)Yw&0_I&RZjmA``TUxRgx+PYn?H3 zA!ilk3F0WqRjocGp(|1#jH6?T60OW3EKY}b(h9Nqjj^G}K9AuhYX1DX13?XH+2+RC z8!h7NXGG)#?vhMM7!zHc4nj+TK)FfdphD}d(mS~}4?bVDVO6tXO}gWf?n`Mcl6)ox z(#W~N^mMit%|xL?N>*w)&<(rW=PvZ(UcLE8CslYPMZ`z8#=mnIqMy$qevSQrQBoOl zcJnHGVuW@Ha5e$f{j(nl5u=NkZtypygnaFp`XKBl-sErl+lf-7MOq7THe8NLEN{UA zCv{m%BB0h&zy6}SR_&HME{xyj2_JP2pB(iKYe^|usZ4>A-#_zs9W>-VzR@}jrTmu} zTd^#;3ob!#M#RtCH1wLk9tl%YVASWj8Sp4AL{7v)6sYySLVp8G|Wdzq)CDpLZ z+OQ;~mV03v_kZqbrWAed1o$E42;bKN|3CILH;>SN-_|yoU9KBkgj>%O6|OHj4&KDBG2mEc-L=%t}E^5 zL#IRsn_g*DEY}p>wl(L%ox3)b?}*xLFGVN`^j80lX%+$lPui=FO5ZakOK` zgmkejmbt_>XOXnf>mRgdd!oV=wG`YVL#MwL46(-yXj8nE$p;e=TEwRWS-r+Kbx^|X zPD+Pdv*8M*!)k#S!iBHqMn0JPWRZ4A9;xX=eB+0HV4GIy%Cr z1>eVxOXDxGYBO+QOP8V0OERlQqcbY#zg1xP`bl0v78eNsh=QM9g8$1(JGfZb*|^$x|MybY>TI|! zNa6)Q>0_xmFjw`!_zE2fW2z!5Dg=pQBk*Dc9*51A9&@&Q<|SDlV(h4XM_}y!$dXXGBcT-yH3Efhe4)EWW@i=-P51PVc`0MgsVAU_??0>`4r#NA~BX4 zZf=HgRCExVCRWdf7zccevw^7VAVj zy*q#3B`icsm1%r`gDOcSlg1cOMTC(>btJ{WAfKru(2z{txc+neB4UwtB8 zs@*t;0hRjimNu`f7~#ict~gl*0=A(&`9rq^SmkrH8P^T0<#jvqJf+I7q{&m<&QfsdslB%uVF{~fnWU+EM8!TvjY@`cNlh&iQdczU zv1hk1=9UfCv?H#JxcW!;K1KU@YY9OkiaK+0&u)wq+TZ&<#eY9C9OVwfxFX9LcGjm| zi1Owmc=sTtaRsJRlYdxYN}EXofJxGbajg3#OQ2xoQ1y^%Z^?ev~E`I1{ODbJ8Lwy*A6| z9^Bz{6Vdrm?Bk=Yp&<%|T$ z3;W+$sNH?Q_fR$)*(&{`m{mqc@g|2UJyWWSa*5FH6H=RIMZXr4Jh2t_HB`i#yz0HJ zg_68<2AJ5Q^MOH|PBpc0lujz>)lO<^p;(MUy1gpuWanc4^yk_(0_8=|kK)vx1>B&K zk$k2}xqC31J=KD0mKno>JDbw6a!P87wJuAVOKrQXK3&F_0?P~=MFED@uhxWPr-WRe zi%R*>|2j~q-RaEMAe&1*ORHMj;s`w>La|&nciH+KVnG20(JH%#8!JD)2mitTHz!?o zJG@d-PgJRg@&1z@#c=EW<@LXU^jN1@UnCel}1l7aNny$tW1Pcw5kIBB{({tg?L|4lL-g=+*3#YB_yncrU( zp0cg&X;d$yHVH(WvqYILb;*J6FAfG7{!{&xOyQ`Sj0FSM9CF6(P~ITLw?q~-4ZEn` z;l!oZTK)Zp*6gMO2L6r}0%Is$Ni>O)(;-uS2{kIF_-z{Z_CA^*a9;88$zz zF5&5O8s2erm5s6$J~j@zqytqMB#%=Y6m)oql8`UbDrf(^@2_GdJBw~`Dpc!<_;zi# zABbZ5K?(`GeIk^D5qL;Mt|Lk)+qk14-J@>7w;OJH(#FaAWiu3foJwy;$0w?+Ron7t zMMC~JEujyDiDcYWJVBMwE<{13TlDKZ`h}n9>>B}|(lJXsiw;vTq=hm;qhP0sj{Cq= z;FZO~GMIdwda|tg;IuDdWtYwLtx!y%G)L?s3q>H;K|=`7pbffly{&_A$_EwHX3aaM zZVXo2tR~K~ieT@spd!VF!-^zc!sFsFge+8Lvl*QiF%m_#wdk1X>TM3YpcKdsotgCM zZ#k(o=bGYcnY-{Lw^RGvwWz;Q7A4n6oMM-QT79BdeBOCX!94|DhaV5{CZ2+hERSfb zcf3-1fxYJ^+zukM9#dfVIUcS`a8Gj^ES}uWJ%>{(`)APi*v7gIG+oVd9+ni7R*7zr zGKQ+KtEk7Or`P;^xvl?;uybn61lY1@zS!y5=-9Sx+qP}n>Daby+qP|+olL*Y+?TmO zpq}g0slC^d0{*~OmMm$fM)9F-4qTRW%#VQKSa#u)skw-0RcBT8#$>eU?4SYZXhcSVo&2klrH#DBeArjE!d9+SuVMN2zsK}-QrnW-h#0N!jq`=rwi zXS88;?J0|44$*1t!PJ^91v)o)HIU0zLxEBSg40o^T04_ksQFE0vu7x^Scz7Wq(r_j zZ9x@rG25U=?;)+3sXH{Sq`nR(&odk?f+I9c%A-2fN)z){q$IB3$NJgps(U77x7Pj1 z+r6Blix@kCLmAK3;O=eSFB@(DCr871I#)O93(cn0yi}w!bO{2xv7?$L&iA#g&jD}% z-2bd5sIA`)

    K;}TH4g@@*f8;V-jkp3$RABaY{1ZXM<=7FoaNnNR&K$u zpTaqGnx>C6$EzB~%-jo`pCQ&zXx+SaV$4+j8?wU!J^jVN_`V<0ZLs; zE7>MqKJ+fh zc1@ABn_&}?OWBVXN?5K5SKDJ=m)W_Oyfrs-o|r)}4Rj5meMHjKY&9$6!JZx)0HA5o z016mIG~<4Ld6cYF5O3h3Sk@WIn_v&|#2=3BEiqr+E`8}Oad%rQ`W%AiZ+G`Xhk)Sf zV4zFLi`MJrct5H_XCw7JaMSg=Ib2$pn1EEo!X5u$w8T3j#f!7Xb#6bc ztyVYm3to(lMKz|O+{Y<}au5Uwm=g>Ava^n{FJR$34oU1i)}n+i@ZH-+TSQFAxfMA>`{qcEo;j(>M;lK(w@7KPQQCela2CnOsgW(v^ zN)8{=gvuIjk*rbIef%RzV5P5O*pF?fkc-$Dzz=Dm2{b4$FK(B-gMFR&g~VumV~o9s z5xRcc)$&IrA5x)~CM<%ia=>uTOd`WnEzad77#?3}#_zObLpM@H(I0Y7RfKloKp-Pv zV8B9?ob&}xCcRAfQ2feEX&A5(1#RM!k`^iwGhi7F{bG1bR?tDkKIvYw!1Jtp^cBa=Xzb;Vp`DOqhR54hGLws(~G z@xC5>_0$KkRS->~e&8}9lyj&m>J5$n$gd))xt~fq6E59v>j6V~hB-H{ge@f;6TCMM zzyT==J?Q;@dp>+V8M&nQZf9R=n19Hz=b>bK6j?-zDg;s~=$e443YNPD$3`zyd4MgJoq^iCCX@ehcT0b&!fJ3lUOK0(qPz2*LByc3N;y~C^PuBjC!=6F zF58fOrqfYgks9QMatZD3@%dZDpU!M&o(e15=Fx+^@I$ocn;2U^dp3xg6V~o%Gz6nr^heTJ~GP=j?vHU z3x)M_AL}G#L$};$G?cO3)_l!nB&wGgX63!-TVz&iweE}h zm|&$>om(UB+@KNq1^ygooo6qi8ZveFLAkHeBv_etsaPx5s5l1{NWj^o*maRc-K;)Z zH+??IueDEMgAc9oBUGVLavesb=e3q@3&<4!X|!zy!ZuB39P(PhciyfssPw=qV!J%1-)_dTCBR?@JOoEAzW z^_i|$tpFzpfXI>#pNm^=d$R2AWHtMTxOztv5`RswP9i}(zFUud1pRl* zIhRL>=CYj1?6MP4I!_tt9b+0v8%zppN`*>8R zWg8|%KF25VdvatgLnWfgL3E*wn57p;Ww5BcwT~^*Kcx0ChzKE<;}Z3??6c4FPvpSb0kZo$S#Z`oP6Zkds(X{k^p}1km`FF4&@Go1 zy@;dbdzS3<+2n#Xqts-&Q2H1Wk!mSl6^?rk4HFYz060`_bycK$ZQtxQ{8}B_%B5PQ z$2W|Dc=os4@$Ulq*K7yCC;=5Fb$`6r7X77wL|Wg#KnqJg{pU`RCT7Z|&EW>i4xqYm z;!nMsaK}5Z`{hviH`H08=@!}6!a`~u`8PIsfV|mN*+ot}2ECbif2$PQ1&<#N{6JQR z$vEqYPO{@h#A(HrAn*;Sh3b%aE-`~26QI0BW0>SAiR6HXl=H}?-ZJr`%hfL^-gAv( zElSqWSj^UkkpV=m9Y@LcU{d_YH;3Fit|3qyxDiy$^7xwWxM27xf^5hpx*>I~`b#Nd zU7w(EmHN|;ff4fy43&GfcMQgkiU>>og8+)kc5TIBceB%yGMRYZ>H2 z?OK?dC7vJnJTh08F&_70)wXFMJE<9S)YN%f`R!}-nltI4Fn(#N2YF-1>GA$j_8yf! z)a!z+q(@tqkG)X6?8=<>-58%EM@tM<(xftE5cH3HFrob#?^uvt9-AtKuTV|I?dwH=V{sQOE#}D@DG;0Iyr&?4(>V)EH<;HsW3lQQn#{JMoi1zP$drO?Z z5kJ-)`N|ds7x7?qkz6~AUD2)@{C|2G;Dv!Sm}=a1dM`6tBVPuv^EuYNOM?cLF&9xw z4jb_EtU8vM;lH_&pTYni*>Cxe0)f$mQe1L?K?&#tsk1TC>$QTO5{V0Oo{2i(mkD2wp*0ZRaD7~3TFcTai^u{zO{ev^ z9>?)=%enp}xfCB=maUZQV5uRj8azHL$p?=ODu8G+g)HDf`tEupdIu^mSi|j?P5I>g zezR0qe3mrFnj(}rLdtLglIox@5E=y)%1Lv>bCMM_@!W^Gqwes>XbOl@CcEtay6vMwMMJ&tf_zUKx$=IVa9z!+z8X?&^xXcCnz7hX9# zQjgeqvGv_WOR2=6RSGlW{7rG5l|}D@-WM^*$TtjdAMIy%SL6Cw`{PL7D9v22s!vw~ zb)UH(j9@{`3~=R@rGPadMHKa9yw7Slh_NMWdnSg-vum@XHq6C5D85`!cS!=cmeq5B zsFSbQqWxhJ6lyP&9{MA^X*KQuVi}g1XUn~bI|b?*3*p@dvTBT3N2KA|zGruy2! ztsTNEwJ{tm&Ywhj;jL*JfejSJ*@x9Bsgatq*>xND;B2c-1xDjp0x|LXNXFpCcmYW| zH{;~TOaJ9Gqgqpj&Gm z?N}sSz+SunRu2}t9b;_+Y6D(^2W1)==Jw~z*6J4I^{C2mtA)D>`3}@48DJ2VxKKYr z&M+4@SdH0MaRO}}6>67&TR_*hz1mn@fRR6i=NkOA;T=ec`{^1Sp^5eXYa{;Yn-0x@ z*2T>LuZHt#Jdu>GQUDqXRXWWilI{C%Td|O=$F9tr%g7R9?@0{x?WdD>bQyQwpD7oo z)t+3%W#od|@70EU8+&kLZy1dm)ltI8#7p&@4T-oE;mfY;ar3xg*7C>+Ie=@*#bOU+ z>?b&N>Q9QubyXwIgA69!k0_^r7#^3_`R^#h;_l`GjOjpxQ=7CDxId6_H^bqPMi1-} z{Mz2ludy!&ScN>RV8qa5UkOg}3#NY5c8{7arUZz}jwiJW7k%z zdeJ4fwAXZJ-RodXs)FtccKw3^LPD|a@x6GF^`D$F16S7~uZJL&V~de<+YjWTW_HQ+y4-4g1G0rqy`4kapk`Tm?RWj zKB4kb;YLNkWN}E)J=xf~I}=#$(B+=*%7=L9`%#K&Lh4TJGrbSqvX_YhhlbXh)Y0$1 zbWD4kT4^UuGAgB-e916_%0OXyycr_!F|V?=cujzm!HC{N>t{djKWBHLL0&CyL<6vZ zZ#`10z}SNqkQz|M8M0E_-YpK3b3Vhplzu2ez4e_zw6TPTz){ZdvFok#3?&{7MI)Uu z3hoU56~h({3~m5&7050DmcXl=U%7yWK$iH!FZXe@=`?VFtyNo<9YX@Z}OW)w5TL<^5}n+}Lof+%|n?Xk|>=h6tW>}j9j!cRNAurY#e zO+d%QwYOGS!TtRJ7QXsx|HA76TwwwLV~Y>te{7oOO;m=lz8<6yq`!6oH)p&)L%l*XLHgEPsXeA)@ug#)pKU0gr)b~bBoJW}+j`6y z0&Wje80I!y@8)0<6Z&CurRgU{xu%4$-9Seq>hCY&1kmxrPR47{UccG2ZYSFA{o2fK zWp)c(OjgXyEz2UG9qWZsP;Bio!UmNo1CiNxf-6WIO?W)w{%5K$SrREv^XDS&FSSxm z3Fq~Mx74koJA1*>`*Q?yG&2e@DJq+bwy~x>4Zv&z> z+QMYr$_+VJ?pQ+~0ICuf>1E=MGl2yE@X*U$_F?7t!n;A6qpavqXlQAbF^AbIu;Qul zmn_N&zf2m%L5c3V5INS3(ApC}Ho)50v`1_bEt!@=sItNn^479eKgd%!`}9)9?;mt? z3a_y10Z8>#{D)jvg?$<<=;Gp@#C7Sh=oQPfI5w9)?gzO`9QdZ`C^G zAZPiwJ~F{GW;7zn1<;Xh9SgZI3-LT6Ua3IY)9q$nGNk~ebTXfV26o$&9`<1jVgieI8Jk;3 zsQ+KKpLX5JK29?fxgvz6*?s(*{XAXwU=|`1t{u5Ky~V6n#GS2k>8Caq6pc=A-yN(r zgEusv!8kW%G0XI0yLA-&hmt5K2FIt}X-muxs~21*D2uZsiAS#BuV97py~OOZIle^e zJ-W4jYs1+5Bt09CLWvyM#4;XE`Q|k}{?d70VbSDfW**TCGFz^KH$F3n94jQWvoVd< z&(;+_I^LN|^uSSnzP-V$-A9@me$+H?Q6r zEX8?5y!Bt^k(cENT{iwzq4r|DojZ(datibe_vRrto+Zv%f79D5w!6|3?s*k`#g1ev z6Dt_f^RVy5`Cd-A<`g?UvGwU`uIhpK#OYglxBD>>(;+%xXVRPk(bp%}%jJ3musuS4 z)9>a%wTs^2ZQ5j)DlA|}6+a5ddb_y$-toGt^+5Oi88E8%fRTc&kIT=_ek0%e#mUGA z3OHqlG_go$?GTbk)OC!yFh-`%0giZFDaVG9XQzW3PEl-^ir0KHow+Itl;N}w>ST+C z)!ymQlkKiKYOtM?dG=`P49qxQjWb($+yL1h$8fbcI_P}R!Y@&hLz(}@-sNI_r(M%| zP4tuQT;1Y{p7i!!273_PVrcNNzOYD-bLzuk0L zz-mO0q>88D!l3I8lFFew=w`3 z(3G_KG*Y$HCfUJISgoZYS9KfT{42_?veR^%QTJ7Pcm0sVbD{-~$ct@DTe)FW`s86T zyP2umr8?&bw%g>lC3pJ8^%+ID$2@w3O|2kF7#snDdhB7LKYlo{w;glaToTx0+! zkK6{Uw%K%K9+qXu79I_~`cHEVggO|Hx3RhT`pal;J1zGz-qOJXnmb>uJsTj$QVxzb zcc7^ilP31H^Me8=X3J?=a*xqe1c{wFQUXSQrq#u@#Rhu4=%I5%K;n{?-K-PPLC@Ee z)*O)9+o;uQF7j)S&u7*G{M19n(+Hl^E4Jdt(TXJ3fW$)+r}rbO)62{jd*0NBQNSOO zJHM3ubJtA9wn5;-iIrB4QH@X$x>$~kg)~bZIEbo{!1lIA6hqv&?I__7^9OBUXi^s^ zd?eHIc%WH~5Fz%>7~nl@6d6eR>UE}ab8zcSufP_b)4;^dm2L#c6Drlgt}6P8J(fLc zV*@P*n~3%l0w(qapl9k~9#9CefF`wY9ZtJnB5haw;1I?g|7I-`4oPn8T`&jS z#CXF2jxb{Q08H?cZ_Jd%s)$fWgxZsS$rBNz>z9)uiF3~_&{HhtCAj)?C4kBOAFO?9rUq#nA!_pQ_zHZZxqi(-5=qf zKgcBO4T67o&grC$q|kA8)hCQunz)qZS_FNTSa_Ysxt~s~%0!q1Z)AwS*idmZUGwVY zDU3|knNL1B-4VwB3KR(pvlzFqdRK`2{3F0Er00+5Rh84~=aPe;$p2ey;F7FF9f(lu zO#-Ini<#`IJMehOXSvjU7&jri`Ha!cumE`fC$?bbP=_OUtgI}Q8Kr>jva_~!TX`e* zmRXDx3DbnWdLHx>IARdlfkq4zB&q)z90$uTu{Oud{|k^6xiXrmLye%be+_esUCw2B zC**?;MuvDOto;?%tL5(o9W@&Zoa5hOJ^`xmXp%v@pUI#HhD=daPwV9Ku||6aR+R8< z@6E^zq?Ve{?dTODK_11=e;r`K^o9WQ;3Pp~kw_eOl-ll5S%l7!ADi&g@(Q|ep%aiP zdiPiYL=qN^Ri29Mj~rF=`yK^U1-G9BK1}GSVK`UCCC@w@Onb#0?2^&K7L?&W3NP1T zYg1=eHpyy$5H9VNqbJ-I#rB%YX%<*XYGpCz;x`7}uwW)Ocv)9GIkPAOo$anKTg1H< zHkWHtKEvwsUImKA<<58EmrgLQ3YafUsR-NSW2K`{_uDIiaO^>yzC`5(ia+@062^Z( zS)&*h!6yI{02E>))bhE5m6O{DFz)*+SO=}NAlUTMePU*M{0wgwCquf!Atu1KC+%#TMU7a8Q z&RPCL&BvdZTOv=Cdow5fW&1+@lhim$6qOQ|O|fPzN2p{+@As+3t&8_C&-wr%7*UI# zib2;_cOY%`Zk9BrpDLQnO9PJQy?&usr0;^p=t_PkRC298fm6!V9uksjIyjU(h4a3o zhIvyaHT}I!Gv7qCk~SXq^Sc=jLCyBd%Pr<_%;PTnIN|r=t3TmA(N-T;nE~}}?N)kJ z?79&a{2Od}#-Jw%J#3T-H_YQ8iE{Sm7Ps77?!4r}M3`Ha{=zJ&l(Qq*&MQW@D#rdm zNQPn<5+}&gUbYr`u&MC2La6@5@0*XUig@f(W7795Eq6q-tl$59hxWtsYx;bK{&B<9 z#q1Bjf3KST@9S%1|D$i}@3uYt{|!U^?_mG6w{|NcpO6I%000jAOPBv22Q#!Ywy<|{ z{!haENa~CovLwRTt!HFvd+PNsEj2oM3M>LziHHQQYGsmXz=nnsa03idjt3lFFF}00 z@&Y0Be%eHnWSo$BNqI;4`DY~zzk{DXSFbzjX6jTPe<$ko=KZB!+jbA1P2Jl;o-S|J z<7UUrxutifP9Cpg>{7j|Z7WE7M^CqJ_j;#ljoaPN(eFU77OpA@xuHGU?&b35YN!e2 z^L!%5dWzlAa&C5JTmK9Y6Nk(IJ{B|l$4!pyzK{i4Qyzj2F&KhQO`v*)goa@!hv=i~ zYAhYVIw6P&SlPUMZOHO=c52tG- z7Kb>+!#FB4h%a1aqE3fU>X5Eve4vgp3YC>V&as?6p(lZ6nlKa~nr=~iK#^VeA!XWU zjN=6Z-ailchkRn+$s;{ij;xd5s2LVoB@0YOVX85c!aj0je6k|(=zPc`i%DFph2X|U zhkmw)% zrC--f$`)Acf6F@tc`~WbtwoKkJ($+3B`E=^so@1zQXEH1 zSi35X%n-MdliMU=8(pSN?gF<(x2krS*E0dkg{7U)yIW)@Ko$Ydh(PzZDWA4+TZLnB zRb7{>n|Mshif; zr$7s?LM3@oY)b((LgknmnQAX=n4Uxy05rLYuC^_3mGCfY#Y{RA@iMDWPT^c3)b*J@ zc^j!Ktj$Lqf=Z`3*A?J%t^@NPUMce9zjnuY6GijgRHTD>z_b3~AM?(C{xI8DAV+l( zh+JO?V(YP_i9$3Yo|?{VIiy|?Aj=j5(t%E2-7yj%6YdX5)J3YrGj(V(3Vr zh~z3bGeQ(DUUfr8>zUhgyqyje6#r;4+&(YbV89c^{}$o!eS;rfJ^7*k&zc|0+H95t z`t|Af73Qq}td^4@)F*DZsbZZx>)Ws)OXOBH66msqvv#dT`d9a^Q36Q{F(Uf-Qp`XPOmloA z@<}Kg75R!7_y;qG-N6~Mm?`^B_RwdEQ5QAV6eVCQ8u~br5nD``H4%@4Glj=pI?&8j z$O&{Ywe1__2fek+^}l7zX20}cpbLFRGUnx>Qxw{^dAa<$G6DM1+V&`KskZ?J`o$P) zP-l3*7<+EkK|=!N71yp1P@PFW3D@Q2gLXFq@;J>_j#(tPGm zcd-{)O79xerH#tTSviK5Yr>AeE;1>(_**)*wOZU`LWZ3s`TJ(L>_F{SR}fuCMNk1-Y=4laH@>SqtU4LuA&wm+DYH{9)j(u;@YjYF}oP}bmo~SF|&&Vbwst$l`d!X z22U}pc)@Jd@b5QgZPdtyq$_&Fasa5B%_)THz2D&McHBNe|1(KZL6e+r0RaH!K>z^Q z{{JSai>00Ce`aY)@|=AZ1IpO#C#w8pL6r%(4KQJc-6Gx2WJwrm!33bYATt@zB5m6j zZr7Fmc3!x{%zh~pMiHU_fDG<{zv5*gpZ7UxdvE% zl~9J9=Pr=a#-!GBW z{1&PzVcyYfMjd4|SUbM`xzc(&nSd!anjZ^39KwKoBK@v^KfwQ)OA%@mqujp@5AC<% z{m)Jz{!hj9Uk&d+)2JkQ>bKdUguZ%45;vsB9>X-m44H1IU7IZ%GDj(*sFK~I1Rv#d z$c)s^Ey(IO#LXL%3nC1MyFLu7H0gYXae; zzZLdF57;%C)IbFx)|iw+t5i#Ym1*_Y1o_1z)2memK43D@)~K?Luhi=Op?&Gx{q1!C zJ&*raujBtesC&z|y!T|w8+UhicX#*T65QS0-Q5Wq+}+(Bf)m`G5Zr^q+}XRk&*^>U zT+ejR^WqGDz|EV_wW?~Zs^2%{g6XkmEc`E8XNn0d1O*)nbqHo5>me54Jm7H>l;*={ z4dp|i0>Vs+Dl9Y!U3?3X5o5VgVepE#UmgLSJ)>wb4sGr@7|Cot?Zr@8t<=2pr`Dmn z=<9Hh{-JfY>=CSgYTYVYAQ|*Ov<~YJt=lUg70U}BLXEG($lpzhTcv*Jsj{w)8E?sv zuoDVxSj~V#OtazR4yvLIeyl?nyvaI=sH1lVo%Z61Ks<#SpLQuRT#hy*KB&ctUhxe4 zVK`rnkbPHeD5Nfx5wGz3L~Hk={YMl3XWxyzLgvd4 zKr$X22#E7vlQ(vHBTF*}yT5?>dBSd;390Lp7UPN-UTBSkdJOSy0qufZ3Ji@KEl6>e z1r@fKOf*^daq04Baqo)4PvwHF6}34KaFam{bHHC3ZxG`{>%$9@-^cS4D4-0_%F*BF zkFkpGsQAbXuRvy-SFnxWN+3;WVN@tJUys`Wvl1GB9oA@+<5Wm~YhshYwy$oP`e9u^ zFW0kZ1#Ghc5^Yt@))YQV=(T-&kEAvM>STtinTq8sHo>y~xmnW#2o2>2Dg{(s1XOMS zQb_ay#HbO=Dbk~W5g3VlP=XK_Wy}<>6q8}1asMOtNFx)8jeuxDIZ==#K0_9ios7Hu zIq5=c(rT-!DoyQ&;e8B|XH{homtX|Fdnr1wreFpd@Fx)^7y(YzcFF`XU>MTA>rX01 z&^|bg(2`VH!q}}1Ie{@FJ}7vB9!{h@SRfF4+^N4<^c2mNAY*j+2Ez75M-=u%*It&1 zkK%wF2f-$f`k@Dt-KO=D1NvB_W*octltUQ&;v(+47zuAoeIRkkmvi2<;L^9$jJC7L zsVA-nm%bTU^QLYXDy&cIq)0D~v#IlU-O`>@v#x4b%A>vWPD9AAh&$Te6fa2J`=V`G zZ$9hC_6u5~VdAVGP~wzcP0Pcwhb}xntM=El&%kJ0wWv4(T~Zg&NLFxA#Dp@qa$=wFyoNP z*hTpHE7kaC+^lL4#SUecUFp+bJX;2AU~D7+nmvHZ`!BYK?DYQ|F#CVEhuufC5_@&J zV__@u4I!s$cMWT?pU(}^#Z#cSf=;-o5I%1_<9FX-zCh!TLc^jJrKrI`v0U=^da{l| z>E#gQxG}%J-M(Pb{kp1JmpJk5WS|dZTm?nnN4o3yJW@e~B}{>i}xDdy-ZD0Uj zsRelL%i0;#!KaWBD2J}7Ag;g!Gn)Zq7<0vu>}pP;LhM{INFue1&~V}%kX&QyQ6J%# z2tKCcC#cTJcx=JlQI~Hsr1N?}j%nZ;-wIJfc~8E))q;cNeDaxUcoHVLc%mkWx^16q zl+>VZhuc^_Lwc&`2y9bIq#X}f`RD~adKSp{hN3T?bu zSMHE8L_3RZHZ|X%A1~_|+FX_!T;1c=G3*0#xZ`H)Cvw!R+PBmQ>+rfK8roXqm+9Px zQ72TIVooJ&$(t|WkKj1J?s94TwDlQTmOi#gMGrT+z`itL8Kz`_K26y$t+ZTK2#*G)Y_Me z?VyVQFYUQ^znkk_$(_~gLNcCTQ6@vEd-*Yy>B~9+)*~RmXGi+@a`eEcalZ3u0UfoI zMg`wc@uXvr9|V11CSPhjz=v6jf~bd6ntzyfKc#XO zOiTA;?kH#*=vB1`xS@8)osw(E8-lMBn|By08_C9-v23EHXbI&Bx60{mw9xjohORh; zoxyNbiYgXV3q4SKXsBbezR^K%w;gY2K9O+1)wtKCM@}G% zvj-J$58YTx7|MsQhX>0&oLd6R5%o7yh!8>19IF4Ec^@r4^HMM;wH?aAbE&ght9p^kg!~H zMraVcH0;{IGh(}qK}H2pqbSGZe{Zf=(Zp%MVlJ#!ti>Zwb9(+vlbW_RcEIYj$>T=O zUD;Mq%k%h-mxgaTZbiQuF!&+^VberIwdxHpfrtZ2^uMfw4yVteXfV9RG%W*1iGp!D2_=?`O+uUICwQmVr zBhV%qv^L)->@!nwTLX(8`zWJ0?bj|8K45ozFfGkwY)pd&CX?zkzRXC{VDz()g}ZM> zL*j*5V|N-$G{B-=wwX6eVgc^OKidX87z1IJRjAfWtTI{UmuJ&9hBej#i?Rn{#O#pf>(WrM?`$CtPbM}?*@ z(LMeTzZ}?rRLwMD1YmC$!yX$~U^FfyC zod-S8HUIo$#`Dqas6WYh-|UA^A@8n@ttu074Py%P^cZ1km%k?qz5nf}XNKqR^EQ}# z6YEAUAuI6Tk8kZRuf1fZ>{!V6Raq3LR}F_IiQXapS@iCbbj1|`qBr$#i5|y4b5*SR zpBq0SEeuoU7JK2SI}|psC_I>cDvONrP-Vo3B$e&I6 z6M1yUP;Sg4Qf9TR%;}@8ZUM7N3Ys)SA0cNSo4ySA6opIXv`j;bVaf`zc^9%~7&E_? z$u$MzJqQSBM|I_EizaaU)S{Y|jydoBg2k!nz=S635RQ7yU?{JgRUqO@x}v{$S&B)d`ntj(E#$CFdHO7Bm$2{f^TacA*=hMxd?lr1Eo1LUI$&|LRr~6VeqJJ z#C&%kUa7!)XJGFk@{n-O0~w=q<^g@EQH)vJ4`_z&Ap#<)r74?I^CI z@`(Rb`F`y{cs&1c!g_j#01t)+pZSaz|%5%gAQ+?vNQETV4_Sd(i zV?|E&KEZ!RwM{0MHX4AcG~lzo|9XAq{0pjpBQU^>68gY145V2EEG9!juK9~WD$y<| zOej&@5DT21wOL7;MQrSo8^0uHw^4jTz8~I1z6vOWNgu^_*Ao{(9K+7b+vXcbkUs#{ zuwhufvI?}5Vy)7(P{!A|x~S5L(RLsP>BKSV)U~mBYBGU7@B`PD1ah?a1e*Nj zg=uBGipBUUwMDPO1GFF|(#fde&$Biny~ljjX&lukj6XAK#Bz)$<>_x+RFl16CL?N2 zE86VTgzR9OQ*f4fp>3FQM3vMtJFLzpp*ukBjb$5=j%&peWlBF-Tw_kp>giZoc~h;+ ztjTqe4i)$%`)wpZFt6IFZ>nJ%xm<|d0{2*RJ4gB``L3v>cZG0fhroYPz(JMjwW01! z!&{qD)eX&45e%^oWTc&iIAX@Lc>AEu3j2t8`~<(2=RSs0H0Q(`9Rvkr@_Z88*+8yt z!F{E>eTE_)XTzyDc~=qOa<7Ky^)beXX||zvh_XG7ex0n5UXWo)Pln!AMH&P1IGOjT zlALind;^H78S%9p({pi&a`e962^Q(_i4LBA8WxJTFzd3vMENee%$PEWQ@gsZPH1-v zUdpK`VXwzw`=8@rWmJK??5a`Gzo^7z8~Y!(Cy#wfNUT-}i(#u{=J54qF!n*&2Q08B zA!3o@8as2&n8GO-nOtIJ9)ONST52&8^Po!W;)7q*e8&ZTE0djyeU1=^GLS%3;%Y5s|9EFw?{px%cgp-oo)|#^WBL-yM@We!JIEgr zzm_MCrER{6L=1ChYIG{HTP*Qr7+Ctc=K*zwQjWuuEWl* z{b$N2c28Cq0F?XxJHxnxp`EGAUqJsX0{|Uu;}i|?isa8>Jk?!1$_14SB#I737@*0K zvC7HB;|yJ=+#Sd0-XQ`f`;Uc9z#vjVWYd$G55$sJ_q!K{m;(U2(Qm*AF}|awXlwa& z1LZMmLy7s9aILdx)lC;NSwm82g{mq4ml?w!pfPvXeWhkT*^^uSOw%?H$ zSS00#OqNKl{D+{#vcQM~nJ8k0>B-XT%2b5?VtgGb6N+RoYwTTl3;6z_LSUNlh-<%`juz$_ayElccookeey!pwcK&97vG=B z7X=$HcZC|S^0-qHx+Y@f`&O}A)6R&n(o5I&-c>HPF?waUVv(PEYRhb~;~@|a_xQn% zgn+P<0UC&~QKuZMt?3G(%rWfYVY8DlFZL92WOPxGj`!f>E$<3*j-r-mFzyk)JazZ} z7vCFnm0Q9Oz#<+b5D@FXI1$}()UXrOqsmva&6hec_ z2fheR1>JP^jKBGN_U@hrg)%9TBE4qXaGv3RIE>kOy54m>8r&A__3!sVR4AcIURAGb zBDN#v=SX(Pza{h*xdXp| z`fbby42*gz7q+*c1=qMZzT7W>a%apbn`sE4Fai@UX-iE8V-tfLG^dA z&)3yi#6+K{qz9HadA5YQLDDpZ^{eo^DXFhk2TY{ zXl}Y(;Sf&qjDJ>DQ>}#b$NvEX=~Bi5c9BBunig=`wN(CKm8@>rRppD{RmzMrr=hU# z&F-cC+ebRxDaC0IKy<^k$e=d1(?{Q!-ckZ~-%c6gN8!o# z)(#=NG2`IF_)^y|mh=tjLF7~VjAOq@8WS=bll_3nL@3;VY3eX~hzz1S9<*;fr=mZJ z2k1SR6AK}5U_=Cz?McK7S%g+umedT+(sSpRpZhw++efE5yqg0{OhE_58s^Q%bkqd1w2@}15gEgHB_ks+;qcWv=^M^%n zRJULKC%7?KLMEqqI~S~WSK^O_22V)N1kGPP1^m{MY1UWlD08p>Tezpu31*4Sp*Cn$ zPHKR*J*!nN7pZFJJdS;{|AaetBhRU2}-Mq;*h?wOhlsQ5d-N)*Y>H>qLcgC(3z<6wM$!5vQyC&ftCintyEOBU2w? z+FUbOVvu8jP+Z0AiQr_j`2rqwX>wUss z6DElBPbU8^-FE-e>Bbl!X}lM~EpyLbclE2nFgLi+u2b?hkxQeQVg3oE?%AP(dAI)De7l zZV+8k1n?HZLN3&n5Px9Sq@)lL35iH1&z=Bu0R|1_Tw_@C`vuuEm-_L;6VI}IYaKhl z=%-%7w$vqCD*SJx`}CisTjL+n?RX^5#smg8Du!qyQdIS|8vqRyC8*ir>nzguo8S~86 zbwIt$VEgC9=W-N}bF{3Fne!pKs@pqN!|1AU;&+XNH^#B3rl>BS^y`N^heEo1!v=X6 zPwt@YbJsgv@Ma&cWYhD~r@XX`31eF-z3#^8u4IdXjdi_IiPh0*HGXqhD8weH2mowE19m~tv!`ZWmW&$B+JET0)hd6TRU!uI!1;CiBhoDvZhzSV3i^o zS};z$1zydJ9QL{WZ*Fa!vB1q(3oSbd)bFPqwqp1L?Bgd!yCMAnffaNnXqAbkgD2Iz z2I?akgDr=fP)WU_mc|m0h~AZKa=~nB6eg295JX;u4JpjGT%uGR>wJ2GwBwvK%NmTl z1rO@SiQQ<8ny~5gIN5KI>#sWk>My%c@(yK9DFxJK z{efe>j`ASD)3bX$L7_fyLJ*S!ET$lylelDWbW&YJ)E8~uEg^)qN(IhnOdI$uw}1(R zLGP5E87vNeE;3rNEl7F!8xL?fe#e(%HUmNtp%VrfV{t56Sy+& z@ps$48?aMP_nYrzs$w5PP6+GgEAxgs3#v&rs_gu)3JT9@cipOud!vB~+ z=eG-3l)tqx_d@p_v0LJAR|&!tNpr{Va0S=-1=jV2Hho7hTXUcPvFf`rEc00T31hz}!oQcYu(G2z;j};j4g@_DkB&5DgJP10P2YrKZ-|s&SdrrGz4wyb^ zmAWC^n%`d63)sd_^#KW2QLUTsBiXH-U;mi+VrktAcC|6eWu);)@oAvfOsk3u^HCbqlSM}2lSS4j zTZZ@Z(FW9u(r1E6tEp|j_zMUXDGUivj=c#}o{1TeHOxO(|2giZ9@e&PTz+AV!4|Zy zqT{HkJEo-bRq6Y^%w*#`zi&&>*t5}Y!{?rJbvi4u5^)4-gSR1LtEz9et6P2a(E-18 zsFvlv&c)@#8;V#{UPfQE)Vf^lF7AIjP?O;p>g~VQ7B8WrFegI4yuR0vV#tVC_4v_* zqG$IVl@X-7EvE!0Jm{pV$R;X$4`|?c5$_(^+~xvJHg3K!+ap_~GbDpN9k^?7y`=ZA z(#n(}*enS^G9Q4Xz`u;7i<6<9vzfh8|e&;?^9{I#o(>Jh=wXQ zkDRWZG-%MdrD*$0GQLGWL1%{!U#qW4r2ws-{Z>~v)&Rx__lHiX9Djhi-covemZM)# zX=H#4L_EenBqdzvNLZ7a!4;yhQW}?78krx4D-q}ex@*arz^Ncdlg1*AZB58DyKmm8 zFzZ%wf_RT`j;5;&{XCl^;(zj{!6@ISBvUzr+JHfu&kk|ED}q^B!NH0cATr`Jzy*wf zdV#u=1;*FfPfe)63)T~l9mqvwC`Kd=W&8;edX&zM4lCDyFWP7zi5f+YYgc$59p7RSS(FB!r|7pn_FNh`{KqrCq zJmu*E6;wD7kYFekF*Gz8g(T(;@Gbxw0fW3)APhs08f%7prPBonSe+grx^eLu4rqkm zw|WsWxIl(z5p(et0#Q69scjK!!mkuzZBtcs_Y7RN2q>PjN?KpU zloSFYUYopWsWEbVCmGm^s~38>%SBJW?~g<{8S{Si9m;9V?wnIznEPW#fc26Z_Pd6X zJi`0>41)ZQ=EvGWs|fb$Lxy*)>#aX~nEl+h8McY7~f8+B2eCnODJ_J_P$8s4;B4gCaaBFaP z<;+8VyXgV5@8B09cJbU{7f`xn8Z2Ai>$2DXVg^43(QF3)n|X;UG=zD`w8rFm!-0#hbv8Br0Ui^?)S0*ocG(3kdYM zn9%FWt1gFEY`KQQjeEep9DZqX?i7{)l=v`ckX1&aJYB?Rbbwb8(7tiXEY@T>6$%N( zSNMoB`Tz;j+n7LX;}G zeyQc+0IO$_666E%#w_f}6+_vKHZvVrxPGWDGf0XAt1hZ4+g*J1hK8juu&rv zj&vy$>^(gy=v!_Ejh`qKK@dOW(rwxkgxe+?+JYR8ccV!2FRvj^6u|8Ba)ji6kP;yw zBj?NEJLZBZ!KR=dYYuApyQBDKRo=b$WLuYNui!`|bfKNbG%=u@eqXWxsd!YIMoJ(< zBi}u>%f5snQ%fZaaJ^cM(Ev#su`vqm$4+*n)5iO~tF?z8(B}My`L+iz->!pNN;rg8 zM@VhBw#>UQFXyMvA+VdlB5*07OnL(X-1vX02ecW2{BWurMfzUCj!8gt6|*OUw@pa( zIxP~GuPf* zF2S%9oDHF6HlDt&4&G{hSr*V~FI8v$lP0=t=*}(Oq6D+jmV;`?bjy{9~(@-G(0U5B}1!B>xUgkivea zgL*~4QrcwXt2Z3t9nd(y;uwKMXibwt64c{JrkGpzc$;@o{379ATz*t?0YD9g(I2m` zKZN6UuHP^GFbDo{tBnv5|K3YKCjBd+3FbdS6T^RmCP!Y}MS##G=XYqr4B5=~R8e)d z0h*VbbiIL6#iOoLCf z@b~^=HDG`7Liv)WIXc0f_?9qwj;i)!*Fz#fK-E;Z!wV_xLX8%r!K(!uW-gfou)kQm ziY!$K)DPw01L&hcfA`T!Fy_i5_)F1$geJkiLlaujej&cmg}8n2bLj<`LIwiU!E54u z%4_2D(`B0dX&~1@2*CbgzXKDm6u)6R4*qr)X|?es_3p0f&r8}r8r&4|5#D)a!KatRwWfZwDr+ygD|*!4 z9~Z{-cVZ2L8#g{d@1qH{bLY1tXzBODY&7482D~Bm-yi9c?+Mslj>KR9_Qx=SfkwZ0 zg6;G|BO%0XVFwCOWpcviX(o_0*D(~i8khN^y z#c_*s`iaT&HDq}T?5`G_Q@Rl!CjiONe-laD|4$^Tw8`%4y5sx&8WjBrN|2l7xMKAbA6XSWy$gvyi!g1VFOg=Ol3LKpFR# z3sp*t97c0uoQp@lZv!+vU<+MFQ}_w29c4snzv`ex&!5q)V#_8)Cx8>4R0iWvn#Mvc zU*FZwP7Ra`hOTM|SoOAf7AH8aZT6|7YH|SBfw-6;KMM#R`T@#89&5(NVZi)0weNwL z9EoKQ5-ccP5vMgmu+XqH=$d(Co`{Ssr%-VS+T3sgoORmfMz{JG@sbJk4dH|`AksE` zlO^)47!PtmC+67BP689Vw_yRBTM(yx+(`CPAcFU0lL*-TVmbulVJBh^r-YT4tf|dN zI!S+E)krG=pC$hz68KUMwEyQ%csvIegV6<5j|fw9qGIHW za7>6Tj`M)=BN404*y-!GR&}(KwJ)1lRF(JGjMH5sUMR8zg8iAu!$B&D3Xh?-3Y| zKII|JRnHXxt`M?&KaK`-`t|{96vBOf*bXP)1TMOt-jwZ~Wp-4Yj&3c1yfSHxQ;y__ z5>x0tSJRwk_&`Sk8GxASSA7OQL_N^bs;p{N>-4&9UODyZoVSARPj;5XIMlNI&ET1M;hD2l^9A=7pm(Gftd4H08d+`LxP)?2IqlG5+=9zGM2JFv_ z8F}w!)B4YhnMlsJDQHH{5&@7giy4Dq2>>!?p&d$>5u{LH>5RsE7-d1j#w)13ad>-X zFo`|v5;vTgw;C~eEZ6IZ*iqQ=>AleHzacz><)5vc9q58i072XY}oApl`hd zU-4dtYQKe;No7{!O`b z{(lck4KB3_OtdM^Ijk7&xw(VPh6WkLzVKv-5GN2e5})`&IgE4fADa&dWIbeK=Sm_j*UTuZ zb&S8y4_>t5k~_!xyRpCFvih!QYM$xT&dsb$l~Afnj7hIPSB$Ppn|7NpSesWg27kn< z1U9-Rsx>}UFR0z)A8cv+KI_NtcJkf8#!vk)Cpfz5pNh1HEx*6d4C`#^;mPxF+3YrFLncrqlo z*++QMhcvc7kCZ{KhnlwY4#-E!QizIDh!hYPXQ7U;VrE^f7LZ^0ib0FTgaiddKo>hk zhp^(f(qIu9^PwZ>UxS4H$a27F&PsRuk#uS08c|0z?K z2wu`4!#a3#n)&4~t@|=t?YOWgz=3_R5lKke?*tTra+dUrh*t4{QfKe`c^K~4&Lfn0 zF(f;#r{l$YdyD7S@UBipI%yGJ?@d})QT88Plh$NHzyIZc&@={eW(OAtD9REDi1Pnv z+;K7c&mS*3=eKrV|CYFYPmA=T4Aew49Dd-T8ouCp?#h8)Tcx$ynqs6u1%;KQv5O9b z_Ni0HwRgW~L%%E6VUwS=4-QDV;N0X(N1ctpkMFGW^R>rzF*!K?elI`H-$Ji@KW?`_ zOgAoK9voF4uWO=$=9u3d-prWr<6^jAG_)E35Buh1bp_jNUh_8!<@I8B0Sd9ebMl ztW}kXoqgWG)!EB6vFzx>L7?F0?sU_0mv(kD6tLWj{e&#K5ey%l zT3Ny7apaV)PD#0Ke_K_i^@fFhaS9fygfn!SfL-iABN89Re4|~cHPrTKbuIIWiYF2U z%;a&Hrjh`qQN6oEc?&HorLl^I7Tp!z^Ku0G#%!8DVkhI zhIP>NTPkXcRMN}Pc_0x~Q>IGdU@br(gEv-6Y3AZ}bAE91$sHwl?$VOqPY{l8LzbNi zgrcMkD#bxh4;Ps2YHE+qn~irGN#nn<@Pb+he zza+FC4QF=IzBWxZCdrA6dSruJ8?gH8nzj?Jt%(IRVNItH;n)(dX}^dRS>q4S=X6&uUY z<8*D%qN*C1AD(aC6ILcjc}-pmu{Kr?X0g(tr`p(FsIkpPC7me<2J$J6miDhYJ9AFe zS!0h(5L2thV+1QpUiS%_+yL>F0Ca}S>f~h6m57F$`SCS4d(tv8X$Y2OOM_#|G3LCs zl~qu>v5P{NWAaIbcp%NH`Oj{=aF1JzB!ciO=0M>!-Uf|bF?)2boT86rxeJ{*kB)S1 zY|^)`sx-V>bym7XP7icSwF%43gaieQWf(%AngYp!+k=6?D0WUPWu>hf;)fEj3B~n^ zJ_W)<;Q}}2;WCscKQDgVZ*Ov>h3*PxDqrr za?w;4LVn%Fe5aNfDKOzvhvYXaq`^@;`=T;4NStx-)rq3S_*<$ILD)bG?Z}kD5M))nrEegzy-^L z15s85#d9MfLKJGS!;*oFts&^kLFfY_J!cpluCdLZQYwPAstctlb2cn(cIr{lgT5K> zp09lTkz!Yl84cY5f@(qXod9_r`-gvz$L*+k$(E@u3!->$G;Yg{jN(`*xLUnu=2y2% z9|A^oWME}%AZGH@C{3X$gKD6~m^1zc4D&*GqXBKTIj1$$16c1NI=1sAawnd2u8v{VKlDgHiC_to{B590 z-42(DY-jilOI84TtfQ)LfW_w#Lmk(mQBHjYm=@(eYN5LV# z94sCXfjSHV=YapY@9k;27esD5U*K$TnQo(~?9;39DO6JbZ- z17HrH6#P^)kPG}Eeo9h7LRf7XT%uTai1a)q3%UjnCX)4zeFzNwTG1{LvIbAEG~gsQ z28-)HEN+9139QDJS1VkBdkF2hpV)*hoIh(pL9TbKtH3L~Dj;>zxe*kDJUuhTF*^sOuf{yr7L>OmQA=M^ArQ;KKX@wgZGoG&iY8W3WFM zZk2Vs)Zxl8Jq~SSeC2H%-aAb(4fCE0c~UOR#i{djIGL`aV<1kGr8S8KUk8Q6i^GOe zdcnEB?Lf)MNO@z+U_R*Xp#Y8^`|vA){Z`LZs-rev;*+t893n@}vSd4`-RTcRC584N zQP;ZECXu4Sjqg_l`I!VkiQQzOTv*gsV<~r7M$mj~W#b?+w+jXbQ2OG;E2zyN*2qh5 z8pX8f5t3eJF^wAru9+y8l+uv#wJE11#huCB6xDh^N8C?`6G4)nAE{PJB2F^B7*ch_ zZ4VO0C`ZYnt^BnYiOKNK!oLOJB*NeQ44(fSfmHvozbi!?yDTty$;ElQylMz5aB1_d zxh8qezV^-dOzURG|3a6t_q*`4{&uQCw6i;A1{8s_u*{;>0nbD34uXpv-r=1Jyqhzb$9pKn5K5&!ek)^h zM}m=W2OM{?=fz0+QG%u#b_Gu0;RxOO%F#TVw}mTyPLAU_OD8zyUnl)CZVM+Fr@m7) z6XJHQ?M{Cxa*9oML04ft-z>5eEcdKPJHD8yjyo-7_NvCu^Wp^NKesQO17BBP_Ma!k zN($mpS+sv;G&?nK*+K|kv1asd$~al3G|hf2p{YJEv@R7LhvBzcXyX@)Q;E5*F&=?t z76NB_#AJRSL@qR|D}$u{lzx(LvC5Ce{_SnFWGVABcxf_L3Vh5xG*>J?(Ofeo-^nWG z2i1?*tE%>6AOn7%(wOmJ&kl^Lj4CbdyUa$ZcIwY~B?AUkdP8l)VaZ!@5 zmL9L)xAj09cIbk*_DiFxRdO*#M(+uMg4m%M~UJUiQ;;B=Jlqc@9|;L?X@-w0j`jc5a<^lS-K(CEUuFu*m01zTLMr zU^t&{6hXxnPJGh>pwS%aJfgg`jlB`Fh$+S2@5@-~G*7Dr^Uoz4EUql*Zhz&ZBeBtH zwBIK z@QKC@oYuPrv<60Sz(;XXV$_&whG@{m_Ih3aa~*T*DOCv?`?%(kFp_&7by%*eD(yQt z#;SCatb3nZvm!B&5QY>w%$xy#+?v70yil;#7r4(-D+J`i#`!5A&vTokh97kv^ z2H-NF6f0t=QH@WIu-i+X&rO|7O2qQi9%bysSSrV|5_gw-10&t}1?5yeeuf|TbsdK* zpP{^En9QUAy%802_3>OS^k=Q~8+7`%aMj{&8Tf8|g-ryB%@*_E+A!!!o`sqV{+Zar z3TGHTW~QBhxxl&IpBPNVJ&+V-M+igo(^&VK*z{lEsO&}yX9_2v@6!Vg#2s1=ws3Zv z);kgUrlMx5!0nwpTZHzTU2c>jX9-L%Q*lIT<`BrVE4{ z;fA^aWZr%R<=yNSY*Nt+yG$XRDcf~43Q?BkB8sC1BL?3*s3f2l!hm5K7!&F4hYm8LzP=wWh^+FQtVrlmvQf*gE%z zS!W}}OVXBlx|*Z5q5-4K%Mv5fYXKk1(=no&!?LFQ`zoF=auO&6;FDiOz_TG{c#n9J z5Iz%Q5!GKOz0ZLT6$f&s>xVJnB2z+ulh+G`aKc1&P!|4@<^nwzt(eRUbR9yHfyW3;xT$moClDGIF(QlIimYM9Bv~s5_g1;5X~`k5G)w%Fu4;cPO^(_7PqVy z?mg;wc2CAEYowA*b6fkn!npyIZ8jo0?stRM-IRV#OZSA2%SNb#8{a>fOCow9@PHD! zs7Xtjo)^5*^&0r5FRLw~7AQTG>)q~t>GDvHX2XnSx5;6a)dAX z(`vizESgJz?~P$Qdr&K#VJK|-t?gn!rFGKHeJr(U`nW%k)b^@vPA**d^rYEHg zo7d*W%L{L&IIUNmS9lkdX@ajYG`lC^x%xOhH1t-Z#w&NM&Zf<9D@cx^L_ah9-tT(R zojSw)pl-t_fM~7^N+p{(h1Udi7qzNYo&`aN3|oCMeIA6@aI zn=+N;CTs9Kn_v;j5xB52e!TgBHM1Xz_Pg92Llfq;OwP(`56GtB_K9<`iibv)=4NC- z>_z`FfkO?=q*{Q1X5rqh61dFV^df7?0TrmCAs9}utL~2DxlkIqjT?T8a_cob!if!^ zMCtitHQk!|rB1Y!J&%WEG)nZN9}M>j7iB?$OR{PZ7%GVAk&dkhe==>Pbi;P@6%=oC zfOrSv=h~1E*sFx-W|lKg-;|9}vd=nK*4Hx>MENtO_9E&){j;t3>Y~`0kgf}mM3YM+ z-kYIP7%7;kex~QomcKfV%4poYfRPcJGT&IzzFhHUR>%)*^FsU7+X8(y)p>$`A;1UT z>~~se`2iQ5K@r*89AyJVIIeprR5yY`*V-Z2RPZ=c#Tq9I z4|jMDzc(J%oVRGheB=V$Rn(e+ zB)=eo=@H}A?ih0vg7x@>i@6%+K#Iz}crLbRE>E{-qceeVKP;3mk(x7aA(8~! z35toa)xluAm7V4?w{yV5bmWGcOEZHseYEEnFenV;D)#v;01izK<3awLG7HcZ=;2iX zD@VR`l?h_B!V%zJ8$GG(S3$rj4|pv3=_<)imEPU^xoK zFlgzm&wNag%b9Zlb#w)$O|(+m2*>!-CoeasIMg?oy0X{dufIT>LggWktE(X3iQ-Ej z=hc3=SwRc=pycpCchZlaluSY014%8Y0$UmUdUayT;Iz2u0vpOXf;M6Ig?C|N-($nH zsUJ>2TcMTK(3|#?Y5^DZ*4UUMrTVgtH_ibkj5+WUwB?BREMhDKk7mpvFV6|4nnJiE zDnJ|@4AyFKz_?ZK4>v`@A}C?tqXm z-(qDVgxP_gXS1B)fsu@wO7*h?!k?|*B#S2PEIJ~~?zzb@WR{aTwa#D3IL6*M$pwiY zkQM!}yU$TR(`lE=D>`&2?T&7xfz0>c3eS2Q!pI|ne>2iVl(uz^6s;$y`zUK?0C}nw z2ZK0gTCphbFmCQSCycdQVj1GsW~$+r4Pp22#oEJ{lajOF z`GU@n(ycej{9)U=RGLMoUoW2Apq7kQEGaZ&+c#>zVa8=QetP>I5!-%u=d;*>_ahYS zW61h@{o)6zKG{-HAfL2L>d5*MH3&B3Bv;3=U0P~w3MzcO0<>G;)|!&EPKeoJ@KrMO zY_s#Hv=i5IvH90yZnwsMM`5daL+nz!<1k6Fa z1hK!G0t?OkZIi3JtyFh>xdv~e?fCH|FSfYul5g(FPHxfeDJ#?Sl?#~~L_YuuGQv(&$GR5Bs%SmedGjc2 zAf+V64{u#fO>yl23j0L4zUd~JV@iNN+qP}nwry8< zR{fv7$JqV!KHYu#)%gPJ#Txhe&AH~B*L4FAz|KM>S*<1kRuqvg;@~_2JaW5YLKCrE zO|L?2LwOPPMht}`8z>WVg)zckAoZTXjmJzQahiz9xydG!DPo!k_#OVWv+g80P69ah zdzK$e7;P0VFg1vWx?qK?RrDb9R*&d?Vfh>RlY4tA+s>FBewnUZgqfAdLFtj1rt?T- z^)t87f1=~_b2ejN0*M(J_OFxZ^2 zgSrF`%xATOl0f+3+jlw!Ix;8va?aE=uJ=&V zF-VEGV>>ZPD#Iig>RH)geg?wns(Mj4oNJ5`eNQJq6;;OAYHjHRT8B!>u<(pBCHpetTc9KQ(*3csE!G zpydl+43ul30$Uo~nG=fVBM^D1dtRnjkkukl5FK9#`NObm!69%MJmtzD7bErrI!x?m zS(Y}>GXY%r7zez<_R+k+iOGKdDh0%mn#RY+@C>_X)|psN1HVbXSk%A; zu9FR}oUg%{l4NHRB-ES(Z_S(*l~Pdc+JD~YWQQ=RN%ERZw@F2152=6{R4yf_va`CE zC+}T(A~fSJ+Be>;%6_e*)%ok@=iQWbUcWp-ngyEqO#$L8=!gQh<%&lE>x=q}2cqmS zQCUD~ZwtEe^Jd4GHK%ok3lyRIez|E$~zxl)<~=mLIaFJlJqyf5F52C$s7@sFwTQxr>J!&@FA?gDfJA1YpQ<(uBkq0FLYvenI; zr5PVFd-(UOw=eMrk=-0l>Kxx%4$Y=(&&5{yhJU?u73+~xwFIS_!yyNn75lnn%i1gv}<#B#t6O@49f`8vY zvfp#T$VAAy5EuTL-x^0Q-ow!8;y*TU)u7Y~Ax{LC5z7nq21%m@tKn3EbK-Hdcc>mI zMr&YiHj!7btBF@_4<4@Rodx11WHYbPDyFlMbTX$a%E3Hwgzz&3UVU#5L5d(N;j|&% zu2D>cBHiK83d<7lXGA)qp@k&)LX{25RgXy|NGf=cy`xSZn@yDrdc(>~26Q{matJ@I zF>AiU+!3Ygz?}OX_rx$^fAp(Eb5r?8BS?9d7?aVnye|Ys-w{6z^T=|Mv?+FkQy6(4 zx`$oi8{s*%;1_Z1q3k& zky&WhdD1Y~H(}hPJ+mvzRvc)1ip`bG#IT?n{Ni>7p#z(4Ix=gPuQBt&*!EPsn(t&9+Cl4E+w7B;K|0*m)3SQa_xc$S8ksP)X88 zI^crYdG|Ez;TGkJ{05iP6zJ>BC-B}p|Y$CavQ1N%?0MliiF z)gtR+=nSfD@Uoga6TlCC-i>5kmtOdV{N*Dr3<`L8Hq#sSXA?lA4OddK}aE{1`K0`yzbpqtN z>~LRe3o)1VZ*l9I?5fps=?MARrSFARx;Bquav2k0Sr;ePJVyW%Rme-1f1mQwDd86Gapr-Y|6q2uajF?9M>I zK(9eA3RJk&&xSu-adYB$7%kiOx>xjDvMnA?@zM$k9jlW)cwt7a%FfEpyy^FaFK_GY zwg|3!U!TuDpPCi2d(8!O0S8LM`iJ4m&$gn>wlr}Z3F@S_Sv>9z0sCUgg#B(PAw-k; zUPR^T>Dy&`)W_@~-k;Lni#?J}U*yOZFDYdmsyV`DDK@OYb#Sk!uD=&R19ybY6VY2D zC9D%s0RL`-zpns`$J*2+z3p~az%j=J=$?^^>iDQcC_U@?7!Rbd zJ!L-^y)65!sFJh!K8u*q4aHOp8$v9z<3l3)_n--)cFZe+1%hy}-3mwhugmr?0bh?w zJgG`!3+}z&K{cOfrt+V1>Tt@lKhH-{{T0Ywe$Hrn90Vc6UNVrmVJ+PL*kW*1Q_@K( zri7BYJuyE{4YospxUP?EwsfFkppE!Rwf<0=Hr+`6dtUlDY@*f)*F z#^E#$qbg(gA`hOTb&Y{7^hF;4H$_W2wB0F!T7H}*1Wip!YiFrdg%hkugTs7V5O}{i zy7U6~$U=KdLnn^TrLnjrj`UJaavzO1UlM%JFeNxlXMiq~@T9lQ8J%LfCSPlXN3ecK z&HkMUN7RQl>%3uQvb5V4L0l@ZZ`74r8W$V-M37pkcD+xMM>$Igt5Abplk8s*XTg~J zT{8uG3~B;`;Fq8Xiom+v;gFj%ta2l-+jCOz4DvcHRGX$>z z%!_$K^!>^`^gywf^NlnjT}T7k>W`vF zJa^Rg%ea}>mOF~1K(Tp^?2LY4VG~x3h{fEUV($2sGnpMY)j0OQsEf1-&dgouei{-c zHBj=TqCJk{aTh@It<^D&G|j27a2Y|x{v;WsBWXPSq7X0^3$~MNjqHU>`t;~t_06DZ zgdazZ$cKT3)B{p6R`l#QHC4Ij~{yyV1+>qS9=g{`2>FXoAScHhG5r2b{B`Db4|~z=Mz- zY!&J&ORFfzbxQDiL%kkNSs!nrYP8ae>@~Wd26pYGJ8~HHjT)w3hX2wlPHN7K}Q- zWU#P_9>87MGEJ5P5`S~M6DXa>K|AabO#`8bCyd(Cx-g8vE)g%TN5pr5y47C}g6c-R zny;?_*F$Kp?}_1Jqa?&YTsIPj%~p5xj@+Rmz18GY9(>}Flbl+ExbaDi9f5=F2gJ*f^i(; zXUy6cNX2)j%uW<`=&=<8ODzJ%W#~L#@I-uYGequSl(ZEuogz%;m?K1-%#j(0n_ni3PhCYo-~IQT;WP^u zjZp({JQ;rPLe2;f968yI{P5iXl^TqJgGL>f zNxdz_k9I8FfwA+KH{n7Tj;g6XDEu)S%G)g)xV|~N2kG=8wrT6d8We$Tu{vRE7Bp`IV;nt$KL2_;M-T(4neASg=|*nHG#b^SS~4(I4Ny#f^u4<(H*_j_9KZC`Xlz|EmjsjN!K>kU=yB44AtE{lNW0`jUS>h&F$cvi||h}WP>M7(5& z5j9N$w^PrsH~PZv)p3W^XTR8?U3{TPcGOrx;5BJ{POm40d~idFML0fY@xz^QJy?JW}6nNkbw(?e}E$omHP z=ulA{(tNLT7fghxZzu83&)-kT17vpiN+QcJ#w0BoE8pT7Qf3(`=fM^lERl~d3d*uw zU6f^~-NZE=PS=U6DYI?me!q;JM#}#b_V+W!`Yw=Ke#JG#%FE8|kX)3ld}dQN*Kfe% zL`NZCoDP)M6RVDr|43Y~gTAW}j$}jd#{3q5cKDrHf^X)z=@io4U{2bs76YlN>8#1f?eR1t zgk=iU0|-!lY>3(iKa6ZMwmc#?-#P;^`rvwR$u~|T17ng@TIyAfaBZnAv9H^>sL#UZ zzQY$-nlG;i7~rIb##?vta|otW zPYEGdm5etltW!OypPDZwWBRFai@%6IU;i9BkBd}LGx3bLnqpmGxzO}9#VWWRl+)EA zi(s{>+>9NuVWb({o@i(#o)I2gxSb(k9MlT?)MIw%FTOxnE=R zkdOL~iHBS>&&TOOy+Mby*5bjo7ruHhVPck)V+t4YBC6?w8}RJU5cebwArD0o3c~E9 z=;}SNW#kCtTiig!$U)qrf4jI+f%2x2yzY@x@(VdTYL2g6%a<&)*ah{@Do7|&iLKFf0kKN z#2LrPIl}iNF{_i$zyFN*SUELA$X&EbNDwt|KW)gO9#o21v>h4qih#xbZaQyUGt{#E zIEo~$hLqSDMrj=IMyj%QAXyna@Lg#-3&a-Jl+zXbGd40~jwmp+^_#}5z$$rz>xGV-vCUx8+A(^qgxDctP2#s^f4veHKAl)|9Q$D&=&{NR zVqqPvA*geZFj={?DN|y6X$)>pqSurUqeO_GbLelQh;IzSbE9psfz1I*a)DmH9bswq zEJwXstSbq3-A_3P+3l@Ly+|J&CR`SZJD0D-n)^-`?ud80vGj;CL_#u zi)JsJGh$CJWCqeu)rvqXlQG|$^K&51Ea;(^lt?k+5RX@rypZ&kAi&ewS&Or@D@NTf(UtBDjy-T1!+4t)#v-pz_xDA}LZ% zWPO{Gs^rxop@WTBQU!uX_$2$Y8^K_#=z{vu z=DA>Y=TaCD6ap$Wo$;aVIDtmV#C5QQf;6*|YIzG7EE?rJ+IZeu(vm{VHWw7XUWC#k zJlaFsr+N+IJz}>JMrCA)lM^Dv zRR+Hbml&-q!?KGJF6&G+AL9fogDjqfL$~snR4^drZyD0JiGx^%DLde8^i$9g*CsWXZ%xt)w%ju zYEbB^L4e`>JdL1g{$g{-QF4)0??Im_!_UNcSf|vqq?WqOrDybrch8O?|EduS)xd{s zfX!9>l9h-~v>d*JtOC$GCDe-Ehd-n}zi2*2N)zMWfaini?EOH_>Ah2+`F7Rw>y=(jTvhNTtedq)J}L zgrK(JQd$vFO65bPAES(7&0O!n zicnimX7lqXzN-NmgU=+68N5fuzKIG z2Z1adjT%Dnl@IJy{n*)X0PMe7Af8w*g+TkHJ&q;kj{4HK-Ox?3v4K_@(U@6Rug2Ja}(k402Msi5g5de z=m{95v**cqH8}Ln9zlpf_^*q?+u;xIO>i{doO>Pir?QdmAgu*RmJFvk@TEL33Z07XoTUTanxi zQjpC2{&j`^E}f%01yxABaNFnFHWR#qX?VOezIv;e{J1N8N^^2%GDrowUZLCJOQ;K^ z>v+$xl8Pb&W-l?pzCBnk#Dfy0awT#d2__tZ9Xx6`sMyD!S`G2NhNp@_*xsN;I1;i# zj&vMrdc?G|5*{A)U70l{c#MVdOjJrN=z?vkVq%&e8ncay`44Gf1}~$Oav_Kb?&MUM zA;+StZMP5ia;5AO*1DN5P|JcPn->;x32ebQU)N$IC>Tu!YW9A*u8-lwKvTht@lSH- z7Wmw2gRIjXNR2;}KTb}J zMcbV!t$}u1wioKP3$nDp7!x3rFjt|_<~8uc2Vu+~OL*1!H6}`WAtA=0z@#ExTN~ZW z_^u*`;}xA_7=$mV&%-No_}B(d!B@h%&u@f*bXl(x|`D76*QxDcdGhY~KQY z)9!ma8{9^Pj*&nA$r$gAohQ}9w#bGB99cJazO3g6HvdYJ?wQn{O!z3^*UE%LVL zieqpPmd{lmI&GB~B#~T8^M2qRfy*D9m#j3M6#D!QY5_`W=i0!@cvu}RP*by>vC$5a z7(NnJ`&{br`$KyZ7Oc8&FT!U;UZNaI1Q#dV(e+i?7Ui#NTniVDO?4}m=CLR;IA+LW z$L2zQwUD{HT(hDZQk9mEb_kA0LSIofC3(7hsKe&AK#(Y{9F#EYTmlXD;Dgan=36cM ze#lj%q4MYq$KkIQ>F;eZ#zJr5RaWr8vD=?%#xBdtquR)@_0ha2U4^h`efwT50@r={A z?2CI&L?$0v&acTZFdtAX-`6QX;x12{6o_IFXvKI=ESQRtB>FO>De@Aqjt~UP_Mr3S z3}avZn>=Yhah*hWJ*kvgdw==e9_)VDc13!T^FH?V9;*5TR1)O}=@iZsIV}jj;418( z8qn#y7S9}^MWcjs0m3`whjo}2c)F-{j#t{*ogguK^pq$!``5pf*W6^`5mErKMt1<# zNcVqy_U^)J^=~o)rST|0UEJn9s_GcPocpup8;KG3q7(BOfpR^dbrxsOJP!*+KaQ&1 zTa5i<&|9#&*9f_?Ol-+G_>n<^AQxEp+F(I-6h5IgosDK@d0HS|7?&9N&}g zn}9WJY2-r(bU_|kp_P#}k2Z}y5|EU@^>|`Mu1BySv|+*RlEbo9SHiDFD_03RKN(Fu z^~yqjm%jq%Hy7Su<-O3fK~b~F3>1wM1I0y?zi{pBU$}PYUvTYlQpVkCp3u%$3UVkW zG%<+0AcZs+0As8L2%P;ru?7Rl0F{Q0ed+*n5~eAevudeO#HUK$OH*0H!z=o^Dafj$ zcH+Qdz>3rJUvrY`UvrWtK;W!hhyYf{@fWTIn3F05c8URTEet4y@e)Ab{7RV~L=J$y zZ{dS|k@)%-rv7ZWlAih20tC((`0_5j(EyAQm&qO=a7NDohNb_0 zlZTDmq6i=KcUcvv{d%g!p>$0T_+XA%_IPbz&f8ekF~+Y=x0bbO_}<7eDUEPVmG~SN zWL80G3fV357h_CR!G71FAbx{)xNhY8s2;wN#`}{v%=QvA%-K=zxRq`ZRC)wn=0GYxro7;YNO^E-x7 zYHQ@3{MtLYb29{+1C>cq0DdHE?q;8V^CV)qDd5op!uRX{WB9E9Eqs8IIY9V=pLqsj z>r$eOK$=vg?OZu42h%^jF*p3imF${P8gG=1XElJBz%$IGq=B5 z0h>~9PdA>x|0tR3i?^`Ijhbv?0OKn_pv!*CX$o2p<(h(1kpHc~R>u}a_qR~fBEFml1+E4)1rx+Go2kBh@IhJJB#$fmj^~93TX36L6nGxhvvb0r26ab`bI1m z4-PX3AQqjqPV7zMuPy%}7UexPl{L8f5zb8^{wA=X8mjisRU!$&Sv8p$!MN6cCh)I9 z{GSB+UKcF@h()Nvi8T-4(sU+z4!;(MVQx6TFt^~+%wfl7dU;4uFCK&WTS8;>+g$F2 zYT|eupjLC>v-%xDLYMY2okHIo@jb<~t!$D$KE5AB_|L|~gKM?Xhr+GvI2Y-$9ZUDc znMj9IPgHNAn^wOZ@(W7}&21n$%9Z%U(ei4GJOIQZ3xHTuHE&GchBZEz`Ek{;^p{xd z7$xq$Te0!pWej$8km=)&u(Zlq5dRia@PxP;-<7evRVY@LMXi-7s-M+Tq?*y#j7(R3&#KC0?e|M6b@YXlCG zi~o-!(Chzg1V+0ij{O=HWLZi8klg<<0^9#|%85P!NN&r2NbYpN)mZf95jue6o|+1? zmB?MVEDzS!)Wwj(0a9cq#TX`xnVwV|YgW9$Ls8 zGYcTOAtAEZF6pjsrD!hb+Ip)0cQf!VzDJPe|6&IITbX#FQZFEZ06Q!y@gbl#j${P_ z*LAhN7Q(lDHX{?`ZuK-(i`f1z!| ze?i-T5%}LP!hk|UuzmCIC}}h?e_aChA-_#BR`)VhLoj&N!}iw8=H||IE3%-Crk$0M zkD+QG|8oQiB>kZPh&3hfp^WSSQ;(tJERuSVaXo!J{G@tgL`m>pm_V zFo4>Yb>sxJW@qQleQzeNJfz}Rg-p&^QxZ;L$$Kyl%(f8{!*ljz$6JXp-q$uBQV z$M-{+?_yjuywMbY9I1UB>mnPtb7}s+nSmZ|$4Xm@fEk#Vf%DEK4e$Xes{@L?aw9Id zM>>~ZAG)#n+074B0ab?RSpOw~{(uC2pXvSyNMO7OP0xeN#JfUO^P7WG&mW^KXsAz0 z0xaB4KaePxiIuuD@IbIfHGW|0OB>Zx-R0-?e=I zHvx3}_eJ>sPa{yEI773pVoBjgJIqJfvsXJ_4^3SSvX~Mro1i5e7eJtyUdHxUW)bm^ z%!2G+G7Eq}Gn&R73ys=$+$DyjWn^-m{2{qwPS0A-XKt#Z>={@^Eo7Gf3w)K5Jf zh6?qbFa=<<1t{yAbOg?dt+vbmHa$tH4kjc|=L zKs|N4#9^lqA(rLXYOhamY0qk#MET}_vkP>&hmCf0Gd&()FO)lbQtq#+q=!G*rdj#h z;6c-Kd71L3P|NoDu*C0vl!qDdeO`ct%L5b=2X}?>5!HKO4s+xL=eZvgR5slu`Pq#O z%>`Y1XL&1AP9|5gj|y1|^ZKOef6`=a@mS<%dgxa3xI} z^5r1+#k$z&WEu$f5c#^t9x?vt@-9OCX$77`aTfKZQZ9|h((bcP)gmXo^JwEEMdWVS zFHqzb5z!IqQ&d^_hnmKry54Uqqc6e_13$-L!U};|xL~_q^QNto6DEx|P&%0zjpV4( zmq)Lbd~F_Aw6HBRQT6OvaUmj^M9sMQ61q8Ka6R`>!@`*6HTcZeByD(+Ih&Qw0`H3i&qL7lhRVaxImjR zBIC%?ZmawpDjCIm^r)f<75sDt*Y6Mm)4~SH(|w~*;Cl&^ojmVOyjkSUVQXl31eVHL zcnydEpkOsIYk+`Z`!b z#n1REbMYqN`cMlW^^T!my$#km3SY2!rQUNXfmJKNOH_R5?~f%k7P{ACuWr~DsHzlw zk~j8_NYjqRe(I=P1CWQv3o`-Rpow1m?$+0n{<|()RJDyzv2Jo;TDwYG5=rIZzSFn$ zS23338~wHaBBoeBDsd|wafsJ-y{x_$oAceQ-tq;llfNY3{KGwdS>2;_NJs^G>I?TCnCo@XFhBo&rF z7*ZbMO7EuCx65iIykQJfJ_8Qp{hfMz=@6NM5-*!BANJb8*{L0`f z*JQxqwOY>4x`A3fIenowU!-2@*OyGAc@lN&$%ps(;xD6}-f;#9{>=J&DUxa*eOo>+ z0|fonK#}RVgEtHh%9%EV_=Vr|si7=FFE8V##rM}*f#PWTL~LmG-?GRj>8rcrO>kII zD$KiN9B*$UZdVYds)NmuD=)9V3+- z#Af``an2CaU!`>*@`0$_ro>{@3}q^pLZh9t&CS%-_575%OXW`&$s_fsk$$D{LGi{6 zv`;!By}uVZItH>>_@!}DOmipcg!0;{h92OaHRL2GvWu&@O~2DfCZ@uJ(ZS98YrJS- zfY%nU&y#0;QY2RN*?&D?{Qln3Y}kgb1~OZ5L&|1UQbH=R*xWqBl`s<;CuEhzuZW@d zPYVa?Y5zm|xv8EdvyN+XELBB1(lnDXdUX~53G@t@A}bR*(r2MQJZo!jf5dtmSOZ93 zJ31&O7_zNj6+2muSh)|eM9R%D6;(g~pI+6JkPEFu!iUU1h4_V^QU^hJcCWXc&sXnv z`{n1(0WSna)CK0iO!CDkOd_Ru(J)WUbl zP5D4=?!#|vhq!CpW^7wuD*btTn1Nd$a*Q}fP_wS0Gx#py;sv7aT-Rr9>%P333Dp-fOrb{u+R`-vRZ6GYMcDjH~XNOM^E zPU3VRYJd?A3ZZLRhbf2B=ORA#EbW!1VT!Urr099xx4iF>ODQ0vnP8){SUUxUbEvnZ zHiVRb>%%@e9?nkuCR`aX-hVB-GUTMD)OSd5K#OJ0C@P#G)vu8^9_GBpb?voEQ|X8| z)9nX(;82~2_wjN7};s1i^o8m9-IJPZbuXUgyBce zE1+kA#DYFkeYYOd<-_NO^IlzOgwB;?#?+m=!{JCXJydXjn=`sfl$rhVGA1Pb26Bu+N1_5+K(>)x{;TH@e)W~*(LD03WhfI7_e~A1|zj(?Xckvy` zS7@ls3(#yQd?(|O(4F)t3cty%NF^AjG(_yaWkQgzk#0}~lZdH#D@zv7@qq|Rfly#N zOv*?Jg$qNt)WU;w^8%&(*a*+VED>+{9x_jm^!YVqe-^^Eq9T+O9A4iZIh99jZi8Xr zUR@wbsL@UmI=H3<>k@2xTjT3+sl}6$t{x8yRK<3AC2z1clZVRg+SZ$KDpkuWCOM<} z?Dw8`3I#C`XHeH0YBMS8?|NlHqKjrpD#tEm^7#YNhXXhI7GcUy1D^)qzzNCTtVd$m zeMYlq6AE_f7R?sA(%*@CQuS!`Z&-m{*?7sYT+I_FVjwPf%ds)1`%r1rG!Bs2*5av* z?S`w1^5m<(u@>?Lr;SB<8$Ff6^loWO>C8P7LNP)8R%sH^FpRT`VD$aKvFF?Sob1eY zcMG2waN1i~1!bH5A=Qu5tkR@#tmRAL<#6Yb2>Lc)R|rIj=r)4hUQ5g1Y$j+gnXm87 z6yGGs3%oN86T#CGgl4_^Xv5w$1J&Q}KV=uG`<=bH5+3Zg#TxN4wFCVg>xR?I z!!o(;Jd-N2!oqyCGB9=GoUNalb=id~oTd=cBG(1M-yf@3N5p?Cay5j2A+7sD;MA~7 ze^#w(a^U+3VBguTVHi8GxdAnB71zps=#AgYd>cf`Jh@9_c!4+PL!%SHhlb+|O>4g# z(%nT+74Y!LR3)SLY&Dl0wd* zBD%RK7|oeL}Gyp`&oXpy&;HO#62XxY{ABP70j1_ENBO{ zwqr`xi;}FC2T7-QH`Tnk3Rh9H1s*mT%dFx!<+0InMjF(<>y%_Yq8b-TW>`syXX&rr9 z>33k3sa|0Tneu7^n>WxsgbM~PzBLlIw7PtB`kLdEZ>LDFQQDrVE&DFloTbz=^hw?j zE?k*)`%ifhm}MU%O7Xe;Vym%<{+hobA8SBe*47LZP2#_$vU1pthhWR7wK={7iADN) z5k;44QPbq*3f>W!%@_o%MCS=32Hn}A>gV$>OIfB?x_WvmM369>7Rf*=^D^%vAoD?vJ8rCH;VT-)Bb>zV~z z2TUqMj?vm{@YAaB)20l18?1qE;$&_}fP>SEK`Pd**x3Pd=GP({MvgP6EL}NB-O_^S zY|iEFo?CsFD`Qs7X!;GpFy9yZcS&aoBVps(GUHC|v3ljp56SdA zbj2`}9^x)9*g{?p#Pqeu34^hf!Etf$ht@_vessS`3O66SH23bsCaRZIl~QF8Pb@z! zm%#G9@sALS;NX@_r@cdikx}^hcqX&JvBU!$1=%h zwo%6*x^~-yi;H=Dlt|lP{(S+|s0*3hdYF!mtec{`C89xvlQ9h<%7i?GUS*87im ztzD#;-@jtf4Tjduwf|VGH*3$e5G3mrov{6c1Y179>u7N~$yuh&12gJBpE~IW ziP$x4mBpqM;{t6bl|JsPw;d&Z6V=&;Fc}4Xd%8^ruey)94g83ez7PxHomVBSxg4u^ zrnx5$_0_-Y*l_ZCQEaD679MoP7IWRxG1)F=zoQSaPH5A;mZFVaw*k?=psll@(y!8W zBh}9MdCW<@oGK>`rbbQ={YJHL?oYB06ZJt1$@n@DETca(%+_*O0Ee!uflBZpPp&&q z%l&{%vvn1BfF2>?fqJAGiVUxMzNoRsIKUOO8BEbwWU=n;Zh1XJF;9j43AI4DwPGD) z@Z(2!gKxU7?QItPWHn%ZuI28+f`aY!ORS#4EK)tOsdiZMXZ_{%;wW8MF=%%l!ES9&26j@3}AyfEvm%m_&nF%ReMe$eRiJ zMuGKAb2SnRbL3#n&X)Dx2*fvGra-&1Tg2|gET8e%mk=!DJX@4>Jyen{6^%Fin65S- z;NimSH+<~sSv2SgL>U)m_05&{lC0vC*#+nKZC=Uf)+^DDXmd1R2zWxIOe_rKNrdDY z&`zMhDf~`}Q873#WUuKLp%)CG$SFxZxx9e!dK87=>kzj4TpD$pGlyR5wrH0)@MU5f zoYBY@$MP0Ti>fD;%kngd%H(zPOgH1cT}4C9PIt+9Zu<%n zd9Vt>TkTW5;!of}>JhWehsmg$ecv8Kc%Q%j))e$_<HG_&!s6# z)%n(YZjjuokHqt2nHu;Nml59@dYRQcY9v^%bkh09CAxrlbxsbX)o!Wul$aBeJ$+g0 zBF+tr&U$|1=l%kU4-&+VpJ2#f!;PQ*7bh4Kt{JIh=N=46{!lSx!4nVuVL@+*1paMA zah-2RMRRWCveXiprlCoT80ZF$QPgf9XMOE0Jl!{2+FFmx2D~MpM(jc3s`%R;x-#2Z zJ}360FZG^Sr3kjN+deH>5I8|K zLM7I;i7rw@>tg}>DT0NO9Wu_g3wNVq1n6ms@U=p~wf@FO2qb(pZgFYe&~{7v>|?oY z^~f{x2bZ^D+^PISgUp)bE6o8U6QRkd!mXZ%Np@xmGLaD2Io%1WS*eKilUTo(v?{4D z9QwRLx)={%gQ-AVADTTTAJHqGO3azMjhM#XhsaG#zL4exjJ>SYwj0eommPY{%I-~l zq`Q8CsV6vZjSX^PRw=0F3%O@ou1B9?Wtho>JyjCVKfYMKrA^nlSgjW-%mn9E&Fn2{ zV@=W&w-R{<@_MUOOQX?Zl$$5ZpN{kJ2u5N-y1xxmW~tRuw~f1ZKEwyT>>Wdc{mubX zN)ZMR5|;_-dH{~sZd;r2N~EU(b3xsHJ5)2GC)?b*aYy(>D!|wBxm#WO(jV0ox z5(SOo8_{5R~*=qOAgYGb5pfm z&T=kX#58ZqvU2+qSYOMdY)(h@)FovGLEkT!Vq8}H4;-US zS^htnkB+}+e(J1V)-A1ZI-{+JMLKZj!d$(opN;qGBcp#sf3c_NIk=4uD*t{mOb?fHk zc{ht@-_*2dJwB0$`*`>@&h)I#l!T#&EBE|oJ;lKk)0E#nbpv0)q1y))K~kQsH#<*X zxb$@!*zINnR$TOJv9ND9+)%>UI=mWeN~8(N0tv7YyOIcL@y^OGcg#Wb+2?te&rlOQfUpWm!Gdh z_I5L4z~1?qzU5)jo6g5cI3}c@Ry3zDyk(-vseW{V`1&_x_f<9xM++qokZ;KU_F(xx z56}PwVdggf!=abgc^rT&z54QoiRgs)$3ix8mBf<8H*_)nnS@KN$rZ;N#mkEe6+=_E z3jqu-@MO%zWw5RHb)C%{ZJ%YTt2a%Y@y>J(@JnhwUFfe^XqDB~mDSy;sE17l__#km zZ9dlTe0>gge_1lL!g`M_E2nK&)|>M}ZFTr?^F$8)$dXo;FVCOmd%HLprkV^VV12Y` zR4X&Ur5R5h3qZD=$X9QZv25gf#j8Fepfx#?$DJ5UC!(KMkFi-gWGXzGB*u^M1+!#fLtj zl4xLOffksUmLzGRUu5#Jz2Q(T#y*oTZjlGwp_f z@^E}0mN!T&{ImaK!$@^Cbh-cLu!xKc59FH;sn}{9Bz+}Xc|%@d{&m;_{iL&cdU^Pg zXe*2BqlrJJe504{_UgEElaiPeLhdbQP8MNj38u z+On9~w&(McGa_@9e%wU87U@s^G9~S!WvUB&FSq9_F^^~iq)2uoOD}IvKT<;uarHS4 zqXskRfcAVVJUMhhrE^H|PNF2y033ZQqurEt3hhd>*pMbSe7X5mnjN-f572)vI`2K$byaVi3m;6u+6mBR-n zwJtY$A<_fJ$jjAQ+6{~!PlI8EO6p_ee#=Wre5;jYis9?4-zfVaU ztA5Y(NLM4ft2FO*JHWCn~M)rtF5{_$0~HSu7fpyzikm1{2x5N^)m}s^eN! z`Zj=GCYOjEc5~UzZmZ*i0mlD1t-4LF+x-&bd4JXaOmC*(xD&{0Kktpah01;!hK}?&L8`H0LuN4wQMi#d**s6>xv=9+=eIVl)i|S= zN})Sl()o5u2y10|Md;h^H7$B}K~vC*POC%)^c==ghzWu?u1*y%AFO+aS^}d3g2xQEn2mbEQsJ zYgPWs=84;0{|^9-Kytram#Y=22ZMl@`|Iyt3`lwqq0oBC6;WJGx)!K|r8M0x(`ucN zVqq@btnH%^W}#djcrFQ$VC0F8gkY4k!ic>4M@Mhpy?pUD`S9Y0eH-XvEeVy`s`>k+Mp=yFZ+ryI5h_2}n!AKt!7 zK7RMVUT>Fk@2E5izxnRR*pK(X- zR>ZRQDkgE+1=@^UF1;D$^maAP`xYu6bD`MH}2D8gZ{EE1#O zCsj#nhnN`=Q?>5Vj7p7HT7$?`%};JT3%79P-`ynkJW}yR=2cPlJbggndF!0m9pSK-Zc5Jl48Px8pjh-wuwIZ7O!w? zaR2s>bOfw(Vo5YU{FE@sXfCLi#Z(EY()#S5*)a!qp}|v{j#X8WIEs7Oq9`lX>qAkQ zpEVc(Xf|esPSi11tbT-Z#-9y7dS5e9b1jj~5w9B~>%!h;6V|QD)Hf-HNc#CkV5e33s~eA1DoUb?Ixe8nDFrmi9#M2@Y5z zEWoK}KakKhh%t|&k+>fo4}$T7!%jpgm2L=8G!QdynwACW(wHqgk7ZhH(=W?no-O!B z`TBiGIihrkhzxZ-q}rYa)W+cX800t~NdC zpw(l9`Op=S#WDSleuKdhwJfO=7{4r=BTK~l=CsOvn5YD>zXJ~3>h@diH(HW5WSZ&(o&m^E$6HMI zg~4!p=21kZO^rDUd#E>}=O^RiKSb+W;=D|L?_R#M-Xu+uVyrOLc*=8VrA!a3&zlzg zLTK2zabokrLxO9X73IpdnBu3?6IazjA>OiM4C;)tb&qLgGcPxoppw0079jB}(5C1= zJ`4!%Rf6JB9b#TVjsrVR2fp_bF0?X8ugh!}y!`3ai(sjiWFr$fq*t~naqq?3_F@RH z71jjda^B-&y^Ba2FPHHtDHqeYm<|GMG{)eFq*R4H{h-(HleQYlqIV2Z-A?n(Oi`2P zx+D=BjfQEj1B_)vq9h2(o->IWXjkg4cEeX={+o!;X@u5cKZ5n9nAAf@L^5XX6{O!c z?@v!!5L+fzNKXecfDNz%gH^2maznOqbLe?`6R$c01?^4O@i!^;)XuN1=*!l5@5d@F z>NyE;qWXI*b%M};81dyca(!YDkfh>ryw`N~(9^C97!=$N#`x@URPw9n!3h#>ge-Nd zZ_~9P?yd3{-@i8u;v3fd_(qgKkkVWxI=a7oh(vd|g}4lL38F6yhurmpKN-G9L$^@+ z@%i|o-)ExA(>oZBw0P!TTb@25ZGkb)5~t0C9!t26v?HKS7F7!3fz$%3Pw_K*T zA!MGR)GC{)2oL+Tj!sXwmkWBx)q;@T1X4&d^5vrbo24A%jA1Q;Ukw7dDQNMRRZQ(Y z2?QePCfWQ>*CrcnQ4g1Jwy$!F?APq{vd9`8ERM;fWQOGIAbH3(U+uOp$|AobRzNDt z66z8w^phq~{CqGwoNF>TgFyF))`uH*(d(kk3NA$<#yY(3xyrpWuZf4gM{e2+6Tv*< zdWk>@?>}=jK5JFiqw~%<3q%c>U@D(KWksbVMJ>(ST}`Lc4Gl3yLMFX}xD9iJ2F#>rthNj2Y%M#0Qv$PMI*x3R6Xg%Yay4Wr*>m;u{<$g|xSl3&4 zY}=ayycp%eBugSZ6&w%$Xq%G#%$+HHr_-ERo5DD|jKtWsm4wr? z>aHPtU^RkouqqSnwS(BjoQo$u4#v@#>hIGR>9MFJO@6r(sOgI(FR2|uRT%_c@2PK| z&&POQq_kVYkjYY&M85T8yl3%b&}P#M?5f4RM55qrBodia`%M9*h=il-j%NKgX$3J7 z_I`fx;fL>jcoY2RzyI(5`al1M#zZf(Tc(3xL!;fjBMB+PY!KU-ZgW%1rsyw4Z z_faXYhS||0UHg$cdRbj>R6Tn7hi8zNq?X9E5MrJPGg^+>>x!`J_g*_tHG$dndsj?Z zMEp=zOMea5^dgxQJjl(#{~b$--K{l1Qb!7sQe+l0JUlMwvBsiHvG%2O?!+Q#`zLB?m?Rdm?3cNV*s1;;mssieOCWlDg6HAoh%Y3T6>GIw|hbVYYxdnk$kW`a2ilfgi8YCe0tJf#pk6{MhoXRsBiBzM|zkj-EZb z{NtDFf#2@c{1~j;?B*KbF=U~W5q#vUH_q$QRB`kx@%6fJg0n3I8i56&-Gyf{7Hge) zeObk`gw+ppbdE22s*p1wlhQgXL zypf`UX@_ynet5erZ1f5Kb3Q!2h^R!v-3;G5Z&Vt$NJt8l*iYDD={q}YQr?RBbqYf( zcXk$4@O&LymUxepC7wMBz8uq<>!_t&-QvVScro-{EQG3xu!oo|a(0e1cyofj&z^(l$sIEDtBEmeen!oGF~06$fP zzFOJZ#bB9di1Mc46A-gGt(KdWm`zM71QpJK@wf#@3c{(${Ig&m`E7V=ttP7Cz3uD1 zNSj#^7B_<+)MnYxH`e+@LMPI$n7zwvZCa!G`6@UbodAKxcwnm*PJ^UgD@^n7SOzs+ zX~hbA33W)5!Wz4+B8@Cz3+??=bq~vw>D>>N=!_ zN!I1$7qSy`Jpj&BXN-->>l?tNO397|bNVHT7+o_JgWt0tNt8uzs&w{|--V<$l8QEq zt)r?&YzkZTbU{@c0V^SCR+%cMiq&FsLvt;@LlzRx1yb<2nVG=flj+-btN ziW}c97A;h20s>H~>F{)JOHxpo**wUk59}=sb(i%z*LK*wzYrp#-NdOHPThM5oXTl* zl1`|fVUySM>Vh2aoh+Y}IYf+=PY-`7KI=e@S2LhkCo$~vdszw(dig|=F_77<%!EM- zwD`?CJR1`Eq6z3X|Mp5&8B=bmF?o)ONt{mq$OH2edpNZ$FwB(wPGy0Zla~Ls;V<8^ z>YD1plsU>aua2gx4e2Eufg6gCjn)=8f|gbz&62lyv2FaO!SEYMbTEA0hH2msPj6&N z`2B7)VW4EijN}AXnZzzfq&ML~C{u2V6@BZUiZkM%SFwA;+8RWx6i~Auo85Ly!m_N> zY#L0;3IuN_!PloI+QQVhY>I3SPsTVpc}4@N{o&*25B4tjJsCoMm{IKQU(`M{gQ7H? z=!WCqd_ohVfek0@@W=N5Oxr@PR=Rk|W;a6l>9WZ(e{ZW=7Wv zLgH>@3&{>7Lu>*>&jFJDIF%7WgoH(2POpeJO7M*}vPeUE_6&_~sJSnB#}sc)PiQiS zc!kZ$XgoZQ#z(FG{>+-xmQk4nUy+`4vu%mpqPORy_7pd~LT_b9eYI8a^M<+*EhtGlNK9mC=ow);(HL^ChFY<9Pqw>o zw~OuZ(6r(9)-W))-5u9Rx^1|_sBUf9xd#{hHrdK11S`R9+T~DGyiWM_Hh#QQtwkCB zh)9Ke6WR5I2IpCyL;3BKV|ubB)MTgmZ)&>*Z1Ax$%=_wC$n|BqQs*aULg!))&r`&@ zZq-KQ*qo!ny2rM_ayVb|c^8%C;VmIU6-JC5<7MLrnoaY9E!0iGPXe5|QD8|k-i&d3 z?>nYm*iunM^GzW!)486|5=&2WYz#=u<{#-`ac`2zMr9AQo-K-GT2=+Td=gaCp4V^6 zipXKscDzvgwW40T9t5&mS zuVa6sPowsPd`+@&YtY2_jQCH8y8URP%Y|E0YGM?ypS|l$fj%cl7OtvCG^L5UWv#20 zqXn(LkaQZhO#DB^o)G9*@`CWD;ETjDai$CX*bZ{NRo`w7>Z4V8wqm^{!De8hqh|aN zB=&yr+xVDRtwaYl310Ewr4tYeG5=63EaGQ@39jJ$3zT( zs;om*ZQlTOuL(ihq#lssujS#;1dV5r$pt9XCQ}wjU*s>zs z-zfbj+5(84E^zyNmkqG>Lx4Vu>4(w1^_d+%5RawK41y<1;b?|qi2xXDZ@#`A9$$1Y zs6z^{xXrb<2V%TSP45B=H@bxk|5MUDNZl+Qzy-J7RILpHdHKBRz+URZsKOLM#e{{z}hDxTO3?;0>mQ5=otxSB~-@%D=zzXyH1I?H$?f|<7 zjM8hhn{HM7!W=-!y#pQiIcF>L*nVS&Z7(lk7x5zvMe&5mI^pZMV`v>iO|Ua$BMS=& zSU&IRQz|%kFyK=ze8Xn~VDfY5r5O31d#Tq_+UJM>v`%GF?D;?k(VU4j!$BQ!3r8!x zsh{9M*EXZPkKNi%1(6djj?jj1}UlCkjf6o6MyNHZmfsN)>u{~4y$sm}O zi>dJGmF)_R?bWXU;u!+5fAcFQ_wN;RV1MoHmbT8NJ-i(3*It=(IC6A!WJsoYT2<*? zXadx65ENP(YJ_)g%TNC;ceGIgqL4_NH*hnuB3WUAfzNkl5O7}|Wc$=egXtUCn*9%2 zaj4YAZOs@AF)&Bj;j>?=S(Y}+>9_X49FCFvEn9_h;@vdb(gHlmuj_|C94q!)81cbO zxAX0dd?<2&Qwcy4guaY1=Y!F%75!A4lp2hn`?ObpD&DC~v|(nM$Q> z355NJF8!UU%R64piK|qu*4tDf1{j~?l?ZE8>$F{)>m3WeTc_TFh>D#M?fHA8eko_f zamI|Q(E1l!@8Mg0WSci^DKH>y$GJ0+?VrDd*`4*+$|fxRQ8pff<^$8cfu0-7n(YGb zVr8D*-UuhyvCXDgf}cpMf#0MeWdn}A1e_RJKT84c*w5GvTe;(knJCHaL;QcW50$ zBN%u?t1R99cN=1CjJZZ_P{RL@cBSEc##l2VJ zQKj`5zMj+PV>oi=55Z-*scQcu0<6e6YC3MU6@NL8IFUr-*rB70MjjrWrh%V2?%wIc zK;DRs_I8cKpT(ZyAeZ@rixz4BtSOds*kL=>&qo+&zu6Fbl))wDk)L=goSW_b{X&?V zC^yOal7=82N6(*0ZVov~uXn_rk69wJP+HyL&AKcR*S_YBNz~d2{1Z*DPc*SU!Ia_> zztm+B>)!1yN>;<9tlK9U+CQDlq~3)fiR9c1+8*96hGlg_kTUUoU&QIR!xJtA;>=apaUrZV|FN< z^0S?$Zp+E7p&EZI?-w1Y+U;#8wqbnj1lGvhve<^~Z5%;V-6ee1M(?`G&W4#>oy?50 zm_k(uugHoj^!B(=6TgEC++;hAUQ~+>f+ODZ8x2>AMd@sYw1E6R?AesDgd{Tl#7K5X zB6FTn<1wezB=T#flSMKmm9JtG9AYChvER|#+t_rz=xnHGVai@9XJ9)F4q|dI;wUg` z=gGBgnMlJ&wkB@&1C8Od1t*cyd4h*|dDCpQeTv|4!#ccPx1AMh*Y@#vY~XU#ozuv5 zrM-Yz7aMZ^fllDho3LH70AATJN8Y^usfG(s9+)ho`&(r#4vd5^?Zs|9o9@sSZQs*3kjWf81LEFT* z0$yBk2OztnXZsr<8yy?y-U+fpkXfki2g+knlq_sT5FJ=;EaV%6xHY+_ZrSN9Z0%Jo z0#q{L@{yJUD{(WuQtJb}aZw|_B+zB|Gg=6g2Dq(0^axkS%6T#AdI7x|(Og^|TE|q! zlOKEL0NDmyoVhGqPIQVr0u0sT=wD2^Uf0<0Av_Zcn?))LI384|Ip-8v$ilS``qBjr z?(fZYT5(ny=2*e+N5kOR_=_+01J_3uaH4K6Y|(E86*+3ax!%({un_3s{w)E27G=au%R=4nA-mK z^vRn}dGV!HCequE(>f$B=*BpaOmhc>$EqrS5&6*;`()14lA9kIMw9K3j;bq;useT% zo2APJZL8bWZ-BVgkAD6a&=p zI-Abh4=!?JKTtk;GjwN1HR*6PrWzH9$l5!JOc+PRFZ-@Rpj@b7;v1IU?3^l^buPmkeXgi%0dy6@G6j5bsCR@ zv$#{e6+1DUgIe&q`kn1MkoocO{_lkYY8|4zc}f@SV;ntJ`4NHRoVmctz_R5S zOOj*D7w^qDXcJdAF19V(wVbd%M1BJh0Y4J&Yon+X(w6ZOrw1j8u5~inPZ@-LZ6kjk zyaeId6v8{V5M18;(8~dA-nPFl5Vl|W9~KDv9jUDJ&Y?B|{M^0Txg;4L`K^3!W~HXt zJfmenI*e~J=zP=8)s^y&7$*mJpHB!~YyDQfX+NPiXNBdFZhpc}Rq6M}biN$VetJoj!{SxRPP{BLxG8us=>B>a}q@f!1<=oVf2Qs>^+ z`HylTCkBtzXYL)Wp33-imV7;`th`S!$-b>}>$lgU=T2|3eq~1^wjavrP&I7`jTQt( ziQ{|_@M*I$N1UJQNpq;UwFH_Iu+^fg+1fYcUg$jeEz0zn3p+pfyeI4#U4+mwRVBnj z+y0f~mEM4GPmm}K9>i_RmDldW2$(U1@h&;=zt+)8;^<2yS$2a=tyfxl-~570Xu(>N z8QE674+Z$6(eKU{qd&eCH$U?sl&x)7Z>zNV9S55e+xu2WJK0RV08_|n7An{}BZh=Q zW%j7Q#nk=1vR<3`jaX`ZVrJep{DXUH^^{niu(Cn=A4Ar1&NtRdcgzvP3 z-;sggn=JT3oe)?mKB`91L(P5R??fYvL@@T+x^LEaunXKAi$koV_nDG*gZolBdP(eP z_6km>KIQXVoDtld;ew+CbA}KsS~9K)54Id9VXE@7pxcs`0Cnz1Daqaw5+$8A5I4iA z|MgeVB#u6Wex-_8+$*M2lK9|4T(VB^VEZ&oZ;_W}E4QJc=w173k{ZGn8eN}pu_;Hp zJ#np+1x*>%{w@axCvI3Nr~8y8Vragcq|arJL6~`YqpF0{%?yGKLRRI*%Wk1qnl?ii zISVavx(|PG1`RK3`0>rF`1tkkWDvklgUi!?8{}MrB-{0v zk4p)NynQxXJ2jDQtR8>Yui zAdQT=7CruFtb6Pd`AXry<@j}A8X1N>IL}Nkb+R90Mb0a+SL%Sca3?Ikdk(8VK5Kw8 zvtbH%LNdpv8-Pwa;pl_jO)$vCW$T`JmFa~Xx?Gr5V(Y+zXzEavr)C)N8HwFhlGTl^ zMO1g<*ZTV9Yb5CjR%M;xlX#lhH(?-=S68$2+%+47I%P9QOvs+h7MNYA0MesS;Xoax zO@LrHe-IGgmF|0_0mt%OmU;7Rs>@y{IGkY8zBD+XetDPhK#3I(Au;^CEATiuV}#W;xGgne0G zCznkMH4KOS@ZWy?^YGh^GC5m?(b-kh0jzGVn>MhIWEjhy$KzpMAAtGiG=D6LGqtFc zY9RU4@(O`il?DcU_f(+;VvTP#jMkPr!0>H3lOhdt1kn|Aw?pOE48UMTWw|y?3&1-0LjK70<(gU)Q3rm z^Zx6*E%K+uR{1D)0m{{UJ*-$x?13d&gZ3b`%x;M-?}LB>zXbqd|H*KuoAd)H4;;Fq zzt4B}U;Ao!b-eb^Ehr@RINdVl zcIF~QxLvdUfb}TvLBnqA_y(P4%E=bI{JZ_lJP9b19qo~~Va|$#rywd$Y2*3LZjpWn z{#V{P==WW)6vpHltjdHmu|lgiwm4&#^DD8kYCKhPGp(;%AG9NY`eT|VhQxoX-ykTg zJ;bs{+&-piziZ@b^1*(N!fKRtA3^4Dz4NVE)|=72?a0dBbk*^6P8H5ZqkD(k!^p#b zy8`TRH!l5wpX3Dtp12Hm&U6ruh_~y`ZU%nUrgjJ0MQCexiZ?p)>P*|~5*5k|h)-c{ z8a_5R&L5?;ct*pH1Mk{rO18S}>h{Dt!VlfXI8pv(IXiQOsM|fWjlP|6@K%!OV1n1T zYj5xdK`~oqMSKG5iLDe>#k~Qj=_;dXzNzEmZ5#`odXscCIKK3^Y+OpuRYjIqxvBm9 zhKMZ4W@?qm?v5iOoz`ZF!#SOYc+5P+jWL$)^3nTUd7Gp^UX~za147y>WLl85FE8D6c0y{v zX(sXWllR?VOXQ+)%5pbcn&L*!EX8zp1}Jcnpc{Ltv*2&6Ml^CEpMkjH%blk@JF_r! zuMK?ax#q8Se94xCoN&?Vm?s61C}^=vw~2D46NTw-ws*Ye4-;~}Chs^$M=bL~0Lj7D zbCxn!7ub2?Z%7$-j!%{mGnX$Mk%Csk{NHYNp>yd1%yv`P(o{*b8WxM~_cxariHJ1M z!)vBG;Y7k-f=z*-pEQ_WvMN?iryGu8pyh`do^4inhOYp0uo=^KxIjWnjExK%kO;n_ z$>2=G`f;_JeW0yt#VEqaR!`59cxLa<-2MoLvsTtJzC|Y#vso8np(J4ITGQV zjyu5N2R+~l`h%oPx;^JqE+#t^Xt1$#>auT#o9vP=PE;{2eYV69J61j`9boo zK>R`ABj>)l?9_+G;ez+M&VcW?(fMb(`drzmtH{WD`9O~PXCrG}vsO@Gr zLp(E|CTBSRLxVFZH{za-n>L!K9Kkw089TA01H+f@gsE(Dx@dLx6EUVQhJHX=8IOd2eiQb~PfUNVpUWH009lF9Aw>n?Q+}3mf-(9MaQl?lDr~_Z-AcYW@Oosl~}fH z$#!xT7X<=M5)lX>_>e^3x>fUM{%zI%pPH)K$Jpn&FR=RvdrmiiZjvAg*>P@W=rRR1 z8huW8pYJ~C{_9tSJn(50lT z+^rvh(lEftkL3Q(Q&69ajWF%IEfE_2FP(iv!5UQ z`DXzS>MZ^uHDl#vc7ondkelqLNlPI~dettj-FPqQ;Y7R${ z7hkV5jbGn{vkAEkgJKHxG*vf$ey~sS%$M5Fyjx`w7SnQ6<}~vYKr=2FBnfig%X3=f z{h1fW6$bqqNA2fn=Z{=5%rZY=|i>tB=dq0I@lX|!GtRL4ImD4gv0ozj7buc8O^De`BP<*B$J4;0p!EFFpkyOjiO`(gP8+K^m96y0la=u7D*O*krJl!c+}pn z^{}c5Vij6C_bR0^If=;;-tXMC+uK{^+MCocRy)#;rSwQ%cu*aN-kZ?8p8yuUFz!_q z+7SGK-D<^fm0}iuT};Egr4xJ>)_35iS1(@OSO|{%zyJLAeSN$f>+v&u$k&)X>~c|wx1NXz1c)zKVnq#I+k2Y&}W(;tm{Bipun_Sn;@PsfhxyQ`GITgVqkVF7bq zp&6jO$f!4yaDXbYH>>UiG|Lw674)uHXq=UD3B;w(jiabNy*Kd(f$4Y@X0MnganDd3 zMYBLmz)bcuMbj1SfB2=Q8RY2g)5FIq*}b57MEG4>NyB_l)1TggAlt{ zu&0k2`W_GOu%{nkw|B6O325E>JYJIwm~=&{jA;KalW;K6uJhN=eb(SlNqJF@=zZGE ziadoTE8~%o;S8qO!|`QpzPUI*+lTK{_7%GXEFo$r2J zX9^f&+Zk)V(;I6R?U`fG>IJ%`^#-=%8zaY|o)>&^Q=p@^{JB(BZFFgvv+7ElEwS-q zQr%H!w=|qgi~QhnhfAKk2X&RS*!i$uNst4ah06N^0SG^MiJ$n1rn}1An??J`*7?VS zOWRcU34FoRVA79=1$Y4YfvV^hR7uL_w+X*z-rX>u#et@(@K8W+LI4I%PDpQu(A>dy zUX;^)lznsvx^Uq)HojPpC23s{Cs;i51Bmn|e`m9mKJ~FBk%)KcGVkMNw9v18x0@Xr?ka?Xz!ksj81v?Hl}7nenKe zKI!Kly7c6`GRIDU(L}QxppkV0%`gI&bq4m({4p4%X7$iMacoU9T?_O{2EG0QwdHAH%?lDTiUW<{iKxx(uTTflM_+G239Ar<4YdiK@&#Ul|NuLGr1WQnCx=Z!mGgzFNrfO=U2lJP43v8i}~fy`TxxMks!! z)3C{Qs^skw?ZOQVf#E>*dME-2icDc@Nu$50fFD+7ymEp!cgJBwnH1V->z_1nJNs2g z*H+cNFJ|FSuMa;yegD1VzrV=3S@{1HkMi`NyMHf5fN&7&Xn91(#m^6x!ipH5?(u#BWgJ|jtN8aSWL451|>$Bnq?e$OZyr;u;M(rSQ zEG=;T-iT7S2Q)wE`C~)v4P49gJIy;^%9i z^eNYH;F^bNk@qLG7~ma|6Hv5C}?vIvx z>wfjMm;C6%+Yv2P1W)KD7?GDA%(e>oKfan zwpyNy8n~yq$zvUPg+CqU=(`zu?UXY6aKRe|aEtD!Exb_!{Q_X=>jS_|a!YTM>>4cG z0~Z`lkOUF9YSCH`k}H#q9_(~J0vB$xQ~L`T)U9qOptjBBWX|J7R?5EPAImfR$NN() zgtQmAKCtMK-b?kT(aGPUjSG*OLqcNx)F@lPoLK;xS8!)n&tH2KMa)i*fQ&ZA}~zOnqgW& zo)BDL;U6~W>|@x5Vev~40FF^#TAI^b+ID?uhzho&lls~mG<6NVsjCe(xV`qW+iRkq zEPK7WGT7ksqG06o`xS4YbLj|1~HHs&g%jh~8nDl3^1Su#q-QF6XZ;Wa1V~J@eDYqDBq`6u>a+BjZ~Ey{!pu>WRBn^!7vT*h zU}k4bNaC~TT;;f?fCXF}a*vMXqlnch5KBSGKteZ)DR;x_USAPh7)?Qf!t<*MJX@1^ zaP+~Om1&WAwhQj8rn|zI+>oVI#km{zmg9RR(Inhul!~Nzwa@c!u=}jv!0Ie}2RQL+ z9f89`;48E0nHLAi4BTK`h7DO5df~yH9gGl-Ckrhwz#DU8dgRfgGl9t^cf`B;(qIMB zI!%PHdhR`XwB*Gv!uzr={c7JXpH}MaQ@Vr`$vSl7g<#D`l;s~`7aB(+jQyw#=;P%` zNcZ%bMKgA9zl8`tp|N@a2HSi0>gbc(f@hm{4zo!D7Hs!D znih|th8Mk`f}QipjY@6ks;)L|-@Oaz?I*X&o^INDHA1sJH*D*Z8x&16t)Bnzwg;y6 z51-s--2iV-4uL{W-W)_wDpXl{ z66_EiBw$OiaYbn1EBDs`htPr3B=F(Ddg4s2(mbba`cYkX$$lsSk#29}S=n@XvHll4FUle~QPep5@Ab!{=R8%=>d zLSvLzs8LFs77&mjNZdz{l5FC|pgr~pi*)VRIiuhyQJhOM1%*O>#g)!tzNp)nss_nN zeBKwlsfd1nCz*h|e2qg?Aiy~T3~Fx_g*he(u2=@3&MB^eq8}asK1qhQq5xJ}Q;=*45T53`eN=`Ki_xK{&Jf*VSZq<4)kHRYP-WPF3TP6` zqhz8iOb@5tD$~49GU~}mMm;{Jy{e~uG0(q6Yb)fjty3?ntS{)**Ov2c70-*71RnnEM_p?GFadfv;H0TI z;(gXCzfeY5a+}j^2yKM%?tg=rz4p@o?(U8MUGV+z)!HO7&!DP5c6!tq_&w9{te)>u zrw2mMrj&Z4f&1n2$v;14&j_+5g>2EM1yw(u98?Ko%U<$6na)$5Mg|u-ekr-1Vf4O- zBAM5rY2r^=wv-gt*X)J3J{kjc$Q##pXS6*FEKY8`Nc=#F0ort$WTGsMlA?*|)0-rM zr+L!YsPwOC0i9vt(gTnm`&=py>%P}nTJ>td40K62%z=EwD!|IBL6R2X4EmHEoF6}h z3iH?>j+%hKwBWE1`)}mIrszM|bpX9@+=_gYR!+e$`#S}2Y)sTHmZw)algSmM7 z;I2~&BYlZkd~6*erCFE+2R#jbQyLsV9mX2N%!{vCF{YmlSq$mG#IYQr{}*}bx^;&Z z^5PDRL|0{sc4g35irq5s|NbBU_QzW0Xz41DJI%zBh1BOLQ*lOMM5An6UCk0?yK)9U z2ZmEGfDHrcdvms!rCLx3Vzo?%HOt_nRz=d|Zc{i4Jw_C&0suzI9kyd(t|YF8@rz-4 zd!S)E$>^8nqA6snXPDTD_Brwq{4(*zI2um8+05gFHO+5^Q`QfQ|G@SgetCm=pvW^5 zptqdYhv|%S3=(n7I0G?^a`4i#idyl7Ov+pgUNDZrv<$>G>lkL3GS`hGJPYs2lvnYS zbUsYc8OGn8W=zuX^70US(~c46P6q|P!;@PvmS5!&2nA!Ss@?CDPg%K0U^9XnTY_)& z_kaK2|M&m=FYIB?7Su4?JO=}(ed(tX!*wnnLk^dMc3M_a+LA7o-{EU~03qQq^8q+_ zsc3zErmZ-G(?0uN%Fl!{V@-Z$Jq}HXE-!stPvLI|Y03cKomgD~Ss4_031sWwljRSK zY?2r+89(O)4e=6;)~z2eo0L^XL(8WPwz^!YrxBv@OT*GtQoWLb^D+Z(;wXu4+F@UU zPQ`U3(53LLf7lLNTMt`vE&E=u5wOV?v6dmX!`7E8$*^6`UV&}2Lk8Fg7yoN3fY-oY zX-dF$jDc(3qu&g!?zVTl4Yt_^n+=AhS&pXPqu&fJ`&u3HR@m0se(M9v)bG=84%V_; zJKhG{ZiCJGX6u$_-KXCSEQj5#-_E*zYnrRFmEX?&W?(H%@7!;918m)C;qUeRW?vd& z6YTYJ&9JpLxweJY>M>{b{+52X$~E3^!%*)fTR2!I+`7&8db!3vUv$1@xyI(({Qc&8 zty}}vS6%l$vSne+yUh1mxdx=*wCS-ex@4UaZG$bzH8$kh?>FZ9dby?#Y}0f!&k;?#i z#bNfo{ow;Q`xygCb{TZ?LyL>Wl0@XZOH0bT)HU647V<9Zvc>F6dwurhO34L!|6`hE z;ItXG(}({gEaLu+GxUbkDG?b`SH_T7G+Si zJstpPMuK40XPOi6iFl-Dw~5q%M`{}@rK)Q28yJ-7gpn7G%4YpY4j(;<%4|2S;zlF* zF^mB9;$Ro%-`N8wr}&O{ytUdza-4bdstWu*dU5#tS@VP+g=zf+YBAQaB8=#8lHt3l z7^d9?+H&{W0%WV*Sq>;~$-1p082k+m5y8MLTurx|BwT%S4lXp)hyOg{po$D!cc55< z?iskt$al`cUE7T{Ik_ERAHkDS-rcUMXva?o(BAOWL~7tF19ctDP72pK4%%Z)m~+Ixt#dR>c3?{N}Zv`6LadNj@7y^lF4Lge5#2`cg-Zsy^DFvBqFVD$;iQ6}Yejx3Os)zFot8r7xc@Yfws^*c`EM(S!adM$J{ zkful1{;Sf}C%s^@j;^fcRTA4Vn^L2p6-#X@IC>qWKq3^Eg06J^k4abh3SBX3;{CxZ zXHe6X?YL%jskwIJg=u!VQm>GRs@E>8sj_!hNK|G{q!b_P)ca!BOQ@fZ>rB zERjUB6#MkaZ_?(7ZfSG1qhpHqA>~z^xe<(P}EVwfF;6 zY)N@Em!{gnqDx4PLVxayC1?q&W^D}`avGq9AzpqIHjiO8s5qL|R#z8qN46;>vikA8 ztPLwMLAKV6zhyTFT1JDFZVAaIhRqaja+*$4L36atSj`d)_OBf)p@p4BKfx3=g_gk8 z5o2XKo9Z&c+BQ~Rn5B^yZ=69^UN<=~n^_qQ1hp9gsIXdHF@vrcR~XDrGdL=ne1!$9 zg!wDR-_ZmQO8Uk!LEUl%k>zXZf9d`>|Ralk& zbsJU^iAxkL90*g8xb6zcq?;{uje)4^Y?llKZ9freZa{KuH}#cm3wE@{2uh`bt}Kb#294;_ z)t0x}SFi%5lLc*9X`=sj8;eQ(w_QH-P}r7G@|L$i`ylGm@7eIt}AIgF;;?XTuI{y`@+?wZ5+BuQQB_F z5XpSoA{k`HSGRD6JLp2~AL%IbTCozg=vJ(BF;>o&8Fba{bTtW4#JAH`Gw7~xL0wl! zF=4_>KB{a@J3=xDCNb@;HUq9P;7fq5Sgi_aW{5O^RH5;jjX;PrK&B%?Ho`*Gt*usH zIU8j(idtt-h(lX)EDUJ`YpYWRDsN>XJP+{l8?5y0vK<&O7u+jyKnX1qt zg03W$sEeSNAxgDD2hR&WMc7VPP4^mVUy$w6r6r8jfp7xX)HSwJdtQcx@2!!dLgQ%d zCcKcMrlhl-Ep@kJMaEf}kLX4p2kE*gmHigU9~C}E6C__(*HXJ!$RxiG+r0?^bg)G- zO2p)BjGbe%C_r>&uWj45ZQHhO+j#HVwr$(CZQDj(=0mC`mCDSI=ssP2*50d;zNw$h zYWDCbrSz`Vkkm4(WU*m756ZI`3X|XkbRpEY5E@!_v%t~GCzuXAeHrUJ?&>9wA=0!` zevEoCMQCaPM#>s{AY|u+`*GG)qiI1kd-1PWu?e%}N>|+`tfV;g&!4w+1_9doG7E?%TS9u+aSe2%l{GWM-7rSb zjtbz8NexMAIUxzm1sJFXMp9+*wdn`0q%%SA=wSR_naw(+OVk(?N+d#j^&vR4qhypn z2wr0;7j6xkqmnK27sA_AZPRgTVnYfLcuhmaX3!HTM|tJC2L-E+Yj%W@m@XvTL&+2p zL!s7${Vqh7HN^m_4$)lG1ZUYRV=ZI1Lw`gUix`?|3~4Tb1jl<4E+fifYFz(51ETM= zTnOqm2oKebD~eiDgltzqk)Z<8X}5)iEdy4@qYw77RgG29b}3M4l7~UGv)tdfx(X`V zH;eY$^un%+M5ukEt=MgM(GH77qxnnJSVJ`l9@ybmk~|)aqd~9Rw0a$L1UKm(rZ_fp zzXfX^d`hCU7?OH2Cp5(`RUwFXkV-nXHrL!GRKfAZ+?r}GRDg@l$tm^J5QiiYztalo zO^j6R0TSL%SEDhF{EcY7uUsBut6TuEjrP;{&r`(p9&Gt`Z_Eu}GctrmlOCA1I+Cd& zU`hx?UR~nePbG2SByG~U-vXLfL*O_XPvl^GkF6f#>iUrFd+P-a-|;bG!K$gD)UXLe z=u|Xz6_m{XJg`!hK^Op~mAtZLV`(d(rPfS}FHQpp4J>hcboeIOE*1fm*>CySRTRpm zt&eI^)z*$B5f~S}!3j#81O~DS&c1+Jm;#1MSwMJ{OiCnL!!WsVnIT7hEhE;nor!Rn z7~@byk~yBdLdIs5HQbR|59Lu|-v8oa(=U~%Ap>E#PorU#Ic=0F6oGBTMExnGxU%mMvP z)Be0NWKx9l*A`J?+Y0pi!HZmqOj4ERW5P;2NKnEuwP~w#J_%(7 z*+qxajUYO&#MpEPDzarjhd1>l8Xo=GZsG?0skkTb0@{pmnR2?sCQ|!^I@4t2!OK zF{qe6gMQ}?P4$LVf)vUlRl`=-E|& z3oCvnZA16*TyQfzlw|eR?;3E=rG4|PkM9m(Ou(1hJWvg_IX=VC+d24w3~9L{Ur=pgv%IaWinD>?4?`A_9 zY~`Zc`?mi85>H%v7H*NA+7OGeXb-zI@77Wa70$zjuA0xEy79#di4SGCLmZ~_)J#1R)OXFs( zKKIo7$#fUu%Y$o1h@&n|o9i`YsDMJ@bkw(js;SqF)vm_NU2IIM8nR z5piqRB%58ROy(+KeMDD&3pko>PUCjdzr8aXYCk`iYYg6iF zhVeo1w&^9V@qGxJY?M@p z=VSeVb%)EE7pb5&=_!_DyO>Hr8p+jAiqZ2B+S$EPzvzHF3%JrSx@~;W8p5E&A>E;8 zy3wft$h%E!xq6?Wg7B%QL^t0JjmvrctV{yozxc9ZY19^Mq~p-V9I+<7wY{j z|d;r`m3>7jJK5j@aMl!6{xjvfWbh*`8Q3Vd{+EC#ylU)5u=6 zRtEggP^4+=P@n?NG{qXFr(Ap*+Zes<9C5X5q&V#H1O5YsU#trv&2hj>4~a z_7|S9I<#e=JKdGXQXU**s;-UUnNj-pvciWL?B3zhwfz8P@W%@`h2ns+g(h@zWoR@VyDfoeb%Rnyl8ox0j z%E>c&?wlyLkI5?lICl@GwWZcdP=UIAV(nD}|Cq2$C*(b?zo2=5NN|{$hZyEMhQl%F zjd`f7*gYXu$GiA`4wv-^DPnU@{l`l zVgvdB;?;9Mau{$k+pcyi(cmL6H?_jVlMrzQzWPEBP-7%0UCW?$3<(4oUDF3{siPg#>90noC*gp{ic2TXj-EWGX_@~ie?uRLj@?1OKOq2yb?hhz( zenM*KKpxx*_ZxXsBU_7pE!>06#;pemKa#>Wx?{ZL@9FYWLtR|F*Zd+o?ebbd zO#V>(SX%SK$%W^k(%OJhHJg*M>doj#2<8;JY*Q4HIyv2pBQXqLxM9y3ZDsitCrnyq zz|_C!`5Z>%>}5#gq_V>4R=-ogQ~Po}`-+ZZ;FHItm1elB0v2NLs0#YC(!==(+8;sV zL?jm$IP!&X4381+bC}o2?ma{=Si8Jq%tMzR5QG`#)^|XRt*Od@MP6ay7@jj*Ps+MF z=eo_Zgty$Km=~Rub9mu5`_ylXUv4({2qcYv_F{2mb%S++jM%;VL!(faaaLRCX^6vr zjdkmVwi}{}#9Z8}80v7&|Hv>jDMKtq|G3eL6P%j6bs&&RnL{=tCkn8Q6eFAmO(h7J zJ?sHUh8;zU1`Sv{v+Hx_A9te=?c6SvkU(BRLAM zq>%)?rE1QUXY|$h4r*6NRUwGla!6GRjIz0gw>dQ>9&05IFJEfBZFaJGzrHzYlG&Q% zb%g;qTN>?E4)3c~w0EIHuBZ>0$ft6-s?7k=if|VHIFgx=4eGA5+!rQD*|gWR<9#&M za81)&u&^POHgl-x4SsXE#n!Fikh1z}IJjPpbLiGoB%UVlbV&@ECW$}NT_J=m#$Tt6 zDphIXIMo5sqM-yPfGIyO;iZ@>`g)^6cq%}eIx22{rsdC!(c8rRx%Piv8X6rgTpQG9WP$wy3aEKLdi>3W_u$D^b? zc~yZk6L>WlZMAPYf( zL&_mN7b|bm;OP--y+O6q<2_E#SHFB>XpyY>_owpF*I~@qAleG|^tvo65~)zy;NgO7 z7bs%8{|uP=SP<+O`eApx@h&wgr`v~XNxtJ@*D&Hm(WCV*JRGo}Ognn~gas%t>~@C# zP@LZY6ltGRJq48B)K6awCJ+f7`-M8g{f zn4ZkM^IHGPKiuMVJY8L8|MMtxAnAxtkofRyoA0kO{bUzso7r9!tx)CmAuwLxCagKk zc37&mHMJ$$$S_?cWH-Qf%GON~h=K!QvhJH^LPI1<+vwyy67LMD(r3klv<7K1cn*BX zsB-~EcUE`xod)M)9Vb#9QK<8|$O0J}$)6P5QS3uH!^k65lAk*=6Ys@=Xd>$JDL8lm zz(XKwDPK$%gcHl7>2Ox4Ek^>dbx`UQ{swXZaXlVNL!&w}ck-d`4p2Qk+LzV7OYm?8 z+P^UP?~Z6@nhCIuA84G_c1$`!psf`ecw4M$Y4Dbi@b5*As>gt1GLkN#44TOteZc6S z?%mVA@e|?%9sn+kM-6Faw#^HinY}(3fj;9!a2N$KeZPR**K+=I2q>2j0a)bgQ^M&c zbSN<9hEoz!-xv1!-~Wx7J*>C>ImZP67}f;-t@F0jNrK}c0m8@J&Rv~Mvnaq-D2zRk6Nt>$sHiZL&804Gm&)gQA7bC9!r$_3WkvkHzxMuArr8b2TPlm5mq?m5)BAOK zxVs?1h-6G1bj85K!NbG<;1rMZSQ#NgTBIM{>jah^nxdUXk41Q9MG%FfRX}iwxNhO# ze5r^}zFi6Q?e0ccs^}{(JMva0G?d4tIx?rDHWCFy6c%Pug!+?4Y5lPu>S~)_B+7_P z#n-*wr?Ec$>h@L4g%G$}d zR&nvo+|Rle8^0MuY=B>WM=gNn*|U?eAO860kCs~5CE1{XlKiGH@;=EQseXETz-H+{ zf9m;j94reJ;GB3gOcGrppzOpz@%6a*2(Qoh&Y=%9>_+wrY0+6m$L|Z;MPq8zy4Oup z@%GKVZ#I85I9f;~&%UEh(;Z`X@IC}oTk=6hYd0)j!55Vyc3}8Qx6&)AWn5S#WUsogQymp`d*^vPh5= zp8FuGn#dX53oZUxP;KM%!y&UoUweW zamRSTnRLxuFX#fKn5(VjY2Fa1GE^2bQHKPQ1 zY*q=GZ+$`nai{%8$+H7n8f>9KgtI;@aF(F-n609MN%#Z(O1w1+%kfR!6uS zQLhLfX_j$8v*a6Y-VGK|NCJBC<;*NqjIlNRLAg%{e`eZFL0U~t4LsxJ8!ULs)lD@C zv(ek>C#V8@9Q**RVAmqZ7maWSC%v4#dA00Uuzhsw#olhx|Dm}hK%pYUEo11^A@6)a z56$!dGbEI1W~ofHSljs;fR`2ywy-dR3sDvU4=_}t+ZGHA-U*(` zZDsX)XTZ!AzcEk4CQFI=`;k6v6Od7 z5ri!aWF_4j#**QdLUL4dJz+lKsb!4wGPvaS?_^HyVaxv9Wr(5zOrbO0#bQ1#1qTOv z!gK*0EfZ59cZf|Q(VmeLi6sIMcVCP_)#`c7-dk@bYgj85pmYb;~^&D6^qz_i~>}? zcXVo9<>8bkiA2)|dQ-AtBTB0xs=p}*On3>^N}Bu{{EGw6d2ler)f2hb0#tv|G1Dr& z|A(9?6psTFo&*HvrzphJe{%6tj)VU+W_4RFDcDNiKb@SJ$7GBQB+(QtnJ+)Z(#AXX z_vbL&xqbZLCeFesVG4eBXfd81&fMWHg}}AV;teOFMBx062QQlsKCCq0!I0r&2c29# z7rfBC2ZNUv((m^R3TuT~VJz>M03(~H^R%0Mze7-NHJ}a@4meQ>1TIP1Bofy0FG2CX zhEshfn?!+>W2=d%9+)Dos%n$t>LIg!pZ{qcLzU@b&8dkp=_bV-!3IcU~h`=RGy ze=?-a)fALMf%Pd=pVnn&=xr4>i>8wYDBi^jP+)2a#kp<0XszMApJORb}~O<9)unZwiRnfWOYlGFnb~b z5q$^LZV8)$kLcc1nM(%OB|%6#Az>kW6_B#|NUL_D=aTKeZdL=uz+8Nw^uD0*%!h=1KNJomM@duRZsK(>Hp91eD_#rbag83M#eVc-L z^pB8@Y@&T+!Tu1wcYAO_%Eq$8P#4K3Wu=4Ki<;K}WUj45EQ>SDaaT%`n*OILhpJpg0pIBbRWthQRm263Re1Cx3U>gOOnm$G-$w2+S@n ziL#;R;@-D{ImYA8(^cBSSkH&oL&R(kQ@R3MJC!`Euo)2IwGYt-Oh&8+mau4UE9(~s zc&gycjwhah8a_1t;vjo1{gZWMu5~m94Z~cguQw*j8$U-Td{GGm!!8l6V&`V#_BXu% z{L7(DBl8>0t831pynps+mKZAN5(}p&pKU) zGAw{#T(&0o&O}7ET*N?9dUL(uhgM`H8urPg43R=|d?SIALXh0WL}+g@n9y}#z(lV5 z$&$%4=H@OcBe(Zg!rZ=-_5&qgYcLUT7HlWcCOI7mkH&DN+@%yO&EPDc{#F4$LhJ2p z=v5SXwGQ7EGnf!eCL|jWtFns{&ONjGBwoSI4rwS5!yq+~|4IA@l5YUe_BF4JuMowf zri4DW2*zK6lE05>aip`m!3L6GWkDguJy2%%%A{ z;^#pgn1CAnYCY{3e1!+ZeeX1aubS|bQ_jeoYqJo?d0E90vu^xGj8l#@HA5)7<$1no zXycz^-C z=mcJUekpuOt)2@cM{-;xdlceK3fh1<1fFQDq$}YeC=+awvQNQdiqz`165Jv@fRkx< zZ5$MxTZm6`26??Ccd=2`foK@D*y-{*)2Ml?&?@L9(voIR!N#=4s9b8-CR>Tp zv9Ri;DdIJ2$3Zg(3fp|TtY@j!K64Wzl9i&>EDG6?lP{0~?s_OfL2&>nH zDg)_AdgEs@NUPeV(L6#W;Jd|#CsI2g?o6CKHluWIzPxpdw zGHEK&0MfbpqsjB6qhf=5#)M`+{V>^5PxgN?A zR*4!(gXV;GorIp)aU$JK(<1p7$wtLFWwiWG@Y;Wae%$&-ij5Qmgu)~$OUbGR)*>+C zOEQ3Fu(Xl2TgSL%8$j?&qari1P0{9WNsKa+44LwPzz($PN< zM}n@z_^t)|&>B{rOIHNb{j{(Y4}pfwCLC87nMgW;nu^V>QDXO1Y1lyF--lLT1iZa*<-b2Ba+RZIct{J3DyG5m*3yUvZ z$T6X(`vLHsse_)4(j_x#&(FlD_n5nhjY7s+Dm$+9qze#2RM*(0yQ?||vu!{?ik;}B za!M~V=>#@U=R^6j=WE0wkYn%%*bHpS0fctBA^Gy&-w_<{7RokW1Jr*4rSpsm; z8B^JJ{^w=0Y(kCHd1DS&$_Dwm$$S@`yeDod&5xru;IrjJgGJmPu)QO|2~5e8up2O1 zMx<1Dq=;D9MMTeZ5O4lwT-+;TV3Aeh9W2vC;;RrKSo4spNu`dUi1IS;{z76#+LQwd z$_=X7z?elbrapZt>{4+$-rQwy!za&SuQFTF?=d#M)!rKT@zX7y$^G`^1LJxdw1s_$ zcBhqBNk{@O+t-_-HsEX9-%PbjVkKW{7~sV-ywlmA49DJ{U?GYKn<$Ci+x>>U#Y=kp zRMz2=V?^Rx;KR*yVI(A&RbhVo(BV-tZB_#!pGwP`ZN$DPdsPt_BF^iNFzN-2MM|rb z@w#XR>J>>o(QpLpy6AC_17pZ(q!}pnJ&#e(+0!-1((=%p^?pmBAXQ3_D{j?b<8r3z zU`ZHK5sPO8e#5U92L=oY1(Y=MG4hQALq>Yaa=?x2s}BaYa6}S}MMP7K)m&hSsl7NQe_Bog)7<#1 z7@k(ZNyZrSO}yf}YdwMkz%?JMwfcsv44XuA4rQZaNT=FTYl;te)CAk6GF1m&lGMxU z)1F=Jp7x(1I zjtK^=<%Z>XcnE#9$l)zu$J2RwF^{&1_b81Y{g_jMUIkd++wZuRoex{r5o5e@`h0_FN+$26$s+Ams512O zV!a&F8*G_5ee!7Dvi?Ps@jLXPa*8sm_t)Z#XG!%qhUdJyJxBmJqB73`bs{k&xhw9R*{qm-U;!7TV1%4D@H-m@*!$5;z8 zi7r`yFKGj!<$7;yO!L)lXg8N3*Y>|j!QnjNH=6vprr$Ib*&!JK>)-xS5-j}S{u|?o zc9QPOQ>4?dwZP>t>pg2P0jRN_mKht$YKqVwGXeY{Kork+r#H$@*eJ&`x?QrCA-Qs* zpNDd6S}c4jc84o&P28W7UbW!5VIX6ROnZFK2%hx5PO>)Q8dPtYV)wQ%?WREJ%H0`E z$}O`DtXzXqD!BHkoq+Mz46r=X}VZUm_2EVp5BN99&;y8a}qzmifNorHnOqGtqo-(aC;4VhUq-d&h`~9BC$s2WL z97k#w12i{g>|NBi1KJyQ;)Keo1-G2HXuFI>F}=s06ejy2pesI`rSLmtDej_fSBWcL z?|F3Cwu8fTXH8R-C#LjadE$d~;UCw6bjRS^xv{JUf=8-&EmY$j7 zQ}uoOpYAZmV75XyM}OdOiPOUhr+2ZEPJ8g%fs?ec$mG>5tegx!*D3u-L%wLo;$Sif z*o4tT7wI$;@ysM?CF_mbaltvPnJ!Ol6ONe=TdD)xIW;jynvo*HI5s=PNTO=OU+i5L88=S*p$sR1yoG>3lb_%7-tZ({UB=3zaH@iRn5vSTwmcxbP= zo}-~6Svo4)Z=!nHZYo1QI2o`a@pC@KLnyn8+VWEg`}pD?`f4=;*)J{w9sLmP*(*uP z7Ye^io;b*0CR{M=mdH97{|AyAn<^EfN~(+dc4EJ%Q{4<+J~7L#>&|CXo|`j8Ghxsu zWt#QluPwG%dl^G<%;PI*82#N!z822sFGGYKrz)~bMa+@3L&MPOX;E^g1JW%Y zu&EQ5JmO@kgmXq+!Do0QiCEgHOVsSsYHrAH0deYUMY8*-`;{E|w)3d>JY#r%c_|lj=LK zncVk?V_e93V8bG-#7>+@o*DF$&nXJ%`inGqSrJ*C{wemHZvj>^(4ak>mY=vU_FAAI zo^OJ~vkuUnF!GKOT3LP&&{^K})e^)Yz&n-T6+O8ua+j4U?Wcvf-vzFpn8`;%3x4Oy zO&4{AlMbxTwHD`9q%#5q|B>tagvN7c-1UXxT+0xQgv5#sQ^d5;o0SkP@%H40EhtUN z%U(+qv(P!}67E-=@=Ophrg9>_QGtcVHY1W8&-EGdyo&26YrFC4*PCJ0($KEB#xT-1 z+uIF!iDWe)#U#3`cg=raPjxoplIl0eB#drE5J3L8RJAW6w}mg*$pqI_U7+Vp z8<{eI8=guf+Zj?Q$~Nay?6@u_J+I&2BLUQwczov0kvmGxDyHMeFB*AeDHjBi9sb--HD%m}hvxZhz7NIOEvo8zU`*g9A?WXbGZL^^|05cjuCD)L_U3W0O zqKC9zQwow4$b^#tignN(c8J2?gVn8k!riv}0B<%qH*2nqD+P!an?nqYeN0Mu%zTQ0~x4HA$=~gN@qvqxq z?!U3UCf-`OwTN<=G=TXiTAjrbQg3-0c%yoEnDJtP57A9I2RUHdH;;W4Nn zQt6bR$`?>~VoVri1FgbjT+KnM{ni1j*jB1ISZxPzfz2QY`&?o*_`;egqIe!fDg!V^ zxKQQ{>`3$$WKDQz*F=~;eUn9~aL1Lq1=5Lc4dde`TBLv8hW;?XP+E6*%Ie_=*`;@6 zz)DNWFN|ULZHA8KGe5OZdPrbYr@fqew>w>XDeZX5%lb=WuYQeJCkv(u47h0pK47f@ z(-_Ts3nmdkQer$;=;z@9(J?-3%;S)5{Tfh4fTxI{7+A`@2}f}2dyn9&-ixQHQ11ou z#SH3mS+Hg|rrE@oF)GV{0FFi7Ntb+$2LQ`h8cK=$jB#PSI^!mM(iaP<4ZL${v_V`N z@Hp><__!r7`IEZl7F&8-vmb}J&*5@WQWh|;R=L)<9y4jz86Niz-?{&)6R`=anlad! zug2*AemV@QmzB@S9|Y&AZ_B>6lj-ISaMBdYYjEpLY#+;bzjVuZV9fsdg7KFoaa7#v zENu4%@n{>vTpPiK4&dcB&QsU^RbXj=W6MW%F5p9S?o4c2@!peN@1<9@&6`DLa)WoF za1|bZ-}jxE`|FHV6cXPB1*YkqqN*it&fV44V7ov7bwIUvWI3z1%i~wBqF!T@3-O0^ zNnoQAF6QTt1$U&tWl}?Ay#7$yT&|R}y+IBK^to#M1`dkEGc|C%&~uf~^Oh2ez7`N0 z6z~ae-c@O(Cr$@k_-u)&$~5KtR|f^|vGAY-@6=m;lS@O_e$tq{E@tW$NdTL#}*T z-N;(6-lc?W88?2U=wx^GFzZZ%lN}~&O0cz!N)sI*O;YNT$r+GJA^^?%8JUz43z)7O>LTU-rS{3R>;a;O z*SVMVwoQ5=*>$r!?M#z%%PkiuzREkS-uJaGP`|HN&+}x*tHULBH>aP7;0C}Q21p=l zl&m;kcPpklt{LLN>)6@D{GzgFyvby%k*!S4KY1zn!n&QlUg60mWi>gaTq}Y^MrmMQ zX2x?0{UEW>`L~%)7)H zsiMa9hYVM7Oci(BiT>)TSNp`d+3WU!ojXN zJk{e7SaT?;&&!G&x9{hqv=eUiYJOx0X4&jBgHnRsz~fZ(5v{hZuKli~0;(&N`21Hc zyWIO3SLgMgVJV*;&hTFWlwVk{%hVYlx#QVVi$ zu2%-~C-@ii|1Mh^m(gqM0R{l*1p@#e`F|~rU0faLjLppdYiAs-vT1k7hTyxZ4ilH^ zM);nBfo%~FUOR0Q{Qe$aozeI_44{6%~e!v((S9shnU65Y)%)> zUbk>TpR#^7<_wme;H|fmp;be2)ows&q9Qbr$3_$0y`V6E6^aHUWo9Wy3rgjz@Y2Vk zK|16LgS-X6Ip2Up2Q*+r5h7Lo#)t~07r)H=^)Nws1?p?~+8boJ;-m?H<=j%*T&Ivt z%Zye=cab1@c`&OIcAs&ES{op3OvzNv63L{RvK6+wEx3wQ0D()So(CDkzp3OFxQCe- zMmhro&yX22ZX_I(l`iu*p=c{>&6F`ESvrMipNw=Lx=t4-)mXK%MppyN0}@cG>~KlX z$(|~$>e3*r@OKSIx#2 zkFE3Urf#(YM28i&t1795ENpU53uvs#7pPw^-2#U`isqsisQH!4TYlR=SSO27QA@jM z4`r>beZtsbFbrk%4#>q`(VsF^C09@t23_nt1_nZ9d<#~5bm+w9DA(nAx6GB)$QU0$GV7|${ z-nH#jmoIs3MHoCrpFdY_ol6E3_{fZQYnA=sov;(u9vEZiE&Ef}w`}$moa;r)BDc$S zja#i>PR&CFo1ZSQI8%GVEWGr`qM`IxmB+zh`G#7vtQ2{WbjB|xqb7VM$D&m)v{HmB z`P(9f_lthCvi4r4T|&}+p2k5BQ&xQHu?MGj27SW13*R;Am;+53CA`;+PJcj-HkNi}YtX`>h0&3?Np7c-ciYW~<% zwix`M(%pZ>c;is?^Uo{CMAO|!@+X@el&d>LmI++81Ht(B6)y=!`MJwG1zmIxOqw3! zDHCK%G6|=xI}HU9)1nv0l8GzPV0y)#QqKdy!Sb#RQr&-F8L8DgxjY|#5?AwxUA&$4 z=5O`8rfr=CzxPJ>PgXKz<|^3fPmlNK+4pT5X3p1LGpgyzh+9qd^muCrWrg7zpC>*q zCeu%S>3G*wD1#-@^%RO9ox0^BMLRIQOHzDt?M^0>EtR@&*|cUWi_-Pi>VMj%Go!*k zE|x!a2eaq8l9#`TbWB{8O;0z;bVHU?^kgDrRc8)mwT3~fLtaUFwa8tCUo#u5x(0Vy zRaHp4iJI=r4hQe&-`)ghUm?9tby=oM_|oOnHJ$5u;Vr>RwIel@137FfShA&3OQOV| z`>8|!d7B_1#2oLK4b_rK|H*cB%v0Bs?!6uo96f^U7+Ua6taGZ0v}_Y1S^_%Am%8Ux zO{;6E2A-X&Z!fMn)d;GmKR;G<*w(pt_gr&Rn}9CPiDcQ^QrTIuP>!dxUFq%FmqK~C zSLt^P#j(8Vb&=%MLX6` zEQ_JOeGPXGKKAxH|5-|3h;FPAMki_H4?R%SEOk%REg87p?ryecpYVo-GH#nJE*94@ zTmF!;nJwe76`pfE{}XsW$Dug#RufIij34KF~6!y#%LDuW1>a9x@&qay%p)m zEy!~A-mTE@Ork(;grCFODr>D5jGWO=7 zsUm76zMIm_Uf9h$$7Q)mmOwG~{<*yRXX*uA`rt{|U+I{T{_djPb`&VvAvz}%&iksW7#bW#4wrnN&FUv#7`6t!)X9@#qrPajJ<}p*} zy!)EGi|nN)qTY?IOEMA}gLBm1j>QlZXFyzFcE{MCqVs|gR>Z-K7KyI06ANzn8A!*2 zlBiQprPca^D{t&3*9O*mV&zfo(jkvI8O@^mFSnTWO_e1x8IgvS)l1rGSv4hjL1Q+? zM5v6c@4}&wAy=p5n62WO$>oXu;#Mba1t5?d68InX6L#CB6m${0mVcIr?iLK)8g>!H z-38)S2-T`Tre{i%Rg?>Ee`WR9PI&DOo}f&oX$MUjw;T6dm5y8SGo2a!Hd-r5LGO@C?eGscRS^jDi@@% z-tSNnI(p0_aASsD3-G=jZ-=+m9>ns0t*(AMz2GK`?X&ZL;r!k$y5E*rcuOO@b8=`D zNymEyMQRs-vsk8?r7H<nB&_JsODQ6~_TdKPW9T3~x79AH?6#)To9ZD{)Q3p2r-D zam^A;sR%2P^8y@n&A387OxT+GP-I^CfjerRkuAzx*I^cvb(dR&h4Nm_QI z?mlSfZ%!cPK|(k2z>9BL>ck7Zl%_(ZP$d3n-%y%e#NL2)^c-)ETDm-9V%-bqYwA)^ zCb|G;jUgw&MFxAI)!SEl{r=Q8x>*|+5f*5@OY%yXpIW4d^rRY-;C65^GJDG)QOjsi zF|^WB9U>;;*G4r>{vejXm`q$z16LE15rjlfp`3*6Pxze0Lhr7{v~5qRn~ZZ0GZP5( zpTD{ID^B}8Ul{nlUrTzOQS9&TiNCG8{YkT^6VpxoM`sNOv;GQ8Xg*L3;T&N{un1O6 z3#q`BI4kidZfkhcMR+b#Yj#as>tA;kOugkmSaLe^ACHD0x2rI75IUi=Zz$$8-7 zd0o|yh#?=FviN@9X?uro+jzilD3?I1YqDt=Ud^9iM)FcNag&Et^-v;ag(oB+6;(?B`qom-m`eYR6VPmJp{RE=zkvH^y)XUH{YW@l1wfKY8M44 z1yV%6;-IVxbZ^ znEAEQdEm)L+$e|C5j|wG=A&Z(e@y0gMz!%Pfc$NuzewbJ)aYyFv!q{*^`B8vALcr} zY0Brq0ZmsD7A$Yw%Ef7)=3C$k4zrNIlf|P%)ke^uh;&us+ffqe6bb&jfDxn3^# zxkhT->37d>zQGq)Uc!Fvpv~88!{^6+TP(dLL$miko#sMo9{$3yt_*lH70u zFA4S-I0=_H zc^`N>8khca_nu5=o^^(ZS*fk6xR9n7|2ik5JSPm14!m>QxCAkDtgNrn`}x#L4!El&uwnI|E1|J>b+*Hc za&-pcAe146D5n9nV|)6~C&iRlCs&M?Ha5=xL8O$oBlMbcb1ZUGKS*p5fI_cNMh6au z&zL0vrgC2lODu3*k|p=0F-wP8O$|cwib!eCDj5$V9e{lY!D8`SS+OUSR)| z^c7+^V=-Enj@Kf?)~bry1wCRj(@9ERaVUi;>4<$tqq_mA%)C@$W{Y!36d*ZJ$8Uvt z6`N77R=WkyQ0zgYu-6au z!i?xdO2uR1Slxn`(J*Fj`I#8k5cV}lwdjdW;YZtVvj#?)$o#VO$HITja&>^DNy5Mg z*PflB3(UO-bT5}q&akS@@*BO~TapQY+ih+@!hM32R`M{L8 zw&rFA4wh?LKs^%sd>2wf`3qdRA0ud(IsGtmNnwXGS&Lga*dp^MimZ8IXi%%FZet{I zTG9pE!xjLI(MZIeW40YXh^+DgpaqwtNT+`f($);^4IY-mCFa+Evzn>NwLlY+cfq8$ zRtc)z?60=q8-bh5j!+#mbtcIh>52{yY&<)(xr%>on)!1z8to>eO6+i6>Jl7*aTKrl z6HAMuK6c`Q8*p&Cl_!=x5@wGqSqE|h;N z8ISJx>e9lBwO{*pE_rv9>fftGPScAeS4qwqQ^7SC}{UJ%v%rD?lo4yuG}HeP^j?G#!@@>5|ByQ*x{(LR zH$yeds=X)PiL8b3U|@TTEWPr9#teMKb$2}?qdg5t!I9?5@me?eQDrUrqGF#$z0SAoda?XGJOu*~uJQ+cGt5i{z}W|FJRMNE!W zbjnxP$n3|n{pH8J#KG4g8OXj&{uf{AwNC^U?jKgBMuyfjV~=mfdNd2Fej6Y2tkJ2G&hJ83$Fh6v&!lH5UNPCB^sslkzYICu)t%ch*yp88=2 zQl{Z20$6d4c!RI_G>4zqS@5@x^l*PVz{8@Ca-Rdgh3WuD7bm|FzU7q+T<4UuRnl|i zBusZ;%WoiQ!r8%|4P>jsy6Ik=fzw>K3|#XLE@_p%UR0OM;N|)kEO<4?7TQI^m8(kPk$_?_A|oX3*GCe>xJ?HD)Jq=T+hh z;!pnIm%zm7g-qyohDN_RL}MdpIEClVMbJ`h45zBGc6B8H8lh{P72pccb}%tjVi zpyD;iYFEwHb&;5f*A7rG_yp^@1{h#IAZ7d(k$}%SiRNxL{$8S6TTzy){sVjPD_5cx zjqE&_g3CrXqP!-D-m14v_PJ}r`!??XIsj}$t03m+V!q{$F0sMBZF9ojD6y!kpg+kWY+&RXTF{K%>r%${fm-=?2&db*MDGPuvA3Q%eMD zjEF(6mAFIE;XMnkY$3@6N#X@G{Vk)bKF8J8WsYINPfegDfLHe*smG(`@+~wLZG2p% z>VxE0)*&PMiI6FpRZ443a((P z(E|7gr&;uo(0ID|5gCas$nKp7VyfcypROxx{@WxcH41P@F7A}gA4t=6X1r~O_Ur}! zh8Kc8fjCk^OTx)U_JoOGYopOgO$wt~3gglf{RRh6*UHeOF!fv7ur)*7v?$lNco}K) zJGDX+RUdRKv@01mNpuGOvcksaE{f4~{?L7GYD2lXMo)c9?pJ$JM$djj<6(lWDX{LLcpeEYQ3?;^6&`a(_7Xo&a8{~%SN z7+j+Bc=Q(}2AS@$$#-&P0caQ&9QbjL*}S58diGcNPq+J%w}>?7U=7EDu*PvCE?!Ia z=k{0FNg;lChQ}W{lo>Yzo6deqMQMNPTCd;jh`NA9+BdK0+wdwGF$!vYw5C4Jr(fz$ z#&QFcm*i9(WDw0hQk9~5?0wOFIAl~c<0YG_(-u-Z0!vs$-rTN6Wh&>3azu1bDHY7l z*z1+%wn-8JVu$u^SJ1mFvTO_K>*Lf`vMv=TsK&d5=JF^B1WxXAl29t{NG$a~WgSy; zso0@Dpo*9_?4X0L;`VHWr!*Hw8k*V`#;1E;luQYoED@RLlgGtWu-817v*82qmwZD* zTX2ZFZVMmSgg4f+lvaebNZ1#p(6+K??F4xD^Aa-F-O4QwPoaWGQf}sos`e~bw^2}K8Y)>%1CmXq zE8AnQ7y=~L+U>%=T|Z_+$zGTLMMK6>hsJK3z%p?=-)8+7%HT3~RUZMTOjIn!7Y7d+ z4{ZaYnvEi^w~7^4&X1OVNIEYhB{TDPPN%_=^9j2i<=~kxBb%pL@>SZ|hICYQG(<7D z$Es6ZUt}J}HfX!&2us>_ae_ApUy@XIjfy(NkS8dU9%@@j!08-HB(iv@sJ31SY+4C| z!7ntvtBjdjwl29A!XOknGK4n@LEX*nU1G}KbnCZPP{agHKS|B0`iKl_3FKrZw4T%YIA&lJ+QCQ;00Z$ zm1Qa<1ab1zOF}KlD` zSwqV6wxUj9jz}tCiqi2d?C|tlBp5^d+7%ARUot_L1+^uZzfDg}=?J4$ikK zUYYyQ%I)*h#9dH-@#jlgYDu(~$k z54*XD^<#DmE-%VtiATp|w9^U(-mqVOi~Al@VZ)7N(^Ojt8UsW{pZ&qjOj*xw33}g} z1>ubjfn^n#^8Vku2tS83BjLWjoLsOi4MZhP>q2n@c2jYy(Ht&W97B)9H?HDmB%VRI z(1H6%uer9qlH8B%2s{N;8v(V^qsltaa#RkFkn$5&zF#pn&$bv|7%`pB5S&`#aAgI# zh2;F(3IgiYF9awthpmq&Fn%RzO{@<~?2TFmoImml=laC@LXkaSfN1rq*5K$GN<7V7LyD0j7W9c|NhEai0}ocBt#;HqJJvSg6AjIk zGXlFyPbr&XmOxs>&}5kfxgq8<#D8rsCj&P)X}jJ?%1%gy+=p>;)W^XsuQ8o8Z9n3- z{B&CJwy0$->A^=bjxCgjTX_g-{-L^4XOpKf-wm0%qGMAC+nvvX4xP##Z+J_&?xma@pLwVfBE;dR2Y0}9;Iri>+MQ)4FV`xNQDZZ4k#qgWNbU)-k$4aAo$0)8KM zcxE~Ui^zvSX$BM;u8}(iZBN?;?7ZYVNg(l%b(^P-(mk2&laEMW?@-j-dYt%xBD zQ$hEuup8MSB-UY1564vNVmiyv2(RU6*4VMc3Z6DCvg_5U`sz<$(mTlg&|bWxHfvtIM8&sH9U zC@(j6X;6LF*4`F$uWm*)3^s&i@V3w?ms#f<`zbn!y#+RQ8H~5~`?F*TAW&v2Q(i7P z*kwadq#HI)q|GQEi2p(nydrbx)m)7IY7lNHDOVYKvw}4={Wa&J9_Xlk=OfHEj<=C- zI{P*eBEn_`OFYPNg+}ZjIWGwp&dN>%(OAKn=h3j|o& zzZnL{u}loGJ#j5anEf1sQIB;35I;7;Os)v0)m5DSfRt+P5SF3dzF++hdetb%Gwwji1t{I=7IPKXAgX=34d7VPl?ulzLbhw2Lm*l&{b{!O;N%U#0u73~17nqZTG!jJ|fOiGVJ68gk zlq-qPEwYpNe(a@Hyd-VOrM`_P$$C4->utD*YOXMp#=S-)$Gt#+>zFeoPkmm{Iz+S_ z0XqE7J-U+DJqQ^Veb^KNpNZ|CoJ@8hHK=PM7)F$*0Y|$9D(Y3x3o|!flOGg&?UgFt z()G;CjU(UgeT%@5S>5hN1!9{A;dgYrvv13pT`E(-rHG~^=wz1q{LGs4Ch$n6{{u`6 z!MuehM_G8JA1Z}=izi&w#DiK{RvfIG!^W)i!copjJ3^LBF<4o}2weex{6@Rq`SAAa zEQ}IMj!=RrcfMO`rQD@;euB3EJd*^X^PZ@gtSw%Wpt8Bjg)@N7Rx>|TOpYia6ZE^~ z6Nzuk5_!WGxuLcalnk?kMb6XS8*)R-dG5hvU1lxJ!r*&mlswaDCV`toMya8!>}4u1 zBamgb`u6bQRoxy^GnKpzRsmGyvay+R8uXvQMRAc^Fm79i6iV*0pV#>t3kDm4DT=Q=q_39bvU z0+ce@FZqI6pcN%LRvJ2@Dj;gK=gr&p5XtSV_WIvK{WpSQ0)`p*Wz46M*7GMjjcF>W z-^7@%#&>H&A3FmNi!mWD$CHd^$G!^UU#b=4p#G3~KDcXMX6B?Uggs|t<0G?m-e^=&@il`0&k$;a_9v&XO#y5e@3Dv zO52<%f+Pd8nV39Y8r1bSr_TP30?pKL!!`XWKr_yeBg?aaWtTU$#P<4>g$)9>nKQN4 zc5@EzY-Gj}c&HP|M{Rcbgyo<$+jIhLeniG4*e5%?HHRzLAOh2(k15g>#TY4OkyhJP z#r_#d*cJDj*5=6z)^w*w-@$M8?rrRtq3>lY&BsUI2uV#Wz&R3?mK_Umtf^*7VX1Fu z-LI2?4kkBNvqASOZ)enH#MM1oFe$6)bdU9Etayfo9ut~rh3Jl&b0%1c$5!k3&#fU3? zXAPu9OOKIgFm*a~EbP~2ihn39$gyE?Y_>jrSi4MeQ=@?u%}rEA}(c z;PF=>_pvv;s6pTwVHMHHnfzSV2m?W&#|s_5Cl@c4A1lq#i|-;>mnNauk?>)hJBW(n z*hBmSMH)-G^ER-wXU|ik`3i_Fyc+6)jt^q1?rt`(2f1yDTroYPP=m`S39lun2_Tty zb1%rsZk*Mm0^`GxR|38$gSy}6RV!J+!eP1Wp;ZC)PN2Lmta)>1Tle$S1+GvR#=r+9 zomXrF%!3nJH1pNmPgD?9;d7)G1~E#B_s2W^FAtN~1&`XXEI<61Yfq<4S35^D)Meb3 z_HK`F>=5iuX*H|wiVX562b`%1wsl(Wrg^te38h(hBUhrgp}QM+0>Lsmf{5W37*yC} zbKqM+(=OB#m%@JG)Fx%B?F!NPATq`^?lz>C6+-uQc>kqivCv%s0i?vVm!K5ZjxFx^ zG49>Dys{8aBVg)K9dI%xfxR@9kxouW?HyN#_Zc6MrT zUxO5(USZU?E`-iQghPflOAc_>sB^^zHJ9`l`fb3Cv&9Mv{I@mh7i5y8U>9v($pdqR z18GFWhG0vE*@y>2CzS1+(-1?h4%NU{yEMFE+o;#%y?TQOgXEA+bl8iT@aCAicV^+T zDH^b0o4PqnEacT;OM(6v$zM;#Ka{Ib(}+tl`AL-DcMBZYXR3mC!SMq$!9QAC5;OdT zJO+(<3B)?59Ts!9ds-y)5iYuwS$#fBqcV<~Ubyahc>yX!FB`Y`Qvv)R>&_^@nY{%9 zml$pH<>Tln%Bird1MVACYSBcb^q-&W0JdnaIOl#vd_+N5l(@jZ&hDV2f80a((3l1R zohEF6(Jm%R4I*_nBI#$XeDz!|g=u3uX}W6b%apCD%c>d9TB!Vw;%o$Or`<|UwHgaW zq%!wc+rRHmVKw8UeB2)Z^%eiI6ww9+pQ`GvQ-49R={yIBT!xB)aaV5(UJpUHkKH;T z{;iow%d6bi(a=$j#6)%cA(Vqq==zKThdU+%a8O%Zzsf19nX9oX)RH<`C42{>zjT_6 zXF4iULTL-e@bEk=Nd6NFG94Xl1%3^2ccPc$>4-czYa(p62A|)bktOzIc_0{V?N-_2 zxIV+iIsd+bHBqjpEYLiR_LWY?q`h~pViGhcL0g5GlTGL_vpiY!CU;MajA;5qS{ zF}Qd^Fs8ic`(+z7+v=XK45?nNP z?2vkH+betN(RCSU%#2@j2?J$@zzYZUkv_KQust1aK&2wxI3gP%VtI?wZj*5-7U#-^ z4;(~v?jt{f9Jh3Ji3<5PASIq&wxWP7gmMg@><$%7<5w6<19e_4C98?wnDair#d>KC zKL=518T$vo^7E-KEU`O3<^KK=3kj;*^`h!^;1z->GSMIBoZ zqN(KnM(-v?CiTDNS(i)DNKZz-GVYwDnWl>{(Qj>ezICmDx$_J9|DR<}&kE;5WdH(t zSp0uRu>LP#?6u#f^Oi)~US}_fydjCo&bP)r2vENBzYX~i3%ULqW%1!FYd_>|2SxmW>D`aS43E?K9m<@^9=Of9HQ@7c zvP*a*iC^r4_CTlvk;XAt9E;?mbH8u#&mG-);~4|t9K!U{R(d(H&^J7dDn*8G4D}|l z94E;ePFxYX521t38E&I-oPa^Hv#3xWeYBKPrL^F>!OQDm&{=DT{-U04-qZh^m#uXJ*t=+Tfxs# zK^-r*tKqiID$&Ev0#`Yax&NNVqiy9@QEQ?=QEBc&gH&--*}==~xBiSid6$w{TSL;U zrtxUH>4qvmZsxp zuJ}VHL=XLx3%U?}; z<;e($h;yLmvrO7S!kmwu8Wn46)OBoXfVuaKHR`H@W<3R(){h=1ty@&sr(sFmz}mRt zqG#p;-RJF)Dt^T8pNy)D2Bl_htD+46$W^T^{8KkefuxzWH=s;aaaDbGncf;F*XmsD z&$*NyIETlMFldXhO(oAl>T;{F+WJsUnc>+2l}F{z?B1&nmYId!3)t5s_KjuXx?0Xy zj{r9J%vh$Gg2TaH_@7vgo-y%`1~MwQ5mW5QShK6Dg;yd`*`uvaP)r!=y$`1Xw*l1du@@g^FKrR& zL3(mR&*qmoAN0S3-K7=In+avfOv|b`!C-#qFyBU?i)uA2N}BXxmff|Zln#ts4m=>b zTfWsD=mcJZxeV^quDcx8om3xlJ7z5gVsRZJ>Z4)o!4R;f;I3XkABwp!9yZ}ZnFE0< zffiGG-?Fpsvp4A5vhRjuSBG%hsusUZSdku2*&lXs{7E(wtkM_>V`pBDMK)-jRJ{|& zd8hF054uVocMCbM_QkTzN9ENO6sSeV4i(}H+V>*mZr!9n_);W+n)*{dFJRpik8@ol z@mW6a?}AgqYUoY4pD-GG>Kmqi`5h|p!(9+>zvUmj5$D!S3Zc??rqFu1i*4~`Nfjv* zz?LF_BSQ#Z5+Al8DSFOnLFHB}w;f)fMo<0|U_tIi^rExmf-6s^y9nNZ;b54_tF4p+ zD@I69rFfER5+jN-40 zr`tPp>XE|oMH0~P_eEt7CtHbgsV@tPFL8N1dKw*XzvugYFnuRkt6`4~5I{Up9SB33paxX_*1HG+mTa2ycsLi>#w`BRF=e9{ z=MPy5<{R=e69RUjjF=#RtE2adh!V__mSzLL%R|hmS)>2`*pgr6>5A*dJyL0-5=KCw z1cs5ti$^HrDznEU-GCc6EB5p#DeXcV5~bqEE{%)NLV>IWWurG+opbt2iZ`MmE_M)s zmrfoE71=SS@Flf3s6_c}zQ7h&Mr;N;7Vc(+H`(Aaxb|QFR3KTHmluf?Op^Ff)crbK zQ8v~ep}?i+P>CZeF@pWi9jfiEEh&werr?ISz_#=n8Y)6i#IUW51zRjpMhIaxD%c2~ zH+moPt9_mlx?i3=@C+bmfsZWYJxBl&-urCt?`LmPRAEHtnYn2BZ->_aju|lJB|p1F?K1S1nLy7#CWr>zDa1mQ^SmyBj${GCSoRiD}}xf#qoL7gSXW=l|&V2 zC&8kpmNWPeI$Fa$Qg7BLbEoY6F#^c<)&C|xcp_Cn*iXg5aB@t=lZJo@2;3(LQ;_1q zuatKZNvbyG7Cb>__@L}5t20wuWP*sH#s&X8JY7@LS9}nMwy+E4_PWOFV~xwU=FR=Y zWY2d=wLHHoV@amm&68nLn{gOsGwj?vXJ&naqKGl=8c8wu!W`W$j=@^4G=3yqNu4W- zCoFI;}2D$j#@rr zk@-Zt47N#uR%`C#jO3!u9MA<=PPXvbHu-KEf|YSmKa{~8n6f3JFWy6D-pWICTvmZr zdT#V_>e`4==5o(3`Kx|Y$FSb7nZDq7i3l7Hr;qP@4ylho&&QXkJL>lMXWJ*?14>D&(6Zz)W8|0)t?YWL1%c1k@jK-r%g=Vx`91 z=<5qo4Du|DO35l|A-uc>9J#chOq2cmGU>a=PkKF#-i38Me3M5{&E(^tW=wAEZpPZE z1Bw6yw(%si5X42HL^O4kpJ7@wang8wK>=^7FZ(VMKa#J`e;e|*5@!!Y)zHtJ|k|fLOShq~*wT|9oA1=<00?R8+5$JVP?xE%G zmrs6n(}k9MBWrW{c+1Jw>>fut=}`uz1hzP);z-z>2tCnuG#dF-((2T#{y~+WQQp(lqSK*oujg zK45kLo)92-X4WUVq+)X)N@-RPvR7{jq|Vfdl)B@sN>rV4*(m~BJXq=J*nh!kjf3*e zDV~KA`vWp<3B)bP#oUU`h$p z4n5ZCW14vvfJYU+NzE~%U~UiAhSB|{>KX+gIWVuLsnzk`b2G7GFr%Qhtx#ToWua4|k6 zWv1b34G|FM&6wS=Z~EMGkhD}{!y+9`Wx~z8#uBgo@}%Y-Y<5c{siZuFchdWZd&!60 z_AkU!6}5ycTyvOt{pQt}`dkzc!f5^3f|bup_n62&d`U<_Jo4hM4#(`A?z`#Xry}1p zvVlWf3w)r|zZ#CRmW8z-Ajm%(-yziR6T{oH6|&2YbwY@fbdPWW5kDyWsTp*Lc@{B1 zK*vTTcz@ynGThTK;)2fP{hEMg^$sM-i0cPvf5gTz3Q8Rodm|0Mm4B$`=JEO>NDx51 zQ+I)bGsT@~sSi+>TK1|7)`e69{oeR(izMdPX?%ltKot#z)AIl)Nbv~KL+*h?XbHsC zRUQ~23BOtdd7uZOx|QQ6U`wqrGZCFNRU-K;jaZ$8K6ev}%ddVh&w-~1sHL4{Oh5DE zsL>{@9_Uj3;~_pROOxRt?(12u?|S z7~ZKT8l4K0&9Q-62Fv&cvN{Hz8XD0PprAvbvxRpPYR1?tNNVL89ZQK;L}=s3hy zS(=q68DSSxg_RCFiMEa@z3_?EdY5go%tMd#9zelMgE;IHVzs_Y09iu@O7!rPW!ChH zYE^PDsU<;~KIGih+{t=u$}9Zz zJ2D?9{P@+2Y|j6vI+$;xcpaRP0YW700~J`sH6Ez6vdOHq5*2TTlO2rk}bjLH> z8=MTP?JNr7W!?^|_~@{h2s_oHNrDrqBAL%e3s`IKEsvKAP?=HK2|ZaSySOYaM|rP} zS)z~M@NoNzI#nhq8dO*Bj9tir=cUE_z7zy0}aM&?WasyfWsOnS)BMnJ~&3b$}<=qRts zIdevy5jykaPa^H0pL?=P!`S;fgzWU%h1n7KAYZVD@QRJsxq-(vDh{U z&X+`bQ02tz=(U&fyvrXtwh`v_21{M*_V1jQ@fSPukR%#j5%CgKsMau4V!&(b$?I-k zQsVI+XR!B2MuaiUDr)4FMjtn_8PPg(eg}Q6R$XJl*&M=k0nukelSuc{ff5woMi>HWu^Ajmn&=9mHnV0o-f55_yg{#lLX2imCV z1BIo4@=L~f1qD#^?DMp9;#!=Q*;u0o8qN%=903c_hZ9UuJmeQ7Lk(PAAbl*u2yYFY zqcd$4_zBHX!u4|^a!SCqp*OQ@GwZbNH98;~=G$`dDMl|tfnKhk+=0NN-C4V3@3o?1 zzb$`XC;)gLv#ACImWwqi*d#o-j><(E>ORJlq|rYY?1*@7tusNQ->Wh8vrEO31j*=- zf+}6do~Re`tntIJw9<;lg%MGsir7X_wR@!)nygP8yo++P@j(+ub?DcW`u%>V1ZQ)*b6N&D^7*I{X3p5 zdSx?&x)B_Lyz9p$YSN<;^;5y)!jt6npmOx@sFA&&e|%cFwXR`c8}6=5WVWd?<_h*J zU?d4i-%I7qub#Zc7iHd)2K{+0?m=AK866T$%$v01poo* zl#i*!A_n!F(*VRwH;~I1o3{iRrGC?Imv4W*P6aX3{1;u=KUfQ;kMKAH?6=?kE){rg zJ$1BPv&3#=DSFliPGi2+q7PTJ>~ipSGUxZ8Ozk28F@y+KxD0x@Kt2*{0-?p2nj^ps za4Ecn-4Jg^f4(zmt^0ja#Y~RXgT9QglM}nCl+rXXjKs5U9rQIZwxVmzW!l->y$l3u zT|jPuvp7&%&++Kd6*!>umv; zGFFVt!meTp7j8x2Dn>)4eAxAPEXyAe-&J4 z%6MYeYp{aDuoOFe3ABs97D!%3`-|aK(Y)WUCk&93FNk2F9^oT2&Vw&KKKExccEZ~o zIYq8fkP{!XliD_Ju=2aXS57dwgWJ5C97?U8aOBx{({NYMyqp`>qN(cb_E~;@2QxK* z4L2RewedbV)>vN7H8$l|@0aV#pu(};o%ZQU;GM#z8D%-k!Y3Ma=kdE{z{%pSwsPk}-E`X?|w4@v{ActQm>(a3mN(6(ZuZ{N7 zGW>q7fNV0d+NyV}5!Sd@AP8eb)ym4-{C=7!9x|p0;&{A?3x^9-ASnc;*NC;#!@(pL ztpmwZ|K`y^|JG5( zn@i)Ov@%Z6s)WTz1k3b;)dvPa^ytTc zxOe=M!)XKMmnC>CjBv7mjb*NHx7^SSLUd0pKW-r0CP>z4DSQ3X#m8zEDGK<6G8-9h z)O%RZ(=5-`U5ZE8vx7sx-pT&AJ-EndLiy~mYoGOKs1hV-+uQ>f&P_-~-H%uvLiTAeyw*1+ncx`<;9=|Y zVw?7s_BZQ3+Q0&PT?O5Ptm>tYrDj~n!*TR;Yzgv2>RE03ujaDUAg3m4?n z#XOX}u|o?WzFS+-9Cb`1C9B!EMN9?_)!s|bQf%+oUi&}uNvU7A)y(w-sFrq4u3%-> z41%<*jr7;XSq$ji69i7|pF|eM;eEV(>pio#zXxeIE80!Q3^n3KuOv_r3t2h%bxD8-k8xe#dg+eUJF|>#?vvXCrKBw(yRNOYgPxkxp2eT zn#s(=o)XRzp((JX*zjpi&sM((h#5GZ+%kmL2ETer-u=k*fv zQ?FOuU3y(Ae&6B)KJ97_VU@sJ@~s*fb_clS%(D5h#+Y(aJRY&SgN+dcB{S9SuCP9r zTrg~l!fg9Q=O)BiYBgb@^L>{p?N<@?{^F4lX@LMSMXtpKSqM0mLH1%(a)!gSpmqwb za6XH+u!13$=eGubLG-%%GDDB5S_pV>A6j?g-ag`QK6Xk2d2ylOn8C4 zKGT|363yl?{9oHGz^d93ol;Gcz(PV3oz^+=Mn8Hor+Ybft<4VyXfT4Zp5Gr~D|0Kk zsV57iwGBUP-8LTo

    P_7@~H2FS4|5=tyeHK#q)b;;$?*2u_6hKqeff+rp}*O&isj zu$Sn-*MeaIgYUh@|9@V3aY)Q{RsUcD_S(h)J#qeAr3*o|Y8$_)Mm?&itFOf*g6dLo z+bQZv!L!RFGQKLybTaX0r?Z$OJG#4=1?z>|Q_ELAfuJnCEKcsao`I1zZukp}>Zxb) zax{3ibZD#GoLT5ymy`|pDg$K>1|4JIT@6%Am$qg8o-<7+n`o-E7aC5P34!E75myJs zU=L6cSZievnzWbUpeelLI&|@TG0u6pbmftsAZ_?$xULS|%1tpG4bR9st4< z^s2cOXU($Xvb8U(U)_%RfMl%$iUSu;oS9C%8+_-Vl-?+CB(gSQU4Y}@W_osEcXwh4 zuNu(?)j}OS?Z~Pw%4{FP2|8)?I=HzJ+FG~Sk zqR1H5SSzF|o9)lpd(9Spf_;#H0ysgcAijdOF?^A)T68;w>IQr}L44pH5U0SAcSO8e z;9tz!OEaRRYTf3v*-xfSF8Xw+R=IXEDRyOA9P8!Up0jSJon!T0d3NpoLFqcb&nG@b z|Dg1AyH5^)nbp+i)T_ilDBUpfNi&>by;w}VUdK5WzWw1cw!K5Ewt`f3^_us*!QZ6T zKFwxCYNg37t0H97zMywGP501*;n&-wN4fT!1b@R}>bY`p@4f1*%MyL3l1Ig@C@hv4 zFY;7!186hs0uvJ^7a>r1G`|4iHFE^#KaICZu~^{lK~wAzs736UyVT$kNzLTMNhq&j zA9=<1*7N-Ex#j>Puh&5w<-%p1@TkHmE3F- zHdB#BG+%akLil~b0To$|tg*^KTgKV1v!kZt#K#nixqY}+NT?$7V2+Eqlfe#RXZJ79 zcyV1*v%Jo?XDTGV$3)Yi`ib&oef(w+O0?{vr_%)_Xpa<9RmRqazaO!Z?Cm#^kBv?p92!{ z*vN{=Dyf99kus?|YfCOnr(WfP)z;ahtxDTYqrWYE$p%q&qWJ>UEvnd-M^@@j9iq>G zBH;zCt(cm0^FQGRaUIZsUr}Vur3nrNBKKmL-gc%p|9RS<-HVoGi&9!61B>P1 z=@L4D58!ib8Vl{n8*qAG#=6LIN zWE07YP;T&eUwJK`SekOQvU{JD@1C`b%Rk5_Z0Ob6)0YsiOj?F%cw)FcA7n9!C0MgC zNwOC4%IR2IgJiw$hIB6N&nrH-7F<6xjgK)GivKm4f1Xs0WH z&7Ur@#iAXe#*8fIPY)7{(XYi`nz=w9i=>wDK_Vr?s%TE@N;fdh);g`~@^A6FFqd-k z3X6a8ER)jz{ay{KqWNYH3*gP4K-zB9rk^l(iz!zyE(;yL!_IX_5vhD1U$K!y@ocr%uiB4xVWQI;-jcV%f{|3Tq6-@_Zb+2? z!;VElZnv3CfI`Z>`TyZxlimg>PjQ3!f}7Y?iOo#@dA{;)W=l8x4Z!YXq$sTU{CJJ^kx< za9HVOGDSJO{YWDhd*fKkMN(^dS9|E75`&HQ|`>Vu(0 zK_;sy$-|*7->2+!f`F^RESAo8w;Y%+pZBsu%$HD9{a8cRP$pWrdEUuw@n^ynci?aj z<+!+WSqEp4#v(8G(AeW*ms@JPH<#^nc(%TnjCBZgRD_-lNg!Fw0OGKUWfZb6T;HYxhi$oo3nI zZoP`Rd2?tz;pLtLq*_Gw>tw*4ZX ze^Wbrsbv634N+=m3OY15vxNaG&CULh`Xw60)2SiI1y_rK^D>COrhrXbbT>*BWFzeZ z?9d1Q(Ukpb$=z{@LS%Wcs(-S?IJ)HKp&WUyupC!pgND?%=PajjNP;B$g5%oUNZzK9 z+wM~2wqMZ;FBI37)Cj5!{oQg{Q=;1!KJbr&JlbRgPxmFu97i#MfYBKlmN%-fHYQy4 z_Ju)33A^{Y#ADkU!8EdH5_yR(LZ3^Fb^QF{=xu01=srfXnIs!S@QU!UCr%z&qo-(B zSA!8QuSnwtgmP@|a!KAvQ2Gex41__^KAsj@pp9zi3at!~LM#`;=2MRsjNHc7vYzs_ zzz6iKhR0gH_atCZ`=IcCx1|oa*fj}4HIv7SF0O+e(8WO@WdlBJZEIQN0}jskVr2(h zoL0tGc^tPPMOt%jjaGz6#u&pnG?3Y*j7kT%mcU_Gv$yIlo_{X2R4{3PYWj3G?b+m* z=pveQtV)MU>hmO`$1X@WiDDTz%jZ`L{V_JdYf(mbZ?5fk75{FE3=f>#1cp|;?zBpb zZ1#~=gXL~*c!d)cI>x6K|4(O3oBj(%S{&U3N5JQ{$JYYQc{h}>L#(H2hW59R(E>W_ zH-^xIVi|&uk3cWzkh;u=oWmrRj&jA6vSGbok8bRoshTAX(Q)%Bup8fB`RLK<9a{S5 z<@GI;vWj0Wn=RgQg1~Er&xxs1_1$qQI$m8%-3zz}yV=%!DyjX-M5c|Zhd7z!h&OLL@gKrMcyb8|jG4hKEBd&hcpcV2P+Ux#6bkMCSD+VR5v3<7i zfHoG7z3$O+{3pS$qU^=N`w@V|j4C-oe=+6G7GQgI2u%pHMK~d8&kn4|G5B4({G#;I z@cE~f8}cfM&Lr}L#TG6k(YENKY_t63?*o1VogeKD+5}cx>X0;U&p6!}cVHf;3fX{^>61!dgLlk%3B z&d8}Jw;qd0-`|no(KJA)vh5s;Is%?KhK*uxG72m)1o^0uzd!*&HRoO|rjdxWMr;r= zn-Hp{zwrUUb82Sa)@kZyme)b}@UKmIe=B=LT~wi$7YfWZ)(!*?@g6u;epnQnZcLn= z0Bcxwk}ZxoyUmFx{SS*SRmObOq)V`_0;U@VOS4M?s*N}`;3Un@gIIMf@8U_@?ec8* z#1udMVGJjcr5z7*!p&yjI@$l`tc@=1Xk z2KtswD@p0_>MTNv2scU7I4!06*@~{hA_cT@at_EXLs}g& z40TxN?cYFf8d%N{g0#tjB25tFncmu(<`q`|Uv214n?H%2O4ZB?#}+kER$sGvg|a*7po7qYtAFv|{ca8hJ<*ooG@0(-0XL#~#Fo#}&^mY^m z;BFb$CLf=xa4sapl2{+XBQfv#E}Q!ON{7VLZrYGh==Wf-eH=gqs(GlVTzl>=niGf| zVa((AlN_vxDlE}@Gy`h5_sW9MCEwaw@qEg}a*YIvjIRFO0<&n#(b|CybbK|DRt zlv>ZZyMxQ~m}ZfE?Jahu$KCfma&e7~AdtOurDl`);F65RlWQy29|%N+nzhvi?gC`8 z$u0nukxx3BH=~+h)OSX3h_dLS(CUwoA zAz9=)6}*!h?$wap=1r5-K~F_ov+Wf)d{AonerU|Y#El=J$W0HE|L_V;g`qjmMeSP2 z^qNUVB*c4@Q_T1?n>m}?{JdV%m$`9ZX_QiP1cI01m?6o$?pdYvRbAX0NzI4gao8wz_qacVY2H5FUFRtJW4Uj=vL+n-xZh;J zlA?UuIYyjVWEm-b96h&80(DJG^Co$GZVGK-uj$|+Y|NiA@_PIvIzDRqwbn^7;#NZ{ zN3wb)`q$i2vhI{&p$gU-xX6|`QhDOj*fmhk{=o5Ct3v;qh<9i3NR z)QGt*Zw24&?N+$Rw4W4R41RV(swe;$%Y?mq)ZTD6*BMzWRLE>^o`t}zdv0Od17FOt z$8V?m#>@V>%m%$>P;-4xbi5I~wC+!y^+0gapC6_VnA|W2MvnvgF6Txwwkhrk2hNdL zqshz9CHxmU8gl&=s8PXd6nd#qiO4;|8B3~-{z$)@rm~a;`e<-Dif z1tvD33+}!K zIu*x0tmSf-FAVkbP!16tv(^b$iPSST=NkEvp@ok(hZ2ZJ-l+ir5+mxKSJ@9b#S*v> zwk+KZJC9Y}d$cQ(YThd~7GBkvu||e7ZI6NmR(18rz|C!sqW40*b3H9ZxOJgEpB9Dx6cjEim!p1Dr>2EZ7kRu;GJ*^ zF3^tEcM^y*Ku+g-%unxk8N>G*zr3&8(+*%HQn?H+=-c*yWRe%|4Tsxl3onCkd{-KzX`FjNl7n|^Sd*-pZxzl zVh#ZC`Gd6w__q(?|9?uZvy+9jBmMtmW&ig&5dYsg`A~-7njioGevkkFH2-8BJv|Fs z3nx9je@8Z(s80P?{B}3^C^t+3aB;6eLP-~fRo+%3Z2RgJSO;W84u}@k+NMI0l#--2 zu>ieyc!9u9mHe#usluY2AqE3)*3L~PCf+~|{*JHLE7;$UlNx^gu0ZaiDg|zO#}>bf z%$L&CPn@JlMQ$D*4lXV(9`jC>YZ=S4VugFxz2dp8r9J;jOC#PxF;B01scLY=sv!F4 zDlq>YEtKHJOnp~31${`3bozPH=?zq)v-?|sQ%9KGS#~veJUQq}Mf5UnmY-I?h?~F# z1u_F^oc9Hr#)i2xQ4AM5C>bSvEic2K1LYb}+NQZtd@;cUA(SikNu89EMwQ)$eoyLB?=G6 zJbKS0AMWrJI?Y%X6`{nYXhxtEO*D$}`oVlEbcMDlkcC@F2RTEH;0c8(bE(yWE9+7= zR?>H&2MZ*S-22HJOYPo31=ueI=A%}$x35J=|4m(akt#c)DRLd?B=HZvo)g|*K+tN! z!?ci5yf?r2XT&YI+Rq_+nqXt1Q9WTJi>#ganC|iwb#sQL!GSt!u^$nVgwz9PMNej& z>BLezQi(;0X=2qDS=SGPKId?mvA} zDL@2^)$^wxi+^2@LOzX9tL!_^=#yX8Wog_~lZTW6HCaOXO1PnqCVmcE<{3 z)t@|_J+HtF1?4VXJRCF9t3*-P=GR}uv}z(k1j{CEiiTg~@J&A5Q|k{1$f(DB)VKaQ zF$%^>@Et}`$(@tkE(=cKIegbqn;IxB$t@C@pOrd+>$#kYOHd6$Zi11#*H182tjnUS z!b~a&?gHjr{fi(_RP3c5F5aI;uQ=iH?JQe<(&Bc5FtSbn@_co^ibB_&zOobs8L+XSmG3JK2wIXjwLPE z>7)!8?fy0s`m~=d5~XGbwi%Ki+C)vVblaL%j4R@jNH+MW3E`#5Y4@N|38}dFRdEACZkpO(JFUX008=bqE!Y) zP8Kc(P8N2yj{h!KQ|kYcs}D-BF;N$rF(n^1$n%1=JX`qihSO^x+KB!i&ok<0M6M!IO|>MpOf+*?;S>&L{2ojntof1Khp(%zW0=3MUk~IEEw_wI2}QrA zh*(2zcDCf?HYtl}3bg0?=H}*hx#q2fS&(rO0>qESGza`l+TySp7Jg{nJwAd!*ZIk`g{rJLJkxLDs?K>$&jX5ST6kf zaURB&Tf%dzWVktc5__$(hS$|o*07L9!vwGTqg}Bi6RZe$1JQAh*Uj|NxB+BdS4p?1 zSy2Y(awC4ESOI1}9t0z(Ilx!D!TyhOWA2 zXnj~N@(-uSNM{Z(S3#FB?M|p`v!ouh!brR-7Wf=X=^dK!YTDM*;3gPa_8Lc6zs7O# zS29!Dn!19_nY&CZnRFtAPJ*w0(-|z^#-w6-2F9JIp4EWMjl1!>hpyv=-<|4=cSn3`F4gT%D)dd zdyKyLK<~2~LSSkT&{G=N!ZIszQeZ(X zSzxFfR9||+3boByRNemzxWfJt>0*+7o&)quM)w%g0@?~h{vv)v0x!0Ts0f_gEmS^M zW`b29HVIo2i>40+QIsSh*PkRLN79$-Cj~82ATgSDhk6VwzEahOE~M921yTEol&@j)w? z=v&zZcKG!EOHqz=fB3jkRKSEp)?fLH;&9+wI;4bmPc%I;>+OU$8>&jHKCNItngknj zE}e}Kmd_1u^jmvI@{r#q-`^&`+%f~-c z+O5Mc$@-7Vsu`0%dB#s#JMT`~Uy%Q-s4@$m3?9$`078TS02u#~N;#X^nAke~Z=LGm z*|6QvNVxeM(SSRdA!DvpWb|`#qg`-L>cbLy70nnBKwwF6!!K{yIyIEou~zw4U)JuNeVFt-&n&h@B4D?1Y>%+BG;#6l5F~TUtg~;<@VDCSs+$0M>WvqN%DK1kHU3dx5GZ&7Y=% zgHM!?YHW~LT-CTu?`6r*-93L*sH?N%WsZ3Lb@!N{)`roIY%Du3xz`xFprBUftK!7P zi6hSK*Q~o+HSLIb_}#E&eWk;+t>P!qGyxMLmq^6L;pXUlcYeOLWbWbZd=~?|*6aKE zxH!OHYW8UMdw3Pt<>8!j!YwKD4qu$!+zo^8;dI96?nDK)23x>cg?2SyhfE|VFfh;^ zYl*c(!mNr+%iHIt{7!hhabaQ{pp^0#j74>CH?f&Qr_rou%J3DVlh`%qyi6qX_>hj+nH>hs@5>Ju^q81}R7^AWaTi>p7X|mLLRi7x1hfeqUo-_LOgKiHH z>rXISLjsvog#ur$H!M6fR^gn(JwNL`h$0>7VX;!_s?I%kBc|HX>*{T>3*fxD2aim; z>*%3zDsxyckZ81ln%$mdlW-f|!^fW4FuxwapRl2i!Ih4;b3npL&&uUtR z0`G~`8Y?=Q9YPAy7E+C$6Xv08^UX#E1{RvSwSrEATuT&U%9lKUVSVers#h>R3 zt<~3kR}6Mw#+%`N{>?@x)pr0B{v@r$#nL@NmZKr!2cgZ(*jVYdpw`wzT;?!n7NeaO z(EPjiKF=G&O@snA39vn}rgV%H#R- z{s})F0Z?P^gipVBt(G{T&t#CuU`8|YA!gXW~@T< zZ+}pE@M`!J2rzEXl3u|Uyq9X6cav?E5hX?5%?4g?1V zCV6EVOESZF6A-&SeX1tY@D<2k_=P?%_A?2Ddicpe&>baSxm=nuV)SwKIARIpA$(%R zEoaAasCHe-?+%K&Pb&xN{MvE41*upK17Zmh3GNE(*A+m!VxxEX?TIaBPMX0Adagc( za9Ts+*qdrJnN;#O`dsBXvJv#PLufpF``|&rT$0IecCKz-%2WUrV$()I)@E;qEU1SN zrqtqZ7?%~{1z}o|>~6rcL-T7VtahUuVSoxbv|q>xwLWL53>$>4`rJyMt{SVGd<-{V zO$3`BM^kJ!=O}ae0VJo2a|oSE^!6f9fl(n0dmjv87Gc;c$}~#cIL@pAAT+ZG@H76| z9mwlsE!Zm@wy`uv_k!|TZ!{xJ?ojo`)?Cl<-zI5env@BwNqmf@Dp1RyJh4_*zF@=< zdhAsd+fRs+18BZMWNCwFgXK3g@;q5HVGaaaa>PyEtE&H1JnedbyRLT%7(r9 zzN&12R};<#e=8&V}Rs7kZ2)|H%v2YYr05@(Ts4DlAtOd8{u z8e;?#{StdKN%Y1f#Wge8Bq6T|9A`n;ni0K3e?J?C7&lZ=-2xbYYYZkaWo1#&rY;`d zo*<~4G9!;@R7YJ40M?70iHEO)UlQl21r@O%9hOU&+{Si;BCOB=fT4E@y_wU3gQ>cL zAXmjPa>bvL5Ed2zv(}2%fteXArZHC1VuBf4i#d_*5O=)lx6L4BNrB9tgJ7IAfC2$h|pCiNmWa?UG470<$-%jn-VacJ=ZuMrawA^Z`g2>=g_ zCT?(oR}Hi^6G+kjma{$0W)L(FRxKb)L`UJ^--h2@j|aW@o1-Aw()%4 zqXaXT0tzCs7T7+%yCwr>NxQ8WFotrC@qWFwpaqgD-|S=KCBYQyNDM&wzI3CA>LY3s zbtI4vGp5c1mJP~d%K{F?qrj2gb<~q5 z28_)v#ErfVE>1ul^W{@+bkZN#i}NH*vbCJDkE zL^Du=1Tt{5P#F!Jy~ucsKd28BcL{64(LdJ}IN;pK;2!%f-y)E6;KCx7Z?(Y7q4pGC-#*5+jDBX0fz-QAT4~5r5zPj_tj2aT zQ#Y@FITXe^D340xKbnnV=EY=YBa3>nrBohMzA3>V*NJ=F^3e6>x(tgWlz3jAuKDes zm@z#IUfo#(ENH5hE%H&=+z-np!hv}JfaJZ0MFKMR@;;X7_wEsTzWxR`=j_As68@X2 z5Z8MOMY@8xIwkwsPgubXa^obIMG>q78D|g~OTqW}X%Fs=A1@#7;TC%wNP5HlDo*09 z1i@%83_Jm%fy9gxz+0A>A5~!jJZ9!QP`@!0TsZY=I12Y?Hpte_AE+$zHhUhc>#Z8H)~53JHVKMhyy3U|Jo5V=TUN%frAum zw-S3_b&wNz3k?i6iBegq!nVDS$$7JrCwZ(ZuKJd5<+jFJ5>D|oXJ4l+Pjw(~eB+6j z9 z@IZE57|djkrlA-*G0KKe8N`UZgT5hVo<3OcNlarOStApPt(9XmY+<}ITY%o=RKhvB zJBRjcBaHu?b*V1IJAEgW<%mDQ6dC)awVi7 z#L4Za@qD6Eddf(FdMX8yKr3s3)F50A-vbk>;we*c84#Hz=-QtcZEI7QqmH*7>}Syo*sw z=|nV!Q*#j$PJ*vQVm5u}oZLK;tvotM+fith*Y#^|8u8sLn5S4jN9IuHj|GA&3GkTV z_4XgPq-mA8ywdC1BVdIo%Hx3JyrzU;wTRcmFqX?jCx6^65aGy&fQJQ0hEZX)Le;e( z;nkH;1U8_1natJ#!_aOiHPKDtnY9n)%d~o1`r|>x-@;Rqg zwlvf0Ss5EPxC?E#k%g?4Oq`@^a1*!s$2)~qXsCjOMcI|brPVAn{U!@J@rn(U7NYDy zU{B`2J}ECvr$A85dtuN6I2!K{3dTHAd5+i5lY-}r7f|~r;eGU-PGUg5y#kZPMF+?j zsq?bAZt$mH_O3!o`XWVAy*TAq4K-YH!A+%|3R8a^qETCVCq})ul6z?fm%72Lx%(<6 zS(2;qcu=iem|lUYO`keZW5_(Ry%HCbESj$kxK5gpZgHRVi}xsL-w<|lWVEBqT+kHD zlqf&{YK7q_8ra8RB%Hw6H|fWwi;DkN6t$wkp<0I;i-`iL)nHM45w1nozb0`qFzB3g z84PwIpcmKccK>)j4=$z@$ZWD8-kKskM@A_Z7)%qAielg21#p;;rOLNwp=_sycm?ua z;HHjP#L9vsrhXnaTg+tO9$Qug!r;=r)$F+UrBe^pAQkRaSipV33gJ$UF$YwRUZAb5 zYw8!(EP2yw@b8rQ zfE?T~x?|%&u8}{w2)~4zmhlpHrJ110xByVG04{$<=x_<nwxCrz&y+zZuFePlkoJEAi~eOt*_cF^vL03y6WjN7)()VT zhI_Ggm$T-EPhKOvydME)rD0z4m(7Df!QBcr$`wxHWe3VC39ux-E6whEi-1Yu2EptU zo)20iiK)rTf$S^0xU8{lHV~oeM$v05;WDMOfy_v?0snS<-TmHLZSu_AaeB%WhdPiUB!KQ*Ua(SN-J$1fsA5bzqLZKq z`r8(2+g1P!XB~uM6C7CkRRr*~3ur$yyDdLnKoz%wOTDA^l(AZ`Pt-AEa-Mi%ctNC0S2_gVv;|zI zJp%I8efS!JPo8V#1_%$=5NMvlBopbPVJb+>wkQ@JK@{+w6!`AFelQ?kzMTL(c{?Qn zmoIE-v`M~LnOTtKzrIK~0S+PQnX;WB^3#wDEdUN%8*x}FRRbB;K{%P?r0#cX@ec)c zo@*NAPQ0T#3Dse48RI7U8ALI$AoRWI&&Z+z!WoO6hT5l%+p=AxXK-orkZuZ;dND*~ zNDT;mS48$jCj^%KuzN(80*um`od8!~VI%;jqEL6$JBb+mmINb>?RvxATNE zK?ifzrGfQ(x)-?&m1Xv_x|kT=;{68^Qb6*hPQ4v(uk^6JzEXj*Ye2g9p#k5+3b}jf zTb!~>N@61rXD$lfQO-4eYwVy{^4c{XJJltbY9ee~W%ckrW8h&AuR?aI->;tcQ;NyX zt5v;v#eQ&>{NhQY<_`rr{`W7tcFMiX5O4uO^7=L05L=qozOmBjJdd38HisHKg?qak%Re{YB|#|``SUkM2c}fmK1T_p`Y>tgxhXh8+kx8ILElQZ)c(8&?(~g^J^?Yv=Mic z&m9C~jPFb6D>BN}e9yeC3uAF!9H5>BeZ%JZON_24CX>I7Ck%eSUHE?8_!{ zDNBa|ZS$x0{w*)A;QEdt$w9|#q!DnHCj9C@A${@DnrCe-Y3x&6R>{QkHV{G|A|esY zURM2!8w5dLR2^Th_LQ|-5_Aok5~|M5eq%TN(nnx8r+4>aM`LvX=EZowrA~p{nwUsN z;UEjGwZN<5XGs(z-o4Ka?mmnDz8RmzSI?=_f+=?G%`o?-VK{%MQ$_nivj(_Vk*cnT z-CbPXc`{UT0(|Q77EP$Lt^lEzfR%QjuJb14lV~7VMt%*%(e`~H+|ipz#i@E^TBC;S z+neAg=IGrOgUI&Y2{CbSOE313Kn#(kTU@+{8jpXS6fy^7yb=Nu8z<8XI=no{lkuyT zJ91QCpVByf8wyu<$Gf-eP06L) z@>0f`{>HKjoZJz#V@}aDm^28i?ySJN`Md`jGPVY5RktWH5+s!iN3Zc?9TD6@AeKIP zHDOt}=+aw!Wp09w)uq;kj!QWHQC%eo*^~utythA$+nYM#pq6HQa8av7ktdOztUH1V!q6H z92R*ZKIbnI{dUWZ&}PlJ!J{w}x}!H9vHgOb50%T?fFX9xR68b!72Kg^T5n zyk*AoSOtMgIB%li-%q9Pt>g7D(=qZwp1746e7sNKNy)u4Ex$K=@o_-acw5zo!N1}E zvz1;2+T$Dn{WI`@0{}qx&synDb_TXa=5`MMe&5%mxfO%mg4(^JT+0X)&DPM6uxx?6 zWaN~%DyBg00t#+ZrwOqLLt2-?pUA952@TwJ=6n+fbY=AD{tk3S{K!pmB0pb35rNh0 z8X}B`m-CSA*gfFg@AG~9l(|)UsptE37i;aVze8HQKbD^q|GZYwQbS)8$S7@0!bA&( z@BKKpTSE1aNwa0`WII22^GPBQPquW453m0XTg8HP8USY1>gX5L~qedmK z`Nk)w$qPCI%x&#bHnQ_)Akv#8qW*zaBT`0S&tv+6y+*ey?c;LGuKV5eZfMHu?tbbs zGt-qX@}5M!T_vz@<1I2(?>i=VDvsTHhQ(-LPM;xcC_)q)(FT1JhTZ`c`lz^Y&2Mi8 z`I*$)_?eg)A5+gU{VYMSASxJJd#|D4R=og4@hn;+V?>om6 zsn5DU-wLBEP1paJMqM4DX)n5b;#?l zDIDjB?b2+=p;i(frzi;@H9M6TR+RUyMU^jv?_Vdc?IUVQ1=Ge&vs=BK{>A;paLPZD z1;7_iy`2~fhSwohx?)Lr^E4S-(u&dmuV z-nKJet*J#2CsaajR7kVR!hqum_gQKQaa7VlT$Jr_ysjH0{YD`ddXtiTHsHx6MtVGwH4FvRD8QVr^TiGe@d0(wjNlG2`HB&5;;m z)CvyeluTtVri%D(Ro|$u!Tfd$!O=am!XX}3jG1DllZD!W{_bsFuiDI3PP4YyLBq1{9bGPI7e28@6I_RTa`dX z4Zfd8@^o*Cd}+LN_a)@zqaTptVefZ#KOXvAgWh@+3q_@vA$1g4P##dhS;>0Mp4+^T zNRYp6?S{%+bla&a+G@Nvk6j(4o!Q5$G?T4kmC%XOGVAq}=-*x;N_cX^MkIPk{wCF; zuL%d6xKo2){Xku@08q8236gy-+l~&&ckxJ~{lxYK4tiI*^$r80++e$Vl=~CHglO6= zbqwcYyi{u9ZtQMf;Y(&~q2c9F2s%*X3Bj9@hf3&9O!O1d&0+v+FXAc&>iN(O+pgGD z&Us#-ppc%E6aGm&2V+sHpq-~uNF5Mit%!b9vSSjb!}UdIV5{XqWQc_Z4YK%su{M?p z5#Gt#(w7?&I#9c6f=uRcofB9m06p;tjC*goDcCNZ^@W1$mQJ$w(?qN|VCs);U1ZdGl9uv?v&)Esa(`&(rf%mo23Z~Vh_O`X^4*3Zaw)#R&(Nu~s)2i)qxgvMppkq>ylsHr5wF*)(u4TZP3^lhb#cHTGAAIP}x zO*<~RVJDu{oios5x(5)YR(iBQ6KLg-PRqdN@-%CRHF4sk<6wfITy8F&)bKleO_fZ9 z&%mYyF&sa4lNjG_S2&j!feyYUGjr0KUNVCxsc(D^UXbsXkz~EN^Bq!}FTae2gAv8s zGZMM-@_9`2&RE4|D&`5o+U~?2`)kIsm=*O%1ro~z%*A0h+H+!}P-B}KHZKeI%yoR0 zNzI$UqKCnfpur{9?_~lQ%}F*l`?vI26{;Vbn=L>D*@yEOOO%D!`$-6|7v3*l)4(7P zo)K`Lov#7pe0S#892Xw~Ok(HccQ}Tst=KNr!KE7DleEKnrf>{Aq555Pw;`8=eFk|T zUiq-=Z$9=`trLRb*Fxn2e9Lkf%%|%89&Zh9rj02MmVp1v;%v!b_cz7h?O=cz=!b<}=M1ub_E;?&ZT#?2)+^t3vOKKG$AJ zT%wL{X_z?Mg7j($%=jxMyMn_|X`YVD5e!Qr4y(pw(PskfNLcUEtpKG98S0RI6oI81 z1LdZ*j#d{1;XuMX>qUyDGSjJA+Leb{Rkgk-H6eSaJoPna)#)RfEVE;LXSE;-*WQ6B z4>vP)kELT9T0#Lk_tGA+B9h+*M4`ifRSm5R+3rzCdRwH!Ui+TQ02 z%{D8)DxIEmT`i{6xu7<)>db)WFNRk}U;ON}xVtwuJUFyuXLr2g^L15`vDLMjDwS8t z(Q2GT{|#^u-z-35_{)bt=spgBJ}H1tgL?h=c&&-FE5s}THnfRVW)EWr%Op3{dfn0! zo!~I8=-8!IbHCLdqX0#LeSI>Lh)9f=l2Y1_PPD5Wl@8{rDI?vj9PjC00QSRh*EoRuSOyXjHcxvXX6Lm-w!8a-<+66(m_XR z9Z7;RNT8c#3KCyFX)x!R& z&Mblw!-oeHL5D@6;g*%ny2ho_ZHWTGT@jo}5cdWxGzHbnF0Xg<8d`FB?`P~PAcxT$MEFdm*3+t)!Z41yKDsEIfQE2Mz51m6h60x9G3yj(rxQN*8^N&-`rQ1 zig#Vr7*Bt(voO%wnmRqbUaW<@$&}_6?ph1a4&9Cir?MVR4b>OtvwP+3!fxs6Sv@vd zwE z7k@eJ1~|t>?}2WKIKEbVOXFJ6C)fDv%05&!18nzi#^@Kp-ekk_^{N!YH4BFGgs@y) zQGDdp=M%VRrvQA}f^qqaajnP6(Zm)&rLRyYttv)@R}jUk_{LV-nRC~K-}4mnDvB%w z7;fm)blB6j7&JXVvsUt#lq@bOX0}x!d18I{WpylP0GaDIat)&1AdNR>&NBF{Kyr1RDPY zQBhZlB~d5dNQJ*_QkN&40Jc{yeVq1nX#!N172+EYd<}uzx}r~yHCROfA{=2^PX!rF zZbNp}p$17N)*~nig>*@#&Es`*u)IrFV`~CkVIkC5#mElB%figKYQ7~2E1^0Ua;h|; zfw~x@Y^AX0ZB7ff00`gBeG2N4Ox5Xgn5CT1{uVW0(2bJUITMzlLBSf@ zlMVd@qmnV05SiZ38hBfJiOt^?CH)2NTfCa#T6gMdbUbixUf?a7ZPUY0&psq{$kk)9 z&rqXrE}QA!LQXqx;^~XkyU0iBMMBeLz#5xVr)}>GqA9JoKWh8D@IubM8h1~N7ZBcb zlD=vHhfCW<$@&1vNw062PwOnKXqucV`?7rU+qOi?x}8^jlnQcW#Po+i=nD>R8fY|_ zaML(NUzu(Ux}r@r^CE2Ke^%Y*B8yc_!}Nl7-Yk{}Q6jk|10LZ+sDovtIcKrVGsgoP z2b#o-6lXB9_qmi@wY#cPi(j@}%(wqtyLMz8iqUXLORp??Qbse7mO56Ve}A=79~g`O z_w%D>XP5Q64Kd*dwz$^ktJU{CwvBk;{>Soioc6xPC~FZ1k1wbJb8V=KZLBZY4QSiT z#REPjW_L0g%_dyPg~w-gku^0Z-j5QH-c(t<9g4kCpvatto8vn9Ne7k;7b~B`6ebf) zj(EH_$go_qyPmZdQq?afsd|k8@7`3~s-wTzvF*qL-~Mvb2Fv$Z(-#F_Mdl0C&u4|e zI0#^5SMn7tZ3ojN;o+OZ;o}it+egJJeB^j{K$pIM;qteEG>ks|mS-v}9b?PliN96) zufo~|T@u~33NxoHn_Tea+0E(`z$~!e^Z-dmZ-K?Q!Pej<2X*A!8x*>W?N9pv(^>5= z=pd4!Fou&-O*o8dgiXn~jKxR!zW}atD2Rg^wqmpwqRDqiJC|=4Kl29{bf)aG`&?z_ zZ8&UeIcclmXF$f;%Bbuh`e~X~X0P9!Eb6xvmvsUt06R$AIFIw=Nx3C;aFARNoz-EoI9(BRQyk8);sp!q54z|5} zG_wfMrrTR+?QNl1^dwfJtB#2m(~PRCg0?h-!q|z4|2pv7%O<^NKH`r3{PBSCre*h$ z4^-ld9w6#P9_=rXXlmQE-Pw^O$8htCsJ~$p=yS{KA4v?Q+hx?a$uWhj5KN2LSw|Tr zxP@7oLcBmobjd(5szj?19X%52XOU2^c-_C%>Y2^O#_ILB{oOBEa4P%*6B_3Fe)=4b z(-R4$;(A_U`WoFkQ5B~eZnX;45OWgVode|s&29LM9NX(SxL&_mad$8(&S)Rt5O5z* zoNpn#c;>}0phA)j<*jQ{t@0hdszU}o;F^%zg%>|PJ|aoazugV*6m*qM+pp>JIvg6? z^L1(k^j9G!#`c?|79Ne???RCjJMg5!g&!O000c| zKlGy*{5+zKh0PDK!~B0NE?r7}F$)X`T_@Bb&$X$}u%3dJOTy;Fr}<+MAv%OXYSqj( zG&tP%Q5NGXiAC0$gsl$syazAGUFqpU@2!E>&fvp{)TM~;#J{cgOgq+0*#)@LQu0l0 zE$E85=44pULtUA#u-Cw>WvnThtKeyRIDP9ia23s+q67^?xtJm(Fhq(qAQxSk(uFj! zJ&yS>tq4WHw*h@de*dK<+od=`%R1q+nHk6pgd9ZA=1oKZS_VB7g{;{B%UpC55n9<} z+oGv^y?ZB|GT_}#&Hm=OdT0We>#{cDtW^TcB&pVoey)*pf_5@1GEs6BZeqk$iB|hE zr%IKTicCp9Hj8xU=O5+j=*H}sO(G=m1`cU7qVx-&I=_oM?EuKB3W$)NJU)oXW^$*s znnsY5>k)P$>p9tegtK!CyZd-0L`yzIJkLN+~nQ}n53 z$Q+e1pql~d6;D>>jm^o-4g~@LsQwx6|7V@PpKW(AadiIK_}}jT zv+>RNB-;b}CGl5%5G-<~&z95&z+ zfks>2t~;)!-156>L*2>*QGhmyQ28&Ck`jXE6<1sZs4mm3SMIP%;5^kb^mD-K>XGai znZ4d9R?dLAy*Km2nx~0ub!hT+aOs8j+`~>MIug74uV}9EO?}S0qU#u4L0#VdBfvau zwd+x#*{3i@JHFdqftn$xvI~}l86}l*W9d~?QZC%NJNdc#$>@S>DEQNOfMmCxKFm8g z!oTShMJ4m4l9#(s;i-ayGd#WC&h6l1`e%s;76I% zF~16JpEV*Qc5KAOE2b!NpWLXn(D@0H)R|S+ve|0h9=yM{l8GN7(}VL?@aNp0Y^w}I zY9i!K@>Pax!f(D6aet|U{)OP`r#D+d$Y$oqY`j99NP*ncN9qluYDu$}$4cg+X~7tE zB!2N#0LJh81o`cx9mZU}vJ5&Tjexk$PM11_)ErTuDvP$6Lj2U!KcVoeOR229g));= zjHBG}_I8BIqfog|-tGELKL*nZ(psTxl5WFQ8nw3xUqH!2gzynb4)B+b0*X$2Z)$#g zg>Hmpm_>a;0m)-;>D}~GeJN->5oBk9Ut}Q+c4iC+deEgu;^U)-y>A)6{J;rjR=0Bx z@fht+%|zn{wcChNFdnY*Mc^-1ypa*EKf7z=sju2l;lz%X%LNFgi5$mPwajOVs~U(mI#AY0`hr_Ri1Q{>Mt`>}cX(Y~W<@ z@3Ll+v>}Jhh!Aq~LK#95AhN3?qDp9ACXz4ORX`-#WnM8}N4}=m`MfVI{Qii01BNs{ zfG*tn&KE4dLN352Vu1?O<0V52a`Y!!VPrL=p?qF0SgHEe z;!w{_`Y0p9h_jK2$uMk5Sim<^!YKKbtTC#-(#VKotR+SU`hAn@;lZP^j)If}rpyMl`Cjm=kw!QE6K#gM<>pBpC>XrWQ z+{!5j9aK4r#*G^Z*8j`D8ojRu^gSUOALq@HA zw8dMr%W#cz?V$W`W zGo4-YvNxD)Ms-iI6fpZd<~?i-ol6@jn_+g>?;%qmET-p<^i~M4$qRtM(L@QI zlSw3hoSn1&TU>x1rcuYK@IvTNxU*~;l|>Kcb$*?J!WP!*Yv4wBI_Nn;sX)@BOn-`J z>f3}>>4^CG?RGtBip9#o1TTYC3@d);UHjv-jE5v)b3A%}7Kxcfi&};*rn5R}N2fpZ zzdOOg=cd*KDx$0BA-YD=5Y;liT|@u=wP&}FMQ`=Strei}7;F*we;7Nb?ogs_3CFf= z+qP}nwzXsI*tTukwzFf~c5cpjJ8$=)|G*lfdv(qERn?Nq6ohHRM8rn%XmBkqLy8}6 zGy3`Qp2tsfp=eT-sB7gO@S^S1(^kTen-d-yHf^HQfa4x6!my@+EmV6s^72%4 zU4fhC2Fif`;Vp%Y;cp_6cRJOk=i(5Gi44^fcs`EP5ghO4MoN^CfE81oEjB!^6NA>t ztjwVv7Vc+DFmAgOq}EcKZol3V zjtF*Cfh_#c;-EZA4Lu5PWO0w=_J{`9{;n$1Jquk3cfB65>{iIY_WgadzuwgP6*4zBinfQx z`DbVUr`{%wxun8kE{puHR)#O6rdxD64LodNdUprBy>kckxL4-b4?|m$9nJL&Sp{v2 z6|!H-XpY^hm`2rrE4RLkQhm{EVlH_){_^Gp`y2TG-bp!%Qez%`004mN|4%FBf9@h1 zdqWdbr~i3N|I<@;(AKi%?FY)F3n>{ZBW>q?)55$SURul7*||09Hfw?(9hsRxk!c%o z7?(sFJ*nzB?z}BuO!XG!Gy4{Bh}=L202r5K^D^*QsG*_3PD8_k>c{)- z;Pa*PdGqr<`=c49zAvqWYS>V*FZmDohR<)!_xME=Nxq;dD#zz#%UxbCOf}79kA+GK zu|%0MWXDt`Tojd@G}!}b_Mxh5h(x;5LX-4PgSTCx;r+u@Ll3LACq=WOXLj&h>Cddx zQ?>s}L;Jg`o>9=bI_hj8c_UF~WLrc8)ntNFnUx}52x@N@eFD`?qzzKCX_nqACyL4u z-{4CQM<-2zL&Q$I7@Tf^-bzTF`C~yrAb?2se#WPhB8kHI>|jCElDCIguk~Y5q-PJ3 zA?1P&?}W6qf+k~olkcnL`7GL5QA8t)Ox?Bi#h0tj2v&5Z1D*KY+iB4GNTw+dH#EJ0 zQ|$4cC<%YegA!b1Mt=LFqnRpe))PF-1@Ai?^LAmm{NbRbj+!Wso=W_X;M0Xmjn%;m zIT9-fmyXUbb&TY&dCT)zNvfF zxG+=Hr<}hZ-w961e&adw%5EuCRelWf~JdoRXxjsBRL3ny%iIoNw4&(fh zr>mkmA{<>##-r^VGYmuoP>TR_@cOmx-b8dkk}1K)?{27iIwTC!rXp=L?uKcI1Qzk% zXea$NBkq%`9i2M1Humiu?ZHe65j`bOFGp6Xcp9&SR8Xg#3}?&?WhAe(R7|G=ifZyX zJR!-d!4D86`9AmG(_ypysfqAL6u+U&NU5sHso>n)=#H-K7$1o?J&kiZR_4j1|DGPQ zGheB;IjILYwtSl@Ds6hAUCw{oIbY@WKT!ZoCMt$o1iSNAdA_xO+XURe&@5 zM^m~Zc-Cly=$Vsi!mhaIWdtEnv5OcD4+>IM$s-r!$ub*}?EhqQn~o%Tge#F*^%oTy z0kMunF$7({uIi0Q&f4uH7q^G|skT7%%nMxPRAJPMlgTPaxi;nr_#{sc$JpRO{r9BP z#h3wqla6EBDafQCU&}edD?|Z(Xi+Fk6aJcHx4|Wfk~CoQ$QfYnvR9Dl=!6va1q@i- zLP%i#pb_GsI}Z`32%GHxwv$6pa>B&|_9>_k_K9jHD}=>(1i>jmEFg6PvX3K}=4T9$s>$ zphf(vj6PSk|0W9U_v+@IfC^f-YayisGszSfhjoI^M+kM^#(vk-aTz{I(bHCi5zgMn z07E-OkM61Gf9k$NL#`O}aDL`V%OuGvoE9n>f_o24VsILK@s_7P72w7bDRVx-0POlF zEoDA3$HUWCz*sHT{by;Ea{ETx1}$tarLdpV;Z*Twlle|PLxN~8#hla#>NWb3qeA=D zvt%2{vA#|`2SpCRv#gMW`qEHF3Z24sf7*}BiyG#BWcdI&uaHH40FnVi!}=BIZ&T10 z&_>(T!qx9-qTcu%$1+xJWphSs8kN$JanHr#7VEs`ow0=O@#cfUJDGfL?g1+lpzv2S zDW)FP;4)~z4H-_D`apvYfrj48^4dR696}0H{RQ3pZs5o8@4`WF1S%0mpf<{D3(~xp zHOiv|9a=JF1C?l9QMtyeqdV&Ta(Lu?y*<9tbZ~mS{z|7+&n;IXA2km%w-4-}?9nxt z1#))##8dcG;Jz)akF($LB4QPB2Uy!Hz-wfp#Dy17r1{$FIwDa3jgO`_y*Zo1XJ(y*p`Px^$zY->RzjUFj0}C1(@lZ4wWU3*dP0P~a&LD3%D=^*j1%DD{_x52t!K+wCRj*3c z?!$RRQUVpGln`7QmR4)|SF6hdg#*4w&@}K$7UB0eq@-2{biFxUX$oAW#p4@3FAe2o z8`r3!E`YvEg>ErX+u2g5oJ87QnNF zXg>(oK|hx-SQS`s2YzH}(ueH7td`6Mj^WE0EPMt~rUeOE5nxh$&LeWeH7I<{vkd%oRugq;dzy@r@LM7Rp%yYW(C%RjUH7i+$hQ}0cOoxo zCFDjyQ?7*`Q;BrXWdYb7Q)KT|ghvI=S!ywl6e2wJBvi%MCFmmB(A|2h$pfv`{sx?T z5rw$u4&;WN2|*5^2X&`@1a+f-1Z|nq=fHnAZTQjkm`i?k3luIU+$yz|*SpuT^AZnE zCsYNnnfW;>`R7(6%Q9pJ7`>gzk{f_ACFSahHqCP{Jv*uQOQw)eteKzH1&O}BKjF>L zMZo7QO^0-9DRCji0kxQw$?FzhwBxMobmi=q<|W1z)&w=_ROi3Gm$x_syKzRIGl`^L z7k~t5R^w2;faU_Y5i8dC2hq)Qdf}EBWCVkaub=_{5hSJDod>nUByG%DgMxmHwzJjU z+GQW)135taLiN?n*KDFokM0FJ2nl4c(LrZ*5J$pa^j}2ohvY0>J|9-nP2rrs)5uu1{l9bL3yH}rEjcIDfzpZM0vrUQp@{Htp6Du?Qp6cvIGY9 z{Op!a3pHoabKq4#5BBH#=gmOx3F2wo&5>3Y^}9$nv57{^rJ zf}i{B9E>hUio?Gb@r5uhkS^Tp6nF---Lfe4Sf|ai3xutxyz2_gJ=;?gYdvqBnCfVt zv^}wVho~9i57p-o{R2tO<_OV#&QqB@@1=^o#td;8oH4oH&im>kib{GKZGs4eP38(i z4dgY9CkHs2Eyh-yoGP8RxBo4@)Vjm74F|T^F3}QcCsgVs6$u4)KfnIQbo5$BE3Mvl zLerWf`ce+h7Lp>ickEu|ml87WInon+Cjt^>*9iQ_Fb{DboIuP#yK!$;K2>z$HVHBg z_FOvr5B2qg%6B^3^D$;s9t>AW=J|C4hn9wZtU{EomimN!>r^`%y%x$|0 zkH+85Xr>+Gc(4-7dd#_7_Mk#`>)mms9p!v55xr*Nb}vI0S6Z)q7BOYz&`%?^UGZrw zEbG?Icwks;4pbdQD1ntcKOB1Th zjywyiUj!Xk6HA7h_i5lQ@U-*u38naX{x!=x#O%xO`C^QXFk=#)341q8q@Bc5d6y+t zjqmQ5a}&03W`ks0%mS9d4NuDatq)z2P*i<5?VpPGUP-^7Lq;mvd9SOgkofPn#hM|H28Z>0&@5#G*CHL0id?EpoXm@)z%) zHAbP}EKe@GgeCKAZORy?!KU`B>TV9UcYK~PM{u?!%(DkofrAre0!OnY=w3ewb{*q7 zabGs+Tz_OqPCvI-9;hXo`pv)OydM8(X$3Cv{rzVG0%O36f)mC}yuC_i@AN~b!es6c zUaH1Jtd~QZ^DId7Ny2)Y)mrZJL5c#G^NE~2vZ~mhHVjBaSu{~heR1LK)~6-5YS4%z z$YyZN--waZIb&_*C(lg8*SD13Baa42fcA3H;I8~}hS~b@EP?q#usSm6fnK60zz6&M z$I>dVOxlIB%z`l}_v6iDccTo^u4O^(nwWh2I$>CIzj9Tg5{T0WC92|>8xP`L#wRfj z6ec57mc6-!PcjEFia@Z`5#D$`*NtuDss;OC%AqqSK6|A z!%u&xDgE#r`yfOd)_726%o1u=P+TjHGGcbX?v#)@H3Ab+c9=gw0;CXmRT85{UvMD8 z!SyaqNZ(Nd_QyUGOD=%TlINL(Z^W{IXCDKIy;c82c6-yEJI0)~b|e~{S$2fy5`85x z8OjL2%6GmJoTzWt2>x;Zva8YHp>mqiett<}rH`19W@U4Rg>mWqloV3pha(KUk4hXC zf%umGC$__q%5|DEc5p!i1D3`{7l_nOC95${J$sp!bEe=yDoyESON>$=$=c%}UZ=7!vP~L8Mc^ z0@5dw2>wGtJqRTR0o1^};I*etDiJ!l&4sJ6ivapt$_B;-_EwuRcT*pnv8j~~xiF<@ z9UO&0BgUgc&tj{svGPU@<%N)+5;-B2>iY)%=BuGbwDlECpvM?Ivd@MV@VIZOhowrl z;_Ld#`Re2J$?4(k^m-?Id;U6E$}E4$vK#^?!>wn@ynB#X$eud`HyabtP zEnf)DfG7)=BPSQY z{ysf!y#CM6hIx*$wmo$JO_)6(X=XLwPTL##kiqs!dTuey3o5IC$~iC7Lb4NIgyX>i zE9{gtuWl!?adDRS^@aHJz9N1nXc5oauErwJKzNnl( zW?}q@ho;8BkccCp9pyoy0DZ8&bOQ$>Zl(Z8iXEmPI_Gr9-1-adL3m%;ljCsKjy%i) zd%L3RQFSagbeeKnR<(w)tm97cPg4K7oWiYyzX4?PbQ03duv1&OZqskcF(cFDh5b;? z5j@|ZFf1`?+};{81ueGzd20$gxfnf;3wS#*(oI@dYaA}wJXzII^`MI;9Gh1+&tLsDy%!$1Eg?K%pik== zd<1y|JKH|#9kV!2i~k!!fYy5_d=%oL&s z+szBL(N=c05;8DpMQX}nlfy#qiCGz8H+AO5>g9IZBP<{N_G$I@Q{0L1?rLxp%xLAx zOVTFprGn>CR41vF5`$SF^hYiA!1W=rFnZv5lgS%3u z_3b=BUl-9+7v?%G@OO=0sM4*3lRv4xE2}~rrYlw_ET1YU>;JTbw#Nj2kbrk#d_5RdDCnx zTgbfbQ@c;5;e;{)7e$Kp!RH;?N^I@po|TN8t>WQByf`Kq2v8ZA^uk^Fq_XG@m}o=V zl|xgyw7f4@*LL5M;!NMz@-muOG9yl^m9{n%;PVP|VQdkHtPqnuQ}#=AJaP?YNahsg^)G(mYS;ciH4R4RT)k4bAL>hd0)EYm{>deI=4k)U861*K17A8l(8sdkPJY}`${Yn?&Rl;z{> z7hSx8jJ;QogL2lMk}@^lIlcGA&j7yemOpZT7-~x`0b2uka8BkKyPGNDrs1|>+(fVP zd|E0=K&jBB%8h8PQA0ww?4T@mWEr@4@{qed5ZLNw*?VIIoFhR{6U5{0bjlUVDd&=h zdR+dHwZRx-joNgY73+(=;og8&=*!J|h~_;}+qi^9-aHP$^=<*Waf?|=&{r9c7CKE4 zf=C}V^tFKNUG+Qofcp^-`_Kam%Phnf^4>sX&!704z`@k+VN^2w2=v9&<1*X>9T5-C zD%n;R3>`2kbgDqY3+y?Up~ydtpy1CdmO2VbywQ)5Qo~b9Qk*L!(u}SFSO8kQDaM2Q zj3n^V^vT7{v19spIeXk6KSuqD_&gm%kd`2##hIk6%B3%PuIv4pco2m&P_AxVW}lSLnsI$u6@WySghXBOZ5=iQ>avvKP; zke_eFJTAm~t2Z4+V!__4W!M#l|-jh+9ARJRH33oO|Ce!+vqvVcwPmEP= z7%Hk|gwH6jMyYHdgi2|#iLi3|7OV*+c9*|sdcZ;JRRqK2`gsxTY5c9J7B9mIsEVR^0G1fV zEhW!av;%=-5^fa=2hIm_nu+#rilBg0OP1O*QgTLLs8?N)2s+%_8Ff z8TBHzQs%+0AM2cH<3kQUv=4x?PGpP%dq(iACY-`Ud^Kl(RdGHS%T!~@3zpxjDeUiG z&l_kKu@ws}zl#?lV=Octpg@xO5F?fG{H71FH;?MKqRH`}Fq4m5v1 znQjm>#z-qo$&IBZ+w}|xCr<;DZ1!NnA23@;uOcBqT@rq-Ugly zfriBOM#(wHwZ9%kV~oI)ine}8c%P%fHpek!3nm8^mr5qt9b;G=S_!6D+?XTL&nG-c zll^F+oGA6`nbHZDmJwM*g^L;5+}F7GkaiCvgn#1MJW%B#T0eG%p=$bpa73UG&Y0k7 z*mcB)QTWB}eW=_}C`WE6VLO$o|t7tHLdUq)IG`fA( zXYz+`BX_YZYi#iaz?kZTcL*6gs}-a-W{_w%yT_1tJUaq!ehdXkS~fL{B-hhZkqehA z_-N>xG&#MjN-AeL%_Zr~ZK(wXw0(gLvcpd095ixvIVC;9gS9R)W+`b|X1hOmf@oLA znKChHtk-IBUIKX~;T{VFE?b0@o{B zQH2^SKV|a%NN=Su!A&ILR!hbnOr?*W#F$e~c+q3Bd_;tK)W!y|K?yLVK+L0>JHD$4CX1COn>& z{(Rw`bx}m3{>OrnHAf7iT&XJ?l2#*Cf*7zR%>tNgv@uzRWBFpMqSh8{^ zidgr3bDJJB)l;c~fQ4wOntZFzz5Pub7qYHdKecv3l?5H5s|wR|2M5xsJ6>eaQ_HEru=Z-rbKNU1#%_&~ITe$Z_nkAMRJ#4LM0&0^!NTs~h#Irz^|LD+ z@G6vhmn8kwInz>f9B*!`07#i4@KT9IP_FQs_kgr2TUn&O80=I=#=IeX1y08M<97!$ z>`=s55f5h#eaj99p%2ZH;@e(#%eYI}NCb7x$RAfq zT(vVf&)&Z_HM_dxL%^=D-g$gPOxFN+Wk?9kV>x48^n{ZvxCYmrH=@E_I1f-7YlL7s z*nM4j7;_Lq%x8$`tgnF4XJl6^GDqOQI5kL$9`#4Y>*(p#y6tlNs$`#^#aVmpPiiGv z_1 z0U5X0IsXun9320(|6czcGZRMJxyIo!9$>a4-R~&uqna}!9(q7~RnC9K@Oxz!OWga= ztI1d!yMayr>_|K(N^?;kP!xwv(M)U(Zk0=)ouxDNAg2w(dFb~i{Wb{ZtbixG3|L{< z(zfdU0SCbYQ9t;xGVw-d`!tB*wh*&_1CQ~0nymbabXP5i3fkhmqXa^qgNY_lLk3MQ z=oypDa%H97*dxH-`q1yiL7BuoAG}*Dx_(uKk1SMhq&39|sm5Gm`(pYkhpU{CMF+wl z!_zi&KG9PPK*M{!dRX}79jB0bwS)rmuUb4jw}oy00e-t>JcY$GtbaPfDYX4hVXMe&W<>b;bJ0b=!=UdvnGmZkMhfE|uB{~vp?w+Vua1rm z=+=pX|LniK-in<#J!*B&StJ7ROTZ|Prwp?WA{;w_-=nEe>&FRp{@q%9=dHGnmu3~x z=#w=#n?*IX(TRHCjzHqx?p->sySxsj(A97!QOJ<;`iroMHG#0Dn`3m&f{`@!aoT38 z$sDLyud7&}JW~p$W4Jq|2b|40JUJP;aD^{8V#K=;66=VKLqMfxuOj}%C?@oSSu2kL zrSsko9hB3;LY+rlGIRo38G^O74d3d($pSY$aF|X$SJL zRn1(F{?+^0`m?`8lSCR;2xg5|IL3Q&-MNBE_l#x*XTa6u`Bs=|DS@;0`nG{OY0dn5fZG2NvUno#>o9-4?SecM6`h}mlwIHhSF;HyZb%vBH zZfaTmhUUKfZO7%UVvoB(Ki6@5`nlpP+F3&@81%$e^+{NnESGi+GBfN$GlD5|(pZ@P)RU9UZD<7Qj%WzAPlj8R8n79u`XlS?6f z%cu&AVRZ8%HSpNljT=*C!hGFcA;j_m^zHlz{YoQ8<0(d6Rd+hA64_ z*C8Tbk~W*^Q#(m_o~d#c=Ck%+)O9()m+=wF+PN`L!?tfFn@!3+ zA@Y(?M(>FlDw4zH8u7J@9qPeG9DJ)l`?Zxx2(fD9sSMQPKz>%8 zfeu6HyjA4C1o0_y12zZDi0X<7wu(=~#T=ONjZD(Ny_0-q#dJH9cv$PKjx=uxQXON> zdKpzNTNXl+a2=iW*|q_eA!RC8Ar!2u!Lpv|86my*gzbzeV6y3AK^e;CQ8D#KOM(tQ zc1AxUOX{DbL~h)cEPOS?$T019J?iB_%S1 zqrJ`Pm|9y5^u>8YMv#65%Xmfbt>brQFt1H+na5>1~(by_r`-kB54nIb&w6k=gRZ9Z*=JOH#&f2G+ z$})%D)fh0P^V(H}Z*a_K>9#I%_NQs5M={>arW&sES-vJ~R6VI&A+*Wp2>#>~8(`iM z(M5})?EQotkoew2;PGk0UkB(WMd0>=9gwjkR1gy$$NBl94H475o>2mXbtbglbYb7Q zMAe-9R3vtIYukk~QUk&vp@&l7Qkau$sTT3{Y5)SO=! z3w`yu(YmxfBR8VeU-Im%kZsufyA6>t8lsIB!w@{YTM-@@H*?);k?K|NATVN+T553-l-1?*eh4ZnRT)Q+?# zj3oQ)5s(Mj5-6=p&!X#M5xE`<%;=11RC4o>A;#$>?5WoQ7t5rJs41m}vR4AezqTqr z_4j(OnGU%pVD33`Zp;QukZ4 zH6cAuNy(gZnVD3ItRuXUqi9cXA$bAeMlb%#cIg5)L$9mo^c>F8I~~&?eud{$r;E}Q zX3dn`;`2~NzI%ay5rA%EP|W$s#-)-auba}-83+wv2A%iDnJT|mb@T5|_Pd>`_{E@Q zULrn9B{;Y6B?lmYz2}*}3|+u-X1C6-__x1)K`;DeBwQZ#RL4R`#9(R>fgMP=>xqNx z@W+Gzs|{#^=(G+eIwOS}qmL^GNtO{7)5SVCP10~>Ye*iZvA!eQMPr3B2f(PU=PxLidJ&Z#x+0{Hb`?(n;z^jq7{S2|6ld#s*AM-@lf%B^E(Lg9na z*}lIK!Zkd|xSjda*|F(*V%d5mX?sinav1cCP=gv^)1cR$uwo?DV|Mrgf8<>4wKGoc z*NeeY-}QJJ+4q+M+PiJ(=IVyiEw3$W&+$OFo~AxeOr5`$?9~!;Gzxb76BZ;4yCsa9 zoHnma;ctdePDypVrWc=9%6YcK4jg5PiWC5oqdx;&N%HT#edw#Qgjy(jz^UZWhIwBIg$!mPJB94q>>_IEa3t}0Mg2Xp&eJbfEB=`=xR!x){y+b^e zW0TA2nl0qdMI%WZbvH*hhe<3R^HCpkry`g!0C;668PUj`1IqtU0!vG~j?!PvU4~b< z-Xi>@1R;>Y|7c$Cw{9soAQ2KI+cs%^43(!`L;307-;l;3eTJH)JaB~EJl-Hh?7cXI z=SO3#jJi{}H*t=zjjoaTZVX@DU<2F;;qL;!gGB4>2chz6%m-onwB%1a#TW+T+A2LN zPoaZQPPMYGHLvx}voZQ_T>9tV)GM01&JPdwW_72L2QfKlST|zzd{9`u<%c4_X!#d`) z9ArP#UIi;oYO;cFnEX+g+Ky_NpGHxXh=ZViE9yQCkwlk!;XTDqf?N&t|Pg&gkov}Fy zUp4lABddHpx`OaeC4F*t8P-f|o6^5A*yTx^6kuxI2T64&S_qeTYTkg8TkP}qQ7KdxgmS1b3g6_Mt_CtW?yJC8cces z@~;Z`wEvsA4$fc~SY-Ad4+3i^;YEVSmYX{=>(+yt8xRl%x`KXejXM(^ce7@-6Ou-A zmdVQ*sw{05fBI=4qi1|{Up%yag7Aogr9ng&}%_frOW@Be$;7Y9G~LS#{MK-Tc+tTHmt6d~1nm{XSh7#i~2KLS<`Q-M9oC&DuGc zJ+l7Ij$s{JS;+lWJF@;$JCZ@h;`@PrhoH-|_n7U4PA!da(NE(_IWYrspCt`(zOu#D z63x`_;JCoMr1r671jm>ITxW|4v}yn~-o|$<7mnN4hLlCCkFAb)LXJ(pZ-R9z&HN|3 z8G4q|zy9G5*ZJRBgQLnRa2(&#um^_2%dh;ka%B54dkqG#y?WzxBk6Z*jZ<0!qI|%U`DGHTc}~$s(!lee#Zw=2`?iXl8M7B3QaBf>-k)BsWkxEfOwwI zPcf^e(4A!(S9{ ziBsVWV*K`L@88~8X5-@S(>$b^RJKVX%u1Ouez3>nlSo-(DHb{B$SuCvc(Kj0BvEZX zSo%oIrR&fS|mW zl#L#u?qz2c8cJJ|+@{LBXU>SF)UZB)hJQai5lQNeqwc%m`!?=WFXJ>7P2O zGwa!kp)h0iv$?mlX8H@Aey*K*N0A5!DbZsM&h5Y3RXV*g%}PTTO-Z`w@z`Nx)OQIRkv!8)tMRVEc10d}(ZLW8HKViN~R z%Kv0s*qOMUViM|(y7Rq|qFTvLA%9#VOjI#~YRs$$tVdfyE-N!3U4=GfDU)Vl=~*oy zX5FSi>Z-{Q&(+fz2jh5j)7@_2r`=twX_jHHymXrg3ZaW6w>)ZKe1Rv^H#t8=a~03F-$1wG{B>aUi>I+`qTY6QnfW40m2GQPea{OXsAXl)Bc+HV5{%L}5N4bsriRWfH{#9oxo|aN*N6A|ieAtT4SkB)I=#^%)38drI+nHUS zCgp}6b%kTw-1;}zNhE||R+9{8G3_sSHj?Jz$q&aVeQu89Q@~3)4(qS)HP8zP`Y)ispp;Ca#=kYvB-enFxxJo76e2tsye)ZGm`JAmNP#5phCM zr?J<72h78|@81U*`B~14B{KQ!Q(sNZjG$i;p;42Vd*u{~BC?gdpWpHuUMv8fVJ_Fb zPesfc9v`^XkL~2O&^mb$QDl<+5@xmpm|~4wQL0*;vmQVu3yDknblo*&JYUVO$Ycmj zA=YWXAWT;TXN0e~i$kumIgsH<85F{YL9E#$cUrY5XvWvLoPKb#xliVSXsGk)`b)Gy zPBRy@VJ7z$`OM+cE@Uj6gHCR?WV;RxlSDO#JR^6Le`QYCC}V0AI$>gC@*bk6_j^mU zs^8yRliSy~Tu;%^#Vn2;?%T;7?Ju|Mut?~Mn9T&2I%QSkjFnw1xS{RflrBjZ`p>ea zck$!@iHn1&jFcw>#+(B3oa^5eQ4|PZFoqO61Mq?m_x@$a3*o$!b{2#sNtHzO$KBuwZ&o`1 z1RSh%DY86yPFKnHBgy(e%Efeq#clDo+*WrYG6iieL$h-ffr$8Yz6JiOOnLuyW{5p) zLH!67ot{O8#mxdV*-FwqlaEQc#xz@#{ekp=?xGSot$kK6h}gCeIIy_)#!D?|&Cxxu zA98XTpz7%QI7!j+`liE40PQiL^lhE)L)oRnw1aWf;-*AcvUOU0O0o%)@Ll7i%~an# zTOgT+0(14GgpvSUGloZ*in%2Gq)oRWtu)PVjKa4RPkK~=Mb~?l{SlIR?nQ8k6mq8| zTMV59hBW-48yLb5#MBSr>!DM2PK9O^zD`aiPqV{T#CjLDJu+e;M){kBc_K2yh=LgQ zX4YtK*a23swR3HTnZwp~byt`x(a%7AW+yglw?rC`iX<4Z%{VXl9z zYdgPY^NL{(vvF02Dbml)&KT3Uk)?LjruNULH^*QXXhKpekcaz-zxDkZhKoV;C!1*+_uRL_11R`h*_q=RIZM zP#Lk8HOhRkbx?E2LmBDm@7UKan~$BCnhR;h9ltll?Ep_GEHB%{Jj|a6D1v5P5lUTg z=&gYJX4xP3($QRru5a59C&q8>FP+R;_@>_Ew`hP*RSx+$#yR*p=3watmEK6@`;M}g z(0Euigc4qXRDeMKDykykKpK2&zu?FG`EVnc1Zkvyx=zfeUlq~Yp95x3;j6DXojSTrJBhT2sDF=0%G

    e^_N?>I<;HkMlIeDF|>w4@DL7oPfp|uN78ClDlLYX37<#CwyOa1!On84zt*^l zqJIO1+i&9O>G8DZ{#|$8N0O0=TEW2|b)kj6 zk6NlHxOu>$&r80^5@VGe+IM0oSR)0`_t%D>_&VYZ>^85``v#L!paDpBV zs5h}9go%Y}YDHR3UFK!WP;-7=$nyF7fT-L^hR{~99(?{F(iCik zTJ|p+{XX8fiEWjKhI^RQr^QG$y`c!n9cseTN7oFj&uEV*Z84iVbYV;)JhxU0-mI-vHU z3y#+Yn3@ivEIM+Y%Gs1)genn)CSQMB_z1UQPUHngM?I1)NZTG~Q*b~;*{%bWaRx-j zc6i+}#1TI=KVk>6Epq2xOctwC&h4A4NU$7I?ZDn1wdj!j1nff)#;XsIbbAovpj|y3 zA)J3wyEcWBUNgZ%%b55kAGw_+2h1^3H$;J)_ev7=6=xcc$IUX%O>#{L;Yyo$r@|UH z7)tm1xYdH3#73PqN_if#x-IYa%(aQw+Ovqpn?F`9aP+f(`~rk~oBg&Hz;~agHQCl) zI@Ee1dRpS@REKftOFiP;`t>kn39UY{aFp8N5i62Z_D#ONb5^oq*oy5bV)I?-#r=O> ziA1zuWJ-;)Cg@2kTDVr0Vr?3!Eq9_esxJ9NfBy=00Wcs7*b>PzCfw<|Nyf}WFtP{a z+qG|=Be~y3PfyZ_t>S#}_eE{(gCF7?LL*&K2yX|3w!&TA%|~YuYLUZTAF$F1Dq@03 zwgGzSR$MJ>HftT`C66JZisI^l(hd6_0zaJmF?{Hf;T=y~qtRUxDIqhH7!?m!PYyeK z4C-O@_ae_ckU$qEZ8e~!UA5iNPW(9FC`K6{!F60oPDsiG!ng#LP~Bp)9J9T_EXe#~ zwDMDMtLT}IX$4zeRMC^X$XbDFIv5u)?GdzpIl4DB=FfvZXsxc{I5+cV`y-&!JgLBW zj@VU#fZwY#wdMNubw>fXlLkKAZn5)F8MS0}Q==PBn;PaOKwR9pNkmFQmS^K+?`V`b zq`OeA@1nxr^`ZbtkK{Fm;c=WdQ`Y(8igT14<;kP4x!(~At%kG}32g&O3Cya@s`ck8 zP?l=@ExTPd2(rtoYnqn6MZnC^s%Gr-@<`I7H47|Maoi5hBq!S1`%sRHMIs^#ED(lY z`W66XOWF{**p2ZNs?X4F=;2#9@~U_`1*W#kEKE;X=fFYQ%cJWJosYaWHN7fj`CU!k~)$`c*s=&?HAIuj}* zyFPYP5##&20++w)GtY1K)_sNOa-{etQC?AJ)FU;B-cjY9W!Rn)L8r6+Oqs0T0!9Sr zVb!C2o*JkkpT<I)Q#)n3r99tGI^`;Zt?%&F7o1a%`=Z1qJ<)U%Ghe8sq$QELvU zvk1m}*?5ItBEZ{omPi!LUAK7*4#Bu|Cb;ODA;v^19*<0Kn9;rqbRdoO^$j&~ys?@&nZ2whKmWGbb?~}@j#Wl&|FFX=gmY+oeF(hPKRz2| zZvT3`6Q9?9sG`L2Ma+A0$*!tBfw81w_@^99AwA0EVA2feV@)h?7{Gg%t9fVzpZ03+ z`dZjo^{jF_EC?OGiZ~t29-5~rq8}gscXI8)x{1eA_b98Tv!^+j3Qt47h+h99CJK`? zcDPV$Jr!y5iCVi4kj@vQp%Evx9_M~ma2`Lt+5FC=2kdbZ70#nTT^Su$H zj%R=wkf(Nm>^MZ3LLDGCs9R{ffwmIE<3<1Crc_4}wxp-WoPr;-YcsU;;;%>4%@T5} z;;;FMavNEaaFrg+oBjpdoBkQRb5@TB|I@Pd2gd|Mk9xBCuz_F7oZ|vfZXH~2t%Cmr zp}Jlo`mDWF$@uTW|8e$?F``A$mTtLD*|zJHZQHhO+qP}nwr$%uW!rky-Rb)puao@+m@@}wMRNmUZFz8W zKc9Lewy;!6P0rxwX+7O^r#;R?o>&uT=r%`!^i+WHvAVbfV6uQSzW;+0{=c)R$p14e zDkED%OJj%sQzkn1Oa@rPFRUf`7hu8g|6@6!|GKJ)xs~yM0ExO)bY*`j7QVBk=s2ga zMILAa+s(oS3VMpL_QVMA6crNjs~1*VZq~V1(tl*Xu)WVzFGWw+)_*Z>;XPWodfW%; zZ_~cE{nkH@zR!T)Une)c__}>^9+F1`P{%%gi~Xh!ahLwcQIw;ans!=H>TG3rHpNiX zPnU!FMLC>s1qCGF)%c566IZ1iq2VthI3;IAGl_%>NF|j^C9}Pf_e&nHPYu3+-IDDV2`TSe?URNLHuHC*4Rm$C}XdaQ2ifJqo$acf@Y$z=jDSiuIeyRcs`k8Zc3SI@cZIGN&4B z+bvOl7TgUGn4{>e)*+UnF2=p7Q!9HccXE>r9_ZhAwEZmZcrM^Md8(?e@qmBa_5~wR@^$*otP!H69N=CO-0MOsL;wG5YiKE3)OmHpDP>lF<U|HQFj=d4M5uAP=tFuF;woyal#OOc}+h7DuKuM#muz0kB0TmwpR2N-*uQZcK zVg&LKh$%^+)?2mw!)Oz5_{_*~jPa)hkYJ#$Fx+LoQ7Dq{;Hy+bKL!U#fsq2Q1A^Re ztNjKbY-(@%IVK(Lw@*SBGFZT-)p``Mu*ZW2*qZd(Zmy3xw#gY=rw8M`zMZ5_qnS|H z^Dp@x+1~)uzFM!24i`QBcN(cvtGE(8wDid0!;3Ra=k9HFtua>oBN+jdOD~P0YJKlnN-~Rwrp4qDD1;q04ihr+W7+1q;LR&X$!UUnR9+<8 zEJvlXyTPk5P9$bYURvu$oyG4JY~5nSEUnF_hH*B zz}PpS2XDehePDXKe2L?!&I?{x+#s(^cFSVEC?eKM&ck-VQY#zHhY}w?*Xs`2fkp{B zGcY#Z45?cR#vz0!%YLJv*ea|cx%$wDw?W98I_wvNFBG?(sTx(MlV=kZPz+^v&Hbg_ z4WO@SxAqrtx)wi>nIime*`E#-X0Jjz#Q5;K8ov|5cadPaJ}K41Gfrf{{mHjSNL1;D zG}yzRkQ?wE$O;Nfl8tFJ@O5*$5wp$-6Hyz>Xrv@cr#Qm9#2K0=NDZ8dhxt>pADP!- z|FC%Uhljl2a)i_$*tR;24iywo+$=$zo3A@g(4+LV;%M@y{EUqzVA{isg6L(pd+w+a zTiRJNJo1L|CpQM5i>j8gfVeW&iVRv(d@g}|>g5jXT3;@#!o$dmNQXkWmUV#Fc)ovS zj$QgI^@IMP!uF373JGF^aBJ)z3GP?=#RxnLswH~lfHA}hh({*II(0h2{VFD{ycfq0 z@9dM@8(V5-%OOD2HPNVddT*C@-mDPotMs5~i|d|$&Qps5302T7w+NO(dQP`O z5g_Fid@FDp7ai~6@KC9nl z3NNsEayk-^8>V)C?z^Nu+^!x1dDN@lLLkMZs?!r;;8m=QcR0{QgKYUeaTNJ{Mpbr?H@5)Ad5DKED z?^DV9rWB`L`tF}J^1QtYNkv0MMNFhU-&Z-t`>@`g-YNE4=W_pZr$1bF_Mke9CSH6; z`k#qC_l7q`yuV7U{8b{$|D6&I?VSI=b;!%t=45?nzz2#gX&qdWkf&y@i2SEb%OVv; znBg#9hP=_;Jzou;2i}HgjM)+d9Y%0ab>It`(oC@K zJ79rD#W=f|gw^u=R8aENI15G$PPGyA*S9uzAuv-#2c8+-Z$hPMM)xLvZvW*ogZIX7hK~1FjPbtJ5}%<{?wjFf;PQ`aGHc zOXXLOZnIo=Gp6Atg4uj=)4)L~EB;U0nQzqqI69`KU#ZcNBz<=i_cHl9g}|K?b>D)+ z6I{kCY$04Kis2F{i9M1Vb&SK%21!6SW|>g3wHm%cwYM}-+;Kz`aEQBURtaS>8q~Zg zbYv7C1(i2!A`RtJ9>8Y{UkKDNX*7Jk^HZ=(OOqrO@htfoR-JqmCIVDg@xxVM2=;HFcExbaBg`p=+6}w50rdj$?_{mhCPl^R0 zMbimS3xL_87kRfnFvDg){&Y7-rw^_VX~LSQo@}F}B7GUgN4v_c*u&fs!apPero!?6 zv|gKtL^wmd`^3h69#BGIHgB3wHIak*TU)OZ$@UDb^K=d5jJebW3^Gf*lb$o({w9y1 zBks||_NA&t;@%Mi(?^QkA`f$&|KJ8mn?2qJqq{?ce29cKdCg(Qj>2$xd`{V1oWz=K zP?^7IV|zNs73F>ZFCg=|iVQg`Z~y=;r2i!G&dAo)=D*Oi{wJ1Jw%UcwCJXZSP3ayY zbP`ym1cOs*o`rmqI0wF20Mi$}n}7aTQlSW{a=b($2G}$9N2BT%(PfsP0vhL82ZouI z{NdZo6KCkQac@p`&NjE9@6Xc--sQW$H@Q?cG90PwQ(AUbu1pV_XVsXZx&`~j`Z`9p zeD0(GiQ`II*IX0RL~3#c4CRtRd@9sWS<_E(=0$}{`O=kyBAT!d_k=~Wk+Ol!o`1XQ z$?aN1)lsR4#bOR)h0Oky84Y8~1x6Ue-fmhkD?@iQ?S)84C=pn$_A_RxS`NLn#T;Zy zBOF>O)!!2r)}8@S_go?XT!yDW?r6NYNdvB^Kl+_olH15&J8DQm$x9lLZh3fv-Qg>U zNiq?HX&a6Lz|RUX+34~Tie--!LcyBVe2Vakf=trd4Sj$dsrW?|M&e-x1kx4941d(I z8w0z$;g8h(8|D)7O~KGtEJ`K_X-W9UKa^BLKx@U$w30=gtIz2-{k%Qh-DPYC2Bl$Q zk^CI`)y<}2F;0sgcE_pdPpqv_-{~T1G9Ohk$S0x3?T|X@O9s%)^E2Aj$eYQF#FiNr z;Gc~M3fm=|jYvf6dV&35ACmeVTw+nmNp$2QWvk)+zW$48@Pv1CHDqtkohh56GN zO&UPR1Zsx5=+_U)Y=|Is8VFmUXC#rm{FonuTbs|$qot-( z^~%6@&F<fZsi$496l>TJu#?l1h8b&he|D@ZBc@|JF?SFcS8GU7c0wanm7b0tb64ut1c zmKJ%^T^7DIt{W!)HUPjcn|x~3LOLcCV{M^BOxpcD%pDU0kOXe4TklPlov(qhs?<U{1eLfL^n3eeE9k; z1A1XDNKAo*fH#;~Kz|^{ri=dZ#=%Ilw)-1otB(OxFR(A&4yJAMw+01-aZAziStHq^ z)FLyE2Y|N64U`)~Ev_5rO0_#DprVvp=cYVEIJ{F_o@6Ncc`v4OOd<3Fvc&^;#HiR9 zOH;?=o8vs4#dd27g2IBTbB+@$(^To2#SxSWRnD+pjDhCIqDRDPB(um~>4Q12oKV5> z2nU<~PM}HIEPniL?IqY??i~GFwrQ?CR$C*-gpI{nYU3J}q6WHyOhGOx*CD2Wae0e# z%L=#2ZdV!iF+V&RRAZE3+Md;V!Boyxw4a>+xkOIH`AUb}gdsFd!fgG0)lV<_{SV=0 zVd-o^6-z?X7wiQTF!+FOfXm(=@F`r<>kc|0zw=N{e#gN^m`{y;_;_o3o(?;spCQI3 zbRIP~kglmedhnBEG#ni?Zkoz`3T8^oJwtBQEL1OTkIrOezV(ZpY!bkt7FAQe`OdXoFu#hHc!A$`(8wfy;h>N*c@gKFLg z_u^{cU%?kd;M#Ujcsdx({vYx-2Gyfk$LLFhBxBil z7w~UU&J$AD9`OAr&r&2se*pfwxBlPzhyN);vx$|yqowXIf80q|-_HF1)JOCSrq!bT zwd^&&mYw}SW7+?gWfg?^g`|aPtd0J|wI?TO+x}XFkeeq;*aX08e+^w?VTwM#BZFa% zBFVU8gFt!W2q8@=5(Ogj(w(}W9YOKz#*x7Ws6oQneb1bS`vc@1m*fwSRbHPq|A$If z`6kF*Jl)nExN9o$q8PkoGUhQ6<@)+e;-~~mcD1vj=VVn8)$Qs*TK5a<;%$u$&?>o$ zULiW;{k#T-3h7;}?JNBYBj6psPcC$_eQ)Jf3CXs&746J7!sTl9(%@3o^e3%8l)7X;T*}^&xpD56IQ~m+FQF(Oqmz zZWZqWMd$2Co4RBEm7QTT2?pYexFjlokA}s2(hyh7uWJrBr5^6cg3eCP)rp$Oo zyyMd{ya2_!>X?FuW>M1;my;%Y@P3;oRsqjlOzApu6Br8I=Q=Ie5f44{44Den>LvY2 zJ!M;K*Hhvs1G0EbYMdf%tW81Y`@#+0iy$qvZ%EbDHpa=;ymt$t-k*KAWhIRfxIr)- zP<5p%DQ)L!et*8W%Z8yX@Y0m%$JbD8;>7Li%Y;V3g;RjE_S{nilMtcmdv;T zkfXN`p_94-Zgd;t;dlKQIMsxHym#Ps3Wc`UhtLbG4{N8*76CSCQNrmZNqOZ0YToP4L9Y5K$Q~{WExb5s@ZI?%nW!Ps1#>OASQcXVaVKsQQVn3Q zb3xQ|?h_&e=%T)!j*niGO3Y;(T|jb8qlyFOq`KgH^_unqj)HLdOWD!f)f+DVc=P`$ z7Kmf`LHh;mj*?}Wx>E?rbj*oP)&+Y$d>< zFJ$%yt!#I%SAI zseCbT-emUyNaTfeu>bEzg@n3dL$f8|+z7@v;<8K)gbuRpoLWWU$QJ*;3ZckZ{RH5k zxz(gX19TpRJptx0Kuj02{v=(OlZ=%a%Gbqqzl8by7wf#9&^P!CE}5q7Inw1P#JG9^ z6h{cre=o29ZR7u5#=2ks0`PNxvz|EqFE;+a)Y;!M`#)~Dx6)?JCJVgxiK*;SAzx1+?booEKuA*3Q;FFTxcVUb33RBb z8{7^pZR)D*-UY9(um3i}4)e~$@u~6|gIjk8mnZS@Tp41sAWP=-nsP1wfNiuB-v0T& zE6ki)R6o{idx@KVGZ4dkW>irVQ9KkDnt*f*PD5_7&YL2Vkvq-w8_Auu`#uXxjk3Zq z^w<<4EE7hI}B6*9%6&TACF!+SSOT%zxX< zB*U+7Pl1k&AAZHWm2-=d7~bEGL!Sc}hP{a8btNxpTm2?;1-xk!M_4@?J=zb}6BJeX zjcVl!Wbp*vBYwEbvdNKvAiVJoLNE~f^{1Yd>#=?s%%?-R-UG^OB(k;yFMBWk*ZtzB za7S>i^O@>GGcEWyOQpAE%L-Tqz`0=+Zs{#hiwSJ{!ang4UsOha*~omJVV=N+!g(84*2kr%XgH6-bJCucp=5tWUxV+* zJ1!W{0>KMOY=cP^Wxg#sYU;e-5j^3S_d-!1u}Bb ztK>hkx2j=kvdauJR(Lp&9U27{m=!Mw(`OLOgcN6#vLno1_1K1+pr|H5YMU#gWo10* zquxaAvn|=za&hk?H&j5fCy;zzQbEJb`gu{BW4$H*Hq!lhUD7D87}@j|kGN#gt~YTu zeoV1I80V0k*n52ky7omE(L3N?T?(St!zIm+`=2?0N#y#*fCM{2AXxrn&M5xEKVBh0 z<#xd(gA^?T(a2?max^)mz}67?yNrkOcf&{GzTA90ud?9+lsMFbUL~lgLaMy1J&9Mn zl(g-sv6RQxe&BJI4}|A04)w5cUbTks5Q4vt@(XUsI;sb>dt>Fujc?5GYs@T)p7tOA zeJ-S$?*1=z%;9Bn-u{=}jo1nRK>44Mlc}+dv4g(V|EQlU@9o$Fv4maEFO)9a+4#%& zve=6A*pB7PWv7?Nrq*7qWp2-t3=aPUa+Ffy1VIJmg(V0&t5<74-jBWDD{x?++d_Xv zSUTv-+=e=s-gV!A1GM;bDFp@J%kBNoy`5~E_^GJ>`h-PAeGa@mu+r{sVRQbR?0zrv zI*M4He05C?zI8;63QxL!KO2A0opL<5VUq|u+1>1P2cF0y%0rl{k30nIVh=@9O-q_) zks3EqoZN}^rcWzAaLPnbVWz&@=ggScGgxwgff!64R3r>9R!!ROr4w#Fv+4V6tp1n zyjA2JS!#*6r6oOtkcCtIHeO3Z-aLj=0*df=3IdEEcD6voXONQ<7zPnFn-1EN+5rj8kdjx*8@j-I`?qAPjy*cHK z098*D6<61Kq`^6X;=a3QBDwxe3dS<;;bG(S{-UJ7BP&it1=L3-Vaxeo+eEN4)-rEx|W{I?qtK|_OLB#H`yg@2zDaphkaMXaNvvi2aN3NdS$msSIwL~!N&L=5{Xn3U3679krpIIj<{(u3GQlBMTHY3qY zHc1DRLZ3LA#>*50-sEO`KOBFq?~pFN$O8K!9Thf(f!ufc-ajtiW-d1Fx7yC=WE)Iv zcfQ#nA7^sDUlgrwZykM(!B6CpLWSmF|6xFc-tBRpR+f2S%K|rMKT=RNPDdfjo@qdw zASOV|t^;`DD7ozioK5oEfo;rkBRd+`a(iG4w>c1ZXJ)%})szugI$mdD8xe$b!D)M7 zN^k$>Pw;N)!Ix~XwmXqAKTjIGU`uZ!TUt)kp=Hal-r}3Ea%($kRn)pOm~-f9f@d2e z^|v5R8v=!Ra^}mD{N&K3NeBp=zrc;N0#v9?g+ho5UN!CmIRV3dCXGxW+vQAFL)igE z^RyQzB7DP$6^q$kKs&j5#~C~1B6;={N8+9M0yY4|{9%(#gi1A8Y~=OyWbtx-H}z0y zPmNHnN*_UomzY&ij~O>1je@zDu51;ogdMc^tU;2Uen*)DQWAk0)=H%7jYe7xKOU0r z)DY6u?RMtchC-~Gd1LeGB#pPD3onVA)~Am#tVM6D@paf^D|;>gV3Gql#COToJ2w=_ z%Hegt8@NkYa{sy3%w374gBxXP8>YQ$K&JY{rva&e%TFpzJWAsm3Qw$_tYor>4GiUB zRVJ4}iK3=HWa2i{kA*@UKVld>zvGZTy(z;6C*F`xqdb;xpF%RlCBgl}R!x)$Q6K3;9##`d2m4aZ;4P~_2*;vbNc7?;^&t4=V|w|*7r`AS0cpdiYvat z<;S{7qzTp2UC0U@ahdz&U+9ti(p8JE8c&W)X=+fq(?)B(_{siQXL)DXYC zTf=uE-(6*iIzyKmWmQG9LV`oRUG3k}F&ppSyR3wQk&JCCxL6}Kn1PlhgWw{Xe~dd+ zu}&n6^hoZvT6=xYBe+igY|U6_B*ta8bM0mh`#QgWzD=4AzL?UQpXD1%R-79jJU_F* zldCarK^}>7^c*W!e>FqLklIDtH~EMIt0)zcIJ*M~WU#sCjRsrPN9?%({S{2>@PV%u z147PWCat*G1NTuqzCc37=&)ZFic)FM&q6*_&!K4?0MMrq6DL;iC`FDi+ zZ%A|>J&-bO;h;9u)`vvWQUajf2yu_3{DjHYM>^8WgR;pKIf+5c*_+(`h!AQ*`7C38 zi(W#J1#e3;VayElhG!{zqs_SJMu{ zWN@{#Hjl95!YOA5`yw3pN^HGc2a%@0U%RWgnI9K`aj)u#hS7SLAyeOG+F(H!n-9Sp zo^%y&>Ak&>TH>o!nDjX;8_ zsgq?Lay$AIr(>Y8v60mjsKO*Iv4n*t_g401MsA*@4V_s5#IyRG+T1w}S}+9wBrsf* zq#PY-i^2j~(yOZyhR1Bl%XHcQ{;jwbUj^1QUbihX8uU4WgX4!P?|}UdQ}5g-H??S! zx(A8R#u5)Rh+`RO4M*6G?UeCnvqE1j{tyYFYH;J*#`z71kH$5Lz&$;P=_EYW;p0j^aac8ijLue$^gSt&O= zJ~fD?e%c_!d92dl&GU!qYoU!7)1`pzhg>}{P$ZC*=!%oBzCQr1NTM= zBJazIChhjRAZv+~45g{w&BXyo3v}hBG5aMx$)UZw)8-t78Arsafgk6llS1D*1W``z)K2YX zI`GTguEAch6S_oIBem7QRnG#FSTuV6psAF!utjP(4&QUw4!Vj@+^Wsv>1E1sf3w<{ z0lA$;+9_`!RHx7xaBx9_e7z;MQpL&ode^jDW7e9<%b2<3F(DHG-}1GhQ`PiqaMcVx zYNX)wY3c=4&o?hiD-q*Xr$yh|Fi-;5r=dIqc1v%a1p=eS57}ID-%<&GhJSiVgkaU1 zW?=EC_>d|O>jU^d;39quy(z+syOMU42>!SZ8?EBWYE?fdf+JP@eH^vIf)z(k9?S5BqIa@+Ur}0CzPZ z1y*LfgYqo*Ra<$jst+;PivPebkIs{0>#}O5GiBIqxLi=Fo*1v0pg9$u=)yq%p%C@h zb*LxSA)}X55u;xcdHH89T;4%yjZm#dc0ieNe>cm?0b7bI`|!UE*D7FUKPobF zyHdfbSr0TqnbhDgxdU8tb|cn2`fvIsd<5<`@=JsU!X}ex>%}6$Qnv9DE8liFjAy%T&H2X>G25v-NNxm+A=rn8F6g|e<%+@ml1yyc#EC&i<6!~{ApCZ z7SwFYY13?R4jK+7SF;G`I(bDW5JZ=vz)A=DRUQ%#GyrHK(r(!Xy%%smSpx@*nNZH& z`i>WN(2${K1u<(d71+uY128F3^tlK&An*suf+IA5L}GN|B7K?xY+Q!tEQNl>4D{Wg zqgO~Bi-N%ccnguJR_r^L@@DG|1XUf;tc>i@FHyLs%SsqjD6;S(IT>nMJIr%aHqb4d zxeIXZqsh;vl*S{k9rvXh9LyZFJ|iC(OLF*SlfUVnszb(AvMdx#Ws0J{a&KJ8udJL2 zvOB&H_m5t$7p$he9KN3Khv^RNV>5^2@-KIRiK5pt8MZ&4+pe}czOEkM+i#7gvePML z(7ibzc02KZFa<(TcZiGB>Hf**(2~vj9Y^K>$Qq^$7VlN>T38V@!ooo{S4)FLMfVH41lpkkPYt zrkTsTl*y3zGnh9FM%>b=y{zz|+0oqE;Ra9L;9&g%b!;FH`(XTUoaZ!7Tch7b7sY%y zvWahQ@%Oiw`_Z!5MlzzPRmr04wdB=O=!C&lr~u=(;@!O!?#O zY+Ub05B<}XjLd`|eV(oEK7VEw&dGdWp-pNr?Q@IpGQWJMYu~@Y?M{sZC0n8~|LyRt zPGJszL8&(a2%*V+e&>&EpIYy=YhJkz{-uZ6o6>Dg%y$O0#XZ}NM?-$dFO;7GA1jN& zpgn5;)jm93&bdALfjb>($1*Wg7{%;=S&qrC~$JJy)hi|5#^kC*HoTQ3_8 z!F`s;_x>(qG{K`%iw?e5$7Sx3JV9y7+A>hTY+KDIa~HQoQh-8FC?dmvw%;Ri=hWmP zB+jnQ2_WvdD#GXeZ7gbNhOT_*ctIZ_*syD@1!)sILrA-YtqeK;!NWZOKl=> zFwi%ZB-1N&>d*{DdQwv=B7)nv)PuOF+Mltgc|-u}7YdC}$84u9v73#9WxiZj!Ywq5 zG$T+dCTiP5P|>q3)_#6W2EdjghPrHd5;eAJo#UP^eH7!a_-j7@w({Rc=B?);qTbWWY;;R*uF%mFXlBhKe#=U)k>|HwS?MKcHUb9* zq_@>B9BbxNC-0KkWJITb@K0FlBX0ca3n(VoJgnzeC@ zGcr()GmMU0FKy>L?EscWi){Z=m5I7t!Qn z4*hC$RSwAvI0FNtbOxmyKs77ggt&|=-=4}@+*o1Zs8*bHlg3^l!j{hFdhb~n(y=lb z$h};OVD(qKQDxMv7o5;e+J1gzfnMEn;9jp3=di~-kx)aAG_()_*D*tG_qVyyVF~~Q zt!*-{x)uis<*=WB3;(x7tBGXMMwU(`Es~b#BgSuBKFXS>N6l?p> z>&mHmS~jByJ#!;ySy1HWH$*U9Zl?UN2~3ng5#~HlC)1*5?@y)gOYhHQ??OTW&zC*N z0nIu&^3B$O^Yx+>(UQkESSDdn^G<$t^rVeE6DMhYc_|kv9s)>zHx3mUdfO!QQ5*Mj zrGxg#%g?cHhvp1YOz$UC{`iqQN~1N{vNV1KP_h^@lxSJ;k-4O^mtlR~#y=yXh<0g# zm!v|`(2wDx=YU~H4?o*}jISo9j*UmbdcK?pz7S^ofVoO5+=UL>e{)vIkwBl~-vE{j zj;&6Hs!clJ_Ypp|V*^zHc+ar0xLiJ5K5pnTcsL>ZZFsoc=QudHczCX&v3Oh=*t}j_ zc&=n9m())aQc5<^r2W!GCK7&ep%wMQVpLm7DLd7TWgAF-NwVxYGX2}z$XgjGTjEL~ zYl-j>eUHS)++3_Uou^B@3V z9(W8`xgyR8n^f#q?R9q3+Qy;)SzABQPz6N_1Ps;Gng!BPgYKd1b=Y#7rs!$;3)RL0 zRsulWLNjoT{laI|`uCw(87zcw#x#5`XzKInZ2bbQHkVVvW7nS|lT%rL5Mi}Lk$6z} zJYJ1xz9yo=q^<0oTbJ{EPlCxF3lc*gV#20;cY)O#Kmzn%rEO5OVWgzhxtX4e8h%MY zUwPjuaA{Y8Nw(yE35_PRGqE^cKH>Hl{o{swozBwQVgpZuyTCFWk^)g z89Bx%!n+ttC6B4G>yDsUxg%b6_-`_eFO-gDqn#Jd4E!6UFMq(C^%JCFUKU`{z|gPh zmnw`5)=Qds)9q|WT3zXsa%-o@aGkP-C0f`tVQy$vLqHR(6L0r`ui8*7N2!1{T*x4$4t`=PdP&UFAX3xSW5d3qjtN+Hrx2(nOi*Z3oB} z9q!!Vdnc@`Bv1R2X-NsybQ25?Z@?Kl%9MI{Zyq%+dmqr#B{OMD4>yBQyDNJ}`;3wHLIDrEnNG|Q(2j#yCV^ zl+7ttJPm#&&Ismpjxs4i<)2RDGsX^*Ms2t7uwfW$Vu-B&S7|X(3Wy{(!wK2iH=xZ! zAQ5ZlGj7Y#r>x&lre^Osv$>+r0n{Gj`F~j?@yI zkRUy43Tiz|vS+hHkQt?ztE+(<1Mq-K>O+dZGu7y>;ed~#z;6wz%WDhO8`c$b#}lqv z&W70e&tm&ZC79G1xzzg-JeyeyLGshKTN#9fx~y*C@*udk>*ehdT21l(6j9Z3Rz)+- zsGc|_T@LD_ug_kqC(RU@cO`h_OInvx{3x>lxrJQRTv=ZwKX~sx-JjOzsl5>^I@FB6)pLh>dMi-p@@m+HABuH~bqP zvFoW*jX#^C%|>p@ei2!LsDoW`)WUBJ_)vJUbOmgWjr5;g;|hNY4POWj@}QN~8#yIC zcBYP3nFrK>1bbMVkv`*T(_HQ=GbT*%#A-=Vxgdn^tAN{jG&E>#&+d&ZmE%vbc;i&2 z=3OswN1k-lx#JSsob^z_BRiFxqlK8`?HyUStrVgDJi z|ETnXo^*+B&6ne3@$z~e)IDeRfB@@{D_ z4qqYDGg5~}P0eUIg3p#%@2|q&;8C%H&9ew|;+d>wSGe&T4erl4L9ojcNtO)@Tb|>T zp#t+zQDlMefv-l&OTEajuy5E!w)eg8MB9? z2fdv_>~_b_-+IAY(Q|)vLU4(6$b*HO6zA(^`ta&HE^9)D&Xs{D3#=twPBFB7Lh~p^ zdv47rvJJfI>abZudRMN}@usvzzw*~gGB^Ik&vGLadmS!on!*m52Yl{z;0^~AD54k; zgP0|ZPzarWdWkfp3aKDsY=$untI$B(Dt0%(IEs*&K}}0;nbdO~K_>_HSrVWRkn1AH zYx@rD!qJw144VD+O05{^bkW)vBuKT875;K^I%yDG^e;D^k8p6ODss^Vt40d04CIir z%Luyztb;aEZAjC1DcYo>zWexm;a_um*+j-B9yiG=*Fhp(smEn`ayjF-IC_x52MNE1 zx*1=w)xsrxh?lx`Yg#L2D5y=TBEKU1CCN$ilbNpqbtZ>FkjqPu(#ygvJHmiRL$un; zzV;K`j<-TxsMlLFP7{Swi-E2*czN8$M?EuE!{>(0X?KftCsE;erpd@!=F8vUL{TV4 zy@o2{9PjB#S(*z(KA0LdYDMmXtR^?3O6FeyeutA@Dk<+GwlW_DqyQh~yw@DI01|dh zVX8e_CH6!*z!7vsrB(n|N%H-|c%7T_3Kh+OrFC+&3j^{A;p%M65TG# zHjMu{FfoE&z68{A!=MFxwE!qUh4@Wu{Buz_j~_J5HnGCYP{#SOnk{YAM~oq#Hjf8% zxCc^$0>pP~>=yYM0bpTNm_xnnjr}OPcTiMr8`Dq0+t5B27!$wG&*tvd=4v+7@{F;f zWGXZS2+7ogUA3andN;E&zs7kX8p$MR!6;VTR|#g=0Jusj{EJ1tGc{~v1QW9vpnwhc z+KbJy^*1SC=LVu`O^m=W`je~~!L)G?xtrk#wn0yf%`oz1i3vYVpfabO)wB>*Y+vwV zeqP*Uqonm%#sSX#c+idjAhecd+Btrgoe(wcq{d+e&t7GUM7Y}4bCINK8^L3YrFulI zMBfAbj-g|Z2~ozkcI9nt)(aa2Wk1EHQT@fFHWpy|j1lYl#7!V9dxqa+e_dS%0MfAvBFlN>&jt&EoHABuK9uZ3YD3_$~aS#E0I!Uuyz@wq!<{! zLSs>-v~Os@7d=ruIjuv7lxKI5eY_iGUE+{o5H^ptq$gmU@w>uFr(85Md7BAH5+OIE zsZu%;mS@EjQxk!dqON`0y!t!Kj3|2REV`rAhNaj#_ehR%dOxkOipmKJ zm4P=q>HU44cSyStiy?W_7E<0jOtE@&)Kg0ygRRa!_=6Y?S303j^oGTbrviF_w7?e5 zno}xFyq0LtQYL(y+pr5nkH6c)eaXohEO=Tm7h{n^a5>UcPOyC7!3GGyqtwCJ(#T~& zt5$7Wi)d`($T$QxhG>cdt_Bih^#H$VMh1f42E$kCRw-i?%z#2s;$(;kdx(rut? zCFD1|25NuodXzVFL%4EDN+t~$oYYZVxIB^3`PBo}pW7HfY}VNfu`gmMu^8l>QLL2D z)%=ANm#eJhG>y_@701MNEDNFPxo70Nr4(60O&$T#^6t@>eAkS2U{JCWA`T*s=SA1i zikdl(c$i`O2Xp?y_t*2m(QQ%9>-4KHyWrwBZGxzMNj@1C9Lah`CD0l67zndNo`zTz zjO~VS6KFxphrqzHjV$f>MC1DHGA10FMJc4RhVrze+GsJtV6Z+AfU=Dj>!i9A>-;5y zH=edlFA&y>E;wc*I;%XzeR}nUcfZ8+I0#lBMP1b#sQs7Y@uh_<>EdMcGj*{6IDHk$ z@e0LA^>b9BA;ISt-Z6i+b)o+KL`7_%V&wKC%z`uiQT5QYNuPFER?vS8OH$2 z^LlKW1Rom86|y^62lzt+5iJJ5LXy-tvXkM^8OM#y>UsBp5Aq`PW6|{kk1A)!%OlA0 znRQ-_@ADF9c`w{Yz?K`>GkdD`@YwA__dFpAh01m!I1uQWm?m7+xqvw~xqv$?0!kMX zc>0gJ5TvRH$+I6D+v1|$YYs%G|eGR4gfal+@H}G0&Ne}63WS+q)1&2Ag(u#Uy5Cj8Robx5r=Ld*hABdJ zt8rv~OU2EjppmHhCm&FeU#B=ws`MslzKBhKU@MV9BH7Uyq)ftEixBL42pw|7M6zg`=jaAu&@b>SkEulY%W}R zty?$0u586L^`3xdObt(z`>xFK8x;tRgZ#QY8DN|MrT|POd|j5G!*>+YSzZ)NzQJ3M z-0u#6LpU+it)?JfT~se<;AX^{7svAr;;6e?^qIH*pwXa&jOpC1OTW+CWIlAe6|T%k zHg_wpH+g3467HPj-9GGMg0mRo_qJwcUpsz=l^tobB${aSeh7sw3mCIE&j>pzI1({X zUH$S1p{pWYn~d%(g@G6h8EPlMG&RAlYsW0`mxMjWw0WaiE_)=!flF zgi&^z_epd$B))qh6aF90-YHm=Al%a2wr$%w+qP}nwr$(CZR2d)wry+9bkFUWjz)Cf zhpecltjLUttgMy)`W94mG_9Z7DAzJF9mu^msmuL^f)VvBRJ^3t8Ppe`%}o&W0PHfB`FQ#dq6_KEfv zqiv~BAX(OYed0Ga8~Pc12dIrRC1fi+A4X?u9d9!2IbmVQv-^zrdE%s@3_5PF4x zT*ItYn?CP7ZVKPsP(dQ4hV;`*BCB-mzX$=3J47Kaz*^p<2Nv%b;0OqkG@g2a164S) zx7ZkG21zB}X4;;mA984AO#4&d9KrzxN&;V*^K2Q|LN+5nufL&_RRX|?y3TJ+2d#J zIjh&!Sx2?5?7p=L+A148`mJMv#p2=Jj?EXv5*O!+YN2>`e_yNkN07(2zDhhtH}3K& zGO=G!diY9+=oME?u9NUYvi>fC_{>#us1G6I?E4_BC>2GznKqsh5 z{Qbf>=IMSo83c-{EHX!T%v{}I(km@FCOn=B(L`~QvoeSFRB)25_&dsXb9CbU20CHM zErUGmnTT+%zS#yPQj)TdzF1;Q^~KcC3R962M->$C8`h`=6P#3I!C3urx)hO$#{!)3 zsMpipKv0p8EE}*TkH_OtjI`5JBMXY#$-Xdr8cWv-6`6kOXcA2fa!P$_vROHdTrTFp zN9ADj5v$7#*Oi-uCH{+qB{CL{{ee!r$hIAa7zDlm5XpyYc==sOxn(KrK+ty=lx2;a zTJuv}T@N&iOP)zJLXdy6iv;L%?_;|O)#4B-+ZJr>wL5r~4xBlhQ;LJQN;g9dyg31T z3o>=;6_f*eS%#4FKO_nM(N!$*9b z#FO$LzP+p^Za*teMgupwx>ThsFW_tLvIsL$p5w00Ck>Ps23n5BKk`8Yr{C=aW>d?X zhGfX}CRRf2y@+p82ayJrK`Dp%i73t%UFNT~(rs+UIi7 zs;<|Uvx!8LAxr42!o0dQ?GW_`ywrK-kgv>$39EOQ_ruQFeU?l-#QN}Fg|8^(ilAz! zvc|1y&f73;#}|_1s@P3}uggWeWlA?-^%j;S#LF!Bu6QoCbVE$I zaKFXLq_Gn%M-+N&&b70e?E<&JL~T%)))e}M2#Nk0c2M!S`nkz7#P=vFUI+{YNIB-Z z@toWPy{5oz;X9v1)4R{wkjE3c9XavWc*gr)<-pP(NbMv&T1nXV29{Od@Dhod_8pK+ z)g`#YWXUgef~~U=h(Q^vgI6RzDC>z-9KHpJD#dv%pzKNAAlojS-Vx};V%lHZ0LY#pECm-b>h(at3#A;$HrzeEd?=wCsCux(|iYdkv zju9-dX2=!B6s}UoQRSQT37-B`>=ZBlV>}$yYu@|^_&GVM&-e-M;#+vg86nT#_#HkF zz`K||ZW8u*={SfPVyf5h3GPCsxbi7t`H25=*QJ@HUZZx&izaN>a*QRXD%NiEhf0{O zT^(`h&v)C!5JBf(ew}!qPO^bT$6C6a&8l#iCe(FllgyUW`R3wAV~&`GMrm}Lm7ey9 zKMgZfdw`F5jJ9;jR^m$FBX+9p^ zSw_zAO{J+in`u2MCyeZ4hfU?0W2^FKF^FCDd>komD@<%4fj1E^A+5 zRSQLPZ>t~0P#cBG%7k&XZ;`nX*s^|Oh7arDC!AH8-m1(op z+@Rg;$e!C`ea44}O}%+XD8#rUPLoVR)JD2Cx}#1{ccmU(xpo(qFrEJ7L;-r`^ExbS z7B!hgvXvKqERw%GE#0O@2NPi}qW85?EH9=EqwL!=Nz-{)a~PyfuP&pu+Zef_T9>3v zl%3bO1Jzo9Aw5{jxu>68ghrwvtG1wYCn@{ANxXmS5w65@}9t@qby*XGoKdSs$Q#lAE&UidC z^}&hk9fSOC7kR=OUl-D+sD&?#M^yLE*HTuwwNruOPY61}Fim+@YSDpY;DO*8x8nz8 z*@IyFWO=YhAv$cTWHc?I#r9-&-mP`40;V1tG(q+%Pk5<>%+yCNFx-6A(3)7NA8TIb zVcd?>qPmRWFkQj`|61SIIIKU5x`9;qI!g4!tToj1t-P*HVPZ}Q#Ji_rsUyh)Kq^8i zR2`T81Y0vtQhcG+420YClA+m?*lV7|JesBgmL>m-oaVcTcJ=9q5t0M!)9dMSI+y9S zU92))c^D5t=Z!^g+G9XC(D4Ok5YklZJAB_`EG5V8Jh`E3gb@jB(mENaJ#bjV04zyg z4W>UWCD}jXxS9oKs5X>`35gTdw5dTcw7$_Gx#%=GxL3IPwuRhkq7DKhw#qqHrf6gJ zK*(PQSEvInpoj(FK5oqcYrWxOebv}4s9OMuET_KvM@5GPrSJn?l@n*6=3_%iEWjPc zc)i_!-B&_=PkB{1guBL4W~0R5uUg6Qf#xl>kE1grIZ-^f`I)emw~~{^{VLXJMujc2 z-kB(O6d9@PAlEZ7xrmDRa zU<`JQIOLuo5xm{MNha5|bXKKq^b(Mw;+&}+SXs56T@$aZlU3WN&od9--*=x~6Zkh_ zyLIWQY%Ixx`|g!hP24)B9}i_bgO2rwCjJH+^WQ6YC@mDYSMKZnCgQ+e%chaI-rYfe zrnvQMurCT$;P~PsDn)tY)O6BY4jJ+*_71|9(HlaPygo<@CugtL_HrKv-H+| z-n!TA<9uz9GlSzee^l3>;QmOEi%d9Yh9^x|u$3ySv{X_LvD6sQ;~cV4L28p0I`-qw zo{84HKI243NTMZU(iXpH1s-%4`$zSnD1(M>#6smJ^oXizv>#H<8bQ8+MsFYN^j1?@ zyA!aYqDb@LFp#aZSKbjt+*KaRO76+Ov~95f^R604KleJF@&2g>yFlJF?AJNRQdU*s zm?S07J&e$fEry$rc#&7-d*p?SsSiKlet|pPf z0jjCQRzICY!z^nW)?kA3Y@5m4htU92x?A3Kk^!L_)hSkU?DUKfR$Y$ixh%I<;UG(o zNf*oO_L2LWL!=+;{%({5J+iI{$`c#;fv$y!;c$>AXje;qs3Wo-mr8S1cldFn1jOHs z{ao4D8qf68GCfe;kl1}vT$*`5yBup-Y$EMI!=+ z6m-eseOInkS9vr5UPT5SAMrOv`>y0tIS17yOvkw!ZF}s#mW4XdxL}d{p!_br%?1(! zh^}`~n4QeURT-jbT*VONsEia9s%#@bB3X+pDP9TV+zL}=LGv<;GzE)k`TYJYtE$J^6h|xI)a5v|YAN4g{nK7)=RIP)Y0^7rm3X>#d)ANwyyzjxqa%_9dp+HclRb7W~m`0uh4bKsDYs`%xZ5KIK~(>|>Vm zvWJM%)XLR>!ZKPD7Qns!M9kWf%d=I@lJ&Kf8s6Q;i1MF&?hMq-sJGyG5IcfUhYoQl z!brtF8j?ILz!3KnZe5P?i-5K8)Q7{(=9XafoO+gBzvLXu(oLe;Ix=7WL-6eGdW^=0 z{BGKTE_g;@g=?Z->jBtZ!}I5&Bkg=OzCyyEnxZkyEg`B~;^!bhD`|hk!WU8$L@41T z`qG7fFu}^u8N=-Qsf_HHu?#9 zQACLFaVTqYV5{dgb=v2fjnm3MN0D}9n_LP<5_eI6BjD0&{8WhP67yv_GcMBr0|O;S zAMG*qlKag_4*eVoQ4lmxmv1Xz|Yn-rWvZk87(xMpoI9KFlve4fc$NfPUOdEA%vvKB&hAQZqVE$83sXXvqeESb1%O-v3h zu3CrGQbkYfTSYb9n~e-2X&1qPz$uX3jiw~*0Fp_2Q%AD>hZOT}pveVMb3!R~xNfK%}&bG=;$HiafBo#XZY;9<6#s%Q4v3q;5J z?K&@Y5#uJ1s2vQX54AsT#CAD;9qG`DmJQr-e!R%?;{3|G$}GmAOC^QxAa9$Ymcy|q zy_9}1l~`GvM`}ZFQx44+aG{{>6cFSqhEPOFL?3bhloAEz2f}+tm;+y>8wOm#^A(KVcnnmb1l3`D~RQnTO ziRe&!o@JL`*H4pJX&HGV)hIPY$g(w~%`NozE601=In!7%#SAofSe_ZKOzLgpp30I9 zIpq*2?!t(tM4`S`U`ij8@}2sfKjgNB69}L* zl}6XlR5ilxo7S^)B%wH;?oe_liRC%o2eGpwNDgzMd z-jWK-H{WK|kg>?q)wb}J&Cx=pt^4sPmFFyYqklpEZRW&uUXi%}R+<(+ENNwWBOuZ~ z*U&`KdCxq_G1me29Bk%{)%NeyBtAT?oEfo5k-4xvN}5F0;?61`vNYh5k3e%-RJ&w1 z>wsV5E%7=i$B$Qp>!;i|N~ghQ+5FAr#cgD7;PKfsMgNriB=4TD^Nl=&d@l(!QT%F- zCeobsqEZ`67iUf?HhH3)DvA>*N~u7{L0ZLY{QP4@a+9H)yEnnb@sM)sD)w4K!Gk+W z@&N)4<6H$x#f*K?5a3yK5iD)K&CW~>Sdt#|7M%@A3y=SuG*O)H+=faKC9!`HRG%eGtpVeVIMg9qu#BOL`ZvGhr+-KeyzD(Jy%wohOy#HpS0 zf~ViFOTh4*ZteMxR_Uamp~Ybc@3eT{dXoJbx`R-U*FQ{9_ZDaqv;D_t_v%^+DGFZ& zH*4~y{o8H1fni{RmE&prK{#;~dYx->PGuxSgLZ0Rg|Lq8ArC{I!A) zj-UdzVg?L5@JV%FUM$n!7n-Cj-WCIq9;jp;v9_Y zE}&pxbqmqa$L7qZR)>T)s}l6SUR8#)N+&(rL*&Kg(RnADxr#0)Uqei$>q%Og>~Dh} zLP(e6uZh|YvRiE=(}g_K65AR2LBb}4M8pTT`?CRCuk6ZI5!~ad#;u{vuyzaXh4eK< z%o2`cmL1Lh17|7`tYwe(sxScO!&OaYWpZJ1;`dxiP2zf=qu1qD-VGFUf_6xCP#B(* zlR`G@HQW90Q3-le!sH2HY?|b~7z>00kv*|FjUSnXfbOybuK@!vm8Eg_Dwx7D& z79%)Qtr<*N~?=p(3+1WAZs6-!J7!{by(LAzgu#26@eK=@`p5nKO~ zn1!STmcxdEQvF&QD5*PT1Ejl17(xDbShaTZj7vb$$nZi^3V2;fQNoaR*u?*P%8p>~ zQN{=SC4MaNLv$I?{SOaflf!jD*^$gsE%7LW zK1+LpAQtg4H_4T-Pv9CCIgduzZBZ#?+XjYOfhlvit;$!sU+C$kXN&Ha$MmT-6DU4< z)oxknCH=dmG&iIDI+756X7};rq|)E^zvi^bhXEevCi|Z0-1i3AV-W@`=Ee%Xq$uZl zc0?wG68G4^on()p`hq(Lh>E;`@80tT+6)$-`ankPaiZv2)enyJ5$UMhEKnP;ukq016$ohKhN?nk%vNsi(CIy48uX8 z%oK_hd`M(d+1{iwi+2FtUliyHgc)j`Ji`6Q+xB1iBUZ|s_^AK@0A2r@?0@c^FfcZ@ zaJI0sHL(6K_!kRD6B`p-XD2#mcjx~GXZkbE1vkim05Z2zhCxZ&m?*E1o(OFZM6NqX zWnl9KnZ9TQRXHCm>WN$JH0CB5EIvD!fJed+0J@w8feqA6@QK#8i}-YstdYv9q!!~YuQ6k~RK!~t^aiuq&tdl**98m|6+fix zkkZMD>H2!5-;gFlu@S*Gqv8Yj-%mxZ@MdwqziFub*SP+ZQ(X6I-xuS50@^go99Kdvp5|0hGVwlgy`adi4$tti_`GXP*@Xfxf|15*S3e^j=#?+IgB^r(-X}+Gu8;(lw()MZjJ1-Q--E5 zVBn(!6cv=OnM9DTO0BC5_IB~VujC%l+;X~mH;9TV+cK_6$uwSM0wC&WpGBROot?d% z?)^VcKUd!;q@SC9U&pi7zLUN)$|=Tek~BxbJ@4mNcPyNy8R~c15A#iCv!Z6hmZT4; zRVia6Ezy5FX{d&wEc|rHRp5+{C~6}AP$Ro!L~t#`~}-A zi?np85SW_{PmM;&S5$r^sz^mU8ujdvt=ybVk?+Pjr}VswJjFR{0G{3H^LYFYgVaLN zP>@g=sGEj%^9EbGmlTbPCST@k`Zc;}k=MN(VaDQO`Q#i=bNarX{fd_P_ApT`H-+K- zYnW5beg(i|Jf3a#0@$u%CfT_d!Sy33g_j12kb7^m>u|i{*GFcFQgvFlMAd&tFVxFI*>CQ-EZpyJYF=$!%-;kOfK)%S@!JLXa^( zi&XwEO-nA}qN=-nCSc<0Zn2Dy5#ga_Orf%*`W+ABE8e&f7ra`)7ZwILAI!9m+L4z@ zJd_V<2(k&%OC$>nr|7gH_eSQ@rX!(wK!(jnZu{k1fdv|tAmd_Nw7>rFwD}O7R_o0E z@3r&>@170UV4?+BY-TK7jcI?{7`tz%GkTz{Gb%4e%%c67O+z*FPpv#3ic2p`_C}Bm z?uA&92$(S=tZu03T0jeBY0f;wh2}%@aKl(g29dg>B6e-7ruKD7yhKB2n@o zUW{lHuQUmqH%kQA2P;-YeX4XCnLlX+14sj(26*ivyW{-RQsX3;vxEbwTm_-w7=BeW zaW7>ftY5s$%!QAs%e^hfs{-j+3X}`v8N0#AK4G*Nvm^Pu(oshzygb9(AF2LgY8BbI z*fCZ;G)0*{9^Rjqv-SQ;sBa>Abx1^=h+c=u&e^{2f0^|!W%0-(dbf@hUY4*`%?XxQ zsCa$HNHJ*t@V)*)y5m2}m%SVXlI8}Syj7=9Ph?iF`K03`5O5kR;KYNOLhVV-xqaK! zo1D(N)++?O7H@mEkq+U#Wq$d6cp$s(J~yX`6A*lw>!M`haEtwsyQgaSJKt|Nu%EYm zU#EJ%m%Fr!{gZ9v8T9Mjs-i|m73#~VVd>Jk5skun12bdJ(RiReEnIml`uH5=kf{WN z)bU@Qv2aHU+b4jrwgJ`Clf)_xzRj{EW7CKp*SapMP$Fer!yse<4#Kg=&^zJ$!LdtN+M;XtxT`LnL=k0r2j}q5oc#&6;D*c<2bHysE9U~aLPz2| z;?hW4$L~YsPieROI9^r(tqVCSfR+TOdM@j<{rLUIhV6vWxuUIH&I6b%z z7Lhp1F9k0LFc@I^o^MJJs}AfN#oA{zZ1>yPde25!&8L7ORn_TX15U6f9#2vo3mgD~ zFfN@p=Tz-BKpS^05}YA!1DF92rB~W*KjGsd58SpR$gSdIPt&$U#Rk#>1F)9rf^P>q zWe57Nj9hcclIQ9^P(6hHJx54Mm}iG>-E*2mC21lKf27Y`F*o#L<%Pow@B0Tb$Sobt z#pgTKA7EHjqyhF(uc#sRBdMnbh{7R7{cD{EI$vlG`|i{fLS^23czJplm`A#f6efuZ z4kQi$_ZUq)dUAtaP&*E)s1(ki_Qdy0AhxvZnR8+%-SH_$=7j2Zn-+P+7HiWRiS1Ew zRJV^0a*b0KP>BvHIDPucr;WpgtffD95=5<7jYew{R3Cjw2<#q3xbg4Su6)_yykT&t z>4ku+)^-1$uWDQp&OHXd&mP_btOE2P$LO8C_1N2QB{A-C5>$zUqo7{tvll~!Pl_VK zIGU}_kILP?_0bvw*>26f%jG=gah~!GKh`CLpe}~*LR1*D-&g{pmk9Xm5t_)*<)HD_ zsWnKikkTM6C=%cans~1eT(Ohs8UNi_w3(&!4Cu~2HWbH{uN_tZd+OdyK5G&K29Fu* zcjee@E~k#Bd>$mg{rF|OI-;K6MJkrKHwWu^Qh{}cuIqz42MTK<4WWO_u}Ya+Q)t+k zzJuL9H*o#BzY>-1w_92Z=5kn@ZM%YOD@7)baM#`P_qJ;Hqy+a&4DJlLHy`iec*)fX(VmU+eBLsULE z+0WVSJk>$HQtAzR0X^f{?#ffP(D@uCLEbAcvV4)aSW&5uOX|>pS{}HVbgA4vpCtv^AWB9co?am|{xGcIG>f65);GJW-V&}q z>g;g18n4b2=v&?FwIz5Y{!|3E>DLyo)99 ztrhr%KFR9%cjzL2zs!3Z(~r$4jJ!vw!7o&#iAeZk`dS`ah!cjW9x1z_Z4HGRmEgp`-)5Zs zUj&n>sEMTBO+I_#J46N!6i7}r(cl0FEK8BzOE@%R8)$xiR;+t)U<_<=5yWB-bF8Td z(|A)39(V;Zr$B4Vlo~AmC0HJ~Y#rVA<2TFV4^CaV?TwK<8@8;CO)LY9FZ)0RpHIHs z*9SoFqljNaeUt-dvLyz_G8w*fqr|-|Vw_*b=KzH-NTaZk@2c+Pbd)uwb5rx{ELaab z-|-PAWL~$l>99uP{`4yC`-?kiSV;3qh<~1kLrjQ_HRKQ5@;2q0#w_!VmlrRas~0P$ zD=1O_c0SRHcr_w8vT5{e5k+SG`P1D|VS;)$hyNdayJMQS)!DkR?AkD+?0~P6^QWV? zLLS7!8dv2}anqn)ZhlL6+}v{0h;SdzU;5j!E8x*6lJpw7b0}2dfsQ5HKW_AWukr(c zzM9u|cGckkoGT+`7jKuJ)Os#jfw4Nbb=ne?Wq>YH3#@JxzN zt+5clNte10CiV?3SpxG=9ud&DcWEzG*Y1fKpHx{4e-HM$=$kzC1`aHUSN^3E;*9nz z2J7EQ@ANCh2c66g6*+Nh;ma7RtJh5^&d~97p6jMT?sl-T7GlRCtFhm_Okk&0m^;9 zCR~G?4pLjL6s>J@g_=2ELOzFgfg`Kuno_RROl5r0WJ^cY0?Yb{0m~jncW%*|k*v#5 zN4!KqNJ_h=Ut0kU+sT46l6xwTLoHl_R=crTifSmf-Ld=q`2|mMYd4UK26hV<)w-Fld47AjjU$KY9q}0!u@K9A zj~}^s_&{7H!xeUUJ0QTi%rYcyFSbE8e!jZ#g&u+5nD>ZXf{E2q9QfUI8%z5xO4Gj6km~#wKo5{rMOG7s zt8?n*c*2~42YN3MJh8p)#tNWhcj6~SEd*vL36d+P{M~z6bsQEK=?p7w8X;; zg2>Hj2r)DBl~QXJL35Ua*dBQTW)54lra8W%xh_=BJ&PN!-KCJBiCZ_5u1aKl7Y zWY(9tPGB1p;5t15*q#@|*31I|Ca#5RGDRpPq6|dNYV~tyw97PzrnWtdi#wmeDVf@W z&o)3z_hHntF3eds!k(^(r9}h%_1reE6mr5cs+rptZ++tWqfCvQB`5+>6KrpKr5^2{ zo{tqcW5iM~8)BzOdoSrOHMY2jTVhG__LRp`=XL3PQ;jlC2uL_RBXybut%q(J`CNL~ zu^|yMVB*+;eX-s_d8bYFakXi6pL^RCSzui4-Sd#!p!xqD{+;pvM&U8CHu;xsX8pfX zjx??UN48Y|huq`;P@?{$-~SN+-=e7%hcoKpo2REB#cS@ixF{riAUk6-U6*y|*# z;x>DAVaSdIVk;-7Bbzhn*6UT8;?Af@`nvG(+ z|0Pm;IoV8w-iAKOxT42;h*}z}qhW1pFnaPsi*|N8o4ezAHzYB@CB`UTY?olj(&?jx zJFC4ZtP>-8x_@5wsgPW4li9o`&01@(h98^N>d>-0%nsp{U#-@ud|JzNyw=q^BhBYw z52u5|5VYvJFm0VpZF-Y45ferw9g9A3NnONRtMbpy`uv>s`(4K8n-MGO_p@#Hqm#4D z*`<6kv4s7+9#uwP%d0FC)3oVWaM7yVsyvt4$>ycMqf$BoWKyKsxdg4Wn>B@Z$Mjpu z%h(de%zvScd2Q36z&RQH+H6K7xJL~G+GK%!{XLY~W7*R)+6$N7o=o?dZ`o+EUc5RkZ7X=$lvtHozR;>R^wI7np_uREoP*d5kScqDEAKzF`!%NI? zIGO0sX->3-U-}uW$W%mPJ(z=wy;yz=@WeKo4-0FqA-u!1^^T8sC*4}dUYP3z`MszG)YARH_2MA+_V?><+N(UU=2*@~eZ#1lDNYq972HWIq_ha+n>tTix z^XIFj?SVVibdZf1b3!l6vW+h-8E zuN$J1b>Q3uveCEiK#-EH+VFv^>!wJ^Dn(gc6#bNXPe*qd|7=F$bL> zkYk>c7bs+y{P}tu;ll^de1CdSCFiedY zL@t(5-sjea_uCIcYDu0&N-3qZxnD~zT@hY6iH~4M!*K@n37G4b!M1^h5iLd@mrds9 zoytH4$s&_#7-4LN6gsgHouKSj=}duwy$aF2#6p0{)@aB=cxsdWxB6CGb1mFNvQWi_ za28ETC^PtW2W<$GS8LVTv_4-T8_#M7H#UylY2h>h+rpZ#BpUMqiU0mo%{#S$Sz?kw zsI9cAUqBB9#~A?C3VK$k8N53}5AI}(vIec+M2`rAqw6F0R}rTc~zn?dCfEkI{~rNd;&ynY?*rk z3>@Otuz&4JL=fA0)LauV`WN)Y73s$AM?=9tgoJ*@dX~MWx*Y;*Nh>-p8fPayTHC?_ zEh#aU0H91$Tw8vCym~UQRD!mY9yS4h>2K(}?Mu^2(w@>n&Eh`DZ1}d^8vQMn*p%K4YYIm3O7ZNcmSjR`lzknyd zb23D!gp-r0U?_TkBM(e{%E$8*CPHeDSg(0FapoyKN+ z!-~+Bv}Z)_hfcSF9)k#!X)&I3&)U9%KX*P-#c!nJ2p0vL_Q`222K2wt(zve1W^u`< zWXu*StyP#D4>qa)W&{B~0NTh0_(+?c7$g-R?c`Y7RGI5Xoiy1q zB|QT)q%!0VW65JyGo%!MX-KjM+XL2Gg7C-2P&{Zu7wm25&`4}#xw<;N^1rcrpK(2pqr8)+IK&twlFxKIj` zyNw3Y?Kz!Lsuwil6W6!BHA!%x`h|VIH~qdB|9w5Vr?guj|3Eqx)MXpD&zNyaCB6&p ziJTkX4+&{d15CKsJr-1-BdbQ!#wt^-TA-`L0jgVbF5t8#IOZe|sSk}74iSe;L5?9I zQ6Hj5G&_I|E4$rMba|AiCEJTj!`paASEn%M*2*A&78!#o{w-O5BcAi#rWrU5$$13c zOa9S45By2S{Dr1?SbPG1E~nM4u&wek`YOxK?&e(ogvO2YKa~*~Xp7>ig-?JL{fB4W4A$gPBh$f6dNc&!$WwaxphXK)ESS;V#2O}@{bNE2*Z5CaFrsi zyP3Q`Z#gdA`UnXMj)rQkO-N6NddS}M-a6g8LV??p*(EF1)S8V@m>b7A?i{eNb?RD3 zX#_4ulg-DhxEiq$HN-_+M+Iw%u;JK-z0js^ zl&%#K{0#6Pgv!{9btY&SU~JzUh+h2VOD=SjB>DCV=FwvPyg9IqLi$;xUv7J90>1zt zXkfK9_k;>NCt^S>9e#x^h8>ikqS`7cbQv_v*3*QRI|0!VptkEgqWW?a&$w>sRIJ6G zpw{Y2_yg9**Y&B!-8#Shu65f*MVNhp$NYx{XB1Mx|{)mLa`&4+)2v3X!0K%c=AuNbu6E z`Am#~yhYmM0&XxS36z%4Dhs53vUiZI_316D7+x-U+LRA!{g>U}H2$0NL zGQ&B#;iy4j1yzV6#b_jfnZ0%k=ZzumL@vrMC6-pOLCvlGCCG@w@o22Zc^wcGqQ+8^ z_Hdq?44-E+5@zy=z1%dchd4|XAfdM%RZm8o|Axy71H=SE-?VACxFuC3A^8TjaO-n zG=H`EL=MsH2DkhD&#bOnqm2WC^7*YMc>}yGL6f%JJ5$Gk!#GO7&-Y0aB3&PH;Fy$0 zF-$aNYQs-n%=0iB|2+1$D_=~5UX!>rAP|vPP@*RzL*OI6O1}4D-&>*Mk7Zk{e4JkI zxoMYU^uk|~d#2DbPjHBw7LG^!2J*ndX$!KiADX?v%*%Cy@cSAv2cXJ<2}oGJJ1sKg|m^xeidbpD~jy z4%6ayUN_4;);OtLP1y^i5VT}6u{>_DDMhfC2~;&$lFU|r(z@9DMh?O-s1G` zGp1^<^QCMTW0?`Iq;4P{1|QSrY^ZN`CD61Ej->C;|?Z>G(k{{5dJqnLc;qU|1y z=D~&|f7-2i-g3{tVV%J}pFGudO{STE^HlmjPVLW{SG{>56jbX-Vs8X()>^3=5b}-8 zF}snbV`n>-Bq$Hnsak@C^TV5J)7`@^s+!gfwI+{@@6=v#wd!ag@lU+>TsaUJ5S$^V zf3(52AderKW2-^cMg6&$Zi}J1$+K_kn8Zttv~r7gL7SK0<@EhQCSv<#@69Ub z>SI5U<W8a^B)uY)U}Mlg$%&e%V$mvPS<0jjWK zzw%Dlu@-8b`qrwN2Ibr4Jk!KFY~b{L63^k`@Ttko<-O&?Z0m4LJ`|i3^{u+k&Y*sE zRzTm(-ke!qD8Mu6y8V~J?7xK9lwpP8-n|ps>ycvh^>1ghr6;JVn`NWdrIsdP3(ap9 zm{^1V_UC?cHNx}j&ZIE5kAL5ZpgT{I82H2$*m9tlVM#iBBI0kb7ubaxOb79VG6`IR zQ(3ff4@DE6bBPqtir`WLl_gl@%@JF!^E&HRA6(5%P16J|lFKFZ~v%DR1h}BvHsk^+5b)>;{MNQME|pDp#Lab`mbeb&fL8oLeKyJhWG#g0{@vu{C~2M zo{O`E^?#QvT%uuPw<(JBQ>)kDA|G#UGD4a8shHrNK0iM%oYvByTMfm0TU(P!Q$s02``tO`G|%fBw<*z9YB}LaT#T%; z&9gDqm<}>AayeMyV$gkAK3h5Aejbw(xrH*)IsSKZ`doN#k#1Z<-Uo^0h9xVatyD2-+_)gMzRGcjwPO}dU{N+t`v2kV zouWmHqV39K+qP}rW81cE+qP}nwr$(yJ$7!AmZT~#X{}!U?9ctX=9+8tKGdX=4sf$~ znf$NjVzeQwGp;*Yj0IJp8(6D+#gyV2sEXI=jwAeCq z`TKyWid9!ard4oS=;iSFV)vUUFcX7XUEDhZDYZ(QZcf4pnnvHE1Hp<>XmDW{%&t#p z*q_N{6YD+VhWk`NsBx3W*Klf#8AcE@>Oit9sbzY}`4+lTiIbK(qgPcLmEoA6Z@i@g zvKQ50jE;O(@S@JclEsTi5cwj*XwOy#)O-Ft7RH5;A7;2Cv8D2=T9yrqX|O~Fk;U#} zRO$OygAAJJAH)>X*!(N(4hUr7FBPA}dIKbsx0K(lX5|s#F~3TBozN&$2g>ipfg`qW|2;j6z(M!PQ*?@}UhZXK?P(AV8Px+J% zobW7o@g70q^5Wo=?lGG$OPUI1u)*-cMv6X$eH9oVnGA3>P6`db+(71p5Y6N&gba1QBqf62$v<{geJd zXbHmTW*GoWN(!g2Sk-gV{ph9`+(t-K{Wqqjb+|mB;KCizQqo))Y{Zt-{gDF3MybPs z97wH1qd$;xt!IM+DUnLlAtim$j7RY2Km8oB|FWZrS)n)RTRwPs2 z0#G$$6v{~{qQya%wtujYR(#|UmN4BKiqC{GI!_fT(GgpvB7K0Fs|c*%jNK z3Nj|mb7j3g`??>f>T$OH#wKKn!0EzyR`vpo89!pN&tb9!&%d&Tb*eur{y^ee0Ac7@8}GrYL{B zalOKj6Lh&yb%1pOO|45en0M@uH6)(qDX(&m@baK^V9E4HZ$t;yGeCQ_w*hdkjrPia zrO$Hk81G-1t6lr+a*KQ?e^v9riVmOX^XVX)<>KSjpO%$vdGPUqSX~9u!#DMAh}oS7 zn{%~(q=RjxA?R^OjwDDw+_0(izB2`|cmWhfCt_wXrq&`ZOFgQFw>r}zi za>(4;LEC~R5x*(!I*Lih^5}AkmOe32H1noZ*HKnFOmQD#JC}{*<(IhxulQC}C3(xN zdGo>VdUb}ShHk~(!0$&pWpM5dimI0BDApRwu08FBuAo> z=}0lD^Pu7~k_ie1Gh_bGeCVg!m#&O(2wnUzNlYrCr_ZiOw>7z<3p_2P?h^@gT%lev z+wsBJ84>7xaLk(RYbEk?N523I@13{m22WAS_P+kg(SifPqr?VP3>I;Cm#A7^X0=a{ zMga;ycj~`WiH_H!>(uO@I4juG8Sh+NsJ{To74%-kEFSq84zw-ikm)CkE?Y36N+8N~ z1*ljIgPJ7h`uPGdpwe!CH6u37fr47eiJkE!q{xgqXvIY+NJq6h06ZJ(CF$40Zzc;=6sScDv@6!xxLlDGOzEW--M{6X57MvS#5UE zgx-|xpM?K;EJ^hUPZANu=dL4H@62CH?JT(akUWd(R_eDa7u`kBWmG0OMMK|18K#nM zc(5?`i(v2hOBcvygT{br`lAGNFsUVC;3pd_vm`C3QN5DZrE zV+zSEg;x#12@RlrR=Kf8M9*L*E&{B#1`2^7TN>C4n)f06VAs18nPYB~svBw=vYd24GliV1_ zA^+VCtub+zE#te3S!#2B367BX8-O4Jj87H(2kg~127>nnvw<`aE)dCKb@#zwWHPg~ z^i7?TtL?lKj@Ohx2X|%CiVNKVe5SP3PNGm_Woai_Bb4au5V)g&a<*D>=%0{_xVUj_ z#1D;+EPW+SyX>_{1~}NnD>L8&#VQYs_%Ik=fB-eSqcRUC*6GEIqrJ$1y3`<9RzxTc zBTVP)E(~a~7NII73l#X{-)3@-pP;QMF<8d3iDB@lR>qP1vX#cr+frLax^()!XhskE~{vi z*(~cXAui*QPbV#84f~f*)I`8P{1H1Nq|$Mv^QjS??cSc-Kj*K5ikrNoF13lylARg> z1?%9sAiMCt+s80^rK9t?oO?fR;TgD4X>rH2&(fzq!P7olYgn}&b|2EiYh8?V^9(rI zh*{B*<_C}AxJr5=yCDylhfFS!==mE1*%b~fEOAOTo59=QG=vj+`j7(e0EjY+=Jntj zphzzthr0kb8b>%a*YfbK-wY|ZeFI3NiVIam*sJGC`ly7}3EAk-qBb>5H62PuvvuTK zS(zL%jDGmXn=#d!ZSMnAed-!)@B1%}Ag*WDHE`wiPjBG*PaVyD-i0HTrOv&4lbq-7gsB2y@Z(=b;tJb4&?rc~1<6?}Eqne0`W556Rs6JCix{ma()jJIZ0D%4f&!}#0 zZ}n94*gx~^naxt}w{ zOf?eSI%wy-lH^V>=eCjgj?eI&c;1YbhB~{vA3B+ow}Mw&M9HFT`LxqA-8&Z`|56K# zhrLWx&XoCgD9sEYyj&3^vzlr#KEb>fF8ZHg2bN29?00siY24_bf_NfrUuVoZ9;ce% z9&6(U7YgPVLE$e{xIL+xM;2j1E%QhyJ> zJffZpU7t2P$vk>eudpD%yK+$=S&6&}@}Hn$ck>0vpA}%$Gn3P)bUP$?LW&rjP;&=) zE)ls(yrUy#7TPGztfVaa-I6fW$;=@3inEX^$L#oV`#Hsfq=Ukh1w=#ArBUHi8HeqEw zF71KDd4mU`3rbaG3-8a2BE{%a*=J8?J_0}}% zuFPk3G9t9}-)&4qQARnl%a-I@m`E}Hlb@5l+1+{A*;@GYaeBk*Tz7)hL-grFpA!40 zi)^WLGA1FMMNI3kHzFDZCC|#TP&`;eNP*#3ANmayBAz=s$PiQ4s*G`v7Og-HRMKzz za$uAlM*pXIX7PMd=^f-Ca*L`XFek7sVW9Tx;mUvL?S|MlG2pS?t!Y695CDAKFJ%z9#HQu>Fkfn-G5OH|gP&P9DNlGRiIsbaHLDgq(f z(b5&g+lnS>YoW(2gEK_s2DVamN4>hKt$6QM{=gJQ>PMlB~DVd#&w|1 z#PKnL^H#Km@6Rv>z>GAf)m#1fbz~yrS>kvq8AZ?FgEtbPv&>iKVsf%2e)h^oujuY+ ze?$hCmg87WcT?TDv&(%An(d*7Wmw>*QBEiAc)JpZiQwyTTqFwe&A{?z@+>)R>Q_E?q9o2WOu78tR zg55|F$t5B=qUoq5WjF%2qqQlEjG26*&W1Z!$}RCT&qB>14M`)hf>?H&@0E z+#30W+BN!7tL93jc)c-P5OBz08pwm1sWlNhRZ5j&LH#iV?fZ!SMVoJO$9-#eQhgUL zTl(If7Kdo~6LF6FuSvpI(mDQP6a^frHJ#C0*CD4?1cwRX9H){1Ng|J82bVsPhG+x= z=GU>rxZ}VYO(?K_@B;xt!?-)$d5-j>IqtVqJuAFwJ;a%bL^92V4TZ2~OtlGx;R(8)* zK51Z8Ps1TrD8ILBJ zt9@zNTzBl*1timifKixKe$Tz%*TA{^j9su{<#@P8Dg;Y~dLZKoiA%@4;QF|96+eBr zBU$@q;Xwsz*hq%FNH%pQ(l`egTk~R&G?fTjfju*vYZZU^`R4EC`3z*jp+Z?vybiZ31)=>O9&ec^v9Tj6b@#NpFJn zP@DNuy_gdurHU8A`nDN@Xg@NUJ_-pCThR%EGIo%Zaie-||BqdfG?^8KSsPDOJ3chW z%SMyL%?SO=NRt_B>97tJGl82YZ$~b!PWJ4s94~(FS2VdrrG9h|`j*;E2720(Thh_h zMp)6KgwclxnIE#iEU*7apW$aTK~O&t3N##+;B21dmV0FhJ87x7nzimG&7|opngY#y zha@t;Nr(cN*toUSq^~d&fdjgT{<4Ab%!1##)%uEf!E*@QmsnKU!nLS1{^_3;?HQ!~ zORWu1qYfIR;&{MX;b0au0kjeqt*y1YXionFGJ>}wi#6BQz2a&I?gkE%4>EYSPBP$e0KcLW;#mCYpZ=Ez+&qyJ`U(5)GoymHsIJAMi?IFIg%N}?$_tq6 z%MlyUVGd{(KX&l1;Q96~U5iM+KlZ99N@ENcXC0rO>(*WVl+QIO$Aylj8=yWGC3b%_ z4d~s=nzzA0!4SgHQFdZ(i>$r>4e?qLwqI^uQ(aVeyDNY%{Z-&p82ro7J|v4UY*0vm zCD%#+9PS&jtv%0U;#i6I=iArI& zxOAK6Xxf;dIh%c6A6-VI^rl`3k>s2d!2Y`CzP$Zw{bB0L^L_tuv~uw@bp3Vy@%L%z z0Eh{83Z)vFIHZvOfqo)RJ;iG|rpf~g=mw5nEYGy;Ow5j~DGuFisVJ#xC{3c_MZl2D zCj~oS3!JX9Yf;^C5gRv510p-!Or6=l0?c!i1#?lgr`%w6RP*|f%wk7&tcN}{YU1Sj z?fU%E5{x*lY)lP>nu>AX7wD_VT-XJv%RduZo)(-R2yGl5W33WVJ&RVd$qGp@&{olr z$;0RA;o8&n%hmDg$I$cR!1Lwf$y%|=zp}EBW-&dm6iG-#I0Td=MI_qSo_L&~AX0s; z+Al%CVnm=N3RKu=y>hcf;!x>dBi!)Cg-^h@x3kZet1H_(D9saL!XHT(i%~_x6Z7Me zq%Mrgk~ct&KgF$66B8E?tm${(OE-;S)o*wpsT$P*M6TK?buqR9K5`JXlGsM}`J5!i zzL+Q4uCxPC=hqO1c!P)zTw-D_40;I%-P6SQ1C(v40ZOQFPMYITn_4lmi5Pjr=a|Z2 zYDBe>iAmU@O5~}{YhLKz-?cO+}H9j8X%W<0dy{%9R0WvkRuq>zN z$0W$VG{Q*M3nep&9}mmL0Ur5=n8G}D_b?f2FM!4+&rsJ1SOUzQL{5xLBs|O! zf5eq-;nqddepf4=c=4b*8{{ApJ(;WZ7}IecTHY?lI zbNy;q`EUVUiB&P#IipCl0QRiUXMj_8k{EPs6lFo==xxoJqVfln(t7MN*O5npmJr(E zziG`FiLLC8L$dzlUj{6K4|$h)7`NBfSounrHviFQ+8h^2+7er$f*1epqv+D2?1Cxe zx*K!XU2(vdARzsOH`RlW>Mwc!y2Z1GiqNsSo{IA7=8B;(hlCT?^xc zPdT(g`5bYZrv~^%F;xT#?})H=AtZs~?`4`P>RiuONzWbSXSRpqW={YVAXC)7)toVO zLwDoT$!))CfBbrtjgOFaE>IvWT-Om%3u=0rXds)CBlT_O_2A#2U@Da>Z_a|-3@c_f z3Nu*;)|YM$Oq9oCKn-_O0BV(@A+TRu~ z{Zm99Fiv|W`c$IPnEh$;sg-qI$JC`j2`}8Vwc)YLyd!HBBm3HC>&}bsex%^Hej6KV zWVelL)VJidi~9~O1~TVUM*r2o4CUF&jP=oTHk7L#4bt{4JB8OjV?)xMD{iW}^x)cN zaCKYH@Yhx2zBd81j@$m@5B)jp`#NN24rAl|KenB>ejdL2tmr_08!{|4MDiY^oeYZGEzGN{3}K)v7(P`^9m%fce_LaA*kgZdj<1d?0rDV!(l9LD75 zju)lwnr?tPhKOJvkclc>BUV5UT`oBfo2`2Std^1@%&Mo!!uyqNR{SgkZy=lGVU5NC zFk<<>$%ol>bm-68WTb~~4Uv6ldE;TwV>VOdsk)1Z^cUR~Os?`7p`@*j<>f?5ddcgY z(jQl0TcoTq%K?q$%52I)6q6}7^JnAc(SrkF3gCPefFEb3V$?!ApqVi?2|Q8}m2&KD zWVeJuI}9>b#M|9yUsQo;m21|OP;g=lO$^{Jo87^B>dxOq7eklrWp9Hd0nvQs@$r0! zOS24>7L$#{25PwbBe>2bpc~O;0|2rrtNl{8^i7C_-7YZKDXPp`;ini?7qG5D6@A@j zcm}-upMBr5;xEaAot3Ac(TBuWiiJ_RS8Wp}ew5DZ^3L-Tm2=MC{&Icp=>DPZabof8 z3dvdNsA3yFwMo-V^;h=$ckqum_!^xOMXPj1F+X$Gt)1AL?^~fN{n1m;vkq9zw+NNY zDk{c0&QL=qD=Vk84G=;_>c~B3K=~bIl`Cs+5^+RbMU>?_hcHEObI*@*X?^1DTEW$#$yo*kxI`ziamKtnRSd&4j{ z??W9yJ%ojx@q@z4i;P0GZ0#Pt8y^~9UESlwN?B6t&*05x$^~~`5lm0P1WzV~=(4X8 z)Z)z${+S1cv(Ul~caVZzfQZ~2CVYV@^r$z-@vi#Q7;sYH7xw?y5d8P>2$@yt@&Xb7 z0JX$_mNois8-o8+I%S2&%5H12Vegr`m9w27WwO~vRw;i}#a?G@!r^K?^k@kjBp|;e zWg0n>M0_&N=)BL(bdO$Aa`UqQ$S~q~`uckMw%aw`TSZMqELFsXZ~XmEZ>uu7FUqoG zda9(mTJyci#{xX6R5O9=3NP|2H~f>`o)d!r%Vu2tkX&k0r_swHGj$`f^unIu&E3HR zjv*YV4c#N4Eh)5B_CgRAARfaK|O(zQO(DYAW=1#~ouGxW*wfW>@g`Gz!SRphWR^xpYFoTpd5& zJ}Eofx?e|M*EHQ6UtTkHC=7QH$WfIjwPx>VVtit(Sn**|Ny}NJBu5q^r_S+J5%yT! z%0f?XbXf2w57DdG;k>H%&U`hM*9OhB$H&r&OvDcTM`QFMWJbhUJ_Z++l;%8>7iGG* ztSG5>WMyWrdOEyEwBclD8P(RPN{tp0tBD*Cj|ur+Ynz&`Zu2CMRTGhv8H**!KgU%k zaU!mAQ7A1Nne$Sbi)7Tvqj=}nR*@u{n=#_tQ~D`8YIDuF31?|#VfcA^xq8yx={8Ao z%i;i;rz@Te@lL$I?ho+kv}rFB2L>egKD|HwhWAgwuL6h)Drg=O0)RpI5aYRM$5Jm4 znWTE=YXfdp^Bu{8u!=`=38jiu^I!dE;<8zEddBq>xSf65+PZnZ;(Xb=Ili2I&Kgqc|dOlw#QzOqRAMa1MsT0%K z3?N}cjf8?lmMrqaVNp%o{hy0s8vq+Y=VwcP#pro*d^ymJ1RLGgUp{AmKo3VnMTAN~ zSb?mywtqQ;T%N2YPcMx;UmtHck#ze#UB#!$_-`mUxwybQ(bxK(jLO4c4&uDu_{?^$ z1GF8BuooxumYSxP==EG@_JFq=P;KSvelF|Kx}n3t%O?cXN?c;up6EKN`Z;u~ z8%aCc2lQ2qZJ@7AN&k?rciHWB2S^cBFFST`6(xMS7uIOXo>s}&SteRxbjhRo09j{&T z-soC##olJZAWV`@pWSGEXfKiJ1#rvu@tVvu;wA>YPJcPAW)%GsdJczKOy#iwL`QLz zbAPhg1GOF8@$dWw%msVXFsaX>HQUP*fblPiI_e9xY!I99gW@Ob^+zZ>{l#lG4q_HR z6{0QN{+nt2e9aMs0U~hmXRu_kLp*cW7FtH8Xb7qZR$V6qe^-{w?^|~O%R;9pEX5b; zTbF`m33Ebz^CX1MbFo*QkA$C6R?&!{o$Ey^3O8g#t!E57Z9GfN z_l+6y{9H-25)AS4&H4tL;~IPpZIGwT*}L>YgJFew1-u;x4@1%D>9(Y?hz(N1=fbim zvvlzbW~PU;Bk%7JkX)ZXXhne zKd!JDEa=WOBv|4(t$QF6EUh=eTw@{|{T3ay8H+1LtaGbz|ii8%r2fA3;g1zJY(!?_HE}sT`GVRlr%LG%0If{30xGri} z){t6~UVAgfE{Hgcj|hR#Chu?@=2yT8$2M%GDqVXzp1F1yuGZy`vy5||QuYEzpjh*Q z5LvnscqynHGmh~WR)HG`a6mdZ&nI_(G{@$;`qtaC251GfZN^ZLv4>N*TDr;27y`eY zS^1pVj4@4itviji=O6a#HnszyRa4yJ(?qw_?bN7dF90<}Sl}*2J~rH_-YSN9iJQT- zfj78P0>(;kd0+OE6~Mzru@fksa}nX z&;nVI?hVJNc$;)XMaEu}vZe@wQFupSNpNC5j(el*b0gbZ2E)fHKLMT(nJtn=Xqzmf2!{VQfPV^8#G0dnJGeeSiqs2B`Y z{6M-pN^qht`-y;Im4fyw_AtDx!~%qDMOrMXrxr`~d>8s&ixC>+T5L#3K_jG;V;T_v zj;043mGSB8bq9_Z{9Ycx#)Z4`E%W4|Y z8CgBq1H8T5ygZSiJZiLQxB9rc!5PRu=>$|h`}G;ONw}q{|H3Z#=D7nC!9Di1dE;6h z<{#K;G?ZQo51?c4kxK$#%jA>~B=qI&>gs6!Q$senbsi!+5OV;#L0cck4+PzK6-$e} zCa2a%bs5_+$$2P@10z>6htHJ4HM|fwE6qoT5aN1Ntj3IB$`_ls>d6nr0io!S%dj*f zNbjW}+Fyqf`o`AUz+=%L0EFxeaAWxD3&@$zRqS%M$`yhm+&E+lUvY;rQC#E1kn?&I z1^H}o;OvMrj~NIgVG!xjzT){GZD7RyFhU?Ezbk7P_XC|E zY8>lG5H4GqsQ|-WWfB-^AK`ajL8&`PZyoC4loY-9As*ubv|iYpf*&9aSK! zKAiL3)YHf?`WUc}-%T_Cn=5+&PF8$!)$6PXm<~%o>-#cpwlfb1V-Q>Ou*u!a!DO&O zxj4PCRd5>#(N~J@?;G(Xuu-fFBCnXb;?ydHLhiQFTG{(CJ%>i2a{WB*0C2n3WjX_T z5ZH`*?&Ha;?m;9ejsR=z@ajK{XO)rNov+uWV^yuzvByG8WyK>Ji8RKyS6X0RmAMyp z*Pl$`RXTal`1c#C&!aphxidEZh`3X5%kK8(Da>N6=RT86b3>Cwqa6vcSWK4+Aq<0f8dEOBBJ#jBRzLk z&tPLv+sC?x>7y+Xu*7f7L}k9{Zl;yB8+rX+r+osWO+cb+M^)+4KazgiOG11fO73>M zBIu-pa=^?FclB3ih&3N0UrG=_x6Ao5sC4O^+^i!`1Y)xC70)FI1CW9}-sNt|DBwH- zN@Xr=Od2h^IYkwQ+eH#Kl9}6wgp~2I=Y_UjLR>nq&xB1KXhLGT%4D<}9aHjve3&{m zza)S(0y9-W+9+;vS+f7k?Cm6z=Gzi3#elJFEF#y&bFiT#i=wo9)t5Kdpr=E2z0YJY z8gPq?C~1XwE#*x>q`$i~7@#|6zDy!AKxNxvrK9h~Ub zgd`_khzhpHfAu zs=qO)K0Fnsf2X9ef1iGo$kq7$PRDsIW7coHD$O(qF4vJ7Z&IflnK#w2kD_@&0v2pw z9Q_$ zx*>Sp@~=#^Lryx%XH4s3TlcCuaZ%6crD}}oY-`w~kWUE<2 ze^CLb@7SC+SN@GedPM~?9C(zc;xZ%!N$WXAceD@uBA+dXPC-j(|7j z^`CGx-JxW1`D7GUwn&1;L04ZdFCQ;KkWKH{GZ^VIof57Pq`xOtx@&(G$|X$_bl02p zF39`=cWb7mSf5{_QPOs4UELCTbfQ;C^P>EhY;gumyE&KyoY$@c+HLG9R|#B0np*80 z$D175utUzAgo@Pu;LLMQPgj1BwgM;CC4;&pg{LqP`EpHls#t7^D4hj^sRe9OFkuW( z0%6vz4EyhDHm3%Y@q^?fk19b@>!qcaQ(0HQH4W+1W~YNrlrFb;Aj5_zzKmL?@dW}Y zHicZR#!Trq?vaQE9K9T@L)!*V>5qR-_-g?8xrjjvcMYky{Z2%Itw(oA5 zdQBs+^)TBSnt9$Tadxd^Q&^*Fd(%^~QS)0KaF71;xBy(m+`-prLee}Ea{aCT0KQ#X z7d0w@z+skGYvTH>?~mG;T|0pEINovx;hXlchRZs})fuQ=wLxfJ9|SBl-J1gprIAq; z^qixjVS7IqPe>j~@-l=dEiE~o5rJ$a%R^>lbC=SbcA(h6h$<1i6^h`%*Bt7LmI(&1 zB5D}VOk)q)Cqf7X-{RXqLwd*r!sOzfqy2SoyDY>8RS^}Io2@pmWS?BkI0BPzoHn?& z^D%KzL3AzBdT-d)ffyN@zw!s%r04xH)N@!nT6N11htzWqxU03aiZLQuY*UNKj8YhlNqYpB1J61|~ENs-nYkaW7q+Rl^@u#>5(Qb!a3REX4zI@}73q`pTCVB0daW+pV2y$-6?_u; z@2Wm;Py^m5VfnVn)g1wb|b_Xw(zim&ld6P;2K2u~^p7uu zAr)h--(#X@J~PyVzF7jR7@MMyT@;n``Zew|&8WIM%18&;-M&4pu&B3%?R%OIK{!#2 z^&1A~TBrKp%$a8gx8(&h9*`(9u(Sgu>~FmZbCvq&M`o&O@Y(W*I;nw51zsyI|f|$_?j!479T@mFj{cvJQon2T1_sv zQyApOUfD5rF4^r2&xylrk)2rE7{4pUC5wv;~=eiT*Z&1n2|j;5P%s<74YGKp%6L_UOh&&~uc%s+@UP z2gWYy{KH{jC#9tx^{0N*CFb`6h(8Ut++hhGE>Pom&Zy>v|6_4)z^<;+4(9#Z4SR#L zp$i20w0?8l1AQhKL2P`%hwZb|`rdEfzVhVdGv3?^*7+=%xVd?U^V2GO55LPF@)xSv z&1CKZ#`Ubx(s45u7R*Q8wj1UfMBjaQiul$4kz%zfk)1obXi1|DOw4su%nvdLt+tY0>mKiPny9<*zF3OWhZ0Ske--!7Mec6K{ z0az=i^gQB@O%@cC+Tgxb>E@7lSE~IzZWttH+uy0ya{Hr8v#%FU1u&!o2ynd zbi{AJNN?M6i@-F6k$;$mLw))5MO<-vBe~luA9yLZ5IUeC)9)B|8M^6i3W>_i#u7|W zfmtg%*SsEmxjVDJARF`R+1ffGx5u{6wyol+Yi`UOs8BKWmgpg6We4fO;0ob8TlUAw zdo#9md^ER7S$bydeLZ?JX|EGE-i%%otLVcE?gA;XRGl`1E)#8ib zsl2O!YFtPyc*rlx%o9?o7HKrpsSeZPc)UUK+ENefQqK>U9ci(Q%wzNA{!yep#`#5s zvbZu%CCCpPJ!!DOZk|`=(5G@vM-uWS`Np6a0GxNLv}k{Yi7sP0wcKT)R7J`HiJ5W| z^K8=J)+fhcv`8myJSVJsbZf}xDT?J%h&b6WzNl;bhJ_gj=e}3O#@(&dnRdph+$r%u zXT}=Kk@-+D-N@sv8EDNrCMY~Ic?16Q|^2mmJnEXyP-X?-Ad=YhXINh2JBua&el~Mt;2W+7=tt;K<-d+T#uOiNX zbT1|Es>Xgz>bOuzRtg03{e*9jItp;ysW%k5g8Ri>X+`fx7PV4VZpe(X)$ zFI{3hmv$s`>D}!~Qs!%Y3Nk+e5@`1tBB#0Jd*<75KRxm8|0ybgA5U&91$Q}p0Z*Tp z>^IQw$gr!^%Ao%aKnk*T7yh-Eg&0*`F15QZ6n`o(U7Du?WTv9Uq%CVh$<%i?>>!@V zyabo>#!Udcfz5HL4x7sjYA@%m#astu+O-=*43_-MoAh@4pzAn8#8<6=UlT@ne-day zeObCc{dG_{7&V(^DrW-P;;cMKYRo}y4 zcoRSHkv_Sj|o z3(x~&y_mf2pFBR=a@Vq58Ih-m^bhE}8|8*jbYc6@7hkSL zd3gSOpN3xSl-#cYXCPwZ;M)QL@%h!mv)?txZZY2K#{$&hrrn~><2-V-9aGao&Vk#1r-YcJXN=NOvP| zGp1C6Vg?Ii4K@rYgW;2!M64AqNnC3+L0SL)38`M`?T!oRf;?R%?o~Z-2MufGj5eQh z0VXx>U`}K{napft`ve$|ldxU7@EuYCrj8YpCPIRy8}m0WAdhq1q-YCkVcA#$5%^*Y zH9|>@e%^`5pkTZTJ>KWTuwKPQCn^blw=;^z7Q=!jfsHq>$C*@4H3`BSG*zcn?P@b~ zVKcM}g1?j92C8KfL_u~Ft#=MTT{WV@RFH{;O<@;tI3NEyHr@8d`MG9~pE7H6Zpjlj z>k8{b@+VO1R?Jkr&|hJuz=M4o<&F^$und7kdEZkYmoH`=`_pf z&ha}Q@5|8~5s$-bV*zL~xY1QGpCP>NG7nVox)Mu{6KG2La;9#_@$)MLVl-sUFD8|h zV-1kv2a4aSO5Z<(_hat7uJz+(-)$)NrOVKRCzJQTl_Q|ZMcYe2004Yr{_79<&*vfk zw@iNtrj^{0_+Kwyk%)y_TpL4uQ?r&xIxa>Y(+*%HK(8Y1;Of{N2~VT0o?BOfrp{kq zl^x#@5Nu~}05><69zC6Kj+6|rR9eMU%3WmF@32IPcif2)L6Rs(N|pB#wo3LnV;IV% zDe>w2^}NGIH6T!?)6KXd-MIUEm{C$eyMgDF4JRKy1IE{H-#Rx350_YmVBoehqCy+` zBS}%K+ZV64q=`Sd$mwA;kHS@9a&Z9o`+G@M6CcdRik1)}qrkLHGIG-b7td?%Ae7L!TyHT|E#DItUynVN%7$3Jbks2XN4h^S1NAv<#|;mPRr6qybB zC6eJwjzy3y`;c?$%7ft~MCn8h95CO$iCwey;Q5f3|@KqkYS^RfzHuA3&o}?zECH z^hnewzZbbD&^RwlEoI}+u%?BO5s92`xrPpq(W6RK#Wn2|c|~un$f7CX3-&=_>kzFc zikz>*h0Oy_DQdCnTs0v=j#2!K7l9@K)G3x&v` zRDMMzr(`x|AOcXn|0?_MqR@mTcyE?QhVcj?nVZctwV6kkF{!JjB1Y6&_;GPjJy=#O zz>!tX-{rS2N4lGGC?9g~MSZ=c*=&RT>!CYk0*;n_|-{R<afWiU_&u&lX)g zu0|^sMUMah0;P(<6&P4kW@*E57;BHIZ`!|Ss-(or9YCWttf5AF)E{vX)77S^G?njf zCD#ab-4kph4hrg4Esw%xD@RHB1m@udXxlG@rxLBtsgHWm~YB=>|_?7{tl!5CRExLZtoyGpag zpE0^$Hbm&n`*9HFdJGj3^~Mm+#bWYFHYJI`SmJL9%K(ZBwryQTszhsOOuO|LDwd3@H7|ISdV0@p)<~!dEq@#YwbAvRO@bktbjQ{{%wMnEaeJHw&tHPYdPdlI z5pdGil?~Jqdh_DXgmuV3TU+>-rVIM@Mmc>V&9G}ldk`xKdK)?WuXW;8IfcmF>Gcbc zMsB%~QR@v)@VC9g#XO7W&Bcuf^?2UWFEF+rnk4*5UtU zlwYRza<8T2eK!*qqIz#Y;6<> zcb9XH<9GL5#&>gSU}(W;Vj!dg0C7v7KiWT6mpQ}U*wH_PS?Ocx4I=iyNNm2y43059 z80HlT2QTgEc0BCr2jnf&2+oI2Q?2?>D{lWGLs;K{Ls)y{<2ML3tY1w1ADia!Q_-$4 zap^DL(L|Lnisgo3^Tz(-SgWLp2KG=S4OHHAm0@q8IZmQaz+Tk5Qv8Fc{;}{%+wxU) z+2;8yQQLL_?v!rt&xa|9Sz6&LXAjAOGxWK9H@1e*$vd#1h(kaeeJghWWvos?L$;(j zUdu$Y)-&s+>H?=R)@kG1VDnZ&UAoN>Loy)LO4Ul5CBxYFp?^@;jo&#JqHAlV?+(`C z@1S{ps_<-qJZf?|1+dX~<&1}N(-3aq7!*;`UsJ{& zf9PwQo?4bp8KvO5r7j-g2v)Wb`ilzk*(Eo{MCM8|!x=Y7JQR?Laf&=-Bj-iZFf10T zHP;i|?kIvBMXGinwS0zcm{`-pY?Q^3cjKMfFn-SL}2C zhJEQG2TtSgpkU(|KbkT6HXk0=M61g>D{4Fi9?@?wBaZWL`^v!ZW6{Xo%$V+9b*KOl z?#f08e6U^S_w9c`oM$kS`y=s6<8U!)D^f81FYLWLu$ELi2-KLZ9y70AsU=x~#j6J1 z0*jPb+NG({H5vZHB~DW_**5W&>vAm9xoS(x zZS$@}GwHy`81RCQJ{b!ie9V+3{ds!QnG`Y4*EZ?Rd{p0Kax@_aycak|ReX$d>7FrZ zuZ9K9BLDYAik-c)g^h(Lz)|1W&eqhzjLy=@&i4OBIW?#1$`25rh2FeS zW7oJaF$HUr$ z(4)0ahlc=a&^ar};4~CY=Q86{fwvz3~bj?|SrQyN_&RCuveUwvcmV4WmDmw4&iH@B(x3#ZcLwp`dYP zOje=Roj6pnX`A-G1s}u(I_YQ(20NL@d0_8wVNXSUgE*X4n!qZ+yx(+!Qb#vI`lr72 z&h}SpH~^XU%buFlK$ybll4;=K>5G)l&wsavj68bp*zb>#U0FpI%W8#i=tsy}K(Ij- zqtp46qpAmCTN&j@})lgGWd6?J1Al0iOw zd_{;n$(|CxInt|rSxJ4$+Z(O~F~bJu$E=05j7v(Cl{;KxS5d)d!P?UlXMXPVu}DEu z*28o2{=E1NtA=4jitcH~; z=oP|FT1Im9PzF9{A>$6HgE*gdWO~Q_Kftg5pUxpSLt7K0|Lz?6@27J8-(14~I`#ic zZS;?u1h=<_+ayau}Klp#X|9v=9t+{2pF^c|oMOnt!fYK1aCB|lBC?E%y8Z2%TbAdbL^B(@KAY!dYUD|qu#;uFm$ub<}=?0Yf^=SQ-Z(7F^NJ3Yzi zbew(j36D6aUqfH3J~QO^{XL;SWJ0@rToV1zJch!HR;#Cv&jCHqKyux{gNaHh)viDt4G2kBE1|L=NvlsK zbni}3I<;(9Dc&O$n;u^^shA~VGqRmj`h$x%#l&1oW>|nBu1dT)r*&lc^qD8SbOC@h zB6DQT0t`*|P+k3b)Osl?)(RI1xK0{lhO#T&93`UL&!D-g09YSalh)p?H!`P;IpR&5 z5E91!>FM%)I{!3tsuzyR) z{PBJ+y@Z4dG`KxF^b-*8ia@**`5Yx*|CSBQ>t4a9r%F*s`0!jGUm*cObFBlyCl8B zu}=!nVJA06Kx2qymd~LJ3cG-Hj0GdSNDET=Ni$>j)2}{a;E!-gz2*GEMI4xWaB;$rXrWo6l9pt>O^SXUFcp{yOg+&g z6xEro0QaE8i$(uMw?d1@L|!>U%Sy&LIMqzF+c>S%`XH?u2r)b2aeO{~K4gI|pOQ)` zhd7wkzS$5gq1sPW&sUYt`^{J^T=*E&5irXvRcHdOKUFcQ3;llHmN7? z+Va?BQ}7g_7*tZDC-Pz1Rsj+W`AU8o-s}Ukf%kE zLf9PDbRm|Y6*l?so$=YZAZAA>w|OTlv6S_IO%2aC5aztIE!)dR>il4m4gxm|&m+)< z=qKek1~c9-^gclS{cGzMdhmL9VDE8D@`Tk9+wKK+UiD+VPJ`XSPB_nf?ql0mqXG`N zLvCfKfgcygynGptSU|NH$W6ShPP7>mRLK)cc=4$GbJD4HDalnY3 z7v{6rV)i!+_nIx|O?Rb7aS0mQTb*@^i-}CyG=UeP_dS+A z|5E(zA)p)*h6*a;Z9Y<749E^J4bRe$M!jxQWDi|>x?hE4rBW&c5~#Q+M#5WfC8`7A zD*1@6#Mf+mam^TZk>uw0ba?3D90gyoCxu8GihD*d+lAg#K43Wp~sVi z7{;SNl*fJzu0QVJr~`Clq?pvM#E+O%F$QBTZPs6j@c7&8p0MC?yBT*2Rk)hj>twG4~dFEeP6ET zC?9tvXjhoHu(O~jvzi}%dyv{uxwGw=S(Sstrv~_m)I6noaWHQ|C@4B{C+sNEw(-<% z&zMD=CD}SkklVm=E8;44Gfm|M%nE`++{$fEe8t)6j2{Zh?N?afd!PN48}b)s6J`kQ z$SqWeB}OL>u2+`1I6a zNod>V%=KWhv*71zOuKB1JZ_eZ9~czK1y0*%s_OEwI}-NF{w(dJ_7e!BSYEa1vg`X7mZdj|UAFzuF~_U6o3zfK`8e z2P>tbN1;Xjrf6RH%a8HrDD7%K$G0=qXJ&osqJFw!ov_@>a@S@J^-1`( z1ZH{!6o`m!8KYBXvz&Vq{Hit}@y~OjZPufrfpMUZ{gMg`w@dd-T8Z9G9L{fk$yRRC zoI*$<%;_T-Kw}odj4hol{q%6!lp9&Tswx>ujK>2lf@a;5pqv@3D(<%AVzzkC$Jc|| z$d1p*pz#l3%U?<+r}sb;!6=)zbt7HzNARtA)WRoie1Yr#seR^BPaO`=~ zI1&b$lTr~?Q>9eF>e*i+T*c=!RXszqetxP(qM+~H<7b`rrz~h(4-6styTctAjjN|% z4K8F(UMWn)Qq1~p4F+MV>gj?vJ^xu!>yj^2!odLn^^gGpQT)$pcBlVHk-XBfiQ5=P z{@*E*;d_xh%8L_QZ%0Vr=9?W9yNhyr1QaTQ8j92wGv3VYJd$)Uk8Y3BKSq8+W~OO} zH4?fxd2h)m({}(fQ!}&wohNw&{V~zmdV_Df*7Nf;<5%|-@r6_wI6_WZ$YkK>{^RP5 zC#OL}oRDgCyQHoUzikQ_Yf;6f%qS-H!5$@dBeX+u4?Y z4l8I8s;Cyx%t)0V20>|1x#IrOm|P)Z(;9Ui5kM|+uScyQ(Hr0dhmBn&=>n+3J;JSv zYlx#c)sfr#;;0YB<=t+;Ez-@6>t%-S0J5kszH{clPZ3z*6JFtV3`=CuBjBYCNXsIY zWvp9?lmHTw=5R%E@ERgQ}8zN@qES4j3Dj53|;Vw70} zEund{8S_Oj@5A2drsY`gWo}9-bu$Hj4y-}uVTu-fW>5c4MS{|^i9O+#K&Mkt8J5RZ z02daPm?^RazrsT`N2NNZnK%ju7g_6>Sc(0`N=k&^IEIoLrFdBV9S z&)jJQdnMFAz;AKXLFU=2qm7ex5G2VkZ$3h<0uzx}q^Xv~b(#q}6SF>VWPG3*;4@Zc z?6~t;u~c^w*I+i+!LlH*_JGM!{kY7c*}ntl|Ek~R%mY(0f9o2h(un35SDJf2zq$h@ z6Gm<*i0rdDH3Frb{?oDh+S*7AlYg{e|YL$y<$B=Y7 zXdtJ3t@W zvyX6AlXECUEif7RYlzBD_NWF?y|i(tgm^`e&!HcH)YGy~+H3Z-zs~v-xpwCZO(%~_<8jnOKaON>CelAeQx^Z)?kEEf`mUkdznh}mi;}QYBKw>Qusoz zvp36U80tR=BP69d3h%7Rv=v^+?sHwJTa`ylVStKOEV=f`No=HUZj=2UVqL&k&wz-e zaXgmF&(GYhIkgS#<5q))Y7ody<5+0|KV$=;RXWEiA+n35w8pCRHIY0bK zGCh>p9{$&D8zKvCQ-c9A7nPj>l8kY>8qt)YT*Aj5jf0%jeFz)ioM#Ns_go-rskX2< zVP)b5M)~(5Vm=U8PgH~MPqYPKY;K_EnP;IxAf&Th7#)bZKUUc%`~1m?Oe< zO=bHG;)@5WlFIagUFK7?q3G4bNOPBWvorh)D8j?l2r@-l#9GCo7266aT1|o8iO_P% z^Kaug+n7Tx=)jl&Xk2^HVYsnFO~52h;r^W)5H&t`DU^kb^$uQbPGHyU(DS#OUo7S!sSM52MsuTTv0@GRMobKHqtf1QS=715DToRJZ03SDGL~C z^jQOYeT`g(y+LwuQS++`d1Ji4MoZv4ECw986`@M-Sb1s~Jjg~^6s6DCT5Y+ZJ(N>S zz)}t9+gpLlf<4On%S&F%ej@4a3@FSg&MuYJm|Yb#TnxK!Wl0)XNL;!A_5dFm3ffK% zh%E=9iM9*~FHurgFwd-6&y|IuIKtSLzcb@A?_emovdv-G5gscnA28in7R>xA z4iDADbe=ris~Hdb?F5W-h@C?X@N=d?M3si5j_b>qO?tpL9x80W$7oW20~>FA#@Rd; zDlEGoC3aA_ccALQIQX}NYlbQxR(1O##AQq(LNBDw{J7k84~VvZfVo`GAKB8L(hurT#Qy5UeJ z1ucc&jZ<>Uh6;m_yB(-<$E&8hsQb`aZ@)Q$hrh$nX*`h>fle}7%nO08!gS8bX?r{D zHx_s}fF(>fx$JdX%UZ{^?#Z62|85o<>cHv`%V&*Ebr{|Y;*CW(iynZq@~(#E0OIDh zscjDw(Hx&C&}}+v+VmASrL?!knW*mSym zeC}x>KV-7$r3%_S>~0H}wNNAB36;%rqNh0-&khpKkA9ApY%vprsBy0yw8t^4WA%L{ z7zzk4@zn^|=^dfO4nC&wAVLzF9F;0j5E=^P_t&B3T;bkJhHplXQOE=_1I|jn{Xwn5 zA~Y6ra)|L<>w~qm)zCt*|NpR8A!C8QQHbTU$+#*S>hdG!x+;tKG1Z7QpqsQ+xqwo>D{9{*bt}p0j zVkowCWtp_I&fTRpZc$-8G8$iJvukb~EnwoOk;T~z2`UB`l zoqJR9Y1C)Dy|@&F8859aiZh%zl-soRm@uJ zf?@I_`OuW6*7l5`M4APPAhTYb(lGx{-JXOGY)kKzYwIM$kuJc5F{&w}`X;hKnimU+JuL^fE#kJA3G&wYx&rd)loYI#_* z!|E26gqA!JZq0!@<$%jL{FT%-x_AwMmb@eu&<)z@SnYzOF5m(l>oFO{{?)A=6z!`| zYFB`f(!}M$i&!5)7A~HqJi4erK&Kr449NeJ*5aRZ($T{BKe~%Ml2N_S?B zbg2!?iL=}ctb-ww#3=)e1xey01BVl4IIR+Em&fMB%~TYyHukokkCSW0YmaO2Yy7>6 z$RZI*R}_Qek_1~tqDl>#W%i8PHU6IWqoo1(kDZ^_k)C?lsckU;T|o!jm(iqe#|Pkk zHK&2%5uh|0Rr~k-e4lM=Je)V2Vl$FS1{Gt1DQs@h19@08GmQr0XuBznNWR}hT?fnq zyAjT_z<$8_1P`GpuYrO#e`Cthno+TihDz4YF}xAGhcx3&rKBAZ3hF5zuCSlLH)+MM z+&d%1Snb-0vc=KM!J$3{7`C4&L9~zB%(rj%#Hu83l2MD34W} z`oNf_U%N`|>b$v+)fEdWQDJKlHiy1R+QS!KjaA-yEt-YHLXK=V!Bg9V2F)h3`Hj2L7za$jf;k`eEbB57-z++5MH05;}l3fI%sDo%dOxXs`wV{+&Ulr-gdO z!2xrz8V_0qSE*P`{D?u?VGDUz=C7P{GGr}GirC=Rd6Q%~65eLF2uZ~r)o(AEMfFG9 zS<2c`!vpGGJpjZ022Yf55EjeC56OM(x3*ahKT&CLF?O3(NxXa|Tn#^9&{wdGnq)hQ z4u+=5)IBMm($KR&Oy;>LB(Tf)U_VGY%V)*7_on4P1`E=x&F|AT)e7rv&wc61Lm)50 z3CXWO^Fs$1UI~)3_cb;aW)^%lF-;hu^JWH>f)3Z2Q(jwZT_#qq6aR9QT~hjYs29h1 zRD1oks)=Bdh*19?8szk`c`clwsklj+5K>4csOTOQP9{x?wc?n~G^+`dz96TOMu?pmu$ zFf_4`mrW7nyo~|ZB9ki>`aT9oyL%be@+AvVD+v?K9UKEFyj#Rr=A!AT3!Kn*t|S!N z+-R7bf;dS`7Y)r*&sjPFZal7%h{2w-0 z_`cURk>y!9-lQE6-`Hb_I^mYm_=1RudzZaZ54WD{Q>LwY%<|RjP zOc3O1A{@MbwU)QBux$AB{A<^vc;u31!|LQnwD{o&;`7T^JTLpkO_AyhW)lz8OzRTb zQ~3bUj9k6xw*l_2wv+hrF^_BT(!VhCV(TW|UYo6eB=QUEfKF1#6t~*i91&qxlekfe zPbULCC$)ow{w$qOBy-Wz)U;F$wz5hd#}UkRQI;0DDBcu6*oP_Xf?AkN9 z*1`4N;4=MzcR`=T&9c)%qbk`gbDN$upRq8vgYkM~AoJ!b>V)LS=c1&>_m&!tK}X4{ z9&bQ22UoJ^>tyI-$y|mHf)c{n^i2$rv^ZEL*uC3T4I?%umKSsfGn|vyv;aKg$P7VG)jgW3HpMw}Pu=b|`Qxy3IDB1Y!gqeQi{q(Q8g5at_o! zCi1fLD5?<-Tn(rTF^vF2yu&7Oxm_dsiwXwv_dxGBk+`OqUBBK>3u*fZm)R6g7u5&6 zFrg0Dfa6ef-Hy>O4!;WvDcUeq2*(KA09;L=ySk3gU*!UU$h(fXMOFZImdkI}y#bVf zPSRcgxg9+|Sgl0ujt!I@A_KWhG9Q+T{C?d{h-5!UqDDol$u=>#*>1MRxL?|QZn$d2 z5GD13mEHtw40(8$!n$-X-iw_EQogG9X$#?)()A}O^shHD5nK)tI7-?Idl z%M3YyziS#*&N#TGP@@ZTAkP@2{};E>t`25V)ZB54t&^EQ5*Xs$bzD02K^_7F)SxXq?e;zdEXQ@VBx)M5iShsa?i(_Zh;8hN`k`O+nu#p#lXE1uVkRhel90oeHf7 z!G?tlJgBG8jV+~oZRv+#57WvLfkT>;Q&cs5|Gerejj}FPkybA6K`hnLU;rYi0 zk_1@ZMyqN{$h7a(`XUkwvzBC(5*{-C&JXHG@2ZiB;|GS~cB9AThY83_Ka(=O>3hO$^Bz zO{T~FYGo#Tbr!uTHgVLTi8+M7!lNyLS>t&37a{~f^?=GVk5jj+$~j&l#Kg5tF9?Vs zt@cWb#)U3zh3lnJk#l6L&6|BFT)c&UEw>NC_~nsv0&`voXIi4=js^F&R0H6&C9RcM zBT*Rj3qvbnhmasv>4e@?1HbY)=?@BfczwR^Pty47f4)cjzGwWty!cai8-C|f3_hQgVc^;@Acx@8Y{!QuY78%7 z_`tDn^Js0rzMbig825|U@=0w5NIV46J{V6ctwQynwcA$LsB(x^xy=-2MP@J4LWg-U zQ#+I#S%`xz?qcd=g5+XOR;Tol~Z<;B?yV2zAWQJjZTmun%98J_DRNUM2DEWAFwgao0dV1iglhapgd>L_@NF*yT< z$_GNbxL&?q=A{;|S(UnOZV^IuOHg^k94XsVdKvJt=+dk)%+^fk41Z4vu+A9ikHfDfLgG@sLLOUE>ScBA1gXv z%?i>e(5BtaY_;;&`7|6JhGzD~WL;^Nj%%hdeW=K%hek3{00j`AQ9e&#FK+uh8oQ`o z2%>G~P0e6Q+kLJ(l9Lbn$MpteZDR!AI3~lv9C1e`xX1+t!$!eq5%GGrD`>3uA0mtz z4e+{{E+XP5)a7c%%BKp$YKYTP{7}8K%;U7CR&5PBmq(`+vrt0v$c~?TUw+CPMD@|8 zvDzNKKPIe8$~A0?9qo~4iIeDCyPbhw13RqU?V4Xt^ea0EU0TKM<1Mz<^Fg-xS#i5h$7aqA#rJOAk)Bg{Xm~F_TLMf$l+z= zBYg2rNqCY-!4on!ukWa!{`j2lkz4MKf)DSE7D+hK1n6t46UDR3?$~Uwml+Yq(c-pJ zo5=~zOq?$l(YX(j2yyWiJ#Zr*kJQEE-SuBBjl?)t!lWx_S>?5{X|;+|;jDX{l&fwk;oDOI0p2hn|B;E6xJjOns_O4|> z7p-4gly+Viq!0!9oEVkV;aK^T-v;)_Di<|xPu>4}34oh%{>1P*a|zjnI${%aK@>N% zn&@oU;iaudRScD)fg?`I=0$H{BLo5x36%_7JhzFQ?$+y455_CIElUuk>_>H?{*h=0 zVW7ghD=KxkO=mAZ^NKoJ-V`Ti;GEu39*_3k%?ia>&l?5zv*^R;qIru!ZBR+vA<|%! z)*EeYC9FVNZcVzx_<56?3GKq?!S*nuggqO_rj}XI+=Nu`W3~*MF^6-~{sg#JQr4`W zHErU*m~6*+$;3RDMt9QIOQI)vp7CH3@bCyr$F~B-T(v1VdKA^+eY1(vgu}t*vgcMm zhX0C5r`@ncoSLpMM$ob{2)9;MH0;vNSv1A6J!9<6nKNhz$&q-?o@#4*&Ai6Jw7!S@ z>0RV!`JwJdvyYF5wbM@~?M zA~LPf0f(bbRFi%5Vtb$<3n^m-b*2HWt)-(BaSUs<0fK;pm%Dws6W!wN9<_Xt{lPam zQo6%gg8&mXB%=J#aDOlIMULh};+(L5O7KBiV;V%QY5(AOEt84`rW!#!M1AgkMkUcsSm~e)-Si?U(iMQ9SB;KHS!YmYqFcL^J z?QA?<-`ahCV@5OLU98#ub#P&8vn9ColYHo z?&lM|{<9%+uRq_YHCd%XR*eU&64Q(b>35tmpO}uR77uu5TGV2~DdKr_7~+==Ck}6f~ub=AGR{ z^o^r>`+r!L|K)sEb{tYBAOr#`)dvEi{GW{L?5*vb|6^EJ&9h;(`9wS*AL=w{{gajs4P!vh2G*Dn&4iEZ({Lw`JVfO+40qsSnIz%K&d6wbe zX5FCSQgOc6{zsS({paoCL;vP||L6Op=ZCPw>rPwgP_cpjP^NjXGwx=_%TSxd5u=of z&+GnhY;A;u8YY8os3kt4poF=7+r)#=R8woPlPE!Xp&>RhrG0vFjc8_h)~XTHb|NdRz1Y*7V@xv;Non-qp+vS*_pqB8r{g*KINB z_RstE7EW7M_5RwG3GhPt1<&_~+VLHi94yC-CJ}p*MN8D4RtdB1AA)mjv;EgNl_ZI& zBI}5)Z{MY@D>tvM&8trL-)&a9BccdJ#>*Y?qS(|&&kA=aX4N-RQw1cs5+Vz0Ysz<= zWJJnle{A_aRpAVqL;es_MRIgM@LE4CJa}^uotPN*dB-ywS;{3=9;%RjT&!tmid}1=aS_veIsL zHb2=sz-8XgoZK-gc%Cb?$i044YzKkm0B+msJLjo=Uz`#nIF~UFL;)_wK7Q>AM;P>{cHm^h9vCdpCkVGA4Qc6dJok}148cn9y zK_$orPK|>JGKJk#dj}Q1wZpn8qOuPQ_7abdguRXzyGReieDhTpsYBm01dgILsQ*jl znENn_i$QghYdAu34leDTQS97dIsj!(n-Una@kSj*$kb%Cy>|Coqq-B@Of=k2sZzGF zJ#z4cZ=7W8+7DMRB+W4E=+p*A8%Q<3rIr!IRv1HonRqxJ)3Yo34ODF+w_q%eYjRw3P>{@>in{2mNJ zSrElPPj=J)tPtA_Dp3AxldB)1Fmlan>JoDa)RwhOq32f6zAK((vrs9$9pH=y2M)MZ#Y><^ry$>~)ZV9|^6O$br` zOA9ozEF&Uk@w`uP5L1UJ#{?_|&d`||7&Afw2bH7^HUS^_^N!H)vy~vwrX|o2kS0I_ z>ciNCte_=~xz&0|Aj105rNMveb!vLuUN@#n5&8Yx*@3|93>@-~PDao7xh_Mmf+TYz zC1HQ;GOb~(zJ^VH?|aH6zq+jpppFka0aLn#O;kq~Vj|egY+0&!&-3*+BwRxUjq9I?d zJfoWXnltK1ziSn*K7eFoO{?{y=oLuSLJl6ssl%80dQPKqd~P4HKxK90tvL%oyUsNW zCZ(z)H3hc^wC_&yU3AQN9^^$z`d`gPU>MT!hNKdodQ7a*a#fQ05jhnovWP(4_ zHw6Z8q9d_(uED76$ll1dpg0%e>440OFcjU6|#6Z?z(+<3?$^cfuB zz`nrMhF!UHxfr=WY$~=TUXH|D#MU;x>!rUtM_d|=$GA#6Imy3cw%8IIRGTj(wy3I2 z&$NC6YuR3mIW~erCt9n`)!_xQflp|c%ms7dzmCf1^7J7Q1|cJ7UN>?y#o65#S2)7D zJw|b;=7B?kJkIM(3oxFMYf_nRc!0^lW+H+zf}o<5z4__@9G{K9UUvOrPFH3u81X@Q zzQ9QJ;GLzT#RLG-NH)fG67y6d+ii^u?RtUR;x?MP^76HiNT7$&w7rEnR1E#Ox0t(y zXh1Nf;%UUHSx`O^UqDxc^{ZqC`Ds@KZQQfjHU&L)#+U;!$M%5!QuFtnA+&-;U9r1U@G|zgUkOB%yJf=y z;=|?Isd+RC$-SL(Ch49}F(Wo#o!ZreVZ8DWLow{bdaYb-F4pUk(3EZEW_-cM`~HfZ zkn{tCUL&pJWn!5kbwKYqBQC6jH=bW`h{zH6GwURbS`I*)UqG+^SY#N|8u~EZM}0%d zgU-kmuF>AJiOt;Vv}AD(U(VWE-HKLQS$(Nee^gpxfqty}8n-aW!R*vSE^yu!)5Omw z^fMfBLd;vOR<2!{a&af+4r&@2{@Y3**vY?o6xVB;;M^D#n;_?Ck>vdW&WnC1(Nr|C zii=iJ74i2%D#C&$C64{0cI&gqI1mxnCWQ{v$-9Ol9N_)evKKGEP-L*x+9qn43Yh>; zE&c%qHGU4dX>62a#9ku@`kVJI= z>WM5qOPsqY*&KuN#x45dZNIg$<_-H9ja?EF?Elv7ybAiOxS-RWDeWy@XjTs)b5AG? z_5cqlPp@oly)&Tfv+L*=`urgahN+RwKG(v0oBpZZE-!Cs3J21YlVynlga$Q`FzjX% z+Y9}iTurML&!I(j)a3PVu%A%1-~``XiJN%=ciM!IM(?=p+k8G8)ioNVu$N5xJ%?42 z>dVpG2^K2T%2Y*!@!Jp#aDiXk7>Q`aoNFrpW4y3eWDaOjl7Ya^3KdcDsY?WAV0kDH z#K#YZ``s#bl`IjAznGrDRLLU|!>KUrXZI1Vaz@cFe^gD=$<{7gngFJiHl7!S;uBKC zTd)+9`D*(PAm#^KAlt`x2)g_rAs(L0MNG(K?aNHySJr==c$RbN0k#zzX$C)H>AssJ z;AKCQE_aMhzo(5dUMUH{L9NsY?2-N?k*o)m;Tw&I=IKZ9bgCPX&qqwONykG*H5tsT3cCaz>4rlMwimrkZi`c@ix;L%u2W{!<>ZkC)Vi9HiwBdfHx5pK z2V(~?rW@T#bGiS95(WSKnDzxXd*@v7O(&u?loEnP5fFv;!^!(xGV=FQ(B1*BTI|#{ z#1+-IIST>d>dy>Di(4NxJ{GiS zQBtzyv3>yxbA{;CxG=qBqagf2GI7g}sF;kv9Om=H_#U#&M;j;vf!n93AOyQ#zpKFe zuC7)-o~0vmY>H3CF(b7Z6E2Ge8pN{%akJ=70BzcqnSrOTyra|_|2Dp$Yen>>V#jN{ z{aOboEeCUrGdAwQsd>7=$R#$}T~0X{btnjEw(PQg6 zVO>}VsrT4kh3wVy_tAqB%if(3!~COUkoA^zlw^Wz?w z@{FHWf9ya76#%8n92Jf?N9LmA^Gi(t)`}C#^l3yPN`0RUTPhZC1qUH>XH7 z(i5XWajyC62o0nBty#6s6;ymTmBlb#?;zazq@xm+Bek1)GlB)owTl6cTnbwvQfwzkPMFR_AcC5(X{RPNW!)I|EWP=0KsrsD5Y-a)tc)8q$_J6-300rkG@v@>rP^i4+KN zs=h6N$xL7J14^T=m)gX%PemefFF$2EYIcfuQ(+jL7Z97$7f#F5Q&4TN7dUZry4h|$ zec>z#2L+j9f*Ey4p{ynH>%axvc9rOFoKxch$iHIjH>`bJ?_hQ2c&}b-3%F=9-FN3m zT?QH^!H#O4Tl0PkzalCgpXP`rf)t0#th5P=qXxPSIjS}lv2k$UoNwI-2R~F)U#v1N z*Q7DS4<%WFYb@9XD&SK9wt7QQaLHu^(*GfrMk{@sjSVl|A;B~CcA4}ZLRJ} zl%rPOj16rmg>~4S&5)=8Hx-C*-*2$gGUqc$4}y@F5gTLP<_Gy3=76*g8%uLSdjE$peTnF1Kb|D+Fjtw>VvC9B87R1_$%7BUbz6!i z0$5Ykv_mies@Bhnl#OA|>`d^g2Q*dZe_w5-cC$??dwv!Xvwr$(V ziEZ1qZQHidsoT~6s;_TX_5Gf9?Uz;iWv?~YoMZe(v{`zvEJBphN7N^PSuGDx^-z%- zNvo1W-3lk+yjW|^yI`UM(cLC&uzGGD<$g3$?HU%_P&Lt}uzO=RwE&;ZtRS|##C5bg zNQf7FIJ*38zvE1DZ`aS^KOPq^1Kg^9^PP)lNmD0UFV{*fLz&iXes7=#a7V_$925d{e7#KmgS!1f~_&9GK`m-G7gbq6V>vL z(|F)yosVZdCZ{&IfzkWAJ-*$w=M=b*yMRz^>~+rGzI4!PArJ9=YK|SUYWaL$q{$&` zZ_SCvlQ{W4cx^scJ{ua|y-Kkh1t1XC=C1(LWP&i%T?EKMZ)LTtO{b0TAZlYVMKtI? z!8kz**CA$5J5Pe+{%IgCX`6f3s0 z4}KnccB)+jo98lHwD=a*@e|au%!cO+`Ej&_-&x#Y0K_{^I&-T`u~)MctVIXxBiG%l zVEuDDaZ+Do0kKjz7Flq{TCX%~Oxl-!g_1VB&NLjR=>uiMfH=35N3carM=7xPRSI5h z&~1cw4nAl9np;6rgwQ&h)wg0VBy)&6@pPN!M#^d14#Q(M7dmxK3!BrvVSzd6fI`#f z3~`d6=Q42w#tleEjz?f@h}B(jm`46P7&(!F3zQBq6Ww}du{uW-f4~&4hhtt7g4WVk ze=K#y2taX=_?MB=1<$G7oqKTs&*j?hgY$R$iU2ak_GfUp%>cExcsW86tLGtE&lZ70(e!)=jD#= z&OI=@$~c7c_nLum}gSQO8E>Lc=atQQq zv8!rt$hm|%{O)Gp8<7qU_$$+^@jBE2k@!_ zHOa?tGe4=Ao?{d(MqhrR#JMsV=dpzfievi5lu@H51 zrJ&NhH7&G8U&^*mC+e$=OH3*>ou9^yOF?}3mI{W~)+(^_7zwC>dgdUAT8cj%}rv;}*};JJ-wkbmwny+@vex#Aicsjb#UZArD4hk#7E#MoTup zpaAE9uh;oWz{Hw*b(2t49QnJ7&jgT4b02)}{S{S*m6d~0DRp?NXj}d~b|D_st>}k5 z+9RQfpn-8C7R-|vSG6py3_gxgLLWOjxqTYw0jDG1m2>q+jL@+pS>mi>_7q>^kS_W6 zguZj@Sre6xe@Lw%!o))ISKzLiE)hBW)#8dzDF7_(O3f&2%~J-|F^^q;Px-%`hH zXXy)oSHLN&S3MTu%2nu~EC1eHj84mn7J#(g==Z4EK-q6JX*uA6C0N1ORx$W%sy4IU->VcV7R6OGd@gop<1#z!mWddJ_Y#8)Qf;J$|$FegFNE=wa&=EFBYP3=RhrZVUv zcK#<5n{>(gjLopNuq1oi$?M!qYR6_z^%r)+6Kj1OU_Tabivu@u`)tQho$YgJ|jCeSTHxTU|e|q(tbYquXoh*jVjQC8m{kI^bk# zF%IffcL@7^R)d@w0iX;;uWxyK5b3`$I;Mbwl3x#9c1@Xx_7 zGvq3fx}6Rlfq1a^GYZ_ZC~vGfSda@|05a;7Mi_eP3MadIMHazxA(CAyNdq!Ig-gZz zWq9h4=Vqp4@7w}T{?H5eoeqdY#~sbaf%}*=(JLB`&((Uf$*T7>*oZg9Iv*C*=F3pz>ialPp5$_dR$UzTriU9F?Zt^2s9JKI2_c4JoUL zev*hDWQ`MBazrw^ze9`rrRsio*7e=(4qMNt^Aoz#=2l7_CG`F)GyiaSXiY4+2A*UP zH!QapsXv*L%nM<$C|z#^VvUlaV z=KD{m_-T-4H_zZTh@uyd6+&u)fIpkO{kV9`nlVcagMunp>yE8HP7&L^P(4-!&l5y? zBNj)H$TACq}G`?x>9)9e+iy` z#6@ceLWOtw2WHy+;^m-0%xO(GVHwV7>Isvn1EY zs^vw~(b7yoiN8MxvHs>6WkxK%ztmv{o##LMXWyWf9+!}+aeO+V6WRKkRgD(L%b;q_ zyX$oW6q13_2#`l(0iAseq;)3`$s64*S0WY9eVP5WHI7wpE|DJ}f-VE^hrtQlIp9W$ z(XsQjnDZpk3(+xyf@Sykq6>NGiP^&EZ!yQ?KMNX&7g%!3-T9a@JQlcDyH(WgeSo}0 zxx#dLTvYEvRN+53N&Euw4E&N%5gq&^_enG@vV)-iRMWWE5kxkb8vN2iF1AMx&)Png zLoHGdfB?cs@6)Jn@aRu9rl7YV`m<0w{qj%s5Tkxr`2HgF^_Z}$o^voAlU_X3`odGC zztvfQOgH1M|G+8@K=-S1y7`FY%p7ulT7X#W1$`gxk*25KK$G8z_~b=Bdva(aHpjYoJ3efQ z6P*SP4V^@VbVO~OCJs8X+(-|>T`&qGurxc9+A*3Ot9m2w0oV5uRGad99M~S>pI$+O zntudtRUW0Ll=_`9T!<1=ny>=Ry?uP?Z5B19O^9XIBy^0GknUc&tMXbnp5()np~paZ z=bmeC;|Z)rE00x0@gGs*Hy0U3j&cLs&X?hR>9T_YOg$m8PX-a!^)L0&y0VHR)Q77P zjr!O>LS*llfMV3Xk;z*K&+CJ9w8d^iw7*oy_ph}{g03BSrbg?YiK2{G71DGTl zHoY<4-Jn?FGF-iWG3{z>Msl-m0AceL+|UN!$eoJ{Z)C8IfLqz&7hWIwa|N_l<%y5l z*zbNFD=2d}-)T=vt*RJ@L9K+1rM?++jvTMOC<4mFr{Yqdj{t#e9DmYmg!I1PAe@V% zun*;;wJp;$(p0cqp!uTWn0uk^XQi#0F!<)XA(VH1hUeYCh@ikP-KO2?CYb9@u#f6Z zeZ3{NTYYB@dR#ZBZdFF_4*8G5p@%g=7n-@sIkrjORltkK#2qxcIJ#mj4DTAB6#j_t zCS#GCH9iGeT*At>@xZ$-#NHCLNtU1au2JKN^7@tu_DEHH$%wvlHa!3(=nHhOAu0W6 zig77t_AK`M#O8L(^5`L9-HyE-v~f0ns8^GQeB5BF{eY*1i|wOxw!54PG=$%O{>L8m zzthtGkMtIf#-`TBHctO1^fl)H6aB{jv)=zdcMY0x9xMJAieCu}0KoCzEUoYSzdl*t z$=ufFKcpf>s=v%NR^(siS|$sd5+zmgyiN44Glo%*T&_l79~B*%DA#zM5MLgMf=r?2 z8M|YR>Kei2wE#~{Hqu#?Q10-JZ-;}MGmwwh`}6S?_51CkhEIQ?_oOm`*^)B56u_tB zi@goHBL%S(I+(%}3gi0rTEmxQ@T@t~qn+|GyK&Fa$N3xPtWG9y- z?tu#htos^(GQQ-@#u#BJJvOB3E(Dv%S6nW7cM*yr%~|%JkmqLM1d8+&3{SbqFn+vE zN>QJghh{5qjv6?UJ$C?%t=h_xK9rdQ7q06UL*HY-@9AA{b(2gAwcB?`ckJNCa!Hns z*4+BzSbc&Qv?G^aU<;zmz}Zp;Iqcn%cs#wBtq@kC-2kN|?SUPppU=BSWF359hy!r0 zdfI#&X@(^bQNRf~u(qFL(zAwUG!XP)u5Ic^fn5k>Rwj(*~eB4l&FU87|4{LS;W|xH<1}v5W=;(s<>M)v&%s0w*6a` zWCkEeKjqw6Wk$QY=P|vpSB{EX|ASmnqfx~fCW5)l%7tTC6NIDa{4Rxf^x8nTz$Im4ZUI_RrE1Hb+M%(&X$dR z^d){|^MNX8X{L#KkMYOcD!|qqbQlAD7;b}=_3Ys)>Wr8uR|w$UmW7F*-wWb4xiVG) zXcckIf$kp^&q^dreuKDE%KEAtT-29#ugP~GZa>TMBj&_DX5<&<2fRa?4(Jdp zWF>v5HlYlkFoda9Xn9)zT;#@I*NK-Nx~ruw;Ca`PoMQ-Lk-;f6Gx_Gnd{0 za*sfC7dTh0Q@oG_jE2%SAD!ikYO(@_mCe{PXNiygC4ZCA>+O%WhRF!ZgN$0MN6Eh_ z#wtx!Wul(9EJ~r#yvo8v)P6WSnu>&8Z)-0MNbLDM^-)eTRl`xi+^XhxL9~@7fTulc z#PwBHLMRs!1%T$<`AdDhgD_Gu1?#ZVamc5fy;uZ$+72@+3XC8j4u@y9VOe0YZzpYlBsuaEt0~scAy? z%_3jL5)FFk!dBKdk{T7?<1DG6@>c63&`yQThuBGrdg!Cc+HrSi@l~J#@9WgudALOZ z&Tr|g6bZe>7c+@7>fl=I->Q1;`h9~4Xacc=eK=;*0u#_kkv5O+zqC)omtt%S(7&Rd zOTswg_>$_YmKC%GMn6-hcWE2;P79o2Rvd6pLZ`gO6JU6kDwLhfm9mxLeQIEMeSOxV zR3ut*Kg)6$D*i1hgu%G}NZ)%i4NSzwmbm=}{ZH#|m96UoJRAT36e|D#+kdm+8|gdg zTiNOx89V&PcHf1$;jl6Mq^(9TKRp@}f8^?~t~{muXJhv(#ywl)%qM#}uOu6A`|jpt=zKk4i3d}--Q@p;Gh^Pa7l zyEbRO9C|_MpK!k+-A*@VRxBB{3}N;kpZg&+-ONsi3i_#m)RchjzX>w&DJT=cHvjZd zPcl64+q2G0nzxX_Q6ZC2+AGE<%)ILdT9gwa?4dj8SwLOAM7TVtWrdYVC#;7K zklHM`VO!X+vX%A!9j47jDw)=zw%|tI@53YKm9~y3=qPt;9eZ|h+rZC9`i`ndBr9!h zV&w2y^<&Y}HoPjg9#X)I+u?$Dbbj_q!CZ%!Vw0B&bhUfD-EX+!Zs66gef!O9VQSWQ z@lBQr(UBs82m_fQlGES9^4>GTsYp;zHdUqoWEl0(a1TZ00$f7kDv#0dak#s_9mh_Z zN~mzO`2nkPcQ{YizDybxlwD+JW)6A{c6oXyrIQSAA0NL#}X>5U|2I6wVK|8#~5<%y9QQytsp1PD?x1aXu z_If!EWusf`@qIh-{eE&~#hjZ5Ng|HChY@$Im*&_YSz51U#H9YM%K@>mzL;9JWuF3R z=OCVtY7HeX@GrJF3`?M+p@p6TqE`zT#&9MY9szs_V@kW-?wYq{{yu(KAu#Iz69gO1 z)mGH-XmA#0Xs9kO3?O9`52r^(fd7~ya=WVs8Mgv10NM0silzJenvt^hUz%iu6mf&K zm?DV)B{=UbM0yJkP%}?0BiB>$VsfoHb)kkE;C;808Cj$}Eo;!Qi1A+L#gIOphjxjc z1=*g1sTpQS;R9q4J3=@6D^6gO;8r95orTqPUo^uCJxJXNK!VHnf(o*Wf8LEs!M}Wq z;Q2WlB1uFderw2DHw649plp7sC;Q7k@gj@rX?5;#oW`#b-BPob_s#;RbB;UGWE#b$-wd+=V4eA3<#BhUx)5oq zD`R>xlP&AZmceZtJNDTJ{MDePb#I|*0!dS1jfWX-fxiE8<`$_kpHC_47v8ujmLZ02@ZsNi@l7_hy&9|t+|bb6}y_k(TkU<4)|ufGhpiv zKPX%O3}!}$OcH+cZVtAqR$|tv=E72=C2mC*o;%xFn^mZue7~Vk%;jD&jew=x(RevMLNLV+DzA0vD-S*ySa2qbXa6Zm_9Ey<+qxKc zkB83?Yl>~(EdJ}d)M?J4ql})1Vk5fYzX5wqVx1sk4BXw_dxnsmCJ(HIJ1=l;&v-Io z7ADnXlG~hUNhzVnkN7En7W9|kNhz6RGnm(8t4=Lwa< zkOA1I1-_;UA^ua~_og&&h{n{NBy0mR#_#i^%dpm;GOMCp7t_dPAk)wpbRc}k#ZGX%*$msN&*gr#^@%BJx{?M_YZ2T$n}=zsb9%YU zoKwpWYryI+6%amL4mZ&bTRu??*L^2IhIA3)IFo_spZ05~mdDa%G+bbncoF`GszP0s zmNsl4jBvl6GZ7skus|nd1xfZt2XChLjV z%!Hz(<3)$jY;Jc5qAFcF$zzv=pC1>Sfjh(CXV;&eFAQbiZ@ zDjOITOC5)>BK+e?woS-4ed@|p+L>ue)GCH%eRK~nud zEjM!GIsMe=tTd?A`W@4EqoIi4iUWqa~$F_<*k(KZ)1P-vAm*v>Qua zgglo;J~)h2G{e4X2XjTZ^Le=jXgEcG;zU+F zjnUK0JU~yD>x+a9o1K#%QabeEm>%oDVJTb;dGV$vRJ?zmoS+x+{d}9odOzIbH1BkM z7K4JRp+u0+lpmU8*n%EeBv^{p#ZdNY-}o(X1JnF18R(;wxZsSDH1$uP_hmjJXwaF} z#pPVmh1QBvIuc#Z8&M*J$Hz;$YZ$rI8Y{o-rG}e@(a*}9Egu_Y(q+DW2!Q0yRzED8 z%9g#kh!+BJr%F!3rnV->Su^=VDllyZ_x{H{(og70J0#4q&On9*HS^3z_KfuPGF>J<#Es=o0%XR(LB4e^VrNU5T!6;We8SUOA(U}av-vqY zP%H3xKCa9tfC~__8KeS&YG}YmtsWHgcS2YbG^na@zSIhoN?w#J>&9OpJ%aDGnOYVo zijYk%e0m~j>pFOh8;a(p95q9Po2?xe?fpm`e)$oxdN?hh@c|jm2Io-p~rbb=HaiH$Q%Y zv3GKV=x7uUY|>;rtpuGoSL?fcegjcCKlZ|VP?Xgn|RdqzC-EXm!NHQlTEUjYU) zEgGm3CN?p=Y!7h)4+WPyUVrRj;mXjqUgxb2u~S2456S8V$a!ut?5MJr(GE24XOmZE z3nS;RKOr`SHl8C)9bmK=l&qUalxlQR;L`kHvM8e^6U$!7R--d{UyPsbwYpxy6YIw24$usm-oSOG! z0H5?gRg8dIK(pn3#?0)+`ur{pXp(X6=FJk>S@A}?BVBj{>%r)dF|ccy01lEhyx0tD ze^jbhnU%}?XPT*2qTJRtIqGa{8e`Kh4H7~QRQZsWS!&yIp+05ogcp^t(7LdR9aZcm zBL$Vev4(#C{zx-P%5mio|6Ts~R|a=F(T%CC4tQPL_J%CFY{i8{+^P6{eE!wqSp2v5 z^g+c<vn*GqImNkwifjYxrr#M3a* zIjntCkl@+~9>&;m(In%dor z-sRyB>5F&Z+{mFz_38u4TmEzx=Vr^XGrRq#l=)S`xvY?p$6-;iKL<1FM)bit2qQGN z^O*dX4EERtj1DFzk)d0Gs-!w{^*EE|`*v0*)~Ng)78IHPrO*02u=mR!A)~eRKu$3Q z0x5L<>#M(|2-n`g`TDrQ<5(6o zLMnd^<`B@`q7k9~Jb4&aW5sNbTeKXXrODOBKJ59nC!_BM8bpg?K7S9d4#t!N4&hV# zkE|-ZXxKhLo>*>JB?@+^{V1@dw9C6NVzy!@jJ&9=nk3qEO^2UESIwCLnwSebb+r8n zkXKcdJ4JK3V=au~2|kb0@5l_C7v=yTrN~u|A8fa`h~JsWU2|Xr!Z6%NhriyxE$$S9 zIti!P!~?J8z_ivyU^c%gnXpJwy_Zy`N?bVwd7u&%K--c-UoO5$dwUl2H5M5v5GNEb{Z1rL-@DF7~`Sb9k5d6DSzzHAWcaa)t2 z2pbk~8aPD_tZHC~ARM}vteyOuGqf#6&-g+ZQ2Yznn-yMM(`hzqA@B8JT_LfDgt|TThMgvykz} zJ!McL>5a_+MIBw0TVxYiRs}-^1~dWj(D`&wdx)uAleTKpe5JOp0OZ}omy`m)fxV7n zVuptB?4&Qt6l#4Lox&x5SsX(Vt!@>g#U0y%yV*b$l{3wN_4vwubLP6s+xlnM5&k{1 z=*qg-BfQ7~2<68&TsM^a1TF%LGq`2kSB#G z4Tbb6uu?~9t9-(mF;B2g*4hYeO~>(+V3#=qh|3}+77zmQfqmkGh-uE^@D8D^h}F&I z!L$ptYumYT^9;ByE}utBP^y#@N!CqEv`|c1*2WW-z-TR9))}6+4EV|QQOthQRcRga zZNlB{Zfgm>ZfLY?Wwe{CE^40{z5gnGA?LUJ*=yfIyL&qEv?35igaw}Vp8XI^Nih-# zUIZ}x(!gsbk(z(XLxJT%Q55IK!~q(eZC^Eiw##4xHY)TtPZ=POgWLJr{dBixtS+Rd zVgmLAQ?@Nl zBq7~eaeD!*-qa zc$}cwfd>;Qy{3!E6;|@KL_1--#kl-9!sV=7HKHt&+qvYDUCF^A;gS+NZ1NWHQ=&>; zR!gG4en_4eKLlw)0{Y<8&83`yT1xyeM?b9}SuuKFuGV?R(#1K|3RGa=Zns0*FQC9$ zSfFEBJMHq`g*9gRB3Ifvt6L(?B;pw5NaGDw71J!|_+zM$n6X6i@47=DgWxR|Ws~9{ zca(2x`cE%AQYq7*(5mZJUUOD}R|@RiZIos5W{v>#$$;b%jMs*1{H;`yJ4+B5%;x79 z7h6uFaUskBMo_*85z2P3%k}&Hmb1g#-qz96(vT(F)92ApMaAL%)y9P`A8}8Y$HViJ zu~<0G-=eNNmtj*|bW5PlR74*853V_O_#E0=vQ)g9GJs92UE4h?s-Nrvr^3# zXmii}M?4K&u)PYs0=dSZgnXB2aC=o~VafWDvwAFA7>1kS>pc~ncpO+g_L%!ZI14vc zbar|=JCtEXB5V6;PjtV;5Yw#WoEUL!#q7PtiU#j{H_i-@KKP!k_ivd0Y&KWKL-y+Y z=9b0&n$PL~o8!;Q_CHbdS?a$i`c{PR?w$aV+3LnQ%4W8)Et=^*7IR=^@r{qTd^`}L zIBSh#QCqUPIyR9X&m0T|x}?UoLQw=jU=MZ4d)WsP)6SMLpcvu@w^sM|D{<>sQU4gXP>!3)JFX^OP6j&y3ZGmsw+z3eiDpOU5WC5)WtR=N2g> z@Q2!Is$?`0As?*=FMm7B!M zcz<%f2~H`>hjXmz$2@0!V1|8%4}LNP%RXk>VC@)*kBW@#i5Uwr2Kmv*XEndLX(*Ag z_B$`WMr3wj$|i)l>ho0Wx@~G6UKQc+&`M8MRh%QHJ2ZE>;Gkt>6Q%j7UU4onoB(73 zpC8S$gHT50b^;a;<+VZ6viSlXEYrFA-ny<+bZtX*t*jchjNb7kR=6EJ#!#PcyyL=U zvQ#+OrDXWasz%bvzwvUyaKCp^2k?+QEvr9+ds* zrsZnL%UB@77un0Pa&^2t-}R2;u6>)D3x4YU;G0Bx_L%u|rq1FxbHSd|PeC#k70%{e zIsKeVFvZI-L%e!+nS1WGZTPLc0wnHr`3hjvPK3y90#8M-uH}xn$Mv#BxJ`NZc{4ig z80WxMrs}iM&oG-5tOF^H>&BDBhphVenGFb_jGxV|$W!B1h{1$z)V+x*U-d|LHT=!Y zvL&kJL(6X+Yqh+d?XBpeMhF7}gg66%O6W4R zZdB<@M(ckI-LBvn^%Ajw}WhdsDuo7u;w{NWv{@p6;%zzQfOUR0Lyg69UV)E6eg z9ZZc}Dan1ZG3HD{8EuW~_vB<&jzZ}jg&;*ll2j;(Gm@)$si4Jxz5OHguzD35*LfsZ zkp62EJtw7oN&ANf@Npf^p2~xHizKWDvRi|wg(5buLt-D?OcQJBy6jo%!k1>x` zMXDGB4VLM4(3cavXxMrig0i{D1Sr8hD7*^LqLhCX)^I_PAs)pZTG^!^m4^N?(jsp4 z6ml2D^Q@pB;5D>g&d~H;jqm-{*wFBajK#c^jK)k(9N;*G+S+lQmH4Vp{@Q56be~46IoX^Bu+Er)3@zNw z9UAN3anU;Pm+heBCQyy8OxcW5x|>_;;cLDKTh&Hi&_dI|?ivZZUPa=y+%vfY9Y2@8 zUU^;f;3K7rn}g>iYM84p)lbv6T235W`i`uEPdx5}(Y&lkRmBI=HTK4gJv%>-Y^l6~<0ai?L;?~@QP_CDbI}{(W>Eoz-w5}{k0Fli2T$$nA zNuNzX0YV+ykw{KnB4`zB0r)BH-pyklH!>f6>`9_vQPZnB^~n%JWfdV!6J56JFJaN3 zK0#>@EPz9~!bdNP^5k)5D4(+w2SJ*r^B?-zGYoMt3dpCHx4UsX52A?Acw;%^8tI-p z%=xr09GOv{v^UWC6UlJ(D~??nCxm14d7*fbDn2a4#NKoUYMJZOC8DhM%*p`c2xPuH z*ZHgo^OGx3W{n>pa^BzBfDw#EgYBzxT;mNqJvlZktj3*`lYDY5bDzXa9DjZI0v8{ryI;V38Mqi4U2ucfA`7`ZFdU zy$S&NB%@3c7FyY zxO(utlp8Qee(~_9T4R0|gkXJih;kB$!c9YmU~qf4z32tXHNg;w%xpWed;uW_<@wY# z4@L*zuAd;dSrjle>g0V;sreJEBI9cq*tZU>*z~SbpkK9{^+2;eUUwW6+=*v}y=0fV zYnF;rwEsmPxA}0|NUvSC-1Pr?aO;ob-P?eNr~CU@KXkC9fXW@uA}lN9ocGV}*g-Lt zDl=BIhVkm*0ygYkU>BTri>1F7p8Zpp5-K*Ymz8klKoK~M3_NWSpGt^}K?o|wzUCsk z4YU3lJ&JxEdKSgbY{r8gyh0>&x$|H$%gI0LIvegHY!w20iM+j5>5GN>d>FdI!epg0 z6zPU*DHlHmzZ4p6;td>*4QHIAvu$o1*p1H$CNQke9hN!ecYvC&Zt7^z}VSD$N&iI&Hu6@v5gk zQzSfX>#!&X@&C)s86uH`kEmHe+<-kGq(Z1sIe{=Y4`-<^0Zl6*Q|v0?An`KiLV7%p zpEzcEi=%X`J7rM(Aa(-u5X{>G?>g9g~arm7yxIOgcf=T zZ2fnkFMW5)Fts%K$T={7$OY|Il;Gi1@{dd8ZLHqQ@?MtE2fWz==H}^(6lMCyw2X*ZM@>%|-PDtiY@w z`NkAiG~_-w8{xU9m~6q2EooWJ&h*y}$OPD@{0`!_mTc*Y8L^Gsn3NY+O?QVo3v^6u zi<}*mMXWry8z}q%&gJ79=%l4MYSSQ+>Jy@!g2%To5JCiR=JBnZoP108Cg^Zn&byUs zji@U4n6tOAa($MC%i0)uE3Dl~fR_d|ishMMCJI-R^+z|lv_B-2tKK0={EOm!M{((yRR;$*_PlQ+YV6lAc8g*Y?Wh3dIL?FpNY;EA1 z9JfFCTnw=jPvuZ;DRo1Q3SaX1c{vVl-6?t9>$seaZ-Y6)9D`SVUBT(FA+75eNRm#!#_=Fx9X4Uvkl8qKs?$DV285(%~s6Y46#g>Xo5j>(Er z`5q%5??>fXU4YhfVKAYE)wR_2Vpfd~QK%PNFuIx^Pwp_7(k^P_3m=^&lVxU2soO)d z!tX3GcHE)R+*zlzK%}Ii8lt+$Uo{_c?QD)mH%%Gak|AQuryV=E>Fn#M)uzmhf44_5T5RzfzmBIbenF{-6NM2rN>OzqA5w z1XHjIu<=}VW;<;T4c0fqNRwPVha=8n*9JLte4JOkByxHs3Qr;tgK)835+Du5GwsGu zU@DB=9r#U;x}M(M`AuGhs>a)Gk)}`J31dD6{B(MHel=zfq>eW4J3AbTL`yVo%fr}= zr{02(PX;|yq8F~{lSo%3L6Wn2I0u9X%}7 z@t3bN26gLLBJ>+-v3!NR{))48w7tf1VBI-w-xMia73SFUb(0MA5=J@l-|DdOv{xs# zt}$>5EN=}ay$pd=RWUAN|A{xsY-W_bHfxkvdt=UQo)0)o%JKA}XUI#8B=DtMh0$eC zLVZoX6GS72!?}KndmP849HKGy`)uZ*0Rfk#@RDv8>9h;DXKt zSb^cOnFY@HFoWlG)5Bf-yGyA-ST)f;9}eU2SX%VVOp$2k%F#*gDC^9~p(jd2hunok$&LdjN;+KGajT+U7Xs4?z^ zD`FlWL4MCZg@_l^6Phy-(A=gFF(8SW&{Qd`g8;tUQE<6y#>mGmT~AGj^Yx&PX0$0% zjn#f}uDGg-LUk931{ZBw$eCeYqhU)=rK{DI9&F0kQ(!J z&D_w!1)xkyoFHb5M}INSf?c`7DH`V~8C4qC7p(1!!o#q6%B22Ge`B8_0Gh)JOeH@2a8?oSj5#$qq9wpqQ=x*SQ^Ax6jx~Gb#@2^Nb`O?rYh@}wZIrDI$)D5ikD7?YxN_caJtVgv(Xpw zt}g>L+dcf73Z3ysjUOyLeXchfo)7N>p6;#6NF@RBjqLHhbw(uFkHDJaXVLMJ3X)*; zwua*uJDw){+Kch&KasNO2kEY7t|O0YrKb2jtr4{eaIvMBH6bK_KYGe=2POyxK7gC{ z`Vg$$)=bg)in~fB)36ki)DZq1Y`ICQv!!<=MonE#Z(e800&|P&cKiHT9@0Ls9PJ0G z7<*|B{42DTS?t{oAV2%ISlxG_@Svggq@n(xd5qjhts(mX{Le1QR<+#djddvpK* zhX1BZ^1osFntn$F2dyYRFEx4y$O-kBL(jx(7_LobXs1HDsF4N{ysaSwnn_bp)MbP? z6G(?WFI=HXRzvsrA}xXj6QL*5jzmk~djB)V->e-wUGvU=HrvfR}#=FA>XVhkyn1Wu)zq*xW` z@)jIYPHWa%{Nz##x5Wd|z(OzKaeg#V8IjfFFO4qM7f;L9-SY6`wBbyM{7*zbMZfik z>&lcVVaKgRvMY_MF@%f-&6Uj(kuBX3rMttrM+H-w42MQLsSREbtA6D^!s_Sy&Y$ir~s1lRzvpf?$ftP{}JCS8!T(0>em&nTfxXF zNAR~C8U;~)qKx!P1p19SHYtV>joO=}2be`rYDoPHl-=Bpuz&0YvFnpu&Y$FT4zBs> z`fIV)h8`4mu&>9f1F}zs?uh`{QkTlh4L_sgLq6`2awsXam-0{EIR0?DiETfnYh3Y; zEx+D|+Btt&Wxy)ugx5LfQe-Z(pizlA@Ef-i0xw~Vr%onA3G`WR^hOkoq#!BWZ9>DMRiYqvVVn%fO0nTcM6OifBa{u=z{`P05mM@BN6>B-WBVDM3(Rtyla#<0dKb#-~ ztZdyBZYG|o*c~va3X|on1H_P3Ut`tD4=qROOmon#N7kXjU`Z|+&YeJpto%A?fXL^W z*G-GGX)|jhHITJts2#d6d*>34TIsg@6y!T$~lH4mjxuOIL0<8|eRT4~ZA ztb@_#)V6PmZ4xf+B#`Du4F`W!pGFe7O>US+qAu*}a=yh{ZF*24&>#m0=PHD|P*4(M z^}I@xX0!Ou=h||&)_-LMc!$2omFle?`*B-Bm0f`B6lO35Un;U{BFoo9 zloZ4;ZG7sK{ON~|so`>N@V2U14C4v;r($QcvZY7Zu4q2BK45}J-BGK}ER&Ch7J>W< zBG^<8@3jwwG&8`llg^FnEG4@3srUD778J`!F4+=ZoUwX`T+Ro4cNhZWZ_-kmP) z?z{`e8XS#IwwF5HsAe0#LeV>5A$c-r6HUX%1|;_FL1wpuA#G%+1w%k23=NDs)|ks+ z-RdhE>{dA&*oO4Wvv8`2BfuDom0>rHw-*N1OcR>k0xI>-N z07SXCv0-TS;Bz4%Tq&Sp_5n^4lrP{@nQJLHZBr$&$u|=_ES_E>v*d_sW2c_O>bS-` zkDZk=%vd}DO0<*;GD-@U{ZzQpy;#aev*Yxvgf^Mj4>E@Zn(#$Ems2L+k5EYcrLpE>_)x@|NZuII@ZY#-ke#G}g)=pc5&EYAP4tPfxYX zzhQnsSMaa68t)dt)#HpkvQ9jy+s1P*X^v3bTeiX;y7G9--?|x1hh?9VrH!%cFfnhA z3InhoJDUF&XYU+cdAH;bpV+o-8y(wb$F_}5$F}W`ZQC8Q({a*qI(7%|dFGk<&GenQ zJ$K%{*1iT#exr_R4hb7|l5Ej{o9?`4kw7S}&yDj=0ZoMYI)cJut! z1ctu$xuW%aSE>ioPRT0cSA6C!{{(B5Faz@jE=Xv_TH?ZwJ72&4fvj35LcppJSLTP` zSMI}zL|N%dy{7T6DHl9<4%Kh5P|ie@s#g{&yk(xfsfTaQd~CckO8ef&-$2VJ>$Cdl zDm<)OepqI<8_NE0qsoX5Paj^l(epMl_`{`W-ge0mDl#839ad;W8M; zS*P^4hyRI~#(-Noc-x>dZv`45s0-oXY3Dg_V#geaM`p7X13${sOaEPXrc$xOi~b-4 zMZY`gzIC&`hbYXZJ&AH^o;t{c(+v=8eDGT7S>FmyHHXw+`LH!f&*l4ci%6FB6gD0h z{i7BRj^Fs^ojH0KL1$P}0P*yR3acBA(2QBbaC85A%w~d$TtwF*Zb2qHSihS~2}0}- z*%HOHQ3|79!nbM_1Bd(Z^+Qlsj;U>lYvo5Bw0ft#P9EwDQ!)pyY~|%SlWm>Y6&?*W zYEE2!4SHy14d+ENj`W0K)W0O!1S*ivs@jVO)L%ET&-+>%Xk3RLUvx0a=&9=^OXA{bPdCkb}j){Y$~tb zbV@Rpwop35^Qi_w0QLRlY4GrrYWMT|-o-m*iOm&<%?Y;-*RdSJP-i33V3H$wgDWK* z1rj0>64LZ?Z}OcjjfQ+CjWv(dO+^)6!syhzFH_2shM5x^)9E^2$Y&L2F{|2=3~X;s>=)?+P<+2-%#l9>P}cW zVa(F%s-+9+WN0XK0dX53;sHO!=Nu3YD~*?n%}^}3w;5{feJZh~GRG&kuR8P&-PVUJ zO7Kd0{64w&HAeL8h+v|6Pfa4_ZFT$Hm=T-H@^nVlm{l7pd(t;HK&FGSD6-*DIFUga zCvYm0F2QRgLO~G;^m<>BJYVlF8E0lLJp8``aSxV7_NCWTN{(V1a#$$SD;*2on>_}+T_YLQtqm115gMf zZq(J6hoK@*D8NxU8#v>7(ikHfQvKBtZ-h=LH#I42Ktz0VD2ZtzxoWBdVB%$OpJq}Y5%AMA`nYFuasd;vH~ePrf#!U!z&lrJh) z$3H<34O<%>?a7+dkeBDLR)j3~KaQ?lLG1>NHYJO>r+(q27=E(hutt)2ui_w>7lrI5nwhC@_N{RPM?QRP#(cI!h|_&{qk9nMrA zak*>m1n({lq%#XnoW#%Zw~qy%zy%UO9@*-((#P2_IWi+A^WB-*D+^KdcSwwyhp50~ z`zWvy&7NR?Hyy^n4@!g z2bS@^m1D`|(;6`i!hjWSnd(X0pl90%(pflRE;%{5MNU^PQPoyUf|=s`hXFtmFe4XzP4#b6;f^`Q zUCh6zSad(9VDrtHpkD>^Vs#=2{;(6n81uGNT}<|>_imMp0r;0MxeD~-hKB2dil1I^FDFbz=vYixx2>St;fMG})>({Xt;}@kJqZRWx z_QKD7_c#i2pr1&1r;dJv!HNKgp*~_)6Y+F-ixTyf5{L@0o@Y<~n8dbWU`9g(NY1kt|LSa~7gOhz1GSv8P^JYaAtcBTm<7tw^h(6Qo<5Nw_oW0sN5VY>_*ST`0T zA0#BGl-eVAL8}k59l-k zT%Y~kPo~<#o>%c=`3VwdihUeaF;>xHcNsTFh!3jE&7#M5!6-t*{WrnAHBl9$uYWPm zHG&Xw14QCx`aPpg+Z0d`SkRwf`M#6~zk?0TmqjtwxNC3tJd`N?S}(60a&f%tliyoT zy#O=!rn>IyecJi8%R45b-fR+Wk+Xx|P~l56+>cMk*RYMOw!l(Sm&+UudVi(%U8l9Z zred*&K+_9F-=%1>MxCrIwv8l_T1gvNOcUJ?VXxo;4N~ssR4IR9KblnDrJ5}d!;7=k zl=)zCfa0u^T)iOQfbmvRSZ4YG`Ldb@&(+XWf7!-~{H6YJk7$@BSZ~L&=QX_t-j4w> z;c~%EbQSdK%FJi^1maw~vPVN6`%2fcG`9s53VQboG{=VjU8E0Y>D8GGW&~`(JE1n@ zU8_N=)dQjH`$x}DFOK7!sT4e^D^=t}m5sIh*s~2#kmdFd+}5g|CzFtasLS7Tl^PWm ziif+vog7u^c%7!G2vV69a1Iv9ni?H2R%7;3dS5a^-P>wK`p`Z+@V4B0|Oz( z?>mnGW619&Hy?;CEd5@a04rdDPclwI_MmStPkUVxJ39q1is}?*&O`IAL#z4-5o{3# zENE-H60_A+LGIG9pI=;w6(Dzy_fTF-F|K{1Wyq&XrRnVzN!))a&!`@gGA)1ycDSFh zgpnK`ht{)CN^@oTF4M!yx6DpFz<162mqHffd=Yg;eAf1raWX!fq zrr|hZUNe$AjXiVf!9J{z5JW-Zz{GRj&k-OZs{A?PBiUp}G}E(-g89~&2Er*YBB8|1 z<&*<0sA)%*+vs;%P$cQdP>6U-umFEAaJN^Wu=0I7gXde!0EZikS)mIF*5Z$$53O}S zb!PcK}mh?N3+a;7;Jj_ihM|r1&PnR#>v9!w?4&K(73pzxtukUWEqO-14yFD$&%@L7HE*0a;1K$lU zN5ki(U?7UdR9u%c+Bcr;CrysiQ+@;*1Jh1QK{6N3GX&e!Ok|pDO<%TlCWDC##xgN4oZ44b<&44 zui}(Ac)2UagoUMDAIk({(QI_AO#<@lqLjOcZP8sl0BA^tetZq+%0$1p;Yk5&U^mgU z+8~cP_ny!889&xz7;odARsDXX(CgUqM`Ma;@izh0uk`pkiDjQXFqM@*3K_;3@ySRv zf@;q9BGCNWz=|TU>)+&xj9j7B!*4Nn$jUFv;g|~$i|9a@TbT6a+K_g$+ZGr~I%>H1 zn(tTK)YRGNK7Ibtwzx~)jaOjP{wR2`_43NN6U4hP21fB1Th1FYs{-NZ+_W>)o2Aguf8EZpP0fgwHn~xmGhN0uNsyO%jdHvHkhO2(KOj3t2LC zQ2_Yta2UB!isb<*U5txWj~;JHc%=iG(RS%7-K}DMMyIC`G+(Vr+U^0AGkS+7F7|7f zrc>r%Nf9U-xAu=ik|Nf8b*fE1MkQ7fRN9F^Iwq^eT+il74Sl9YhviQZM#ofuZw7ow z6swE%__?>d*QiM}bc@bKj;;-0ZOB-FCyUvb6H0Yi#`dvC>sN8VM;XN&CPk=`@^c@J zIy;#Z?64T^faBRQC9O1f=ZY!$@6SOAg{{n50YSZ~YWxL@VzE9WRh^h1HK$(igDw>N zq#P*jn=y5IoRYRK9%_VxaE$Vt=%#WYg7>-N^p@wNWQm(W6Bm+fr7{p`MNEhSN+GxsY_ffD>D3~O1QiM{Xo)ii=ya^<<}<} zBg~4n*uI^(l90G9VSz}EO%{T(Q&W6QZYunbN95E#DftOs3%fc>I>FV;aoxaW`{uA! zI$$xTkPYFTGRVx4`xGzhRTBn76~xaK;uN59Pg7sd@y^h1DcR?$FE`lYzWVWrrvWZ- z^oFGaSIjNj{MsCRLG^KQy>bn6&$H^wzN&xmY!Jj=KP(OO{te8O;fU9+f)| zivO*MM%b}<`-AD3&W2c~)p?gTq&*}!^h$ZxmB&*c*4^z7Do;doo}#RUZvxGg~l%FERo>BCJ4gX-diC_my-rgl~~K|Q(q(6HtI)9fp?Z9h|Z}{8<_Qo#^{cS z*M-?4HmCavjS^IlT)wjJZG=99M#nX8J0Ww=r1MD7cY5s6TUHxM!HE}FHJx98pCL~k z!riTbyI5|lX>&s?5)uX@LpgEs#jR+Wf|O#tGP5UxP48!+K*MyN-9YRgDa1-<1Lz8W z6~+?4jXfZ?O|C~VMp|C^5R)AGc#&ao3+$z!o6Wms%2jVzE!Y;jbT1q#wixdf3yoY-tPUzJNpVXJ408GiLarj7|ExGkDHYbM(jmx=qI9Y~sk?7T!S{5p#FLpT z>{~cRXVRX1jl$OQt}^AGhx4RDe>LQHZ$`UF|3aQEq6JJx9jv{t0n85?kBv*pDNAx% z7<+tHgiM#=5oxu4Z<=k$6%OPUw2qpsE9oI{ zXc88wIn*Ib9p+=%LiTI?@(`j?%GQyDP=WJKm2j{-NQR!PAEys3LI4-jKmbpnq})SB zua9IQ3pcic?-P+1x<7W@3BFqBAK!i)U+CYvS`g9+b^$Lf^Qp-9;cr8ziQO@n5vs2W?zqA@lP;n_v;Skydk5%SfaL8)f5iTy`~ zNjCn}NkhX2C-=QQAGRI2l8nzbbr4?q)RUr&$w}3NFv3*cK2bGvWHI9}c#b0I$EcoK z^MgmIxix#X6eP($FONvUO#EmhCcgc}C}qmcy78sL&QZ$LDo&}@{)lCcJ3o#tmeD*z zn6|bZCmyJKkUxBhn$`MQJzm6;*iS^43bRXUqddXN!i z>DbQ6+ilv7{ebHk7v#bY@0rV`lfxls-(6-p!5UHhA8cCk%Z+ zL@*>=|7a0?E0zlR2;%!eA$yEr*KA6%9UenN{=}Zp`=B_(i$>a!Vd#c_BpmgV?}ib^ zQ0OOpk|;iSF@AiclB8ZEnd%Ec%S+GBFcXINznr~5OqRDm(IFS?X%`7GJ)Qy&0?_Ga9 z-+vAqN0XQa_eju?3B1P)>`(cz&<<+8-}lI{h`P&6BrQ~!y;O(64Zkge?F4y;Cg5`) zt!|(Fl2WV3ag}aAb|MUw`Z4FOmmfL60cpT6pNsHnbpXrvzUtTh-V+Y>AygGS+10L` zhn-L4RN5z->|UQ&z$5d?hq|kC@=X-R+6%u{QicBZM>Wn17w%$idCFS}d~VFVp99~A ziOp7H;rJP_FbA0xZnYz&U>PG%+ctXL}}`IaH&LCNV%_I7BX%7RZv%dX zYQV5SjYY?7!EOs3ozE#eNF+@o@{Euar}3I^?XK4IeqCY*CE^8f(@a5gc;F|A)629i zB+%#*y4#D>n$s=o88<2)@`!~dKkJbQQDMWd6edwFd)y~;bdMr;Ij;~r8y>9xb&o>k zyi;D;6nR8QmI2+dC2dA`uj|^FK1|1MeldS=xTMy_?Zb4Wp$eHiS603i1m8{A0+m$) zd51wF{UKcFF!DStb0q-W3;WhQy(bkyg;$^@!D_4YCki&!?3q*gb&lsgNdA#EV}2a} z^MME4MhYQ4`N4dip88Zi2J_|9b^5s_j(SDaZ7{~cj8Xk6>TVE9TQ+==PvtMT=H^=d z_#o^(o`FRI?hr~wVoG(h3YQ~QB^P7{4v3y=S#_%W+k^=ehR6*0zWae9s_kh-V_O~t z0(ZRGa8p>L^M5l^pOd$<|= z!Hb400M!#Q$2x*58SZs}Iwis}=W=D>bi-@&flH8Y^iEiaS{T63Sp>dXvwR1 z+{O7#8!~9Z&g^41rbVs#>;`rgc#`8;IIy#Ux2cFNeueFatWulWOz_-pE(-fgLYBX`qBS z)Y4=V)!w5)kS^3<2?_|?@Yr|(i!f>GTSIOw0uB=upg+9b#St?G4e%h&VuhSg4!Lslf!Hr=#xzC`;AN3pNl6bsFaSXTd z&GhW^^tPePEdn!49n~{D2=YVmHzUmQhD(X8NtOI&rXQZa=zpHilg!6-709?x@3jFI zCcvhYkt&e+j2mZfXdCY%uu6d)LNIgnkt_6ATVwO+VK$yhiw&nmXONFY*N` z&pAF!0qggS4I$WE8X)do4FvH5%xPG=HgDtTwqUKqu1q}_HFvT!-*DYHLL6p%9Kb*f zqKvW(BV?qj`n$78KV7Ejkr^5JuUupCU1$lvM=c;$KO$1T%19!8ouvu1oRTWtpcb4s z4rH;fZMuOwgyD8n*S`EU#2l$M40kDf75v0ZVi?qT81w!Ni6BOZbug+Gn%stW?Q_^P zokyN(cr}3DAH$)`-ToLlkQu|mTO#WcP~=7&yj3Fe=$5hMi@4>L=Mcc>PcZfgtrVvW z{7@6d-rjy7lo2~{psOG+Jff1lFfYQWf{5dWjPxa;(Py)3vy)_@Ur(d&O#lF;guE<> z7fz`!A1is}V%=MkwB|*wzY`}h7ON`88Y1v*=uIZR*9U_EngTjiaboA^>i897_;Nk# z)^}8rSv;#RA3AO4eSS4=1~X?)k6f6NmE%X zn^d;ZHW^@4SSM|tV?T&KYX0nXoV^b6*mEutwSM)1ZM)!4`|yDr?9gQ0`V)&2^j;@e z(7lRB4XUwLo+1HMI;}l_`T6WXF*O6v`YJHw`(^N%ajRz3rsD^)VRQ{1wc>lTj9yW*P}$!|Hr{_uW|AJ}%ZIMMnL>YWve? zXSuiMrTgT^`nkrIU_w>PJ%z3B9;7H9wKFa?V6L${o6i2F27(8-2+RG%#QIajwy@`@ zDJ`akzt$##j8s3XcbYn0e*QgfO3PSNt^^zaUZpj+1RSMB3@!v>(iB?@ghQOgsP8_$gc{3MxPhy6q>q@+`A zOT_~q?v)JaBL+vg*y4PBK?Hld{W_me-=1&cwswr*JW|-YzVl|Rq3dty=6&j)E=X)w z(wJ0GP}rUxp9owaPC*MjM9eML3DSYn!ai;aq*I3_Q)AqwGU6PVZCaIEj^RXHZ%MG` zpo^&~;83R^(i)7xn2p)vdhf}~m+#4)GWQy;{+Zf_(d@n(!zkv)0``JZ@31p|S%Lz| z&IpTdjSD4<4=eMNh?=#{Io@TzpAh`V#}wx!-0bj-gN_;<3YT-SKEF>sE->Hw9-@Y0 z@+NL{*%6OXw6zTDo9YRpb?DU=jKgXBpjU9sBBbTXI^4KTwetoi162tS=%cF3 zCXy?hL6$Sfi`T*)W(323CUHVIHd@;hWN(B#Wo$L8H-{ML=#Q%yD|Asu_gSAf>!KUb zfLSORTL)HSSIH$Abopu@XKUKnZ47H39v-4W4n{eAOxST|Cd$O#6J-q^b4DMwjTJ{` z&Jz{;D)wRG_U73!S5seFE<#y}DY4*FflrzMDMDUt+4n{m?4@`JY;q4*XFlVS;K67# zf2>btzP(_5;NR%z*$U?{_a-stByH+b99R9I@0*b?c7MbhhO1>qI{V{G{Jeh2RUS%M z9k>eo@J1gZK)k6#FHU0Kt5tmfw-9OiktfmE9voKihITqL^3b@tQUn{1%JJT9bWV(0z(4gizJ*F zNO`9vk=r(m)45oexVv@R;$HKl=3V5nzi@&OvfR2uX8rTMfRQMHKTAu4mVUi)5acjx z#IlLCl>ooLX=422W1@oHw)-J%&Y@eqNz~B^n~@?xR1s9JAgsFBalNqV0rMTNOkzDx z0g+k|Pfp>_ZL^)*+pCD&kx!kfDwSVa9WixTeuiP%sYY~@jC^~2CFio;kPwVic80fa z>qp$(A51h$(le>&Y!EV8lTx6x9M1;Bz-Lz-`}AOGM9M> zXZ3tAOb+Pt$JV%{_M%C5`jArBI=9feaL-5xBoVbkzz_nZ<7 zx!C3Fg!0ep4u}oP-w~2thvNj!m`lXjbV--i>dXvqg7zc*7Q0!!>l-W^2Ebo?i4B~^ zO>N1Xwe1JZSB(H3`rWCz0p{XGWInz!1nOsRELcQe`1ZM{_ZyYgSY(`k6bnvPMC*4C z2IJfJJwQPdb*Plo4Ge8PRDQzNY{Ke_lQSBu)QCU(oHPYaAHp92Z#64sJ_lkIWa^r8 z6ntKUQ4*uO~#&7e6GaK!v$=?)Y_k+{l#|-mBZ)+rf|a zesl5pRg+~k++dd#X;&Uc9!~Sc_qE4m_f8C7ey|uiE;cSM&JSVN5;M5~8oVhw(Xm8m za)32ERXH>m0}I;&gWDWgWKmj;Y&-zUvl8cq_o&si`H=E0!85r`bjpdF9rKVJ3g&&V<(XL#V~|RH@$fgba~l zRTmqL^hxcV(Wt-^AR_4g^zasQ2@}dsI76m2^6l!nPHJy$);-p~rba-RpYz6W*+>O* za1(lks$DI&dC54g3Tl_2lg#{%p2J)Vl)+9Q=%o>Z}jY7_$_X zldKpkOoFf4^8S?R6S-d4dt7cVzc_s;rqF+@ceD zhix6%kgQwBU+tEid>41nEiv(Zt{2Q55mq+z%08$gV?0|+4v0lrVmvcr)rUBBQZ~bh zmjofTys*?J6gJ3r^Zy7C8N4Fb3%hLCTxWnfo$?NfJDmb-5uhnn)=diQTCbOmcMa?a zfGhR5i^s<_GHbFymhDkj%K@~rQ#*V<_6svPeW8$poC{y_7ms%i@dYX1WSp>WVJVoc z$606$R1aoRn)1Zl3K&0)IxKL5Nw(C3;li&zaGhs9_D|t!()BdUGxiez8Yll+^Wm zM>ayw{h-M(POV)g$8htyd?r;l=p}7cVzcXp)lO>3E!l8yJ2ic6Et{mBED-eWU2D`` zjYco3+@5;rW%S3l1PF84SY@2h(s3w7;K3}0w2TVp_Txz|V(hi`6x+9<=4635P-xrD zRYjKm5@4lr&JK|5pG7TN~VT`I8;==*| zO)Y)~5l73n^CU!^*7tm66LQ(YdpU|sTEN=eUdISpK)VRTBD2(z6Fw6Cn#;w_^EuxM z!?TYmTQuvNxpFAoK(*gZAt<;6^eBRcoaeGSI0PjCV2zuPfyAWiOg>7!Q7mwc4~mDW$}Z(6g6IMOg1og-5#b1|G)}j4}^`^$@0J^`@VQ1^ByA8 z<u%`V$|_#PR%cCjTstGM6uyNoPuwI09&|!$89X+7N!EE^lu_6Kc4i zN>SQVA!&dTSp_818SzZe)a5+JAz9xUuEHhc+lo+Vmhco20OwBm3ru+~ks;1E)rM_K zfJy4erFGBUw^zbIp&xfXyL!)X*#kP*MfF-sU!mMae&HTi8R2 z`97v=NhE(>q5Zsp8XOjbFr+BJV1nI0_blq-$ZHc`lqc2>j@cl$mjRuKb0MU)y@_Xz ziGRhhElgHC{#ItEbwtxgQb*yzB%|aUU-b)d$F+^}tS0Pr4qDR_#uwfL0sDo$(sq>0 zEvfw_ezquHdP6eCX{|AE_%@5pW?Df2VTp@1IUx)eV$66AM_<>~@FNre@Vz|o=z+Eg zLFtp0rh*zQsxM~EtD+Z#h#S@r)w@H|2>~aKG~VEdGx`+R#lRHUGy1nIUe?JHOp<`U zP$RCq)62eX%)-FEg@RoRQ|-^|UoQM3{Hy3|Q9I2!^6Qqfm3U!&iwV-=BVc)+;iSTt ztZ$MZiH}>}#{Dx@BKi_DTQs9~D?j^vFM{-DU6lH!-4sf8f^AEc5qCWH$X~m1s!By4 zZN4a*SAy&J@fh)N@#T6@lGkU=PMHYO`9aZ}56?4BV`<_?bAEZl3_hgphn15HzC{HIo#s;a&R$YfR`b;S%~s5rpo??VmihbGOOxXT6c; zU*OVd-rzXom9wZTP~)MPxR{vULA+K@S5}&oIcTG(wf!-Xywl$~0qVljgz$uF^=&PK zRVwWzYAg94^VwOS$5FLPH-$HzIVY*CP;jfwA{O^gaSAvgzc(3xq0UPK9gd{J9s;Oepe9J*hbyq64c$y3Lk2J*-A=cOH?l{4IHWn@k zJco%Kv>;~Av)!wy+rGunlUD`@JD}5XOEOgV7{=OyU0DUO8|1Lm*}IKm5u^>Qws%E7 z#@fayXMgyzT2??G=bQo&_c76+Vw(Ld*Hs?t$!n zV7;V2A^p1!MiW#c^}~3tp|*maxCXgmmpRo0(zZ>UznyDF30?k-BYtVf4-d)j@SbU6 zW?~vjSQez8I;aPCipP@Vv$Ejzu+q(!?0ZKrjtQvNVnQU(0>*W2b zePg#pI|zjHVEdUSy||>QeMT%=7PM?GW>ex-U)$ZB3KF6$ z+bYI>d8nPuw&P+(nAUd@i5`)3r5JpNJBS|Jmys0(`;AObFfrFdX3D{4vfO=6&kLH23Z<~dHTr{v{KUY z%ju~#>KE@y2+Fstj~Zf+_>WQ9&Q|$<0L{#{``N+boyWsl18c&2MjaAx0MbD%M5}a) z*nI8~VEpg}3ZA?9a9PI?bgYS&pfQQsuht(Cfn(~tlj@w`ZXBqVXuQ%%3PBm@8aLlS zNI0-NHm%C-zdh<*oF|xe9SKHbs!xw427?W#T*IjpyR*?Av_P~=T^R<&f^%Rzwo1Z;HoO24F?)98@VaG9#qrj-vTQ&RxaXuFP@B^7Rmgev$ zXU1g-SBQ$nkbSm{=xRvxx6AP@E`{M^=#P9+kyQvCGJs_+n`#l4g?HSzKj8-a)#-?NFU(CCfj8qv}VL#`0&S7JA)`&w5T6oDt7-9hY&eYA}g}g!jBU zRgjp;eV~XqoxLfQs$d4|j3hzTtZvYjR5g7d>PV4sK6ix@c`1(^Mp#4CV%X}z7t-M; zcxB=Jnz}g`1Wdn_;etKnT2Uf>I{yO7P>C{vL>ofO6eDgGeHto`#OrBl!qYJs`?(+E zcGKr$ezhw}`Htjk-n`iU0#CYHioae#i%1T!U+Stgq2Z7=Kk&-kl4FT8tvosf5fM{N zdp{T4>}3pJeuc*n#M*e~;ky&I3mV1X8@!$I#vUJ3)Q4k9zj(|?F(1n^Z9@+N?<97u!<71rr!Hd=c?u&6ipgGLB)sPJ|cJ#&x*i*8>uangl_f7BZ~Wn>lQ|(8$QN|0TJjdnCDo5PV*fyWdL=T+C(xRA?^Q!f02C$t1k>+Yo3FC$rVZs z3=O_9uAWe&310`~p1e(sz`iizp+tTOkctIYD$vg#6WZ_bVYLi8el~V=4`uKv6pfq3 zJVMZaPCU7_%4st`i=-I0!E$7!OXEWj@mL6m*m)+Frmk8zGCFCyXz9X%oqNSBoKuB} zmpYGGs8Cynch5_8=pZe2)wrv9SjHTp1J`| z*|Ln_t2E`bRMzIasMHw2{P#LHr4$;R<1zb|7N1%KA}8YUEr7C495PTw zbj~&uo3X38e6hQxN%zY<19gog|LR6O2W_xR?50~~v{_%o9+6J5*-YSPg(6aDJN z2*s#47Duorf7jH#%A~RcIvA$IbpK}rT*kdID#rq=G#!}ztf2K*h>yHuPXrAhw0l2| zLBm8eLmp1!m)Kk;?g4c@ZYO$dx*wd~se}vNg6%gqg4j|sBfmUU=XXatla;_3nfHWE ze`J-aVA4ZQc32@H0=u(fIzzBTRadhARq1Z)Q=X_`nyE#m^?3yB+6#^SCj;PDnpz@& z*OsQ*KjwLFmzN<5^l0h_fG~`7KTM>0#w2OTG&KQV?I8G!SJa3435C`kagH>8gGy;` z{dkPysP@y5<4-pt1^RL7q{?jL^cHc-blRnug<;GqS;dF@UBsEj8xOC!&Lg;a8bzeD z#5Eq?k>h*#&q4y&A^b2gWig8=0$#g8z6+)^ADW$}O+c|Ri}VPUIWpNfGfwb8FL)JN z*GVJI#}>$cLS1?67Jn&RJWlMCkHW2Wk=20*c7++#g6*7H9Y{p0LVJwtCTmvZ`a&<@ zX=?2K(<$rBDsO5~YuSCNb&7T~c%Ynrx)>%ZrNDHSg)~OBF`6T?T7xiVnqm;W&0=vJ zM;apaJ2euRIffI*DDo9bl1-qgNr{tv);7bhCApFmFlUu2#bRYL?L49gxjf|xNfk`~ zezkUb;e+Y{;`$7@2B62cD`kCa<^wxJi|;lXb$JcG8;SBYZH<*f&k`GFuTD%vVdt~@ zGE!9tUe`*Uc7$Y2t241VBnPeFpQPg*vpPwOJ;TWt8i6~V1f4?#_OzQre|eWIjrakt zhLFt_)NytV)D?Ot^gG&i>uscU$m!Zhq?)Oc`-BF=7ny+`IA_<+HJ8&o{Y~AT&KK>M z6@&M^-uIiWzImmSQ~XBMgynCYl-#3yQe#YlcJs_Q%$DXd)5m9G(E(gM(mJK~KL!*^ z`t+u~zdzI(gCQ<3tG$yy-)gCPbThLK16}H!Zi2I{=++2x!l@%~MS>jDD)T@#-Ln|^ zS17pwo9YC4yo1(8eohi@T!b;R>=L@b%QD4JT8yOPeyAit%ZWS)L7OM^2;yTn&)V_gDY$8 z9p@b*kd7my4JDx@2Teu!xThC>YT-r-tV558o9b@KnLdj@O z9LfPJD+OJEw!>OrSPKHDzL%nQc@g0h8wr}xB|229yVnGVRvr~b7G|!cV7_={3$^@4 zwP6<0;$t9!wxQJA4WAhA^7<(ZpODpBzf}24M+jY2XU@}$*71}O?{}5EOuP!k42Q9` z9{R6UZAb1{fVRwSH)4^zAqsvd?Zup-u0?*EPpz0f*KX33C{82 z@@hN1;d%y>CBY}K+QXbySJ|FP_15b#quQEo|G-C28+g+!{>$!i^}QMsc5qrddFAi! zToIs%icMyGh1_A3gdJrL+xaIOWy07)br69Eho|Lp@W}@gpqgyklI6_}#bJVo7AX?)EwS^b3z~j!2_x?MkW5S#$(jQpwB6Zt-)O#Vj(| zIg)pd27LHzsYaEsH;AAoF*EgQk_Lz>a>(%11XU!GXE8|`tM@G>hmjVX&-1Gy{upGN z)`{*XA2bk~C5t}l(f6Nz*<)Ye>L>&7$DN#)m)eKxs>T#6+8;nP;^?mzd9UrFgZII= zgB{!F%c0Cam43^&*`#Wn#Q~OB`7%wQ$0}Jg{{2HDdVp!&e$+r~?gc?>k53KM4_}T9 z?VitdyvouDs0H2ykp1Ycq1sSR_h96A@O$~UWkfyv;AZtV*jrMjTY|(V+yvKKbeFEI zry!=&ACT(le!eC^d|4vfp24`RCVzU3*X-|LgZsJ>eqmL0CR?^82*_mDKv1PjU|t+m zIe!o}e{X=%0TZC6c~3y=Ye)Tnax)qwtRL;PQrz8JL=SraCjgOj2y6j@Ej<%=GiTtIc+r1pdO^B8*q&O{x^@R=!d zpTQ)2&z1*3$P&CRAEmZBHtIfuX9(Nb!GY{u2eHVUDh&E0yX`XUZ!}2kvi~AB`^qT6oOhM~xxKF^M0*#%*h7TYMu`}s8Uq@& z!h*vl3&9aU=X*7{&JRZV3jq4;v76DZ#2aMPc zmHY+Rm`vmD0@Y1B=0rkVIYhkmv$tQ*sHbH+ngI$2!o$4N(fZA@}uuIW#7y#kBTQK zA4DnY{R^D>#Ng2`1p|)v#ApSOk-kHJRLx1v{9(SIgTh*MgP4_BMxS19RDPHdeKaVF zreDSvw7TKf9!l<;In~}EC?t701NnQyqJ1u{M(m*f5QV_GyOe~|NYa=))iQu+{@L<#D&4j z!Pdc@gTa`G)0~aN>ZrV)YTvWAPANCrvEwNzscW4^fOBV3CRLqe|6pbYy3_A?k~`PK4C@+D_0{| zS7$3@H&-*4|AGF07YNyJ0*L`WSNvb-Te=zlPlEaHlv#hHyz;M6mR40&7dKE7msgS# zRuli9fc_Sd?ljl8DqzHfH?StJ&~GAQhW?jW_y-_kHwy-5Ge-w!S4J;8+y6mwf5ZO7 zP1tS%t_C)6Irx5q6-D^}18d@7Z*FDrXULCvMtwkih64&v{5QytK<)b%7V954H8(SI zb#pcYa_i(~=JIEDMRXep&w#9c0!muoH|$W9|3BFOh6rr4`bUQ6>L0QTfuPMmra$}! zx`OsEfdUh~xU0_#*e*wqC!P&;#*1^N&pKlEAJA{W9pp^&# z-mCvEJx;9uBZi3;1JH`NTG{_uLG{b_!#BYI05IUj`+X}W6aHTj9Zb!fY#EH~fd<*d z%H@x0B6mq30}50Tav-yRwSW9;{Jm(ar2j|Qzm4)A(O!qUnACs_@&Xlt_ct^iivJ^; zg|nI2UqbyedqPi$;DSJ@ZUVPG=Wl@Lz_R}TCtYy?w!1X@BX@dIgd1)^;SB=iDf}B) zB+LI14CqYlU2Kh9|1vN}rgr}w7Ypn!&-}MJ{d%uA{Fh71MFIdQ{tNEU01LMN759H} zqDr^raewi%0HpsPuIO+5DC7MzZAYMWG;y%AvvLJ~{B56&{@@dIZqrwgfRw|5FRK5- z1OPC^|3@HEX*FRrX+;G_6La%_YMXSu+Sj6hiWdg7eSd`p{->Ig2>zM6qJo-=w1~Qz zw1VWHjGtA@cYQS`;2w$q07!oWc$NGkfSk0bxPq$qKb`rf`nTLPVgO(u3%E&tBb@2+ zN5U%N!ea8`f0{G57n?;V8Bi4I|0on+;4gpJ9RE(*+mb<4;ZFbnfKP7`P}r$J3-Z z7|a8$1mkZ~AO06f1J&Qu%Ea}*2ABTl{Qus!kQzw~u|P|B1yn)$-#|Q;{4*?fF{Y4=pS{d zg%jjYy7d3n;vZtu{*#mczSzY7F08*7drtU|0Dtu<{^tu#A|to|6?iVI2G0HWg~k^7 z-^mI)TR6A_8z2Mi^PgPn@jGtjvFg zl4B2NyCnetTBQMi|2Q1|ZLcq7{&y&8JEQ-vvonv1>bm3jixxdmTtYO~646wHMi^vJ z78N%H4a!lB!Du2*hnY9Sz--P83bZjAT!LDS5=DhzU7`enqBgCbv|`SwOI+ect;RL& z(MB7@x>Q@6*ze3^%G~$n-FF{w=HL67-|znJ@BX$o&&*HZ5r5IdshLrA>@4D~NAMlq zA5Lm@rb#ws#?+iV-r#W$O^Byc9v&Q!G6y^JDgdM;x&_LV>65cGT5arPI^){yLznyG zX8Qzb2kD?*C{bq2m^z-m{OjrW{&@x>R3N<~MJOp{Sl;4Jbvf(`wx#X#{q<%r8lWaJ z%iXz3nPG4k9CR7}asFiVx3Jv|*sk}LEv=h)D7mB{gIL zwHO;urdq427)9~o6b<-x`qpae~TWOZCAg<@w z?qHUIN#+PO+f^{#2AAGr$kpUp%(-%QAzZ`S*l9z$0$2gya6-uN>NWt8Skie7jbBxV zfwxY=E3It<&&C_&cv8FfN7jPfKi#Fwvv{urisg?hy;XfVrz6+Z+427usLx4o>ARU% z&na-nm)8HJbs{HqXpsJBO zIxBKuau%mYq^rP0?auh0)HvWJ7UJjzRu!5SEmyI;(J|j{b?A+{`8;gfWdDF!V9w&s1`q~CitEqbS#T_7{>(fMu)3Te>Vx3s^8Y+u5Nbv@Qe@EczO14nDA&ax zL$XGug>^cM-Qv;df`55IF*gPlB^-|7xLaE}E-K*AA;x^d^5wl%6Y{Y{vFd;I&W6q2 z^5k_y;eLN8sD8}AP@11=Q4cm3?GxXHOuSOIl_TAT$QDV2Z77Rj;mCA31T{6MPF+)h zL);O;H(6S`!MwO0bpnSAH9%TKakS!_-=@PY^@YabiT!AdW0k_!(;BLAJDqe^&yX@# zGq%DT_6NE_jw^~+$wGCrhz={AG3dxh2=)>LBhBD&qB!c9PG@Yw{l zs6;yI#J6`Y#sKx6#0+nyt3@FaRH$;azchTp0?=MYMj9A8aopStbu_Dj3PZNe-oF^6 z2ni{DsydQQfz+WX-58uS@C|h&y8@{$uVy$8nJ!_k$QEx%mO7GKlfmori{9Wfvgqc~ z?n&dqVL+Y$lFY$Ry`>gu&UJX3x->TxyK&6t6M@?T9NE?V#oKCezIKnv;j-~AI`ql= zgRhnZHI>k8l~9EZ>^rmnv*4uLI(4K%S&}r!@b_kfAmd053kkI)ZzLmM-P6Tj?1X#nX2ilZ@89z)snh+G2lB*tQR|bw-Yrhr` z;9`k{m-5sD-O9kHH?RCAxP%UydSIb4kYCyH^bNcnV7W!ykL=)N0eWQe8zJ^R*RwJ% z8j}R3G;!5-*h-ewy{1S@LGD#WyfO&;Q-u8?+Zy%TSl6EyZ>2jUJWd{=0pynwh-L>n z#72j-U-ie>;E>(b>=1>J^M2W(l<1(6XlvOa3TeoPEB1^I4%u7B4k@IoD>AF;%Oj9v zI3hnX_Z(VJg?I;A?LJv_=lFOjUvA4?G;GNTR|a!jpHIa}+4_5I1h$Ur-}dDHc)JhB z9nKcJkmKQ9Xf*);KFBs)1sC;I#+>~Jk)AielKkCup~ldDgu?os0w<<18BAz|sz(bT0Cm0w=5Ecr#0Uhbb4E9JC_zOs_irLl_lw^oEd@9bIJI_mnq zx5mhaC|f$^bex5JcOjM}+h4^j>#|g(j@^yaWCBryatqnDjoifW)%6CCWuC8nBQujB zSWU&YM|iG{x=tEfWsYd*@t2tLIqU7PIP?qgk>#j?ydGw+}^$A!XM zkjC5T7^4U_6eDRR_|;VvA1}kTwhIPK#xu_yXGFMocL5-jg7zQ&d@y<=AlCsQ)phkG zBc#C1ySzOonk?JO9_`J9s(6f?kk{O)(+n7c-fGR!8{|f#gkxAWZPKyA(HQ0YMts=k zo@ZcqMew$mFxnDaVN&}d+ht?Iy3(#7!5az#qw-F1)YqFj?8RQJgQCa+@hTO|r}~~1 zFj=hfPYReK!yiRqN7mx1BP$0Rd$G&W3exCZwuE6pA}C>V?i-r7dxuhMfg@|g{lnXY zGdK%mVP|SKWm-{KnvKav(%Kp#m|#M)k=YLX2S@N>??o~&Oc=+@*WrA6bb6;n-X0b% z88Uka^tKCnBOCP>+JI4>j~w@~$NKK@YfgMph`s?oSiM+$q2A`S@{m(_Vu0d^Ui*G^ z(Oo#A&A5BWg2lBc^Kfwu7SK+Uw z3MO*T#zJs7%+Q_Q>D2Ldv&GKKTghLm|8l<`I~EU1A!k-5+1o^FJ=d~_EdR|Beb*xh z`~sgTgr&@Jwuz}X8ZF*Y8NJnKFA9lSi_cHJynPYAz%G0OrwcgFGPiACLcZB0-BkbV znXsuDE(W62VK(E2k>ARzWnXj4&=-F?R@_^tRI@%khLMWmZ>0&MELf~U6oZwA@3+c} zG^;7klMj*X$Pme+eW5KJniG=>Mi%0?u5W{2bX^LD=t(|UG#(*y4rYPL=O9AL+kkA* zsr1F0t=(#YdusQq7sGHjlw(eVY*W^6Z38#gDN|yTD%PJ*2^Q1uQ#CY)ji=PE(;l~b zV#9MCJzy_nXfjVdg=Q^+3M2E^H=acaCMsQQo+$@Z3&mn9hkt&-u?yGSYCuVE?K!C$ zh`|X=DoI|@Dz=lCrml3Rqh0w!Z*eDf={eO*St}6~x-b0SxqrfKbQ0$wmADzAE~{oa zoF0qKQp~$BjpciyCeQ7#2f37#4D{`*D$w)wb|d4ns-#1!S5INFm@CdH6Pl3`B=-|r z%nR34i{%qe*p05oJMJ+5+JST3v&BS!e#Lt3}6cn41vk{+vmn06q8Xhq$52JVC zx$EHJmq3{AIy}AKD;&2|C$5XxpYNuesX46!F3>)D zHu(4_xFbJDjm{s3!#&~eyRj;0)QDdo)voDuXb!yIYM7lrDHKS5pQwUlbQJ^P@ld3Q*mjt%PbWn%2^T=Cw?!vcXI^Ad2$#yGH)pt zUxMP7CA3n~7O+qxuTBsH#6L^k3P>)Y0wjHj5ZEinZO8uys48#yxEr3;Y58#pJ~5s* fnGE=)39UXZmNyxV#-yPMCcQQ>K31DE%oP7W*n)Ac literal 0 HcmV?d00001 diff --git a/ultralytics/yolov5/.dockerignore b/ultralytics/yolov5/.dockerignore new file mode 100644 index 0000000..3b66925 --- /dev/null +++ b/ultralytics/yolov5/.dockerignore @@ -0,0 +1,222 @@ +# Repo-specific DockerIgnore ------------------------------------------------------------------------------------------- +.git +.cache +.idea +runs +output +coco +storage.googleapis.com + +data/samples/* +**/results*.csv +*.jpg + +# Neural Network weights ----------------------------------------------------------------------------------------------- +**/*.pt +**/*.pth +**/*.onnx +**/*.engine +**/*.mlmodel +**/*.torchscript +**/*.torchscript.pt +**/*.tflite +**/*.h5 +**/*.pb +*_saved_model/ +*_web_model/ +*_openvino_model/ + +# Below Copied From .gitignore ----------------------------------------------------------------------------------------- +# Below Copied From .gitignore ----------------------------------------------------------------------------------------- + + +# GitHub Python GitIgnore ---------------------------------------------------------------------------------------------- +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +env/ +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +wandb/ +.installed.cfg +*.egg + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# dotenv +.env + +# virtualenv +.venv* +venv*/ +ENV*/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ + + +# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore ----------------------------------------------- + +# General +.DS_Store +.AppleDouble +.LSOverride + +# Icon must end with two \r +Icon +Icon? + +# Thumbnails +._* + +# Files that might appear in the root of a volume +.DocumentRevisions-V100 +.fseventsd +.Spotlight-V100 +.TemporaryItems +.Trashes +.VolumeIcon.icns +.com.apple.timemachine.donotpresent + +# Directories potentially created on remote AFP share +.AppleDB +.AppleDesktop +Network Trash Folder +Temporary Items +.apdisk + + +# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore +# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm +# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 + +# User-specific stuff: +.idea/* +.idea/**/workspace.xml +.idea/**/tasks.xml +.idea/dictionaries +.html # Bokeh Plots +.pg # TensorFlow Frozen Graphs +.avi # videos + +# Sensitive or high-churn files: +.idea/**/dataSources/ +.idea/**/dataSources.ids +.idea/**/dataSources.local.xml +.idea/**/sqlDataSources.xml +.idea/**/dynamic.xml +.idea/**/uiDesigner.xml + +# Gradle: +.idea/**/gradle.xml +.idea/**/libraries + +# CMake +cmake-build-debug/ +cmake-build-release/ + +# Mongo Explorer plugin: +.idea/**/mongoSettings.xml + +## File-based project format: +*.iws + +## Plugin-specific files: + +# IntelliJ +out/ + +# mpeltonen/sbt-idea plugin +.idea_modules/ + +# JIRA plugin +atlassian-ide-plugin.xml + +# Cursive Clojure plugin +.idea/replstate.xml + +# Crashlytics plugin (for Android Studio and IntelliJ) +com_crashlytics_export_strings.xml +crashlytics.properties +crashlytics-build.properties +fabric.properties diff --git a/ultralytics/yolov5/.gitattributes b/ultralytics/yolov5/.gitattributes new file mode 100644 index 0000000..dad4239 --- /dev/null +++ b/ultralytics/yolov5/.gitattributes @@ -0,0 +1,2 @@ +# this drop notebooks from GitHub language stats +*.ipynb linguist-vendored diff --git a/ultralytics/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml b/ultralytics/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml new file mode 100644 index 0000000..fcb6413 --- /dev/null +++ b/ultralytics/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml @@ -0,0 +1,85 @@ +name: 🐛 Bug Report +# title: " " +description: Problems with YOLOv5 +labels: [bug, triage] +body: + - type: markdown + attributes: + value: | + Thank you for submitting a YOLOv5 🐛 Bug Report! + + - type: checkboxes + attributes: + label: Search before asking + description: > + Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists. + options: + - label: > + I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report. + required: true + + - type: dropdown + attributes: + label: YOLOv5 Component + description: | + Please select the part of YOLOv5 where you found the bug. + multiple: true + options: + - "Training" + - "Validation" + - "Detection" + - "Export" + - "PyTorch Hub" + - "Multi-GPU" + - "Evolution" + - "Integrations" + - "Other" + validations: + required: false + + - type: textarea + attributes: + label: Bug + description: Provide console output with error messages and/or screenshots of the bug. + placeholder: | + 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response. + validations: + required: true + + - type: textarea + attributes: + label: Environment + description: Please specify the software and hardware you used to produce the bug. + placeholder: | + - YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB) + - OS: Ubuntu 20.04 + - Python: 3.9.0 + validations: + required: false + + - type: textarea + attributes: + label: Minimal Reproducible Example + description: > + When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem. + This is referred to by community members as creating a [minimal reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). + placeholder: | + ``` + # Code to reproduce your issue here + ``` + validations: + required: false + + - type: textarea + attributes: + label: Additional + description: Anything else you would like to share? + + - type: checkboxes + attributes: + label: Are you willing to submit a PR? + description: > + (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature. + See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started. + options: + - label: Yes I'd like to help by submitting a PR! diff --git a/ultralytics/yolov5/.github/ISSUE_TEMPLATE/config.yml b/ultralytics/yolov5/.github/ISSUE_TEMPLATE/config.yml new file mode 100644 index 0000000..4db7cef --- /dev/null +++ b/ultralytics/yolov5/.github/ISSUE_TEMPLATE/config.yml @@ -0,0 +1,8 @@ +blank_issues_enabled: true +contact_links: + - name: 💬 Forum + url: https://community.ultralytics.com/ + about: Ask on Ultralytics Community Forum + - name: Stack Overflow + url: https://stackoverflow.com/search?q=YOLOv5 + about: Ask on Stack Overflow with 'YOLOv5' tag diff --git a/ultralytics/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml b/ultralytics/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml new file mode 100644 index 0000000..68ef985 --- /dev/null +++ b/ultralytics/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml @@ -0,0 +1,50 @@ +name: 🚀 Feature Request +description: Suggest a YOLOv5 idea +# title: " " +labels: [enhancement] +body: + - type: markdown + attributes: + value: | + Thank you for submitting a YOLOv5 🚀 Feature Request! + + - type: checkboxes + attributes: + label: Search before asking + description: > + Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists. + options: + - label: > + I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests. + required: true + + - type: textarea + attributes: + label: Description + description: A short description of your feature. + placeholder: | + What new feature would you like to see in YOLOv5? + validations: + required: true + + - type: textarea + attributes: + label: Use case + description: | + Describe the use case of your feature request. It will help us understand and prioritize the feature request. + placeholder: | + How would this feature be used, and who would use it? + + - type: textarea + attributes: + label: Additional + description: Anything else you would like to share? + + - type: checkboxes + attributes: + label: Are you willing to submit a PR? + description: > + (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature. + See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started. + options: + - label: Yes I'd like to help by submitting a PR! diff --git a/ultralytics/yolov5/.github/ISSUE_TEMPLATE/question.yml b/ultralytics/yolov5/.github/ISSUE_TEMPLATE/question.yml new file mode 100644 index 0000000..8e0993c --- /dev/null +++ b/ultralytics/yolov5/.github/ISSUE_TEMPLATE/question.yml @@ -0,0 +1,33 @@ +name: ❓ Question +description: Ask a YOLOv5 question +# title: " " +labels: [question] +body: + - type: markdown + attributes: + value: | + Thank you for asking a YOLOv5 ❓ Question! + + - type: checkboxes + attributes: + label: Search before asking + description: > + Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists. + options: + - label: > + I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. + required: true + + - type: textarea + attributes: + label: Question + description: What is your question? + placeholder: | + 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response. + validations: + required: true + + - type: textarea + attributes: + label: Additional + description: Anything else you would like to share? diff --git a/ultralytics/yolov5/.github/PULL_REQUEST_TEMPLATE.md b/ultralytics/yolov5/.github/PULL_REQUEST_TEMPLATE.md new file mode 100644 index 0000000..f25b017 --- /dev/null +++ b/ultralytics/yolov5/.github/PULL_REQUEST_TEMPLATE.md @@ -0,0 +1,9 @@ + diff --git a/ultralytics/yolov5/.github/dependabot.yml b/ultralytics/yolov5/.github/dependabot.yml new file mode 100644 index 0000000..c1b3d5d --- /dev/null +++ b/ultralytics/yolov5/.github/dependabot.yml @@ -0,0 +1,23 @@ +version: 2 +updates: + - package-ecosystem: pip + directory: "/" + schedule: + interval: weekly + time: "04:00" + open-pull-requests-limit: 10 + reviewers: + - glenn-jocher + labels: + - dependencies + + - package-ecosystem: github-actions + directory: "/" + schedule: + interval: weekly + time: "04:00" + open-pull-requests-limit: 5 + reviewers: + - glenn-jocher + labels: + - dependencies diff --git a/ultralytics/yolov5/.github/workflows/ci-testing.yml b/ultralytics/yolov5/.github/workflows/ci-testing.yml new file mode 100644 index 0000000..a6f47bb --- /dev/null +++ b/ultralytics/yolov5/.github/workflows/ci-testing.yml @@ -0,0 +1,153 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# YOLOv5 Continuous Integration (CI) GitHub Actions tests + +name: YOLOv5 CI + +on: + push: + branches: [ master ] + pull_request: + branches: [ master ] + schedule: + - cron: '0 0 * * *' # runs at 00:00 UTC every day + +jobs: + Benchmarks: + runs-on: ${{ matrix.os }} + strategy: + fail-fast: false + matrix: + os: [ ubuntu-latest ] + python-version: [ '3.10' ] # requires python<=3.10 + model: [ yolov5n ] + steps: + - uses: actions/checkout@v3 + - uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' # caching pip dependencies + - name: Install requirements + run: | + python -m pip install --upgrade pip wheel + pip install -r requirements.txt coremltools openvino-dev tensorflow-cpu --extra-index-url https://download.pytorch.org/whl/cpu + python --version + pip --version + pip list + - name: Benchmark DetectionModel + run: | + python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29 + - name: Benchmark SegmentationModel + run: | + python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22 + - name: Test predictions + run: | + python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224 + python detect.py --weights ${{ matrix.model }}.onnx --img 320 + python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320 + python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224 + + Tests: + timeout-minutes: 60 + runs-on: ${{ matrix.os }} + strategy: + fail-fast: false + matrix: + os: [ ubuntu-latest, windows-latest ] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049 + python-version: [ '3.10' ] + model: [ yolov5n ] + include: + - os: ubuntu-latest + python-version: '3.7' # '3.6.8' min + model: yolov5n + - os: ubuntu-latest + python-version: '3.8' + model: yolov5n + - os: ubuntu-latest + python-version: '3.9' + model: yolov5n + - os: ubuntu-latest + python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8 + model: yolov5n + torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/ + steps: + - uses: actions/checkout@v3 + - uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' # caching pip dependencies + - name: Install requirements + run: | + python -m pip install --upgrade pip wheel + if [ "${{ matrix.torch }}" == "1.7.0" ]; then + pip install -r requirements.txt torch==1.7.0 torchvision==0.8.1 --extra-index-url https://download.pytorch.org/whl/cpu + else + pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu + fi + shell: bash # for Windows compatibility + - name: Check environment + run: | + python -c "import utils; utils.notebook_init()" + echo "RUNNER_OS is ${{ runner.os }}" + echo "GITHUB_EVENT_NAME is ${{ github.event_name }}" + echo "GITHUB_WORKFLOW is ${{ github.workflow }}" + echo "GITHUB_ACTOR is ${{ github.actor }}" + echo "GITHUB_REPOSITORY is ${{ github.repository }}" + echo "GITHUB_REPOSITORY_OWNER is ${{ github.repository_owner }}" + python --version + pip --version + pip list + - name: Test detection + shell: bash # for Windows compatibility + run: | + # export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories + m=${{ matrix.model }} # official weights + b=runs/train/exp/weights/best # best.pt checkpoint + python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train + for d in cpu; do # devices + for w in $m $b; do # weights + python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val + python detect.py --imgsz 64 --weights $w.pt --device $d # detect + done + done + python hubconf.py --model $m # hub + # python models/tf.py --weights $m.pt # build TF model + python models/yolo.py --cfg $m.yaml # build PyTorch model + python export.py --weights $m.pt --img 64 --include torchscript # export + python - <=3.7.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started: + ```bash + git clone https://github.com/ultralytics/yolov5 # clone + cd yolov5 + pip install -r requirements.txt # install + ``` + + ## Environments + + YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled): + + - **Notebooks** with free GPU: Run on Gradient Open In Colab Open In Kaggle + - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) + - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart) + - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) Docker Pulls + + ## Status + + YOLOv5 CI + + If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit. + + ## Introducing YOLOv8 🚀 + + We're excited to announce the launch of our latest state-of-the-art (SOTA) object detection model for 2023 - [YOLOv8](https://github.com/ultralytics/ultralytics) 🚀! + + Designed to be fast, accurate, and easy to use, YOLOv8 is an ideal choice for a wide range of object detection, image segmentation and image classification tasks. With YOLOv8, you'll be able to quickly and accurately detect objects in real-time, streamline your workflows, and achieve new levels of accuracy in your projects. + + Check out our [YOLOv8 Docs](https://docs.ultralytics.com/) for details and get started with: + ```bash + pip install ultralytics + ``` diff --git a/ultralytics/yolov5/.github/workflows/stale.yml b/ultralytics/yolov5/.github/workflows/stale.yml new file mode 100644 index 0000000..b21e9c0 --- /dev/null +++ b/ultralytics/yolov5/.github/workflows/stale.yml @@ -0,0 +1,40 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license + +name: Close stale issues +on: + schedule: + - cron: '0 0 * * *' # Runs at 00:00 UTC every day + +jobs: + stale: + runs-on: ubuntu-latest + steps: + - uses: actions/stale@v7 + with: + repo-token: ${{ secrets.GITHUB_TOKEN }} + stale-issue-message: | + 👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs. + + Access additional [YOLOv5](https://ultralytics.com/yolov5) 🚀 resources: + - **Wiki** – https://github.com/ultralytics/yolov5/wiki + - **Tutorials** – https://github.com/ultralytics/yolov5#tutorials + - **Docs** – https://docs.ultralytics.com + + Access additional [Ultralytics](https://ultralytics.com) ⚡ resources: + - **Ultralytics HUB** – https://ultralytics.com/hub + - **Vision API** – https://ultralytics.com/yolov5 + - **About Us** – https://ultralytics.com/about + - **Join Our Team** – https://ultralytics.com/work + - **Contact Us** – https://ultralytics.com/contact + + Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed! + + Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐! + + stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv5 🚀 and Vision AI ⭐.' + days-before-issue-stale: 30 + days-before-issue-close: 10 + days-before-pr-stale: 90 + days-before-pr-close: 30 + exempt-issue-labels: 'documentation,tutorial,TODO' + operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting. diff --git a/ultralytics/yolov5/.github/workflows/translate-readme.yml b/ultralytics/yolov5/.github/workflows/translate-readme.yml new file mode 100644 index 0000000..2bb351e --- /dev/null +++ b/ultralytics/yolov5/.github/workflows/translate-readme.yml @@ -0,0 +1,26 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# README translation action to translate README.md to Chinese as README.zh-CN.md on any change to README.md + +name: Translate README + +on: + push: + branches: + - translate_readme # replace with 'master' to enable action + paths: + - README.md + +jobs: + Translate: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v3 + - name: Setup Node.js + uses: actions/setup-node@v3 + with: + node-version: 16 + # ISO Language Codes: https://cloud.google.com/translate/docs/languages + - name: Adding README - Chinese Simplified + uses: dephraiim/translate-readme@main + with: + LANG: zh-CN diff --git a/ultralytics/yolov5/.gitignore b/ultralytics/yolov5/.gitignore new file mode 100755 index 0000000..6bcedfa --- /dev/null +++ b/ultralytics/yolov5/.gitignore @@ -0,0 +1,257 @@ +# Repo-specific GitIgnore ---------------------------------------------------------------------------------------------- +*.jpg +*.jpeg +*.png +*.bmp +*.tif +*.tiff +*.heic +*.JPG +*.JPEG +*.PNG +*.BMP +*.TIF +*.TIFF +*.HEIC +*.mp4 +*.mov +*.MOV +*.avi +*.data +*.json +*.cfg +!setup.cfg +!cfg/yolov3*.cfg + +storage.googleapis.com +runs/* +data/* +data/images/* +!data/*.yaml +!data/hyps +!data/scripts +!data/images +!data/images/zidane.jpg +!data/images/bus.jpg +!data/*.sh + +results*.csv + +# Datasets ------------------------------------------------------------------------------------------------------------- +coco/ +coco128/ +VOC/ + +# MATLAB GitIgnore ----------------------------------------------------------------------------------------------------- +*.m~ +*.mat +!targets*.mat + +# Neural Network weights ----------------------------------------------------------------------------------------------- +*.weights +*.pt +*.pb +*.onnx +*.engine +*.mlmodel +*.torchscript +*.tflite +*.h5 +*_saved_model/ +*_web_model/ +*_openvino_model/ +*_paddle_model/ +darknet53.conv.74 +yolov3-tiny.conv.15 + +# GitHub Python GitIgnore ---------------------------------------------------------------------------------------------- +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +env/ +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +/wandb/ +.installed.cfg +*.egg + + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# dotenv +.env + +# virtualenv +.venv* +venv*/ +ENV*/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ + + +# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore ----------------------------------------------- + +# General +.DS_Store +.AppleDouble +.LSOverride + +# Icon must end with two \r +Icon +Icon? + +# Thumbnails +._* + +# Files that might appear in the root of a volume +.DocumentRevisions-V100 +.fseventsd +.Spotlight-V100 +.TemporaryItems +.Trashes +.VolumeIcon.icns +.com.apple.timemachine.donotpresent + +# Directories potentially created on remote AFP share +.AppleDB +.AppleDesktop +Network Trash Folder +Temporary Items +.apdisk + + +# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore +# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm +# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 + +# User-specific stuff: +.idea/* +.idea/**/workspace.xml +.idea/**/tasks.xml +.idea/dictionaries +.html # Bokeh Plots +.pg # TensorFlow Frozen Graphs +.avi # videos + +# Sensitive or high-churn files: +.idea/**/dataSources/ +.idea/**/dataSources.ids +.idea/**/dataSources.local.xml +.idea/**/sqlDataSources.xml +.idea/**/dynamic.xml +.idea/**/uiDesigner.xml + +# Gradle: +.idea/**/gradle.xml +.idea/**/libraries + +# CMake +cmake-build-debug/ +cmake-build-release/ + +# Mongo Explorer plugin: +.idea/**/mongoSettings.xml + +## File-based project format: +*.iws + +## Plugin-specific files: + +# IntelliJ +out/ + +# mpeltonen/sbt-idea plugin +.idea_modules/ + +# JIRA plugin +atlassian-ide-plugin.xml + +# Cursive Clojure plugin +.idea/replstate.xml + +# Crashlytics plugin (for Android Studio and IntelliJ) +com_crashlytics_export_strings.xml +crashlytics.properties +crashlytics-build.properties +fabric.properties diff --git a/ultralytics/yolov5/CITATION.cff b/ultralytics/yolov5/CITATION.cff new file mode 100644 index 0000000..8e2cf11 --- /dev/null +++ b/ultralytics/yolov5/CITATION.cff @@ -0,0 +1,14 @@ +cff-version: 1.2.0 +preferred-citation: + type: software + message: If you use YOLOv5, please cite it as below. + authors: + - family-names: Jocher + given-names: Glenn + orcid: "https://orcid.org/0000-0001-5950-6979" + title: "YOLOv5 by Ultralytics" + version: 7.0 + doi: 10.5281/zenodo.3908559 + date-released: 2020-5-29 + license: GPL-3.0 + url: "https://github.com/ultralytics/yolov5" diff --git a/ultralytics/yolov5/CONTRIBUTING.md b/ultralytics/yolov5/CONTRIBUTING.md new file mode 100644 index 0000000..71857fa --- /dev/null +++ b/ultralytics/yolov5/CONTRIBUTING.md @@ -0,0 +1,93 @@ +## Contributing to YOLOv5 🚀 + +We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's: + +- Reporting a bug +- Discussing the current state of the code +- Submitting a fix +- Proposing a new feature +- Becoming a maintainer + +YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be +helping push the frontiers of what's possible in AI 😃! + +## Submitting a Pull Request (PR) 🛠️ + +Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps: + +### 1. Select File to Update + +Select `requirements.txt` to update by clicking on it in GitHub. + +

    PR_step1

    + +### 2. Click 'Edit this file' + +The button is in the top-right corner. + +

    PR_step2

    + +### 3. Make Changes + +Change the `matplotlib` version from `3.2.2` to `3.3`. + +

    PR_step3

    + +### 4. Preview Changes and Submit PR + +Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** +for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose +changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃! + +

    PR_step4

    + +### PR recommendations + +To allow your work to be integrated as seamlessly as possible, we advise you to: + +- ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update + your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally. + +

    Screenshot 2022-08-29 at 22 47 15

    + +- ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**. + +

    Screenshot 2022-08-29 at 22 47 03

    + +- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase + but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee + +## Submitting a Bug Report 🐛 + +If you spot a problem with YOLOv5 please submit a Bug Report! + +For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few +short guidelines below to help users provide what we need to get started. + +When asking a question, people will be better able to provide help if you provide **code** that they can easily +understand and use to **reproduce** the problem. This is referred to by community members as creating +a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces +the problem should be: + +- ✅ **Minimal** – Use as little code as possible that still produces the same problem +- ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself +- ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem + +In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code +should be: + +- ✅ **Current** – Verify that your code is up-to-date with the current + GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new + copy to ensure your problem has not already been resolved by previous commits. +- ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this + repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️. + +If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 +**Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and provide +a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better +understand and diagnose your problem. + +## License + +By contributing, you agree that your contributions will be licensed under +the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/) diff --git a/ultralytics/yolov5/LICENSE b/ultralytics/yolov5/LICENSE new file mode 100644 index 0000000..92b370f --- /dev/null +++ b/ultralytics/yolov5/LICENSE @@ -0,0 +1,674 @@ +GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. diff --git a/ultralytics/yolov5/README.md b/ultralytics/yolov5/README.md new file mode 100644 index 0000000..7ddf472 --- /dev/null +++ b/ultralytics/yolov5/README.md @@ -0,0 +1,488 @@ +
    +

    + + +

    + +[English](README.md) | [简体中文](README.zh-CN.md) +
    + +
    + YOLOv5 CI + YOLOv5 Citation + Docker Pulls +
    + Run on Gradient + Open In Colab + Open In Kaggle +
    +
    + +YOLOv5 🚀 is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. + +To request an Enterprise License please complete the form at Ultralytics Licensing. + +
    + + + + + + + + + + + + + + + + + +
    + +
    +
    + +##
    YOLOv8 🚀 NEW
    + +We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model +released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. +YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of +object detection, image segmentation and image classification tasks. + +See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with: + +```commandline +pip install ultralytics +``` + +
    + + +
    + +##
    Documentation
    + +See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. See below for quickstart examples. + +
    +Install + +Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a +[**Python>=3.7.0**](https://www.python.org/) environment, including +[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). + +```bash +git clone https://github.com/ultralytics/yolov5 # clone +cd yolov5 +pip install -r requirements.txt # install +``` + +
    + +
    +Inference + +YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest +YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). + +```python +import torch + +# Model +model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom + +# Images +img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list + +# Inference +results = model(img) + +# Results +results.print() # or .show(), .save(), .crop(), .pandas(), etc. +``` + +
    + +
    +Inference with detect.py + +`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from +the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. + +```bash +python detect.py --weights yolov5s.pt --source 0 # webcam + img.jpg # image + vid.mp4 # video + screen # screenshot + path/ # directory + list.txt # list of images + list.streams # list of streams + 'path/*.jpg' # glob + 'https://youtu.be/Zgi9g1ksQHc' # YouTube + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream +``` + +
    + +
    +Training + +The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) +results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) +and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest +YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are +1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the +largest `--batch-size` possible, or pass `--batch-size -1` for +YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB. + +```bash +python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128 + yolov5s 64 + yolov5m 40 + yolov5l 24 + yolov5x 16 +``` + + + +
    + +
    +Tutorials + +- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED +- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️ + RECOMMENDED +- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) +- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW +- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀 +- [NVIDIA Jetson Nano Deployment](https://github.com/ultralytics/yolov5/issues/9627) 🌟 NEW +- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) +- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) +- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) +- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) +- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) +- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW +- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW +- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW +- [YOLOv5 with Neural Magic's Deepsparse](https://bit.ly/yolov5-neuralmagic) 🌟 NEW +- [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet) 🌟 NEW + +
    + +##
    Integrations
    + +
    + + +
    +
    + +
    + + + + + + + + + + + +
    + +| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW | +| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: | +| Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions | Run YOLOv5 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) | + +##
    Ultralytics HUB
    + +Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now! + + + + +##
    Why YOLOv5
    + +YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results. + +

    +
    + YOLOv5-P5 640 Figure + +

    +
    +
    + Figure Notes + +- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536. +- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32. +- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8. +- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` + +
    + +### Pretrained Checkpoints + +| Model | size
    (pixels) | mAPval
    50-95 | mAPval
    50 | Speed
    CPU b1
    (ms) | Speed
    V100 b1
    (ms) | Speed
    V100 b32
    (ms) | params
    (M) | FLOPs
    @640 (B) | +| ----------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- | +| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** | +| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 | +| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 | +| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 | +| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 | +| | | | | | | | | | +| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 | +| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 | +| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 | +| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 | +| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)
    + [TTA] | 1280
    1536 | 55.0
    **55.8** | 72.7
    **72.7** | 3136
    - | 26.2
    - | 19.4
    - | 140.7
    - | 209.8
    - | + +
    + Table Notes + +- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml). +- **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
    Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` +- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.
    Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1` +- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.
    Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` + +
    + +##
    Segmentation
    + +Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials. + +
    + Segmentation Checkpoints + +
    + + +
    + +We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility. + +| Model | size
    (pixels) | mAPbox
    50-95 | mAPmask
    50-95 | Train time
    300 epochs
    A100 (hours) | Speed
    ONNX CPU
    (ms) | Speed
    TRT A100
    (ms) | params
    (M) | FLOPs
    @640 (B) | +| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- | +| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** | +| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 | +| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 | +| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 | +| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 | + +- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.
    Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official +- **Accuracy** values are for single-model single-scale on COCO dataset.
    Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt` +- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image).
    Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1` +- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`.
    Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half` + +
    + +
    + Segmentation Usage Examples  Open In Colab + +### Train + +YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`. + +```bash +# Single-GPU +python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 + +# Multi-GPU DDP +python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3 +``` + +### Val + +Validate YOLOv5s-seg mask mAP on COCO dataset: + +```bash +bash data/scripts/get_coco.sh --val --segments # download COCO val segments split (780MB, 5000 images) +python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate +``` + +### Predict + +Use pretrained YOLOv5m-seg.pt to predict bus.jpg: + +```bash +python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg +``` + +```python +model = torch.hub.load( + "ultralytics/yolov5", "custom", "yolov5m-seg.pt" +) # load from PyTorch Hub (WARNING: inference not yet supported) +``` + +| ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) | +| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- | + +### Export + +Export YOLOv5s-seg model to ONNX and TensorRT: + +```bash +python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0 +``` + +
    + +##
    Classification
    + +YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials. + +
    + Classification Checkpoints + +
    + +We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility. + +| Model | size
    (pixels) | acc
    top1 | acc
    top5 | Training
    90 epochs
    4xA100 (hours) | Speed
    ONNX CPU
    (ms) | Speed
    TensorRT V100
    (ms) | params
    (M) | FLOPs
    @224 (B) | +| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- | +| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** | +| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 | +| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 | +| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 | +| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 | +| | | | | | | | | | +| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 | +| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 | +| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 | +| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 | +| | | | | | | | | | +| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 | +| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 | +| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 | +| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 | + +
    + Table Notes (click to expand) + +- All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.
    Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2 +- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.
    Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224` +- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.
    Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1` +- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`.
    Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224` + +
    +
    + +
    + Classification Usage Examples  Open In Colab + +### Train + +YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`. + +```bash +# Single-GPU +python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128 + +# Multi-GPU DDP +python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3 +``` + +### Val + +Validate YOLOv5m-cls accuracy on ImageNet-1k dataset: + +```bash +bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) +python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate +``` + +### Predict + +Use pretrained YOLOv5s-cls.pt to predict bus.jpg: + +```bash +python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg +``` + +```python +model = torch.hub.load( + "ultralytics/yolov5", "custom", "yolov5s-cls.pt" +) # load from PyTorch Hub +``` + +### Export + +Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT: + +```bash +python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224 +``` + +
    + +##
    Environments
    + +Get started in seconds with our verified environments. Click each icon below for details. + +
    + + + + + + + + + + + + + + + + + +
    + +##
    Contribute
    + +We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors! + + + + + + +##
    License
    + +YOLOv5 is available under two different licenses: + +- **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for details. +- **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license). + +##
    Contact
    + +For YOLOv5 bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues) or the [Ultralytics Community Forum](https://community.ultralytics.com/). + +
    +
    + + + + + + + + + + + + + + + + + +
    + +[tta]: https://github.com/ultralytics/yolov5/issues/303 diff --git a/ultralytics/yolov5/README.zh-CN.md b/ultralytics/yolov5/README.zh-CN.md new file mode 100644 index 0000000..30d5ece --- /dev/null +++ b/ultralytics/yolov5/README.zh-CN.md @@ -0,0 +1,482 @@ +
    +

    + + +

    + +[英文](README.md)|[简体中文](README.zh-CN.md)
    + +
    + YOLOv5 CI + YOLOv5 Citation + Docker Pulls +
    + Run on Gradient + Open In Colab + Open In Kaggle +
    +
    + +YOLOv5 🚀 是世界上最受欢迎的视觉 AI,代表 Ultralytics 对未来视觉 AI 方法的开源研究,结合在数千小时的研究和开发中积累的经验教训和最佳实践。 + +如果要申请企业许可证,请填写表格Ultralytics 许可. + +
    + + + + + + + + + + + + + + + + + +
    +
    + +##
    YOLOv8 🚀 NEW
    + +We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model +released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. +YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of +object detection, image segmentation and image classification tasks. + +See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with: + +```commandline +pip install ultralytics +``` + +
    + + +
    + +##
    文档
    + +有关训练、测试和部署的完整文档见[YOLOv5 文档](https://docs.ultralytics.com)。请参阅下面的快速入门示例。 + +
    +安装 + +克隆 repo,并要求在 [**Python>=3.7.0**](https://www.python.org/) 环境中安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) ,且要求 [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/) 。 + +```bash +git clone https://github.com/ultralytics/yolov5 # clone +cd yolov5 +pip install -r requirements.txt # install +``` + +
    + +
    +推理 + +使用 YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推理。最新 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 将自动的从 +YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。 + +```python +import torch + +# Model +model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom + +# Images +img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list + +# Inference +results = model(img) + +# Results +results.print() # or .show(), .save(), .crop(), .pandas(), etc. +``` + +
    + +
    +使用 detect.py 推理 + +`detect.py` 在各种来源上运行推理, [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从 +最新的YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载,并将结果保存到 `runs/detect` 。 + +```bash +python detect.py --weights yolov5s.pt --source 0 # webcam + img.jpg # image + vid.mp4 # video + screen # screenshot + path/ # directory + list.txt # list of images + list.streams # list of streams + 'path/*.jpg' # glob + 'https://youtu.be/Zgi9g1ksQHc' # YouTube + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream +``` + +
    + +
    +训练 + +下面的命令重现 YOLOv5 在 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) 数据集上的结果。 +最新的 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data) +将自动的从 YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。 +YOLOv5n/s/m/l/x 在 V100 GPU 的训练时间为 1/2/4/6/8 天( [多GPU](https://github.com/ultralytics/yolov5/issues/475) 训练速度更快)。 +尽可能使用更大的 `--batch-size` ,或通过 `--batch-size -1` 实现 +YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092) 。下方显示的 batchsize 适用于 V100-16GB。 + +```bash +python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128 + yolov5s 64 + yolov5m 40 + yolov5l 24 + yolov5x 16 +``` + + + +
    + +
    +教程 + +- [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)🚀 推荐 +- [获得最佳训练结果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)☘️ 推荐 +- [多 GPU 训练](https://github.com/ultralytics/yolov5/issues/475) +- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)🌟 新 +- [TFLite、ONNX、CoreML、TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251)🚀 +- [NVIDIA Jetson Nano 部署](https://github.com/ultralytics/yolov5/issues/9627)🌟 新 +- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303) +- [模型集成](https://github.com/ultralytics/yolov5/issues/318) +- [模型修剪/稀疏度](https://github.com/ultralytics/yolov5/issues/304) +- [超参数进化](https://github.com/ultralytics/yolov5/issues/607) +- [使用冻结层进行迁移学习](https://github.com/ultralytics/yolov5/issues/1314) +- [架构总结](https://github.com/ultralytics/yolov5/issues/6998)🌟 新 +- [用于数据集、标签和主动学习的 Roboflow](https://github.com/ultralytics/yolov5/issues/4975)🌟 新 +- [ClearML 记录](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml)🌟 新 +- [Deci 平台](https://github.com/ultralytics/yolov5/wiki/Deci-Platform)🌟 新 +- [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet)🌟 新 + +
    + +##
    模块集成
    + +
    + + +
    +
    + +
    + + + + + + + + + + + +
    + +| Roboflow | ClearML ⭐ 新 | Comet ⭐ 新 | Neural Magic ⭐ 新 | +| :--------------------------------------------------------------------------------: | :-------------------------------------------------------------------------: | :--------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------: | +| 将您的自定义数据集进行标注并直接导出到 YOLOv5 以进行训练 [Roboflow](https://roboflow.com/?ref=ultralytics) | 自动跟踪、可视化甚至远程训练 YOLOv5 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!) | 永远免费,[Comet](https://bit.ly/yolov5-readme-comet2)可让您保存 YOLOv5 模型、恢复训练以及交互式可视化和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic),运行 YOLOv5 推理的速度最高可提高6倍 | + +##
    Ultralytics HUB
    + +[Ultralytics HUB](https://bit.ly/ultralytics_hub) 是我们的⭐**新的**用于可视化数据集、训练 YOLOv5 🚀 模型并以无缝体验部署到现实世界的无代码解决方案。现在开始 **免费** 使用他! + + + + +##
    为什么选择 YOLOv5
    + +YOLOv5 超级容易上手,简单易学。我们优先考虑现实世界的结果。 + +

    +
    + YOLOv5-P5 640 图 + +

    +
    +
    + 图表笔记 + +- **COCO AP val** 表示 mAP@0.5:0.95 指标,在 [COCO val2017](http://cocodataset.org) 数据集的 5000 张图像上测得, 图像包含 256 到 1536 各种推理大小。 +- **显卡推理速度** 为在 [COCO val2017](http://cocodataset.org) 数据集上的平均推理时间,使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例,batchsize 为 32 。 +- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) , batchsize 为32。 +- **复现命令** 为 `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` + +
    + +### 预训练模型 + +| 模型 | 尺寸
    (像素) | mAPval
    50-95 | mAPval
    50 | 推理速度
    CPU b1
    (ms) | 推理速度
    V100 b1
    (ms) | 速度
    V100 b32
    (ms) | 参数量
    (M) | FLOPs
    @640 (B) | +| ---------------------------------------------------------------------------------------------- | --------------- | -------------------- | ----------------- | --------------------------- | ---------------------------- | --------------------------- | --------------- | ---------------------- | +| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** | +| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 | +| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 | +| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 | +| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 | +| | | | | | | | | | +| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 | +| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 | +| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 | +| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 | +| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)
    +[TTA] | 1280
    1536 | 55.0
    **55.8** | 72.7
    **72.7** | 3136
    - | 26.2
    - | 19.4
    - | 140.7
    - | 209.8
    - | + +
    + 笔记 + +- 所有模型都使用默认配置,训练 300 epochs。n和s模型使用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) ,其他模型都使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml) 。 +- \*\*mAPval\*\*在单模型单尺度上计算,数据集使用 [COCO val2017](http://cocodataset.org) 。
    复现命令 `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` +- **推理速度**在 COCO val 图像总体时间上进行平均得到,测试环境使用[AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/)实例。 NMS 时间 (大约 1 ms/img) 不包括在内。
    复现命令 `python val.py --data coco.yaml --img 640 --task speed --batch 1` +- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和尺度变换。
    复现命令 `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` + +
    + +##
    实例分割模型 ⭐ 新
    + +我们新的 YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) 实例分割模型是世界上最快和最准确的模型,击败所有当前 [SOTA 基准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco)。我们使它非常易于训练、验证和部署。更多细节请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v7.0) 或访问我们的 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) 以快速入门。 + +
    + 实例分割模型列表 + +
    + +
    + + +
    + +我们使用 A100 GPU 在 COCO 上以 640 图像大小训练了 300 epochs 得到 YOLOv5 分割模型。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于再现,我们在 Google [Colab Pro](https://colab.research.google.com/signup) 上进行了所有速度测试。 + +| 模型 | 尺寸
    (像素) | mAPbox
    50-95 | mAPmask
    50-95 | 训练时长
    300 epochs
    A100 GPU(小时) | 推理速度
    ONNX CPU
    (ms) | 推理速度
    TRT A100
    (ms) | 参数量
    (M) | FLOPs
    @640 (B) | +| ------------------------------------------------------------------------------------------ | --------------- | -------------------- | --------------------- | --------------------------------------- | ----------------------------- | ----------------------------- | --------------- | ---------------------- | +| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** | +| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 | +| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 | +| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 | +| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 | + +- 所有模型使用 SGD 优化器训练, 都使用 `lr0=0.01` 和 `weight_decay=5e-5` 参数, 图像大小为 640 。
    训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5_v70_official +- **准确性**结果都在 COCO 数据集上,使用单模型单尺度测试得到。
    复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt` +- **推理速度**是使用 100 张图像推理时间进行平均得到,测试环境使用 [Colab Pro](https://colab.research.google.com/signup) 上 A100 高 RAM 实例。结果仅表示推理速度(NMS 每张图像增加约 1 毫秒)。
    复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1` +- **模型转换**到 FP32 的 ONNX 和 FP16 的 TensorRT 脚本为 `export.py`.
    运行命令 `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half` + +
    + +
    + 分割模型使用示例  Open In Colab + +### 训练 + +YOLOv5分割训练支持自动下载 COCO128-seg 分割数据集,用户仅需在启动指令中包含 `--data coco128-seg.yaml` 参数。 若要手动下载,使用命令 `bash data/scripts/get_coco.sh --train --val --segments`, 在下载完毕后,使用命令 `python train.py --data coco.yaml` 开启训练。 + +```bash +# 单 GPU +python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 + +# 多 GPU, DDP 模式 +python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3 +``` + +### 验证 + +在 COCO 数据集上验证 YOLOv5s-seg mask mAP: + +```bash +bash data/scripts/get_coco.sh --val --segments # 下载 COCO val segments 数据集 (780MB, 5000 images) +python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # 验证 +``` + +### 预测 + +使用预训练的 YOLOv5m-seg.pt 来预测 bus.jpg: + +```bash +python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg +``` + +```python +model = torch.hub.load( + "ultralytics/yolov5", "custom", "yolov5m-seg.pt" +) # 从load from PyTorch Hub 加载模型 (WARNING: 推理暂未支持) +``` + +| ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) | +| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- | + +### 模型导出 + +将 YOLOv5s-seg 模型导出到 ONNX 和 TensorRT: + +```bash +python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0 +``` + +
    + +##
    分类网络 ⭐ 新
    + +YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) 带来对分类模型训练、验证和部署的支持!详情请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v6.2) 或访问我们的 [YOLOv5 分类 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) 以快速入门。 + +
    + 分类网络模型 + +
    + +我们使用 4xA100 实例在 ImageNet 上训练了 90 个 epochs 得到 YOLOv5-cls 分类模型,我们训练了 ResNet 和 EfficientNet 模型以及相同的默认训练设置以进行比较。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于重现,我们在 Google 上进行了所有速度测试 [Colab Pro](https://colab.research.google.com/signup) 。 + +| 模型 | 尺寸
    (像素) | acc
    top1 | acc
    top5 | 训练时长
    90 epochs
    4xA100(小时) | 推理速度
    ONNX CPU
    (ms) | 推理速度
    TensorRT V100
    (ms) | 参数
    (M) | FLOPs
    @640 (B) | +| -------------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | ------------------------------------ | ----------------------------- | ---------------------------------- | -------------- | ---------------------- | +| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** | +| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 | +| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 | +| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 | +| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 | +| | | | | | | | | | +| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 | +| [Resnetzch](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 | +| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 | +| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 | +| | | | | | | | | | +| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 | +| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 | +| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 | +| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 | + +
    + Table Notes (点击以展开) + +- 所有模型都使用 SGD 优化器训练 90 个 epochs,都使用 `lr0=0.001` 和 `weight_decay=5e-5` 参数, 图像大小为 224 ,且都使用默认设置。
    训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2 +- **准确性**都在单模型单尺度上计算,数据集使用 [ImageNet-1k](https://www.image-net.org/index.php) 。
    复现命令 `python classify/val.py --data ../datasets/imagenet --img 224` +- **推理速度**是使用 100 个推理图像进行平均得到,测试环境使用谷歌 [Colab Pro](https://colab.research.google.com/signup) V100 高 RAM 实例。
    复现命令 `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1` +- **模型导出**到 FP32 的 ONNX 和 FP16 的 TensorRT 使用 `export.py` 。
    复现命令 `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224` +
    +
    + +
    + 分类训练示例  Open In Colab + +### 训练 + +YOLOv5 分类训练支持自动下载 MNIST、Fashion-MNIST、CIFAR10、CIFAR100、Imagenette、Imagewoof 和 ImageNet 数据集,命令中使用 `--data` 即可。 MNIST 示例 `--data mnist` 。 + +```bash +# 单 GPU +python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128 + +# 多 GPU, DDP 模式 +python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3 +``` + +### 验证 + +在 ImageNet-1k 数据集上验证 YOLOv5m-cls 的准确性: + +```bash +bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) +python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate +``` + +### 预测 + +使用预训练的 YOLOv5s-cls.pt 来预测 bus.jpg: + +```bash +python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg +``` + +```python +model = torch.hub.load( + "ultralytics/yolov5", "custom", "yolov5s-cls.pt" +) # load from PyTorch Hub +``` + +### 模型导出 + +将一组经过训练的 YOLOv5s-cls、ResNet 和 EfficientNet 模型导出到 ONNX 和 TensorRT: + +```bash +python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224 +``` + +
    + +##
    环境
    + +使用下面我们经过验证的环境,在几秒钟内开始使用 YOLOv5 。单击下面的图标了解详细信息。 + +
    + + + + + + + + + + + + + + + + + +
    + +##
    贡献
    + +我们喜欢您的意见或建议!我们希望尽可能简单和透明地为 YOLOv5 做出贡献。请看我们的 [投稿指南](CONTRIBUTING.md),并填写 [YOLOv5调查](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 向我们发送您的体验反馈。感谢我们所有的贡献者! + + + + + + +##
    License
    + +YOLOv5 在两种不同的 License 下可用: + +- **GPL-3.0 License**: 查看 [License](https://github.com/ultralytics/yolov5/blob/master/LICENSE) 文件的详细信息。 +- **企业License**:在没有 GPL-3.0 开源要求的情况下为商业产品开发提供更大的灵活性。典型用例是将 Ultralytics 软件和 AI 模型嵌入到商业产品和应用程序中。在以下位置申请企业许可证 [Ultralytics 许可](https://ultralytics.com/license) 。 + +##
    联系我们
    + +请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues) 或 [Ultralytics Community Forum](https://community.ultralytis.com) 以报告 YOLOv5 错误和请求功能。 + +
    +
    + + + + + + + + + + + + + + + + + +
    + +[tta]: https://github.com/ultralytics/yolov5/issues/303 diff --git a/ultralytics/yolov5/benchmarks.py b/ultralytics/yolov5/benchmarks.py new file mode 100644 index 0000000..09108b8 --- /dev/null +++ b/ultralytics/yolov5/benchmarks.py @@ -0,0 +1,169 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Run YOLOv5 benchmarks on all supported export formats + +Format | `export.py --include` | Model +--- | --- | --- +PyTorch | - | yolov5s.pt +TorchScript | `torchscript` | yolov5s.torchscript +ONNX | `onnx` | yolov5s.onnx +OpenVINO | `openvino` | yolov5s_openvino_model/ +TensorRT | `engine` | yolov5s.engine +CoreML | `coreml` | yolov5s.mlmodel +TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ +TensorFlow GraphDef | `pb` | yolov5s.pb +TensorFlow Lite | `tflite` | yolov5s.tflite +TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite +TensorFlow.js | `tfjs` | yolov5s_web_model/ + +Requirements: + $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU + $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU + $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT + +Usage: + $ python benchmarks.py --weights yolov5s.pt --img 640 +""" + +import argparse +import platform +import sys +import time +from pathlib import Path + +import pandas as pd + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +# ROOT = ROOT.relative_to(Path.cwd()) # relative + +import export +from models.experimental import attempt_load +from models.yolo import SegmentationModel +from segment.val import run as val_seg +from utils import notebook_init +from utils.general import LOGGER, check_yaml, file_size, print_args +from utils.torch_utils import select_device +from val import run as val_det + + +def run( + weights=ROOT / 'yolov5s.pt', # weights path + imgsz=640, # inference size (pixels) + batch_size=1, # batch size + data=ROOT / 'data/coco128.yaml', # dataset.yaml path + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + half=False, # use FP16 half-precision inference + test=False, # test exports only + pt_only=False, # test PyTorch only + hard_fail=False, # throw error on benchmark failure +): + y, t = [], time.time() + device = select_device(device) + model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc. + for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU) + try: + assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported + assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML + if 'cpu' in device.type: + assert cpu, 'inference not supported on CPU' + if 'cuda' in device.type: + assert gpu, 'inference not supported on GPU' + + # Export + if f == '-': + w = weights # PyTorch format + else: + w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others + assert suffix in str(w), 'export failed' + + # Validate + if model_type == SegmentationModel: + result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) + metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls)) + else: # DetectionModel: + result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) + metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls)) + speed = result[2][1] # times (preprocess, inference, postprocess) + y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference + except Exception as e: + if hard_fail: + assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}' + LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}') + y.append([name, None, None, None]) # mAP, t_inference + if pt_only and i == 0: + break # break after PyTorch + + # Print results + LOGGER.info('\n') + parse_opt() + notebook_init() # print system info + c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', ''] + py = pd.DataFrame(y, columns=c) + LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') + LOGGER.info(str(py if map else py.iloc[:, :2])) + if hard_fail and isinstance(hard_fail, str): + metrics = py['mAP50-95'].array # values to compare to floor + floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n + assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}' + return py + + +def test( + weights=ROOT / 'yolov5s.pt', # weights path + imgsz=640, # inference size (pixels) + batch_size=1, # batch size + data=ROOT / 'data/coco128.yaml', # dataset.yaml path + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + half=False, # use FP16 half-precision inference + test=False, # test exports only + pt_only=False, # test PyTorch only + hard_fail=False, # throw error on benchmark failure +): + y, t = [], time.time() + device = select_device(device) + for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable) + try: + w = weights if f == '-' else \ + export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights + assert suffix in str(w), 'export failed' + y.append([name, True]) + except Exception: + y.append([name, False]) # mAP, t_inference + + # Print results + LOGGER.info('\n') + parse_opt() + notebook_init() # print system info + py = pd.DataFrame(y, columns=['Format', 'Export']) + LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)') + LOGGER.info(str(py)) + return py + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') + parser.add_argument('--batch-size', type=int, default=1, help='batch size') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--test', action='store_true', help='test exports only') + parser.add_argument('--pt-only', action='store_true', help='test PyTorch only') + parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric') + opt = parser.parse_args() + opt.data = check_yaml(opt.data) # check YAML + print_args(vars(opt)) + return opt + + +def main(opt): + test(**vars(opt)) if opt.test else run(**vars(opt)) + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/classify/predict.py b/ultralytics/yolov5/classify/predict.py new file mode 100644 index 0000000..5f0d407 --- /dev/null +++ b/ultralytics/yolov5/classify/predict.py @@ -0,0 +1,226 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc. + +Usage - sources: + $ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam + img.jpg # image + vid.mp4 # video + screen # screenshot + path/ # directory + list.txt # list of images + list.streams # list of streams + 'path/*.jpg' # glob + 'https://youtu.be/Zgi9g1ksQHc' # YouTube + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream + +Usage - formats: + $ python classify/predict.py --weights yolov5s-cls.pt # PyTorch + yolov5s-cls.torchscript # TorchScript + yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s-cls_openvino_model # OpenVINO + yolov5s-cls.engine # TensorRT + yolov5s-cls.mlmodel # CoreML (macOS-only) + yolov5s-cls_saved_model # TensorFlow SavedModel + yolov5s-cls.pb # TensorFlow GraphDef + yolov5s-cls.tflite # TensorFlow Lite + yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU + yolov5s-cls_paddle_model # PaddlePaddle +""" + +import argparse +import os +import platform +import sys +from pathlib import Path + +import torch +import torch.nn.functional as F + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import DetectMultiBackend +from utils.augmentations import classify_transforms +from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams +from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, + increment_path, print_args, strip_optimizer) +from utils.plots import Annotator +from utils.torch_utils import select_device, smart_inference_mode + + +@smart_inference_mode() +def run( + weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s) + source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam) + data=ROOT / 'data/coco128.yaml', # dataset.yaml path + imgsz=(224, 224), # inference size (height, width) + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + view_img=False, # show results + save_txt=False, # save results to *.txt + nosave=False, # do not save images/videos + augment=False, # augmented inference + visualize=False, # visualize features + update=False, # update all models + project=ROOT / 'runs/predict-cls', # save results to project/name + name='exp', # save results to project/name + exist_ok=False, # existing project/name ok, do not increment + half=False, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + vid_stride=1, # video frame-rate stride +): + source = str(source) + save_img = not nosave and not source.endswith('.txt') # save inference images + is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) + is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) + webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) + screenshot = source.lower().startswith('screen') + if is_url and is_file: + source = check_file(source) # download + + # Directories + save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir + + # Load model + device = select_device(device) + model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) + stride, names, pt = model.stride, model.names, model.pt + imgsz = check_img_size(imgsz, s=stride) # check image size + + # Dataloader + bs = 1 # batch_size + if webcam: + view_img = check_imshow(warn=True) + dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride) + bs = len(dataset) + elif screenshot: + dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) + else: + dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride) + vid_path, vid_writer = [None] * bs, [None] * bs + + # Run inference + model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup + seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) + for path, im, im0s, vid_cap, s in dataset: + with dt[0]: + im = torch.Tensor(im).to(model.device) + im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 + if len(im.shape) == 3: + im = im[None] # expand for batch dim + + # Inference + with dt[1]: + results = model(im) + + # Post-process + with dt[2]: + pred = F.softmax(results, dim=1) # probabilities + + # Process predictions + for i, prob in enumerate(pred): # per image + seen += 1 + if webcam: # batch_size >= 1 + p, im0, frame = path[i], im0s[i].copy(), dataset.count + s += f'{i}: ' + else: + p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) + + p = Path(p) # to Path + save_path = str(save_dir / p.name) # im.jpg + txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt + + s += '%gx%g ' % im.shape[2:] # print string + annotator = Annotator(im0, example=str(names), pil=True) + + # Print results + top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices + s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, " + + # Write results + text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i) + if save_img or view_img: # Add bbox to image + annotator.text((32, 32), text, txt_color=(255, 255, 255)) + if save_txt: # Write to file + with open(f'{txt_path}.txt', 'a') as f: + f.write(text + '\n') + + # Stream results + im0 = annotator.result() + if view_img: + if platform.system() == 'Linux' and p not in windows: + windows.append(p) + cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) + cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) + cv2.imshow(str(p), im0) + cv2.waitKey(1) # 1 millisecond + + # Save results (image with detections) + if save_img: + if dataset.mode == 'image': + cv2.imwrite(save_path, im0) + else: # 'video' or 'stream' + if vid_path[i] != save_path: # new video + vid_path[i] = save_path + if isinstance(vid_writer[i], cv2.VideoWriter): + vid_writer[i].release() # release previous video writer + if vid_cap: # video + fps = vid_cap.get(cv2.CAP_PROP_FPS) + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + else: # stream + fps, w, h = 30, im0.shape[1], im0.shape[0] + save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos + vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) + vid_writer[i].write(im0) + + # Print time (inference-only) + LOGGER.info(f'{s}{dt[1].dt * 1E3:.1f}ms') + + # Print results + t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) + if save_txt or save_img: + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") + if update: + strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)') + parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') + parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--view-img', action='store_true', help='show results') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + parser.add_argument('--nosave', action='store_true', help='do not save images/videos') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--visualize', action='store_true', help='visualize features') + parser.add_argument('--update', action='store_true', help='update all models') + parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name') + parser.add_argument('--name', default='exp', help='save results to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') + parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') + opt = parser.parse_args() + opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand + print_args(vars(opt)) + return opt + + +def main(opt): + check_requirements(exclude=('tensorboard', 'thop')) + run(**vars(opt)) + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/classify/train.py b/ultralytics/yolov5/classify/train.py new file mode 100644 index 0000000..ae2363c --- /dev/null +++ b/ultralytics/yolov5/classify/train.py @@ -0,0 +1,333 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Train a YOLOv5 classifier model on a classification dataset + +Usage - Single-GPU training: + $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224 + +Usage - Multi-GPU DDP training: + $ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3 + +Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data' +YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt +Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html +""" + +import argparse +import os +import subprocess +import sys +import time +from copy import deepcopy +from datetime import datetime +from pathlib import Path + +import torch +import torch.distributed as dist +import torch.hub as hub +import torch.optim.lr_scheduler as lr_scheduler +import torchvision +from torch.cuda import amp +from tqdm import tqdm + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from classify import val as validate +from models.experimental import attempt_load +from models.yolo import ClassificationModel, DetectionModel +from utils.dataloaders import create_classification_dataloader +from utils.general import (DATASETS_DIR, LOGGER, TQDM_BAR_FORMAT, WorkingDirectory, check_git_info, check_git_status, + check_requirements, colorstr, download, increment_path, init_seeds, print_args, yaml_save) +from utils.loggers import GenericLogger +from utils.plots import imshow_cls +from utils.torch_utils import (ModelEMA, de_parallel, model_info, reshape_classifier_output, select_device, smart_DDP, + smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first) + +LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html +RANK = int(os.getenv('RANK', -1)) +WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) +GIT_INFO = check_git_info() + + +def train(opt, device): + init_seeds(opt.seed + 1 + RANK, deterministic=True) + save_dir, data, bs, epochs, nw, imgsz, pretrained = \ + opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \ + opt.imgsz, str(opt.pretrained).lower() == 'true' + cuda = device.type != 'cpu' + + # Directories + wdir = save_dir / 'weights' + wdir.mkdir(parents=True, exist_ok=True) # make dir + last, best = wdir / 'last.pt', wdir / 'best.pt' + + # Save run settings + yaml_save(save_dir / 'opt.yaml', vars(opt)) + + # Logger + logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None + + # Download Dataset + with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT): + data_dir = data if data.is_dir() else (DATASETS_DIR / data) + if not data_dir.is_dir(): + LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...') + t = time.time() + if str(data) == 'imagenet': + subprocess.run(['bash', str(ROOT / 'data/scripts/get_imagenet.sh')], shell=True, check=True) + else: + url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip' + download(url, dir=data_dir.parent) + s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" + LOGGER.info(s) + + # Dataloaders + nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes + trainloader = create_classification_dataloader(path=data_dir / 'train', + imgsz=imgsz, + batch_size=bs // WORLD_SIZE, + augment=True, + cache=opt.cache, + rank=LOCAL_RANK, + workers=nw) + + test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val + if RANK in {-1, 0}: + testloader = create_classification_dataloader(path=test_dir, + imgsz=imgsz, + batch_size=bs // WORLD_SIZE * 2, + augment=False, + cache=opt.cache, + rank=-1, + workers=nw) + + # Model + with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT): + if Path(opt.model).is_file() or opt.model.endswith('.pt'): + model = attempt_load(opt.model, device='cpu', fuse=False) + elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0 + model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None) + else: + m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models + raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m)) + if isinstance(model, DetectionModel): + LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'") + model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model + reshape_classifier_output(model, nc) # update class count + for m in model.modules(): + if not pretrained and hasattr(m, 'reset_parameters'): + m.reset_parameters() + if isinstance(m, torch.nn.Dropout) and opt.dropout is not None: + m.p = opt.dropout # set dropout + for p in model.parameters(): + p.requires_grad = True # for training + model = model.to(device) + + # Info + if RANK in {-1, 0}: + model.names = trainloader.dataset.classes # attach class names + model.transforms = testloader.dataset.torch_transforms # attach inference transforms + model_info(model) + if opt.verbose: + LOGGER.info(model) + images, labels = next(iter(trainloader)) + file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg') + logger.log_images(file, name='Train Examples') + logger.log_graph(model, imgsz) # log model + + # Optimizer + optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay) + + # Scheduler + lrf = 0.01 # final lr (fraction of lr0) + # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine + lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear + scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) + # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1, + # final_div_factor=1 / 25 / lrf) + + # EMA + ema = ModelEMA(model) if RANK in {-1, 0} else None + + # DDP mode + if cuda and RANK != -1: + model = smart_DDP(model) + + # Train + t0 = time.time() + criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function + best_fitness = 0.0 + scaler = amp.GradScaler(enabled=cuda) + val = test_dir.stem # 'val' or 'test' + LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n' + f'Using {nw * WORLD_SIZE} dataloader workers\n' + f"Logging results to {colorstr('bold', save_dir)}\n" + f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n' + f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}") + for epoch in range(epochs): # loop over the dataset multiple times + tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness + model.train() + if RANK != -1: + trainloader.sampler.set_epoch(epoch) + pbar = enumerate(trainloader) + if RANK in {-1, 0}: + pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT) + for i, (images, labels) in pbar: # progress bar + images, labels = images.to(device, non_blocking=True), labels.to(device) + + # Forward + with amp.autocast(enabled=cuda): # stability issues when enabled + loss = criterion(model(images), labels) + + # Backward + scaler.scale(loss).backward() + + # Optimize + scaler.unscale_(optimizer) # unscale gradients + torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + if ema: + ema.update(model) + + if RANK in {-1, 0}: + # Print + tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses + mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) + pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36 + + # Test + if i == len(pbar) - 1: # last batch + top1, top5, vloss = validate.run(model=ema.ema, + dataloader=testloader, + criterion=criterion, + pbar=pbar) # test accuracy, loss + fitness = top1 # define fitness as top1 accuracy + + # Scheduler + scheduler.step() + + # Log metrics + if RANK in {-1, 0}: + # Best fitness + if fitness > best_fitness: + best_fitness = fitness + + # Log + metrics = { + 'train/loss': tloss, + f'{val}/loss': vloss, + 'metrics/accuracy_top1': top1, + 'metrics/accuracy_top5': top5, + 'lr/0': optimizer.param_groups[0]['lr']} # learning rate + logger.log_metrics(metrics, epoch) + + # Save model + final_epoch = epoch + 1 == epochs + if (not opt.nosave) or final_epoch: + ckpt = { + 'epoch': epoch, + 'best_fitness': best_fitness, + 'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(), + 'ema': None, # deepcopy(ema.ema).half(), + 'updates': ema.updates, + 'optimizer': None, # optimizer.state_dict(), + 'opt': vars(opt), + 'git': GIT_INFO, # {remote, branch, commit} if a git repo + 'date': datetime.now().isoformat()} + + # Save last, best and delete + torch.save(ckpt, last) + if best_fitness == fitness: + torch.save(ckpt, best) + del ckpt + + # Train complete + if RANK in {-1, 0} and final_epoch: + LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)' + f"\nResults saved to {colorstr('bold', save_dir)}" + f'\nPredict: python classify/predict.py --weights {best} --source im.jpg' + f'\nValidate: python classify/val.py --weights {best} --data {data_dir}' + f'\nExport: python export.py --weights {best} --include onnx' + f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')" + f'\nVisualize: https://netron.app\n') + + # Plot examples + images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels + pred = torch.max(ema.ema(images.to(device)), 1)[1] + file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / 'test_images.jpg') + + # Log results + meta = {'epochs': epochs, 'top1_acc': best_fitness, 'date': datetime.now().isoformat()} + logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch) + logger.log_model(best, epochs, metadata=meta) + + +def parse_opt(known=False): + parser = argparse.ArgumentParser() + parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path') + parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...') + parser.add_argument('--epochs', type=int, default=10, help='total training epochs') + parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)') + parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') + parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False') + parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer') + parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate') + parser.add_argument('--decay', type=float, default=5e-5, help='weight decay') + parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon') + parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head') + parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)') + parser.add_argument('--verbose', action='store_true', help='Verbose mode') + parser.add_argument('--seed', type=int, default=0, help='Global training seed') + parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') + return parser.parse_known_args()[0] if known else parser.parse_args() + + +def main(opt): + # Checks + if RANK in {-1, 0}: + print_args(vars(opt)) + check_git_status() + check_requirements() + + # DDP mode + device = select_device(opt.device, batch_size=opt.batch_size) + if LOCAL_RANK != -1: + assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size' + assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' + assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' + torch.cuda.set_device(LOCAL_RANK) + device = torch.device('cuda', LOCAL_RANK) + dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo') + + # Parameters + opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run + + # Train + train(opt, device) + + +def run(**kwargs): + # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m') + opt = parse_opt(True) + for k, v in kwargs.items(): + setattr(opt, k, v) + main(opt) + return opt + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/classify/tutorial.ipynb b/ultralytics/yolov5/classify/tutorial.ipynb new file mode 100644 index 0000000..5872360 --- /dev/null +++ b/ultralytics/yolov5/classify/tutorial.ipynb @@ -0,0 +1,1480 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "t6MPjfT5NrKQ" + }, + "source": [ + "
    \n", + "\n", + " \n", + " \n", + "\n", + "\n", + "
    \n", + " \"Run\n", + " \"Open\n", + " \"Open\n", + "
    \n", + "\n", + "This YOLOv5 🚀 notebook by Ultralytics presents simple train, validate and predict examples to help start your AI adventure.
    See GitHub for community support or contact us for professional support.\n", + "\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7mGmQbAO5pQb" + }, + "source": [ + "# Setup\n", + "\n", + "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wbvMlHd_QwMG", + "outputId": "0806e375-610d-4ec0-c867-763dbb518279" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n" + ] + } + ], + "source": [ + "!git clone https://github.com/ultralytics/yolov5 # clone\n", + "%cd yolov5\n", + "%pip install -qr requirements.txt # install\n", + "\n", + "import torch\n", + "import utils\n", + "display = utils.notebook_init() # checks" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4JnkELT0cIJg" + }, + "source": [ + "# 1. Predict\n", + "\n", + "`classify/predict.py` runs YOLOv5 Classification inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict-cls`. Example inference sources are:\n", + "\n", + "```shell\n", + "python classify/predict.py --source 0 # webcam\n", + " img.jpg # image \n", + " vid.mp4 # video\n", + " screen # screenshot\n", + " path/ # directory\n", + " 'path/*.jpg' # glob\n", + " 'https://youtu.be/Zgi9g1ksQHc' # YouTube\n", + " 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zR9ZbuQCH7FX", + "outputId": "50504ef7-aa3e-4281-a4e3-d0c7df3c0ffe" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1mclassify/predict: \u001b[0mweights=['yolov5s-cls.pt'], source=data/images, data=data/coco128.yaml, imgsz=[224, 224], device=, view_img=False, save_txt=False, nosave=False, augment=False, visualize=False, update=False, project=runs/predict-cls, name=exp, exist_ok=False, half=False, dnn=False, vid_stride=1\n", + "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", + "\n", + "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt to yolov5s-cls.pt...\n", + "100% 10.5M/10.5M [00:00<00:00, 12.3MB/s]\n", + "\n", + "Fusing layers... \n", + "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n", + "image 1/2 /content/yolov5/data/images/bus.jpg: 224x224 minibus 0.39, police van 0.24, amphibious vehicle 0.05, recreational vehicle 0.04, trolleybus 0.03, 3.9ms\n", + "image 2/2 /content/yolov5/data/images/zidane.jpg: 224x224 suit 0.38, bow tie 0.19, bridegroom 0.18, rugby ball 0.04, stage 0.02, 4.6ms\n", + "Speed: 0.3ms pre-process, 4.3ms inference, 1.5ms NMS per image at shape (1, 3, 224, 224)\n", + "Results saved to \u001b[1mruns/predict-cls/exp\u001b[0m\n" + ] + } + ], + "source": [ + "!python classify/predict.py --weights yolov5s-cls.pt --img 224 --source data/images\n", + "# display.Image(filename='runs/predict-cls/exp/zidane.jpg', width=600)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hkAzDWJ7cWTr" + }, + "source": [ + "        \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0eq1SMWl6Sfn" + }, + "source": [ + "# 2. Validate\n", + "Validate a model's accuracy on the [Imagenet](https://image-net.org/) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WQPtK1QYVaD_", + "outputId": "20fc0630-141e-4a90-ea06-342cbd7ce496" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2022-11-22 19:53:40-- https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar\n", + "Resolving image-net.org (image-net.org)... 171.64.68.16\n", + "Connecting to image-net.org (image-net.org)|171.64.68.16|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 6744924160 (6.3G) [application/x-tar]\n", + "Saving to: ‘ILSVRC2012_img_val.tar’\n", + "\n", + "ILSVRC2012_img_val. 100%[===================>] 6.28G 16.1MB/s in 10m 52s \n", + "\n", + "2022-11-22 20:04:32 (9.87 MB/s) - ‘ILSVRC2012_img_val.tar’ saved [6744924160/6744924160]\n", + "\n" + ] + } + ], + "source": [ + "# Download Imagenet val (6.3G, 50000 images)\n", + "!bash data/scripts/get_imagenet.sh --val" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X58w8JLpMnjH", + "outputId": "41843132-98e2-4c25-d474-4cd7b246fb8e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1mclassify/val: \u001b[0mdata=../datasets/imagenet, weights=['yolov5s-cls.pt'], batch_size=128, imgsz=224, device=, workers=8, verbose=True, project=runs/val-cls, name=exp, exist_ok=False, half=True, dnn=False\n", + "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", + "\n", + "Fusing layers... \n", + "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n", + "validating: 100% 391/391 [04:57<00:00, 1.31it/s]\n", + " Class Images top1_acc top5_acc\n", + " all 50000 0.715 0.902\n", + " tench 50 0.94 0.98\n", + " goldfish 50 0.88 0.92\n", + " great white shark 50 0.78 0.96\n", + " tiger shark 50 0.68 0.96\n", + " hammerhead shark 50 0.82 0.92\n", + " electric ray 50 0.76 0.9\n", + " stingray 50 0.7 0.9\n", + " cock 50 0.78 0.92\n", + " hen 50 0.84 0.96\n", + " ostrich 50 0.98 1\n", + " brambling 50 0.9 0.96\n", + " goldfinch 50 0.92 0.98\n", + " house finch 50 0.88 0.96\n", + " junco 50 0.94 0.98\n", + " indigo bunting 50 0.86 0.88\n", + " American robin 50 0.9 0.96\n", + " bulbul 50 0.84 0.96\n", + " jay 50 0.9 0.96\n", + " magpie 50 0.84 0.96\n", + " chickadee 50 0.9 1\n", + " American dipper 50 0.82 0.92\n", + " kite 50 0.76 0.94\n", + " bald eagle 50 0.92 1\n", + " vulture 50 0.96 1\n", + " great grey owl 50 0.94 0.98\n", + " fire salamander 50 0.96 0.98\n", + " smooth newt 50 0.58 0.94\n", + " newt 50 0.74 0.9\n", + " spotted salamander 50 0.86 0.94\n", + " axolotl 50 0.86 0.96\n", + " American bullfrog 50 0.78 0.92\n", + " tree frog 50 0.84 0.96\n", + " tailed frog 50 0.48 0.8\n", + " loggerhead sea turtle 50 0.68 0.94\n", + " leatherback sea turtle 50 0.5 0.8\n", + " mud turtle 50 0.64 0.84\n", + " terrapin 50 0.52 0.98\n", + " box turtle 50 0.84 0.98\n", + " banded gecko 50 0.7 0.88\n", + " green iguana 50 0.76 0.94\n", + " Carolina anole 50 0.58 0.96\n", + "desert grassland whiptail lizard 50 0.82 0.94\n", + " agama 50 0.74 0.92\n", + " frilled-necked lizard 50 0.84 0.86\n", + " alligator lizard 50 0.58 0.78\n", + " Gila monster 50 0.72 0.8\n", + " European green lizard 50 0.42 0.9\n", + " chameleon 50 0.76 0.84\n", + " Komodo dragon 50 0.86 0.96\n", + " Nile crocodile 50 0.7 0.84\n", + " American alligator 50 0.76 0.96\n", + " triceratops 50 0.9 0.94\n", + " worm snake 50 0.76 0.88\n", + " ring-necked snake 50 0.8 0.92\n", + " eastern hog-nosed snake 50 0.58 0.88\n", + " smooth green snake 50 0.6 0.94\n", + " kingsnake 50 0.82 0.9\n", + " garter snake 50 0.88 0.94\n", + " water snake 50 0.7 0.94\n", + " vine snake 50 0.66 0.76\n", + " night snake 50 0.34 0.82\n", + " boa constrictor 50 0.8 0.96\n", + " African rock python 50 0.48 0.76\n", + " Indian cobra 50 0.82 0.94\n", + " green mamba 50 0.54 0.86\n", + " sea snake 50 0.62 0.9\n", + " Saharan horned viper 50 0.56 0.86\n", + "eastern diamondback rattlesnake 50 0.6 0.86\n", + " sidewinder 50 0.28 0.86\n", + " trilobite 50 0.98 0.98\n", + " harvestman 50 0.86 0.94\n", + " scorpion 50 0.86 0.94\n", + " yellow garden spider 50 0.92 0.96\n", + " barn spider 50 0.38 0.98\n", + " European garden spider 50 0.62 0.98\n", + " southern black widow 50 0.88 0.94\n", + " tarantula 50 0.94 1\n", + " wolf spider 50 0.82 0.92\n", + " tick 50 0.74 0.84\n", + " centipede 50 0.68 0.82\n", + " black grouse 50 0.88 0.98\n", + " ptarmigan 50 0.78 0.94\n", + " ruffed grouse 50 0.88 1\n", + " prairie grouse 50 0.92 1\n", + " peacock 50 0.88 0.9\n", + " quail 50 0.9 0.94\n", + " partridge 50 0.74 0.96\n", + " grey parrot 50 0.9 0.96\n", + " macaw 50 0.88 0.98\n", + "sulphur-crested cockatoo 50 0.86 0.92\n", + " lorikeet 50 0.96 1\n", + " coucal 50 0.82 0.88\n", + " bee eater 50 0.96 0.98\n", + " hornbill 50 0.9 0.96\n", + " hummingbird 50 0.88 0.96\n", + " jacamar 50 0.92 0.94\n", + " toucan 50 0.84 0.94\n", + " duck 50 0.76 0.94\n", + " red-breasted merganser 50 0.86 0.96\n", + " goose 50 0.74 0.96\n", + " black swan 50 0.94 0.98\n", + " tusker 50 0.54 0.92\n", + " echidna 50 0.98 1\n", + " platypus 50 0.72 0.84\n", + " wallaby 50 0.78 0.88\n", + " koala 50 0.84 0.92\n", + " wombat 50 0.78 0.84\n", + " jellyfish 50 0.88 0.96\n", + " sea anemone 50 0.72 0.9\n", + " brain coral 50 0.88 0.96\n", + " flatworm 50 0.8 0.98\n", + " nematode 50 0.86 0.9\n", + " conch 50 0.74 0.88\n", + " snail 50 0.78 0.88\n", + " slug 50 0.74 0.82\n", + " sea slug 50 0.88 0.98\n", + " chiton 50 0.88 0.98\n", + " chambered nautilus 50 0.88 0.92\n", + " Dungeness crab 50 0.78 0.94\n", + " rock crab 50 0.68 0.86\n", + " fiddler crab 50 0.64 0.86\n", + " red king crab 50 0.76 0.96\n", + " American lobster 50 0.78 0.96\n", + " spiny lobster 50 0.74 0.88\n", + " crayfish 50 0.56 0.86\n", + " hermit crab 50 0.78 0.96\n", + " isopod 50 0.66 0.78\n", + " white stork 50 0.88 0.96\n", + " black stork 50 0.84 0.98\n", + " spoonbill 50 0.96 1\n", + " flamingo 50 0.94 1\n", + " little blue heron 50 0.92 0.98\n", + " great egret 50 0.9 0.96\n", + " bittern 50 0.86 0.94\n", + " crane (bird) 50 0.62 0.9\n", + " limpkin 50 0.98 1\n", + " common gallinule 50 0.92 0.96\n", + " American coot 50 0.9 0.98\n", + " bustard 50 0.92 0.96\n", + " ruddy turnstone 50 0.94 1\n", + " dunlin 50 0.86 0.94\n", + " common redshank 50 0.9 0.96\n", + " dowitcher 50 0.84 0.96\n", + " oystercatcher 50 0.86 0.94\n", + " pelican 50 0.92 0.96\n", + " king penguin 50 0.88 0.96\n", + " albatross 50 0.9 1\n", + " grey whale 50 0.84 0.92\n", + " killer whale 50 0.92 1\n", + " dugong 50 0.84 0.96\n", + " sea lion 50 0.82 0.92\n", + " Chihuahua 50 0.66 0.84\n", + " Japanese Chin 50 0.72 0.98\n", + " Maltese 50 0.76 0.94\n", + " Pekingese 50 0.84 0.94\n", + " Shih Tzu 50 0.74 0.96\n", + " King Charles Spaniel 50 0.88 0.98\n", + " Papillon 50 0.86 0.94\n", + " toy terrier 50 0.48 0.94\n", + " Rhodesian Ridgeback 50 0.76 0.98\n", + " Afghan Hound 50 0.84 1\n", + " Basset Hound 50 0.8 0.92\n", + " Beagle 50 0.82 0.96\n", + " Bloodhound 50 0.48 0.72\n", + " Bluetick Coonhound 50 0.86 0.94\n", + " Black and Tan Coonhound 50 0.54 0.8\n", + "Treeing Walker Coonhound 50 0.66 0.98\n", + " English foxhound 50 0.32 0.84\n", + " Redbone Coonhound 50 0.62 0.94\n", + " borzoi 50 0.92 1\n", + " Irish Wolfhound 50 0.48 0.88\n", + " Italian Greyhound 50 0.76 0.98\n", + " Whippet 50 0.74 0.92\n", + " Ibizan Hound 50 0.6 0.86\n", + " Norwegian Elkhound 50 0.88 0.98\n", + " Otterhound 50 0.62 0.9\n", + " Saluki 50 0.72 0.92\n", + " Scottish Deerhound 50 0.86 0.98\n", + " Weimaraner 50 0.88 0.94\n", + "Staffordshire Bull Terrier 50 0.66 0.98\n", + "American Staffordshire Terrier 50 0.64 0.92\n", + " Bedlington Terrier 50 0.9 0.92\n", + " Border Terrier 50 0.86 0.92\n", + " Kerry Blue Terrier 50 0.78 0.98\n", + " Irish Terrier 50 0.7 0.96\n", + " Norfolk Terrier 50 0.68 0.9\n", + " Norwich Terrier 50 0.72 1\n", + " Yorkshire Terrier 50 0.66 0.9\n", + " Wire Fox Terrier 50 0.64 0.98\n", + " Lakeland Terrier 50 0.74 0.92\n", + " Sealyham Terrier 50 0.76 0.9\n", + " Airedale Terrier 50 0.82 0.92\n", + " Cairn Terrier 50 0.76 0.9\n", + " Australian Terrier 50 0.48 0.84\n", + " Dandie Dinmont Terrier 50 0.82 0.92\n", + " Boston Terrier 50 0.92 1\n", + " Miniature Schnauzer 50 0.68 0.9\n", + " Giant Schnauzer 50 0.72 0.98\n", + " Standard Schnauzer 50 0.74 1\n", + " Scottish Terrier 50 0.76 0.96\n", + " Tibetan Terrier 50 0.48 1\n", + "Australian Silky Terrier 50 0.66 0.96\n", + "Soft-coated Wheaten Terrier 50 0.74 0.96\n", + "West Highland White Terrier 50 0.88 0.96\n", + " Lhasa Apso 50 0.68 0.96\n", + " Flat-Coated Retriever 50 0.72 0.94\n", + " Curly-coated Retriever 50 0.82 0.94\n", + " Golden Retriever 50 0.86 0.94\n", + " Labrador Retriever 50 0.82 0.94\n", + "Chesapeake Bay Retriever 50 0.76 0.96\n", + "German Shorthaired Pointer 50 0.8 0.96\n", + " Vizsla 50 0.68 0.96\n", + " English Setter 50 0.7 1\n", + " Irish Setter 50 0.8 0.9\n", + " Gordon Setter 50 0.84 0.92\n", + " Brittany 50 0.84 0.96\n", + " Clumber Spaniel 50 0.92 0.96\n", + "English Springer Spaniel 50 0.88 1\n", + " Welsh Springer Spaniel 50 0.92 1\n", + " Cocker Spaniels 50 0.7 0.94\n", + " Sussex Spaniel 50 0.72 0.92\n", + " Irish Water Spaniel 50 0.88 0.98\n", + " Kuvasz 50 0.66 0.9\n", + " Schipperke 50 0.9 0.98\n", + " Groenendael 50 0.8 0.94\n", + " Malinois 50 0.86 0.98\n", + " Briard 50 0.52 0.8\n", + " Australian Kelpie 50 0.6 0.88\n", + " Komondor 50 0.88 0.94\n", + " Old English Sheepdog 50 0.94 0.98\n", + " Shetland Sheepdog 50 0.74 0.9\n", + " collie 50 0.6 0.96\n", + " Border Collie 50 0.74 0.96\n", + " Bouvier des Flandres 50 0.78 0.94\n", + " Rottweiler 50 0.88 0.96\n", + " German Shepherd Dog 50 0.8 0.98\n", + " Dobermann 50 0.68 0.96\n", + " Miniature Pinscher 50 0.76 0.88\n", + "Greater Swiss Mountain Dog 50 0.68 0.94\n", + " Bernese Mountain Dog 50 0.96 1\n", + " Appenzeller Sennenhund 50 0.22 1\n", + " Entlebucher Sennenhund 50 0.64 0.98\n", + " Boxer 50 0.7 0.92\n", + " Bullmastiff 50 0.78 0.98\n", + " Tibetan Mastiff 50 0.88 0.96\n", + " French Bulldog 50 0.84 0.94\n", + " Great Dane 50 0.54 0.9\n", + " St. Bernard 50 0.92 1\n", + " husky 50 0.46 0.98\n", + " Alaskan Malamute 50 0.76 0.96\n", + " Siberian Husky 50 0.46 0.98\n", + " Dalmatian 50 0.94 0.98\n", + " Affenpinscher 50 0.78 0.9\n", + " Basenji 50 0.92 0.94\n", + " pug 50 0.94 0.98\n", + " Leonberger 50 1 1\n", + " Newfoundland 50 0.78 0.96\n", + " Pyrenean Mountain Dog 50 0.78 0.96\n", + " Samoyed 50 0.96 1\n", + " Pomeranian 50 0.98 1\n", + " Chow Chow 50 0.9 0.96\n", + " Keeshond 50 0.88 0.94\n", + " Griffon Bruxellois 50 0.84 0.98\n", + " Pembroke Welsh Corgi 50 0.82 0.94\n", + " Cardigan Welsh Corgi 50 0.66 0.98\n", + " Toy Poodle 50 0.52 0.88\n", + " Miniature Poodle 50 0.52 0.92\n", + " Standard Poodle 50 0.8 1\n", + " Mexican hairless dog 50 0.88 0.98\n", + " grey wolf 50 0.82 0.92\n", + " Alaskan tundra wolf 50 0.78 0.98\n", + " red wolf 50 0.48 0.9\n", + " coyote 50 0.64 0.86\n", + " dingo 50 0.76 0.88\n", + " dhole 50 0.9 0.98\n", + " African wild dog 50 0.98 1\n", + " hyena 50 0.88 0.96\n", + " red fox 50 0.54 0.92\n", + " kit fox 50 0.72 0.98\n", + " Arctic fox 50 0.94 1\n", + " grey fox 50 0.7 0.94\n", + " tabby cat 50 0.54 0.92\n", + " tiger cat 50 0.22 0.94\n", + " Persian cat 50 0.9 0.98\n", + " Siamese cat 50 0.96 1\n", + " Egyptian Mau 50 0.54 0.8\n", + " cougar 50 0.9 1\n", + " lynx 50 0.72 0.88\n", + " leopard 50 0.78 0.98\n", + " snow leopard 50 0.9 0.98\n", + " jaguar 50 0.7 0.94\n", + " lion 50 0.9 0.98\n", + " tiger 50 0.92 0.98\n", + " cheetah 50 0.94 0.98\n", + " brown bear 50 0.94 0.98\n", + " American black bear 50 0.8 1\n", + " polar bear 50 0.84 0.96\n", + " sloth bear 50 0.72 0.92\n", + " mongoose 50 0.7 0.92\n", + " meerkat 50 0.82 0.92\n", + " tiger beetle 50 0.92 0.94\n", + " ladybug 50 0.86 0.94\n", + " ground beetle 50 0.64 0.94\n", + " longhorn beetle 50 0.62 0.88\n", + " leaf beetle 50 0.64 0.98\n", + " dung beetle 50 0.86 0.98\n", + " rhinoceros beetle 50 0.86 0.94\n", + " weevil 50 0.9 1\n", + " fly 50 0.78 0.94\n", + " bee 50 0.68 0.94\n", + " ant 50 0.68 0.78\n", + " grasshopper 50 0.5 0.92\n", + " cricket 50 0.64 0.92\n", + " stick insect 50 0.64 0.92\n", + " cockroach 50 0.72 0.8\n", + " mantis 50 0.64 0.86\n", + " cicada 50 0.9 0.96\n", + " leafhopper 50 0.88 0.94\n", + " lacewing 50 0.78 0.92\n", + " dragonfly 50 0.82 0.98\n", + " damselfly 50 0.82 1\n", + " red admiral 50 0.94 0.96\n", + " ringlet 50 0.86 0.98\n", + " monarch butterfly 50 0.9 0.92\n", + " small white 50 0.9 1\n", + " sulphur butterfly 50 0.92 1\n", + "gossamer-winged butterfly 50 0.88 1\n", + " starfish 50 0.88 0.92\n", + " sea urchin 50 0.84 0.94\n", + " sea cucumber 50 0.66 0.84\n", + " cottontail rabbit 50 0.72 0.94\n", + " hare 50 0.84 0.96\n", + " Angora rabbit 50 0.94 0.98\n", + " hamster 50 0.96 1\n", + " porcupine 50 0.88 0.98\n", + " fox squirrel 50 0.76 0.94\n", + " marmot 50 0.92 0.96\n", + " beaver 50 0.78 0.94\n", + " guinea pig 50 0.78 0.94\n", + " common sorrel 50 0.96 0.98\n", + " zebra 50 0.94 0.96\n", + " pig 50 0.5 0.76\n", + " wild boar 50 0.84 0.96\n", + " warthog 50 0.84 0.96\n", + " hippopotamus 50 0.88 0.96\n", + " ox 50 0.48 0.94\n", + " water buffalo 50 0.78 0.94\n", + " bison 50 0.88 0.96\n", + " ram 50 0.58 0.92\n", + " bighorn sheep 50 0.66 1\n", + " Alpine ibex 50 0.92 0.98\n", + " hartebeest 50 0.94 1\n", + " impala 50 0.82 0.96\n", + " gazelle 50 0.7 0.96\n", + " dromedary 50 0.9 1\n", + " llama 50 0.82 0.94\n", + " weasel 50 0.44 0.92\n", + " mink 50 0.78 0.96\n", + " European polecat 50 0.46 0.9\n", + " black-footed ferret 50 0.68 0.96\n", + " otter 50 0.66 0.88\n", + " skunk 50 0.96 0.96\n", + " badger 50 0.86 0.92\n", + " armadillo 50 0.88 0.9\n", + " three-toed sloth 50 0.96 1\n", + " orangutan 50 0.78 0.92\n", + " gorilla 50 0.82 0.94\n", + " chimpanzee 50 0.84 0.94\n", + " gibbon 50 0.76 0.86\n", + " siamang 50 0.68 0.94\n", + " guenon 50 0.8 0.94\n", + " patas monkey 50 0.62 0.82\n", + " baboon 50 0.9 0.98\n", + " macaque 50 0.8 0.86\n", + " langur 50 0.6 0.82\n", + " black-and-white colobus 50 0.86 0.9\n", + " proboscis monkey 50 1 1\n", + " marmoset 50 0.74 0.98\n", + " white-headed capuchin 50 0.72 0.9\n", + " howler monkey 50 0.86 0.94\n", + " titi 50 0.5 0.9\n", + "Geoffroy's spider monkey 50 0.42 0.8\n", + " common squirrel monkey 50 0.76 0.92\n", + " ring-tailed lemur 50 0.72 0.94\n", + " indri 50 0.9 0.96\n", + " Asian elephant 50 0.58 0.92\n", + " African bush elephant 50 0.7 0.98\n", + " red panda 50 0.94 0.94\n", + " giant panda 50 0.94 0.98\n", + " snoek 50 0.74 0.9\n", + " eel 50 0.6 0.84\n", + " coho salmon 50 0.84 0.96\n", + " rock beauty 50 0.88 0.98\n", + " clownfish 50 0.78 0.98\n", + " sturgeon 50 0.68 0.94\n", + " garfish 50 0.62 0.8\n", + " lionfish 50 0.96 0.96\n", + " pufferfish 50 0.88 0.96\n", + " abacus 50 0.74 0.88\n", + " abaya 50 0.84 0.92\n", + " academic gown 50 0.42 0.86\n", + " accordion 50 0.8 0.9\n", + " acoustic guitar 50 0.5 0.76\n", + " aircraft carrier 50 0.8 0.96\n", + " airliner 50 0.92 1\n", + " airship 50 0.76 0.82\n", + " altar 50 0.64 0.98\n", + " ambulance 50 0.88 0.98\n", + " amphibious vehicle 50 0.64 0.94\n", + " analog clock 50 0.52 0.92\n", + " apiary 50 0.82 0.96\n", + " apron 50 0.7 0.84\n", + " waste container 50 0.4 0.8\n", + " assault rifle 50 0.42 0.84\n", + " backpack 50 0.34 0.64\n", + " bakery 50 0.4 0.68\n", + " balance beam 50 0.8 0.98\n", + " balloon 50 0.86 0.96\n", + " ballpoint pen 50 0.52 0.96\n", + " Band-Aid 50 0.7 0.9\n", + " banjo 50 0.84 1\n", + " baluster 50 0.68 0.94\n", + " barbell 50 0.56 0.9\n", + " barber chair 50 0.7 0.92\n", + " barbershop 50 0.54 0.86\n", + " barn 50 0.96 0.96\n", + " barometer 50 0.84 0.98\n", + " barrel 50 0.56 0.88\n", + " wheelbarrow 50 0.66 0.88\n", + " baseball 50 0.74 0.98\n", + " basketball 50 0.88 0.98\n", + " bassinet 50 0.66 0.92\n", + " bassoon 50 0.74 0.98\n", + " swimming cap 50 0.62 0.88\n", + " bath towel 50 0.54 0.78\n", + " bathtub 50 0.4 0.88\n", + " station wagon 50 0.66 0.84\n", + " lighthouse 50 0.78 0.94\n", + " beaker 50 0.52 0.68\n", + " military cap 50 0.84 0.96\n", + " beer bottle 50 0.66 0.88\n", + " beer glass 50 0.6 0.84\n", + " bell-cot 50 0.56 0.96\n", + " bib 50 0.58 0.82\n", + " tandem bicycle 50 0.86 0.96\n", + " bikini 50 0.56 0.88\n", + " ring binder 50 0.64 0.84\n", + " binoculars 50 0.54 0.78\n", + " birdhouse 50 0.86 0.94\n", + " boathouse 50 0.74 0.92\n", + " bobsleigh 50 0.92 0.96\n", + " bolo tie 50 0.8 0.94\n", + " poke bonnet 50 0.64 0.86\n", + " bookcase 50 0.66 0.92\n", + " bookstore 50 0.62 0.88\n", + " bottle cap 50 0.58 0.7\n", + " bow 50 0.72 0.86\n", + " bow tie 50 0.7 0.9\n", + " brass 50 0.92 0.96\n", + " bra 50 0.5 0.7\n", + " breakwater 50 0.62 0.86\n", + " breastplate 50 0.4 0.9\n", + " broom 50 0.6 0.86\n", + " bucket 50 0.66 0.8\n", + " buckle 50 0.5 0.68\n", + " bulletproof vest 50 0.5 0.78\n", + " high-speed train 50 0.94 0.96\n", + " butcher shop 50 0.74 0.94\n", + " taxicab 50 0.64 0.86\n", + " cauldron 50 0.44 0.66\n", + " candle 50 0.48 0.74\n", + " cannon 50 0.88 0.94\n", + " canoe 50 0.94 1\n", + " can opener 50 0.66 0.86\n", + " cardigan 50 0.68 0.8\n", + " car mirror 50 0.94 0.96\n", + " carousel 50 0.94 0.98\n", + " tool kit 50 0.56 0.78\n", + " carton 50 0.42 0.7\n", + " car wheel 50 0.38 0.74\n", + "automated teller machine 50 0.76 0.94\n", + " cassette 50 0.52 0.8\n", + " cassette player 50 0.28 0.9\n", + " castle 50 0.78 0.88\n", + " catamaran 50 0.78 1\n", + " CD player 50 0.52 0.82\n", + " cello 50 0.82 1\n", + " mobile phone 50 0.68 0.86\n", + " chain 50 0.38 0.66\n", + " chain-link fence 50 0.7 0.84\n", + " chain mail 50 0.64 0.9\n", + " chainsaw 50 0.84 0.92\n", + " chest 50 0.68 0.92\n", + " chiffonier 50 0.26 0.64\n", + " chime 50 0.62 0.84\n", + " china cabinet 50 0.82 0.96\n", + " Christmas stocking 50 0.92 0.94\n", + " church 50 0.62 0.9\n", + " movie theater 50 0.58 0.88\n", + " cleaver 50 0.32 0.62\n", + " cliff dwelling 50 0.88 1\n", + " cloak 50 0.32 0.64\n", + " clogs 50 0.58 0.88\n", + " cocktail shaker 50 0.62 0.7\n", + " coffee mug 50 0.44 0.72\n", + " coffeemaker 50 0.64 0.92\n", + " coil 50 0.66 0.84\n", + " combination lock 50 0.64 0.84\n", + " computer keyboard 50 0.7 0.82\n", + " confectionery store 50 0.54 0.86\n", + " container ship 50 0.82 0.98\n", + " convertible 50 0.78 0.98\n", + " corkscrew 50 0.82 0.92\n", + " cornet 50 0.46 0.88\n", + " cowboy boot 50 0.64 0.8\n", + " cowboy hat 50 0.64 0.82\n", + " cradle 50 0.38 0.8\n", + " crane (machine) 50 0.78 0.94\n", + " crash helmet 50 0.92 0.96\n", + " crate 50 0.52 0.82\n", + " infant bed 50 0.74 1\n", + " Crock Pot 50 0.78 0.9\n", + " croquet ball 50 0.9 0.96\n", + " crutch 50 0.46 0.7\n", + " cuirass 50 0.54 0.86\n", + " dam 50 0.74 0.92\n", + " desk 50 0.6 0.86\n", + " desktop computer 50 0.54 0.94\n", + " rotary dial telephone 50 0.88 0.94\n", + " diaper 50 0.68 0.84\n", + " digital clock 50 0.54 0.76\n", + " digital watch 50 0.58 0.86\n", + " dining table 50 0.76 0.9\n", + " dishcloth 50 0.94 1\n", + " dishwasher 50 0.44 0.78\n", + " disc brake 50 0.98 1\n", + " dock 50 0.54 0.94\n", + " dog sled 50 0.84 1\n", + " dome 50 0.72 0.92\n", + " doormat 50 0.56 0.82\n", + " drilling rig 50 0.84 0.96\n", + " drum 50 0.38 0.68\n", + " drumstick 50 0.56 0.72\n", + " dumbbell 50 0.62 0.9\n", + " Dutch oven 50 0.7 0.84\n", + " electric fan 50 0.82 0.86\n", + " electric guitar 50 0.62 0.84\n", + " electric locomotive 50 0.92 0.98\n", + " entertainment center 50 0.9 0.98\n", + " envelope 50 0.44 0.86\n", + " espresso machine 50 0.72 0.94\n", + " face powder 50 0.7 0.92\n", + " feather boa 50 0.7 0.84\n", + " filing cabinet 50 0.88 0.98\n", + " fireboat 50 0.94 0.98\n", + " fire engine 50 0.84 0.9\n", + " fire screen sheet 50 0.62 0.76\n", + " flagpole 50 0.74 0.88\n", + " flute 50 0.36 0.72\n", + " folding chair 50 0.62 0.84\n", + " football helmet 50 0.86 0.94\n", + " forklift 50 0.8 0.92\n", + " fountain 50 0.84 0.94\n", + " fountain pen 50 0.76 0.92\n", + " four-poster bed 50 0.78 0.94\n", + " freight car 50 0.96 1\n", + " French horn 50 0.76 0.92\n", + " frying pan 50 0.36 0.78\n", + " fur coat 50 0.84 0.96\n", + " garbage truck 50 0.9 0.98\n", + " gas mask 50 0.84 0.92\n", + " gas pump 50 0.9 0.98\n", + " goblet 50 0.68 0.82\n", + " go-kart 50 0.9 1\n", + " golf ball 50 0.84 0.9\n", + " golf cart 50 0.78 0.86\n", + " gondola 50 0.98 0.98\n", + " gong 50 0.74 0.92\n", + " gown 50 0.62 0.96\n", + " grand piano 50 0.7 0.96\n", + " greenhouse 50 0.8 0.98\n", + " grille 50 0.72 0.9\n", + " grocery store 50 0.66 0.94\n", + " guillotine 50 0.86 0.92\n", + " barrette 50 0.52 0.66\n", + " hair spray 50 0.5 0.74\n", + " half-track 50 0.78 0.9\n", + " hammer 50 0.56 0.76\n", + " hamper 50 0.64 0.84\n", + " hair dryer 50 0.56 0.74\n", + " hand-held computer 50 0.42 0.86\n", + " handkerchief 50 0.78 0.94\n", + " hard disk drive 50 0.76 0.84\n", + " harmonica 50 0.7 0.88\n", + " harp 50 0.88 0.96\n", + " harvester 50 0.78 1\n", + " hatchet 50 0.54 0.74\n", + " holster 50 0.66 0.84\n", + " home theater 50 0.64 0.94\n", + " honeycomb 50 0.56 0.88\n", + " hook 50 0.3 0.6\n", + " hoop skirt 50 0.64 0.86\n", + " horizontal bar 50 0.68 0.98\n", + " horse-drawn vehicle 50 0.88 0.94\n", + " hourglass 50 0.88 0.96\n", + " iPod 50 0.76 0.94\n", + " clothes iron 50 0.82 0.88\n", + " jack-o'-lantern 50 0.98 0.98\n", + " jeans 50 0.68 0.84\n", + " jeep 50 0.72 0.9\n", + " T-shirt 50 0.72 0.96\n", + " jigsaw puzzle 50 0.84 0.94\n", + " pulled rickshaw 50 0.86 0.94\n", + " joystick 50 0.8 0.9\n", + " kimono 50 0.84 0.96\n", + " knee pad 50 0.62 0.88\n", + " knot 50 0.66 0.8\n", + " lab coat 50 0.8 0.96\n", + " ladle 50 0.36 0.64\n", + " lampshade 50 0.48 0.84\n", + " laptop computer 50 0.26 0.88\n", + " lawn mower 50 0.78 0.96\n", + " lens cap 50 0.46 0.72\n", + " paper knife 50 0.26 0.5\n", + " library 50 0.54 0.9\n", + " lifeboat 50 0.92 0.98\n", + " lighter 50 0.56 0.78\n", + " limousine 50 0.76 0.92\n", + " ocean liner 50 0.88 0.94\n", + " lipstick 50 0.74 0.9\n", + " slip-on shoe 50 0.74 0.92\n", + " lotion 50 0.5 0.86\n", + " speaker 50 0.52 0.68\n", + " loupe 50 0.32 0.52\n", + " sawmill 50 0.72 0.9\n", + " magnetic compass 50 0.52 0.82\n", + " mail bag 50 0.68 0.92\n", + " mailbox 50 0.82 0.92\n", + " tights 50 0.22 0.94\n", + " tank suit 50 0.24 0.9\n", + " manhole cover 50 0.96 0.98\n", + " maraca 50 0.74 0.9\n", + " marimba 50 0.84 0.94\n", + " mask 50 0.44 0.82\n", + " match 50 0.66 0.9\n", + " maypole 50 0.96 1\n", + " maze 50 0.8 0.96\n", + " measuring cup 50 0.54 0.76\n", + " medicine chest 50 0.6 0.84\n", + " megalith 50 0.8 0.92\n", + " microphone 50 0.52 0.7\n", + " microwave oven 50 0.48 0.72\n", + " military uniform 50 0.62 0.84\n", + " milk can 50 0.68 0.82\n", + " minibus 50 0.7 1\n", + " miniskirt 50 0.46 0.76\n", + " minivan 50 0.38 0.8\n", + " missile 50 0.4 0.84\n", + " mitten 50 0.76 0.88\n", + " mixing bowl 50 0.8 0.92\n", + " mobile home 50 0.54 0.78\n", + " Model T 50 0.92 0.96\n", + " modem 50 0.58 0.86\n", + " monastery 50 0.44 0.9\n", + " monitor 50 0.4 0.86\n", + " moped 50 0.56 0.94\n", + " mortar 50 0.68 0.94\n", + " square academic cap 50 0.5 0.84\n", + " mosque 50 0.9 1\n", + " mosquito net 50 0.9 0.98\n", + " scooter 50 0.9 0.98\n", + " mountain bike 50 0.78 0.96\n", + " tent 50 0.88 0.96\n", + " computer mouse 50 0.42 0.82\n", + " mousetrap 50 0.76 0.88\n", + " moving van 50 0.4 0.72\n", + " muzzle 50 0.5 0.72\n", + " nail 50 0.68 0.74\n", + " neck brace 50 0.56 0.68\n", + " necklace 50 0.86 1\n", + " nipple 50 0.7 0.88\n", + " notebook computer 50 0.34 0.84\n", + " obelisk 50 0.8 0.92\n", + " oboe 50 0.6 0.84\n", + " ocarina 50 0.8 0.86\n", + " odometer 50 0.96 1\n", + " oil filter 50 0.58 0.82\n", + " organ 50 0.82 0.9\n", + " oscilloscope 50 0.9 0.96\n", + " overskirt 50 0.2 0.7\n", + " bullock cart 50 0.7 0.94\n", + " oxygen mask 50 0.46 0.84\n", + " packet 50 0.5 0.78\n", + " paddle 50 0.56 0.94\n", + " paddle wheel 50 0.86 0.96\n", + " padlock 50 0.74 0.78\n", + " paintbrush 50 0.62 0.8\n", + " pajamas 50 0.56 0.92\n", + " palace 50 0.64 0.96\n", + " pan flute 50 0.84 0.86\n", + " paper towel 50 0.66 0.84\n", + " parachute 50 0.92 0.94\n", + " parallel bars 50 0.62 0.96\n", + " park bench 50 0.74 0.9\n", + " parking meter 50 0.84 0.92\n", + " passenger car 50 0.5 0.82\n", + " patio 50 0.58 0.84\n", + " payphone 50 0.74 0.92\n", + " pedestal 50 0.52 0.9\n", + " pencil case 50 0.64 0.92\n", + " pencil sharpener 50 0.52 0.78\n", + " perfume 50 0.7 0.9\n", + " Petri dish 50 0.6 0.8\n", + " photocopier 50 0.88 0.98\n", + " plectrum 50 0.7 0.84\n", + " Pickelhaube 50 0.72 0.86\n", + " picket fence 50 0.84 0.94\n", + " pickup truck 50 0.64 0.92\n", + " pier 50 0.52 0.82\n", + " piggy bank 50 0.82 0.94\n", + " pill bottle 50 0.76 0.86\n", + " pillow 50 0.76 0.9\n", + " ping-pong ball 50 0.84 0.88\n", + " pinwheel 50 0.76 0.88\n", + " pirate ship 50 0.76 0.94\n", + " pitcher 50 0.46 0.84\n", + " hand plane 50 0.84 0.94\n", + " planetarium 50 0.88 0.98\n", + " plastic bag 50 0.36 0.62\n", + " plate rack 50 0.52 0.78\n", + " plow 50 0.78 0.88\n", + " plunger 50 0.42 0.7\n", + " Polaroid camera 50 0.84 0.92\n", + " pole 50 0.38 0.74\n", + " police van 50 0.76 0.94\n", + " poncho 50 0.58 0.86\n", + " billiard table 50 0.8 0.88\n", + " soda bottle 50 0.56 0.94\n", + " pot 50 0.78 0.92\n", + " potter's wheel 50 0.9 0.94\n", + " power drill 50 0.42 0.72\n", + " prayer rug 50 0.7 0.86\n", + " printer 50 0.54 0.86\n", + " prison 50 0.7 0.9\n", + " projectile 50 0.28 0.9\n", + " projector 50 0.62 0.84\n", + " hockey puck 50 0.92 0.96\n", + " punching bag 50 0.6 0.68\n", + " purse 50 0.42 0.78\n", + " quill 50 0.68 0.84\n", + " quilt 50 0.64 0.9\n", + " race car 50 0.72 0.92\n", + " racket 50 0.72 0.9\n", + " radiator 50 0.66 0.76\n", + " radio 50 0.64 0.92\n", + " radio telescope 50 0.9 0.96\n", + " rain barrel 50 0.8 0.98\n", + " recreational vehicle 50 0.84 0.94\n", + " reel 50 0.72 0.82\n", + " reflex camera 50 0.72 0.92\n", + " refrigerator 50 0.7 0.9\n", + " remote control 50 0.7 0.88\n", + " restaurant 50 0.5 0.66\n", + " revolver 50 0.82 1\n", + " rifle 50 0.38 0.7\n", + " rocking chair 50 0.62 0.84\n", + " rotisserie 50 0.88 0.92\n", + " eraser 50 0.54 0.76\n", + " rugby ball 50 0.86 0.94\n", + " ruler 50 0.68 0.86\n", + " running shoe 50 0.78 0.94\n", + " safe 50 0.82 0.92\n", + " safety pin 50 0.4 0.62\n", + " salt shaker 50 0.66 0.9\n", + " sandal 50 0.66 0.86\n", + " sarong 50 0.64 0.86\n", + " saxophone 50 0.66 0.88\n", + " scabbard 50 0.76 0.92\n", + " weighing scale 50 0.58 0.78\n", + " school bus 50 0.92 1\n", + " schooner 50 0.84 1\n", + " scoreboard 50 0.9 0.96\n", + " CRT screen 50 0.14 0.7\n", + " screw 50 0.9 0.98\n", + " screwdriver 50 0.3 0.58\n", + " seat belt 50 0.88 0.94\n", + " sewing machine 50 0.76 0.9\n", + " shield 50 0.56 0.82\n", + " shoe store 50 0.78 0.96\n", + " shoji 50 0.8 0.92\n", + " shopping basket 50 0.52 0.88\n", + " shopping cart 50 0.76 0.92\n", + " shovel 50 0.62 0.84\n", + " shower cap 50 0.7 0.84\n", + " shower curtain 50 0.64 0.82\n", + " ski 50 0.74 0.92\n", + " ski mask 50 0.72 0.88\n", + " sleeping bag 50 0.68 0.8\n", + " slide rule 50 0.72 0.88\n", + " sliding door 50 0.44 0.78\n", + " slot machine 50 0.94 0.98\n", + " snorkel 50 0.86 0.98\n", + " snowmobile 50 0.88 1\n", + " snowplow 50 0.84 0.98\n", + " soap dispenser 50 0.56 0.86\n", + " soccer ball 50 0.86 0.96\n", + " sock 50 0.62 0.76\n", + " solar thermal collector 50 0.72 0.96\n", + " sombrero 50 0.6 0.84\n", + " soup bowl 50 0.56 0.94\n", + " space bar 50 0.34 0.88\n", + " space heater 50 0.52 0.74\n", + " space shuttle 50 0.82 0.96\n", + " spatula 50 0.3 0.6\n", + " motorboat 50 0.86 1\n", + " spider web 50 0.7 0.9\n", + " spindle 50 0.86 0.98\n", + " sports car 50 0.6 0.94\n", + " spotlight 50 0.26 0.6\n", + " stage 50 0.68 0.86\n", + " steam locomotive 50 0.94 1\n", + " through arch bridge 50 0.84 0.96\n", + " steel drum 50 0.82 0.9\n", + " stethoscope 50 0.6 0.82\n", + " scarf 50 0.5 0.92\n", + " stone wall 50 0.76 0.9\n", + " stopwatch 50 0.58 0.9\n", + " stove 50 0.46 0.74\n", + " strainer 50 0.64 0.84\n", + " tram 50 0.88 0.96\n", + " stretcher 50 0.6 0.8\n", + " couch 50 0.8 0.96\n", + " stupa 50 0.88 0.88\n", + " submarine 50 0.72 0.92\n", + " suit 50 0.4 0.78\n", + " sundial 50 0.58 0.74\n", + " sunglass 50 0.14 0.58\n", + " sunglasses 50 0.28 0.58\n", + " sunscreen 50 0.32 0.7\n", + " suspension bridge 50 0.6 0.94\n", + " mop 50 0.74 0.92\n", + " sweatshirt 50 0.28 0.66\n", + " swimsuit 50 0.52 0.82\n", + " swing 50 0.76 0.84\n", + " switch 50 0.56 0.76\n", + " syringe 50 0.62 0.82\n", + " table lamp 50 0.6 0.88\n", + " tank 50 0.8 0.96\n", + " tape player 50 0.46 0.76\n", + " teapot 50 0.84 1\n", + " teddy bear 50 0.82 0.94\n", + " television 50 0.6 0.9\n", + " tennis ball 50 0.7 0.94\n", + " thatched roof 50 0.88 0.9\n", + " front curtain 50 0.8 0.92\n", + " thimble 50 0.6 0.8\n", + " threshing machine 50 0.56 0.88\n", + " throne 50 0.72 0.82\n", + " tile roof 50 0.72 0.94\n", + " toaster 50 0.66 0.84\n", + " tobacco shop 50 0.42 0.7\n", + " toilet seat 50 0.62 0.88\n", + " torch 50 0.64 0.84\n", + " totem pole 50 0.92 0.98\n", + " tow truck 50 0.62 0.88\n", + " toy store 50 0.6 0.94\n", + " tractor 50 0.76 0.98\n", + " semi-trailer truck 50 0.78 0.92\n", + " tray 50 0.46 0.64\n", + " trench coat 50 0.54 0.72\n", + " tricycle 50 0.72 0.94\n", + " trimaran 50 0.7 0.98\n", + " tripod 50 0.58 0.86\n", + " triumphal arch 50 0.92 0.98\n", + " trolleybus 50 0.9 1\n", + " trombone 50 0.54 0.88\n", + " tub 50 0.24 0.82\n", + " turnstile 50 0.84 0.94\n", + " typewriter keyboard 50 0.68 0.98\n", + " umbrella 50 0.52 0.7\n", + " unicycle 50 0.74 0.96\n", + " upright piano 50 0.76 0.9\n", + " vacuum cleaner 50 0.62 0.9\n", + " vase 50 0.5 0.78\n", + " vault 50 0.76 0.92\n", + " velvet 50 0.2 0.42\n", + " vending machine 50 0.9 1\n", + " vestment 50 0.54 0.82\n", + " viaduct 50 0.78 0.86\n", + " violin 50 0.68 0.78\n", + " volleyball 50 0.86 1\n", + " waffle iron 50 0.72 0.88\n", + " wall clock 50 0.54 0.88\n", + " wallet 50 0.52 0.9\n", + " wardrobe 50 0.68 0.88\n", + " military aircraft 50 0.9 0.98\n", + " sink 50 0.72 0.96\n", + " washing machine 50 0.78 0.94\n", + " water bottle 50 0.54 0.74\n", + " water jug 50 0.22 0.74\n", + " water tower 50 0.9 0.96\n", + " whiskey jug 50 0.64 0.74\n", + " whistle 50 0.72 0.84\n", + " wig 50 0.84 0.9\n", + " window screen 50 0.68 0.8\n", + " window shade 50 0.52 0.76\n", + " Windsor tie 50 0.22 0.66\n", + " wine bottle 50 0.42 0.82\n", + " wing 50 0.54 0.96\n", + " wok 50 0.46 0.82\n", + " wooden spoon 50 0.58 0.8\n", + " wool 50 0.32 0.82\n", + " split-rail fence 50 0.74 0.9\n", + " shipwreck 50 0.84 0.96\n", + " yawl 50 0.78 0.96\n", + " yurt 50 0.84 1\n", + " website 50 0.98 1\n", + " comic book 50 0.62 0.9\n", + " crossword 50 0.84 0.88\n", + " traffic sign 50 0.78 0.9\n", + " traffic light 50 0.8 0.94\n", + " dust jacket 50 0.72 0.94\n", + " menu 50 0.82 0.96\n", + " plate 50 0.44 0.88\n", + " guacamole 50 0.8 0.92\n", + " consomme 50 0.54 0.88\n", + " hot pot 50 0.86 0.98\n", + " trifle 50 0.92 0.98\n", + " ice cream 50 0.68 0.94\n", + " ice pop 50 0.62 0.84\n", + " baguette 50 0.62 0.88\n", + " bagel 50 0.64 0.92\n", + " pretzel 50 0.72 0.88\n", + " cheeseburger 50 0.9 1\n", + " hot dog 50 0.74 0.94\n", + " mashed potato 50 0.74 0.9\n", + " cabbage 50 0.84 0.96\n", + " broccoli 50 0.9 0.96\n", + " cauliflower 50 0.82 1\n", + " zucchini 50 0.74 0.9\n", + " spaghetti squash 50 0.8 0.96\n", + " acorn squash 50 0.82 0.96\n", + " butternut squash 50 0.7 0.94\n", + " cucumber 50 0.6 0.96\n", + " artichoke 50 0.84 0.94\n", + " bell pepper 50 0.84 0.98\n", + " cardoon 50 0.88 0.94\n", + " mushroom 50 0.38 0.92\n", + " Granny Smith 50 0.9 0.96\n", + " strawberry 50 0.6 0.88\n", + " orange 50 0.7 0.92\n", + " lemon 50 0.78 0.98\n", + " fig 50 0.82 0.96\n", + " pineapple 50 0.86 0.96\n", + " banana 50 0.84 0.96\n", + " jackfruit 50 0.9 0.98\n", + " custard apple 50 0.86 0.96\n", + " pomegranate 50 0.82 0.98\n", + " hay 50 0.8 0.92\n", + " carbonara 50 0.88 0.94\n", + " chocolate syrup 50 0.46 0.84\n", + " dough 50 0.4 0.6\n", + " meatloaf 50 0.58 0.84\n", + " pizza 50 0.84 0.96\n", + " pot pie 50 0.68 0.9\n", + " burrito 50 0.8 0.98\n", + " red wine 50 0.54 0.82\n", + " espresso 50 0.64 0.88\n", + " cup 50 0.38 0.7\n", + " eggnog 50 0.38 0.7\n", + " alp 50 0.54 0.88\n", + " bubble 50 0.8 0.96\n", + " cliff 50 0.64 1\n", + " coral reef 50 0.72 0.96\n", + " geyser 50 0.94 1\n", + " lakeshore 50 0.54 0.88\n", + " promontory 50 0.58 0.94\n", + " shoal 50 0.6 0.96\n", + " seashore 50 0.44 0.78\n", + " valley 50 0.72 0.94\n", + " volcano 50 0.78 0.96\n", + " baseball player 50 0.72 0.94\n", + " bridegroom 50 0.72 0.88\n", + " scuba diver 50 0.8 1\n", + " rapeseed 50 0.94 0.98\n", + " daisy 50 0.96 0.98\n", + " yellow lady's slipper 50 1 1\n", + " corn 50 0.4 0.88\n", + " acorn 50 0.92 0.98\n", + " rose hip 50 0.92 0.98\n", + " horse chestnut seed 50 0.94 0.98\n", + " coral fungus 50 0.96 0.96\n", + " agaric 50 0.82 0.94\n", + " gyromitra 50 0.98 1\n", + " stinkhorn mushroom 50 0.8 0.94\n", + " earth star 50 0.98 1\n", + " hen-of-the-woods 50 0.8 0.96\n", + " bolete 50 0.74 0.94\n", + " ear 50 0.48 0.94\n", + " toilet paper 50 0.36 0.68\n", + "Speed: 0.1ms pre-process, 0.3ms inference, 0.0ms post-process per image at shape (1, 3, 224, 224)\n", + "Results saved to \u001b[1mruns/val-cls/exp\u001b[0m\n" + ] + } + ], + "source": [ + "# Validate YOLOv5s on Imagenet val\n", + "!python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224 --half" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZY2VXXXu74w5" + }, + "source": [ + "# 3. Train\n", + "\n", + "

    \n", + "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n", + "

    \n", + "\n", + "Train a YOLOv5s Classification model on the [Imagenette](https://image-net.org/) dataset with `--data imagenet`, starting from pretrained `--pretrained yolov5s-cls.pt`.\n", + "\n", + "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n", + "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n", + "- **Training Results** are saved to `runs/train-cls/` with incrementing run directories, i.e. `runs/train-cls/exp2`, `runs/train-cls/exp3` etc.\n", + "

    \n", + "\n", + "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n", + "\n", + "## Train on Custom Data with Roboflow 🌟 NEW\n", + "\n", + "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n", + "\n", + "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-classification-custom-data/](https://blog.roboflow.com/train-yolov5-classification-custom-data/?ref=ultralytics)\n", + "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1KZiKUAjtARHAfZCXbJRv14-pOnIsBLPV?usp=sharing)\n", + "
    \n", + "\n", + "

    Label images lightning fast (including with model-assisted labeling)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "i3oKtE4g-aNn" + }, + "outputs": [], + "source": [ + "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n", + "logger = 'TensorBoard' #@param ['TensorBoard', 'Comet', 'ClearML']\n", + "\n", + "if logger == 'TensorBoard':\n", + " %load_ext tensorboard\n", + " %tensorboard --logdir runs/train\n", + "elif logger == 'Comet':\n", + " %pip install -q comet_ml\n", + " import comet_ml; comet_ml.init()\n", + "elif logger == 'ClearML':\n", + " import clearml; clearml.browser_login()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1NcFxRcFdJ_O", + "outputId": "77c8d487-16db-4073-b3ea-06cabf2e7766" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1mclassify/train: \u001b[0mmodel=yolov5s-cls.pt, data=imagenette160, epochs=5, batch_size=64, imgsz=224, nosave=False, cache=ram, device=, workers=8, project=runs/train-cls, name=exp, exist_ok=False, pretrained=True, optimizer=Adam, lr0=0.001, decay=5e-05, label_smoothing=0.1, cutoff=None, dropout=None, verbose=False, seed=0, local_rank=-1\n", + "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n", + "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", + "\n", + "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-cls', view at http://localhost:6006/\n", + "\n", + "Dataset not found ⚠️, missing path /content/datasets/imagenette160, attempting download...\n", + "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenette160.zip to /content/datasets/imagenette160.zip...\n", + "100% 103M/103M [00:00<00:00, 347MB/s] \n", + "Unzipping /content/datasets/imagenette160.zip...\n", + "Dataset download success ✅ (3.3s), saved to \u001b[1m/content/datasets/imagenette160\u001b[0m\n", + "\n", + "\u001b[34m\u001b[1malbumentations: \u001b[0mRandomResizedCrop(p=1.0, height=224, width=224, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=1), HorizontalFlip(p=0.5), ColorJitter(p=0.5, brightness=[0.6, 1.4], contrast=[0.6, 1.4], saturation=[0.6, 1.4], hue=[0, 0]), Normalize(p=1.0, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0), ToTensorV2(always_apply=True, p=1.0, transpose_mask=False)\n", + "Model summary: 149 layers, 4185290 parameters, 4185290 gradients, 10.5 GFLOPs\n", + "\u001b[34m\u001b[1moptimizer:\u001b[0m Adam(lr=0.001) with parameter groups 32 weight(decay=0.0), 33 weight(decay=5e-05), 33 bias\n", + "Image sizes 224 train, 224 test\n", + "Using 1 dataloader workers\n", + "Logging results to \u001b[1mruns/train-cls/exp\u001b[0m\n", + "Starting yolov5s-cls.pt training on imagenette160 dataset with 10 classes for 5 epochs...\n", + "\n", + " Epoch GPU_mem train_loss val_loss top1_acc top5_acc\n", + " 1/5 1.47G 1.05 0.974 0.828 0.975: 100% 148/148 [00:38<00:00, 3.82it/s]\n", + " 2/5 1.73G 0.895 0.766 0.911 0.994: 100% 148/148 [00:36<00:00, 4.03it/s]\n", + " 3/5 1.73G 0.82 0.704 0.934 0.996: 100% 148/148 [00:35<00:00, 4.20it/s]\n", + " 4/5 1.73G 0.766 0.664 0.951 0.998: 100% 148/148 [00:36<00:00, 4.05it/s]\n", + " 5/5 1.73G 0.724 0.634 0.959 0.997: 100% 148/148 [00:37<00:00, 3.94it/s]\n", + "\n", + "Training complete (0.052 hours)\n", + "Results saved to \u001b[1mruns/train-cls/exp\u001b[0m\n", + "Predict: python classify/predict.py --weights runs/train-cls/exp/weights/best.pt --source im.jpg\n", + "Validate: python classify/val.py --weights runs/train-cls/exp/weights/best.pt --data /content/datasets/imagenette160\n", + "Export: python export.py --weights runs/train-cls/exp/weights/best.pt --include onnx\n", + "PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', 'runs/train-cls/exp/weights/best.pt')\n", + "Visualize: https://netron.app\n", + "\n" + ] + } + ], + "source": [ + "# Train YOLOv5s Classification on Imagenette160 for 3 epochs\n", + "!python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224 --cache" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "15glLzbQx5u0" + }, + "source": [ + "# 4. Visualize" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nWOsI5wJR1o3" + }, + "source": [ + "## Comet Logging and Visualization 🌟 NEW\n", + "\n", + "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n", + "\n", + "Getting started is easy:\n", + "```shell\n", + "pip install comet_ml # 1. install\n", + "export COMET_API_KEY= # 2. paste API key\n", + "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n", + "```\n", + "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n", + "\n", + "\n", + "\"Comet" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Lay2WsTjNJzP" + }, + "source": [ + "## ClearML Logging and Automation 🌟 NEW\n", + "\n", + "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n", + "\n", + "- `pip install clearml`\n", + "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n", + "\n", + "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n", + "\n", + "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n", + "\n", + "\n", + "\"ClearML" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-WPvRbS5Swl6" + }, + "source": [ + "## Local Logging\n", + "\n", + "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n", + "\n", + "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n", + "\n", + "\"Local\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zelyeqbyt3GD" + }, + "source": [ + "# Environments\n", + "\n", + "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n", + "\n", + "- **Notebooks** with free GPU: \"Run \"Open \"Open\n", + "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n", + "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n", + "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) \"Docker\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6Qu7Iesl0p54" + }, + "source": [ + "# Status\n", + "\n", + "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n", + "\n", + "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IEijrePND_2I" + }, + "source": [ + "# Appendix\n", + "\n", + "Additional content below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GMusP4OAxFu6" + }, + "outputs": [], + "source": [ + "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n", + "import torch\n", + "\n", + "model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # yolov5n - yolov5x6 or custom\n", + "im = 'https://ultralytics.com/images/zidane.jpg' # file, Path, PIL.Image, OpenCV, nparray, list\n", + "results = model(im) # inference\n", + "results.print() # or .show(), .save(), .crop(), .pandas(), etc." + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "name": "YOLOv5 Classification Tutorial", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/ultralytics/yolov5/classify/val.py b/ultralytics/yolov5/classify/val.py new file mode 100644 index 0000000..4edd5a1 --- /dev/null +++ b/ultralytics/yolov5/classify/val.py @@ -0,0 +1,170 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Validate a trained YOLOv5 classification model on a classification dataset + +Usage: + $ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) + $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet + +Usage - formats: + $ python classify/val.py --weights yolov5s-cls.pt # PyTorch + yolov5s-cls.torchscript # TorchScript + yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s-cls_openvino_model # OpenVINO + yolov5s-cls.engine # TensorRT + yolov5s-cls.mlmodel # CoreML (macOS-only) + yolov5s-cls_saved_model # TensorFlow SavedModel + yolov5s-cls.pb # TensorFlow GraphDef + yolov5s-cls.tflite # TensorFlow Lite + yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU + yolov5s-cls_paddle_model # PaddlePaddle +""" + +import argparse +import os +import sys +from pathlib import Path + +import torch +from tqdm import tqdm + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import DetectMultiBackend +from utils.dataloaders import create_classification_dataloader +from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr, + increment_path, print_args) +from utils.torch_utils import select_device, smart_inference_mode + + +@smart_inference_mode() +def run( + data=ROOT / '../datasets/mnist', # dataset dir + weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s) + batch_size=128, # batch size + imgsz=224, # inference size (pixels) + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + workers=8, # max dataloader workers (per RANK in DDP mode) + verbose=False, # verbose output + project=ROOT / 'runs/val-cls', # save to project/name + name='exp', # save to project/name + exist_ok=False, # existing project/name ok, do not increment + half=False, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + model=None, + dataloader=None, + criterion=None, + pbar=None, +): + # Initialize/load model and set device + training = model is not None + if training: # called by train.py + device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model + half &= device.type != 'cpu' # half precision only supported on CUDA + model.half() if half else model.float() + else: # called directly + device = select_device(device, batch_size=batch_size) + + # Directories + save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run + save_dir.mkdir(parents=True, exist_ok=True) # make dir + + # Load model + model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) + stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine + imgsz = check_img_size(imgsz, s=stride) # check image size + half = model.fp16 # FP16 supported on limited backends with CUDA + if engine: + batch_size = model.batch_size + else: + device = model.device + if not (pt or jit): + batch_size = 1 # export.py models default to batch-size 1 + LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') + + # Dataloader + data = Path(data) + test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val + dataloader = create_classification_dataloader(path=test_dir, + imgsz=imgsz, + batch_size=batch_size, + augment=False, + rank=-1, + workers=workers) + + model.eval() + pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile()) + n = len(dataloader) # number of batches + action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing' + desc = f'{pbar.desc[:-36]}{action:>36}' if pbar else f'{action}' + bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0) + with torch.cuda.amp.autocast(enabled=device.type != 'cpu'): + for images, labels in bar: + with dt[0]: + images, labels = images.to(device, non_blocking=True), labels.to(device) + + with dt[1]: + y = model(images) + + with dt[2]: + pred.append(y.argsort(1, descending=True)[:, :5]) + targets.append(labels) + if criterion: + loss += criterion(y, labels) + + loss /= n + pred, targets = torch.cat(pred), torch.cat(targets) + correct = (targets[:, None] == pred).float() + acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy + top1, top5 = acc.mean(0).tolist() + + if pbar: + pbar.desc = f'{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}' + if verbose: # all classes + LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}") + LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}") + for i, c in model.names.items(): + acc_i = acc[targets == i] + top1i, top5i = acc_i.mean(0).tolist() + LOGGER.info(f'{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}') + + # Print results + t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image + shape = (1, 3, imgsz, imgsz) + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t) + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") + + return top1, top5, loss + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path') + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)') + parser.add_argument('--batch-size', type=int, default=128, help='batch size') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output') + parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') + opt = parser.parse_args() + print_args(vars(opt)) + return opt + + +def main(opt): + check_requirements(exclude=('tensorboard', 'thop')) + run(**vars(opt)) + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/data/Argoverse.yaml b/ultralytics/yolov5/data/Argoverse.yaml new file mode 100644 index 0000000..558151d --- /dev/null +++ b/ultralytics/yolov5/data/Argoverse.yaml @@ -0,0 +1,74 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI +# Example usage: python train.py --data Argoverse.yaml +# parent +# ├── yolov5 +# └── datasets +# └── Argoverse ← downloads here (31.3 GB) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/Argoverse # dataset root dir +train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images +val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images +test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview + +# Classes +names: + 0: person + 1: bicycle + 2: car + 3: motorcycle + 4: bus + 5: truck + 6: traffic_light + 7: stop_sign + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + import json + + from tqdm import tqdm + from utils.general import download, Path + + + def argoverse2yolo(set): + labels = {} + a = json.load(open(set, "rb")) + for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."): + img_id = annot['image_id'] + img_name = a['images'][img_id]['name'] + img_label_name = f'{img_name[:-3]}txt' + + cls = annot['category_id'] # instance class id + x_center, y_center, width, height = annot['bbox'] + x_center = (x_center + width / 2) / 1920.0 # offset and scale + y_center = (y_center + height / 2) / 1200.0 # offset and scale + width /= 1920.0 # scale + height /= 1200.0 # scale + + img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']] + if not img_dir.exists(): + img_dir.mkdir(parents=True, exist_ok=True) + + k = str(img_dir / img_label_name) + if k not in labels: + labels[k] = [] + labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n") + + for k in labels: + with open(k, "w") as f: + f.writelines(labels[k]) + + + # Download + dir = Path(yaml['path']) # dataset root dir + urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip'] + download(urls, dir=dir, delete=False) + + # Convert + annotations_dir = 'Argoverse-HD/annotations/' + (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images' + for d in "train.json", "val.json": + argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels diff --git a/ultralytics/yolov5/data/GlobalWheat2020.yaml b/ultralytics/yolov5/data/GlobalWheat2020.yaml new file mode 100644 index 0000000..01812d0 --- /dev/null +++ b/ultralytics/yolov5/data/GlobalWheat2020.yaml @@ -0,0 +1,54 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan +# Example usage: python train.py --data GlobalWheat2020.yaml +# parent +# ├── yolov5 +# └── datasets +# └── GlobalWheat2020 ← downloads here (7.0 GB) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/GlobalWheat2020 # dataset root dir +train: # train images (relative to 'path') 3422 images + - images/arvalis_1 + - images/arvalis_2 + - images/arvalis_3 + - images/ethz_1 + - images/rres_1 + - images/inrae_1 + - images/usask_1 +val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1) + - images/ethz_1 +test: # test images (optional) 1276 images + - images/utokyo_1 + - images/utokyo_2 + - images/nau_1 + - images/uq_1 + +# Classes +names: + 0: wheat_head + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + from utils.general import download, Path + + + # Download + dir = Path(yaml['path']) # dataset root dir + urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip', + 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip'] + download(urls, dir=dir) + + # Make Directories + for p in 'annotations', 'images', 'labels': + (dir / p).mkdir(parents=True, exist_ok=True) + + # Move + for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \ + 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1': + (dir / p).rename(dir / 'images' / p) # move to /images + f = (dir / p).with_suffix('.json') # json file + if f.exists(): + f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations diff --git a/ultralytics/yolov5/data/ImageNet.yaml b/ultralytics/yolov5/data/ImageNet.yaml new file mode 100644 index 0000000..14f1295 --- /dev/null +++ b/ultralytics/yolov5/data/ImageNet.yaml @@ -0,0 +1,1022 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University +# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels +# Example usage: python classify/train.py --data imagenet +# parent +# ├── yolov5 +# └── datasets +# └── imagenet ← downloads here (144 GB) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/imagenet # dataset root dir +train: train # train images (relative to 'path') 1281167 images +val: val # val images (relative to 'path') 50000 images +test: # test images (optional) + +# Classes +names: + 0: tench + 1: goldfish + 2: great white shark + 3: tiger shark + 4: hammerhead shark + 5: electric ray + 6: stingray + 7: cock + 8: hen + 9: ostrich + 10: brambling + 11: goldfinch + 12: house finch + 13: junco + 14: indigo bunting + 15: American robin + 16: bulbul + 17: jay + 18: magpie + 19: chickadee + 20: American dipper + 21: kite + 22: bald eagle + 23: vulture + 24: great grey owl + 25: fire salamander + 26: smooth newt + 27: newt + 28: spotted salamander + 29: axolotl + 30: American bullfrog + 31: tree frog + 32: tailed frog + 33: loggerhead sea turtle + 34: leatherback sea turtle + 35: mud turtle + 36: terrapin + 37: box turtle + 38: banded gecko + 39: green iguana + 40: Carolina anole + 41: desert grassland whiptail lizard + 42: agama + 43: frilled-necked lizard + 44: alligator lizard + 45: Gila monster + 46: European green lizard + 47: chameleon + 48: Komodo dragon + 49: Nile crocodile + 50: American alligator + 51: triceratops + 52: worm snake + 53: ring-necked snake + 54: eastern hog-nosed snake + 55: smooth green snake + 56: kingsnake + 57: garter snake + 58: water snake + 59: vine snake + 60: night snake + 61: boa constrictor + 62: African rock python + 63: Indian cobra + 64: green mamba + 65: sea snake + 66: Saharan horned viper + 67: eastern diamondback rattlesnake + 68: sidewinder + 69: trilobite + 70: harvestman + 71: scorpion + 72: yellow garden spider + 73: barn spider + 74: European garden spider + 75: southern black widow + 76: tarantula + 77: wolf spider + 78: tick + 79: centipede + 80: black grouse + 81: ptarmigan + 82: ruffed grouse + 83: prairie grouse + 84: peacock + 85: quail + 86: partridge + 87: grey parrot + 88: macaw + 89: sulphur-crested cockatoo + 90: lorikeet + 91: coucal + 92: bee eater + 93: hornbill + 94: hummingbird + 95: jacamar + 96: toucan + 97: duck + 98: red-breasted merganser + 99: goose + 100: black swan + 101: tusker + 102: echidna + 103: platypus + 104: wallaby + 105: koala + 106: wombat + 107: jellyfish + 108: sea anemone + 109: brain coral + 110: flatworm + 111: nematode + 112: conch + 113: snail + 114: slug + 115: sea slug + 116: chiton + 117: chambered nautilus + 118: Dungeness crab + 119: rock crab + 120: fiddler crab + 121: red king crab + 122: American lobster + 123: spiny lobster + 124: crayfish + 125: hermit crab + 126: isopod + 127: white stork + 128: black stork + 129: spoonbill + 130: flamingo + 131: little blue heron + 132: great egret + 133: bittern + 134: crane (bird) + 135: limpkin + 136: common gallinule + 137: American coot + 138: bustard + 139: ruddy turnstone + 140: dunlin + 141: common redshank + 142: dowitcher + 143: oystercatcher + 144: pelican + 145: king penguin + 146: albatross + 147: grey whale + 148: killer whale + 149: dugong + 150: sea lion + 151: Chihuahua + 152: Japanese Chin + 153: Maltese + 154: Pekingese + 155: Shih Tzu + 156: King Charles Spaniel + 157: Papillon + 158: toy terrier + 159: Rhodesian Ridgeback + 160: Afghan Hound + 161: Basset Hound + 162: Beagle + 163: Bloodhound + 164: Bluetick Coonhound + 165: Black and Tan Coonhound + 166: Treeing Walker Coonhound + 167: English foxhound + 168: Redbone Coonhound + 169: borzoi + 170: Irish Wolfhound + 171: Italian Greyhound + 172: Whippet + 173: Ibizan Hound + 174: Norwegian Elkhound + 175: Otterhound + 176: Saluki + 177: Scottish Deerhound + 178: Weimaraner + 179: Staffordshire Bull Terrier + 180: American Staffordshire Terrier + 181: Bedlington Terrier + 182: Border Terrier + 183: Kerry Blue Terrier + 184: Irish Terrier + 185: Norfolk Terrier + 186: Norwich Terrier + 187: Yorkshire Terrier + 188: Wire Fox Terrier + 189: Lakeland Terrier + 190: Sealyham Terrier + 191: Airedale Terrier + 192: Cairn Terrier + 193: Australian Terrier + 194: Dandie Dinmont Terrier + 195: Boston Terrier + 196: Miniature Schnauzer + 197: Giant Schnauzer + 198: Standard Schnauzer + 199: Scottish Terrier + 200: Tibetan Terrier + 201: Australian Silky Terrier + 202: Soft-coated Wheaten Terrier + 203: West Highland White Terrier + 204: Lhasa Apso + 205: Flat-Coated Retriever + 206: Curly-coated Retriever + 207: Golden Retriever + 208: Labrador Retriever + 209: Chesapeake Bay Retriever + 210: German Shorthaired Pointer + 211: Vizsla + 212: English Setter + 213: Irish Setter + 214: Gordon Setter + 215: Brittany + 216: Clumber Spaniel + 217: English Springer Spaniel + 218: Welsh Springer Spaniel + 219: Cocker Spaniels + 220: Sussex Spaniel + 221: Irish Water Spaniel + 222: Kuvasz + 223: Schipperke + 224: Groenendael + 225: Malinois + 226: Briard + 227: Australian Kelpie + 228: Komondor + 229: Old English Sheepdog + 230: Shetland Sheepdog + 231: collie + 232: Border Collie + 233: Bouvier des Flandres + 234: Rottweiler + 235: German Shepherd Dog + 236: Dobermann + 237: Miniature Pinscher + 238: Greater Swiss Mountain Dog + 239: Bernese Mountain Dog + 240: Appenzeller Sennenhund + 241: Entlebucher Sennenhund + 242: Boxer + 243: Bullmastiff + 244: Tibetan Mastiff + 245: French Bulldog + 246: Great Dane + 247: St. Bernard + 248: husky + 249: Alaskan Malamute + 250: Siberian Husky + 251: Dalmatian + 252: Affenpinscher + 253: Basenji + 254: pug + 255: Leonberger + 256: Newfoundland + 257: Pyrenean Mountain Dog + 258: Samoyed + 259: Pomeranian + 260: Chow Chow + 261: Keeshond + 262: Griffon Bruxellois + 263: Pembroke Welsh Corgi + 264: Cardigan Welsh Corgi + 265: Toy Poodle + 266: Miniature Poodle + 267: Standard Poodle + 268: Mexican hairless dog + 269: grey wolf + 270: Alaskan tundra wolf + 271: red wolf + 272: coyote + 273: dingo + 274: dhole + 275: African wild dog + 276: hyena + 277: red fox + 278: kit fox + 279: Arctic fox + 280: grey fox + 281: tabby cat + 282: tiger cat + 283: Persian cat + 284: Siamese cat + 285: Egyptian Mau + 286: cougar + 287: lynx + 288: leopard + 289: snow leopard + 290: jaguar + 291: lion + 292: tiger + 293: cheetah + 294: brown bear + 295: American black bear + 296: polar bear + 297: sloth bear + 298: mongoose + 299: meerkat + 300: tiger beetle + 301: ladybug + 302: ground beetle + 303: longhorn beetle + 304: leaf beetle + 305: dung beetle + 306: rhinoceros beetle + 307: weevil + 308: fly + 309: bee + 310: ant + 311: grasshopper + 312: cricket + 313: stick insect + 314: cockroach + 315: mantis + 316: cicada + 317: leafhopper + 318: lacewing + 319: dragonfly + 320: damselfly + 321: red admiral + 322: ringlet + 323: monarch butterfly + 324: small white + 325: sulphur butterfly + 326: gossamer-winged butterfly + 327: starfish + 328: sea urchin + 329: sea cucumber + 330: cottontail rabbit + 331: hare + 332: Angora rabbit + 333: hamster + 334: porcupine + 335: fox squirrel + 336: marmot + 337: beaver + 338: guinea pig + 339: common sorrel + 340: zebra + 341: pig + 342: wild boar + 343: warthog + 344: hippopotamus + 345: ox + 346: water buffalo + 347: bison + 348: ram + 349: bighorn sheep + 350: Alpine ibex + 351: hartebeest + 352: impala + 353: gazelle + 354: dromedary + 355: llama + 356: weasel + 357: mink + 358: European polecat + 359: black-footed ferret + 360: otter + 361: skunk + 362: badger + 363: armadillo + 364: three-toed sloth + 365: orangutan + 366: gorilla + 367: chimpanzee + 368: gibbon + 369: siamang + 370: guenon + 371: patas monkey + 372: baboon + 373: macaque + 374: langur + 375: black-and-white colobus + 376: proboscis monkey + 377: marmoset + 378: white-headed capuchin + 379: howler monkey + 380: titi + 381: Geoffroy's spider monkey + 382: common squirrel monkey + 383: ring-tailed lemur + 384: indri + 385: Asian elephant + 386: African bush elephant + 387: red panda + 388: giant panda + 389: snoek + 390: eel + 391: coho salmon + 392: rock beauty + 393: clownfish + 394: sturgeon + 395: garfish + 396: lionfish + 397: pufferfish + 398: abacus + 399: abaya + 400: academic gown + 401: accordion + 402: acoustic guitar + 403: aircraft carrier + 404: airliner + 405: airship + 406: altar + 407: ambulance + 408: amphibious vehicle + 409: analog clock + 410: apiary + 411: apron + 412: waste container + 413: assault rifle + 414: backpack + 415: bakery + 416: balance beam + 417: balloon + 418: ballpoint pen + 419: Band-Aid + 420: banjo + 421: baluster + 422: barbell + 423: barber chair + 424: barbershop + 425: barn + 426: barometer + 427: barrel + 428: wheelbarrow + 429: baseball + 430: basketball + 431: bassinet + 432: bassoon + 433: swimming cap + 434: bath towel + 435: bathtub + 436: station wagon + 437: lighthouse + 438: beaker + 439: military cap + 440: beer bottle + 441: beer glass + 442: bell-cot + 443: bib + 444: tandem bicycle + 445: bikini + 446: ring binder + 447: binoculars + 448: birdhouse + 449: boathouse + 450: bobsleigh + 451: bolo tie + 452: poke bonnet + 453: bookcase + 454: bookstore + 455: bottle cap + 456: bow + 457: bow tie + 458: brass + 459: bra + 460: breakwater + 461: breastplate + 462: broom + 463: bucket + 464: buckle + 465: bulletproof vest + 466: high-speed train + 467: butcher shop + 468: taxicab + 469: cauldron + 470: candle + 471: cannon + 472: canoe + 473: can opener + 474: cardigan + 475: car mirror + 476: carousel + 477: tool kit + 478: carton + 479: car wheel + 480: automated teller machine + 481: cassette + 482: cassette player + 483: castle + 484: catamaran + 485: CD player + 486: cello + 487: mobile phone + 488: chain + 489: chain-link fence + 490: chain mail + 491: chainsaw + 492: chest + 493: chiffonier + 494: chime + 495: china cabinet + 496: Christmas stocking + 497: church + 498: movie theater + 499: cleaver + 500: cliff dwelling + 501: cloak + 502: clogs + 503: cocktail shaker + 504: coffee mug + 505: coffeemaker + 506: coil + 507: combination lock + 508: computer keyboard + 509: confectionery store + 510: container ship + 511: convertible + 512: corkscrew + 513: cornet + 514: cowboy boot + 515: cowboy hat + 516: cradle + 517: crane (machine) + 518: crash helmet + 519: crate + 520: infant bed + 521: Crock Pot + 522: croquet ball + 523: crutch + 524: cuirass + 525: dam + 526: desk + 527: desktop computer + 528: rotary dial telephone + 529: diaper + 530: digital clock + 531: digital watch + 532: dining table + 533: dishcloth + 534: dishwasher + 535: disc brake + 536: dock + 537: dog sled + 538: dome + 539: doormat + 540: drilling rig + 541: drum + 542: drumstick + 543: dumbbell + 544: Dutch oven + 545: electric fan + 546: electric guitar + 547: electric locomotive + 548: entertainment center + 549: envelope + 550: espresso machine + 551: face powder + 552: feather boa + 553: filing cabinet + 554: fireboat + 555: fire engine + 556: fire screen sheet + 557: flagpole + 558: flute + 559: folding chair + 560: football helmet + 561: forklift + 562: fountain + 563: fountain pen + 564: four-poster bed + 565: freight car + 566: French horn + 567: frying pan + 568: fur coat + 569: garbage truck + 570: gas mask + 571: gas pump + 572: goblet + 573: go-kart + 574: golf ball + 575: golf cart + 576: gondola + 577: gong + 578: gown + 579: grand piano + 580: greenhouse + 581: grille + 582: grocery store + 583: guillotine + 584: barrette + 585: hair spray + 586: half-track + 587: hammer + 588: hamper + 589: hair dryer + 590: hand-held computer + 591: handkerchief + 592: hard disk drive + 593: harmonica + 594: harp + 595: harvester + 596: hatchet + 597: holster + 598: home theater + 599: honeycomb + 600: hook + 601: hoop skirt + 602: horizontal bar + 603: horse-drawn vehicle + 604: hourglass + 605: iPod + 606: clothes iron + 607: jack-o'-lantern + 608: jeans + 609: jeep + 610: T-shirt + 611: jigsaw puzzle + 612: pulled rickshaw + 613: joystick + 614: kimono + 615: knee pad + 616: knot + 617: lab coat + 618: ladle + 619: lampshade + 620: laptop computer + 621: lawn mower + 622: lens cap + 623: paper knife + 624: library + 625: lifeboat + 626: lighter + 627: limousine + 628: ocean liner + 629: lipstick + 630: slip-on shoe + 631: lotion + 632: speaker + 633: loupe + 634: sawmill + 635: magnetic compass + 636: mail bag + 637: mailbox + 638: tights + 639: tank suit + 640: manhole cover + 641: maraca + 642: marimba + 643: mask + 644: match + 645: maypole + 646: maze + 647: measuring cup + 648: medicine chest + 649: megalith + 650: microphone + 651: microwave oven + 652: military uniform + 653: milk can + 654: minibus + 655: miniskirt + 656: minivan + 657: missile + 658: mitten + 659: mixing bowl + 660: mobile home + 661: Model T + 662: modem + 663: monastery + 664: monitor + 665: moped + 666: mortar + 667: square academic cap + 668: mosque + 669: mosquito net + 670: scooter + 671: mountain bike + 672: tent + 673: computer mouse + 674: mousetrap + 675: moving van + 676: muzzle + 677: nail + 678: neck brace + 679: necklace + 680: nipple + 681: notebook computer + 682: obelisk + 683: oboe + 684: ocarina + 685: odometer + 686: oil filter + 687: organ + 688: oscilloscope + 689: overskirt + 690: bullock cart + 691: oxygen mask + 692: packet + 693: paddle + 694: paddle wheel + 695: padlock + 696: paintbrush + 697: pajamas + 698: palace + 699: pan flute + 700: paper towel + 701: parachute + 702: parallel bars + 703: park bench + 704: parking meter + 705: passenger car + 706: patio + 707: payphone + 708: pedestal + 709: pencil case + 710: pencil sharpener + 711: perfume + 712: Petri dish + 713: photocopier + 714: plectrum + 715: Pickelhaube + 716: picket fence + 717: pickup truck + 718: pier + 719: piggy bank + 720: pill bottle + 721: pillow + 722: ping-pong ball + 723: pinwheel + 724: pirate ship + 725: pitcher + 726: hand plane + 727: planetarium + 728: plastic bag + 729: plate rack + 730: plow + 731: plunger + 732: Polaroid camera + 733: pole + 734: police van + 735: poncho + 736: billiard table + 737: soda bottle + 738: pot + 739: potter's wheel + 740: power drill + 741: prayer rug + 742: printer + 743: prison + 744: projectile + 745: projector + 746: hockey puck + 747: punching bag + 748: purse + 749: quill + 750: quilt + 751: race car + 752: racket + 753: radiator + 754: radio + 755: radio telescope + 756: rain barrel + 757: recreational vehicle + 758: reel + 759: reflex camera + 760: refrigerator + 761: remote control + 762: restaurant + 763: revolver + 764: rifle + 765: rocking chair + 766: rotisserie + 767: eraser + 768: rugby ball + 769: ruler + 770: running shoe + 771: safe + 772: safety pin + 773: salt shaker + 774: sandal + 775: sarong + 776: saxophone + 777: scabbard + 778: weighing scale + 779: school bus + 780: schooner + 781: scoreboard + 782: CRT screen + 783: screw + 784: screwdriver + 785: seat belt + 786: sewing machine + 787: shield + 788: shoe store + 789: shoji + 790: shopping basket + 791: shopping cart + 792: shovel + 793: shower cap + 794: shower curtain + 795: ski + 796: ski mask + 797: sleeping bag + 798: slide rule + 799: sliding door + 800: slot machine + 801: snorkel + 802: snowmobile + 803: snowplow + 804: soap dispenser + 805: soccer ball + 806: sock + 807: solar thermal collector + 808: sombrero + 809: soup bowl + 810: space bar + 811: space heater + 812: space shuttle + 813: spatula + 814: motorboat + 815: spider web + 816: spindle + 817: sports car + 818: spotlight + 819: stage + 820: steam locomotive + 821: through arch bridge + 822: steel drum + 823: stethoscope + 824: scarf + 825: stone wall + 826: stopwatch + 827: stove + 828: strainer + 829: tram + 830: stretcher + 831: couch + 832: stupa + 833: submarine + 834: suit + 835: sundial + 836: sunglass + 837: sunglasses + 838: sunscreen + 839: suspension bridge + 840: mop + 841: sweatshirt + 842: swimsuit + 843: swing + 844: switch + 845: syringe + 846: table lamp + 847: tank + 848: tape player + 849: teapot + 850: teddy bear + 851: television + 852: tennis ball + 853: thatched roof + 854: front curtain + 855: thimble + 856: threshing machine + 857: throne + 858: tile roof + 859: toaster + 860: tobacco shop + 861: toilet seat + 862: torch + 863: totem pole + 864: tow truck + 865: toy store + 866: tractor + 867: semi-trailer truck + 868: tray + 869: trench coat + 870: tricycle + 871: trimaran + 872: tripod + 873: triumphal arch + 874: trolleybus + 875: trombone + 876: tub + 877: turnstile + 878: typewriter keyboard + 879: umbrella + 880: unicycle + 881: upright piano + 882: vacuum cleaner + 883: vase + 884: vault + 885: velvet + 886: vending machine + 887: vestment + 888: viaduct + 889: violin + 890: volleyball + 891: waffle iron + 892: wall clock + 893: wallet + 894: wardrobe + 895: military aircraft + 896: sink + 897: washing machine + 898: water bottle + 899: water jug + 900: water tower + 901: whiskey jug + 902: whistle + 903: wig + 904: window screen + 905: window shade + 906: Windsor tie + 907: wine bottle + 908: wing + 909: wok + 910: wooden spoon + 911: wool + 912: split-rail fence + 913: shipwreck + 914: yawl + 915: yurt + 916: website + 917: comic book + 918: crossword + 919: traffic sign + 920: traffic light + 921: dust jacket + 922: menu + 923: plate + 924: guacamole + 925: consomme + 926: hot pot + 927: trifle + 928: ice cream + 929: ice pop + 930: baguette + 931: bagel + 932: pretzel + 933: cheeseburger + 934: hot dog + 935: mashed potato + 936: cabbage + 937: broccoli + 938: cauliflower + 939: zucchini + 940: spaghetti squash + 941: acorn squash + 942: butternut squash + 943: cucumber + 944: artichoke + 945: bell pepper + 946: cardoon + 947: mushroom + 948: Granny Smith + 949: strawberry + 950: orange + 951: lemon + 952: fig + 953: pineapple + 954: banana + 955: jackfruit + 956: custard apple + 957: pomegranate + 958: hay + 959: carbonara + 960: chocolate syrup + 961: dough + 962: meatloaf + 963: pizza + 964: pot pie + 965: burrito + 966: red wine + 967: espresso + 968: cup + 969: eggnog + 970: alp + 971: bubble + 972: cliff + 973: coral reef + 974: geyser + 975: lakeshore + 976: promontory + 977: shoal + 978: seashore + 979: valley + 980: volcano + 981: baseball player + 982: bridegroom + 983: scuba diver + 984: rapeseed + 985: daisy + 986: yellow lady's slipper + 987: corn + 988: acorn + 989: rose hip + 990: horse chestnut seed + 991: coral fungus + 992: agaric + 993: gyromitra + 994: stinkhorn mushroom + 995: earth star + 996: hen-of-the-woods + 997: bolete + 998: ear + 999: toilet paper + + +# Download script/URL (optional) +download: data/scripts/get_imagenet.sh diff --git a/ultralytics/yolov5/data/Objects365.yaml b/ultralytics/yolov5/data/Objects365.yaml new file mode 100644 index 0000000..05b26a1 --- /dev/null +++ b/ultralytics/yolov5/data/Objects365.yaml @@ -0,0 +1,438 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# Objects365 dataset https://www.objects365.org/ by Megvii +# Example usage: python train.py --data Objects365.yaml +# parent +# ├── yolov5 +# └── datasets +# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/Objects365 # dataset root dir +train: images/train # train images (relative to 'path') 1742289 images +val: images/val # val images (relative to 'path') 80000 images +test: # test images (optional) + +# Classes +names: + 0: Person + 1: Sneakers + 2: Chair + 3: Other Shoes + 4: Hat + 5: Car + 6: Lamp + 7: Glasses + 8: Bottle + 9: Desk + 10: Cup + 11: Street Lights + 12: Cabinet/shelf + 13: Handbag/Satchel + 14: Bracelet + 15: Plate + 16: Picture/Frame + 17: Helmet + 18: Book + 19: Gloves + 20: Storage box + 21: Boat + 22: Leather Shoes + 23: Flower + 24: Bench + 25: Potted Plant + 26: Bowl/Basin + 27: Flag + 28: Pillow + 29: Boots + 30: Vase + 31: Microphone + 32: Necklace + 33: Ring + 34: SUV + 35: Wine Glass + 36: Belt + 37: Monitor/TV + 38: Backpack + 39: Umbrella + 40: Traffic Light + 41: Speaker + 42: Watch + 43: Tie + 44: Trash bin Can + 45: Slippers + 46: Bicycle + 47: Stool + 48: Barrel/bucket + 49: Van + 50: Couch + 51: Sandals + 52: Basket + 53: Drum + 54: Pen/Pencil + 55: Bus + 56: Wild Bird + 57: High Heels + 58: Motorcycle + 59: Guitar + 60: Carpet + 61: Cell Phone + 62: Bread + 63: Camera + 64: Canned + 65: Truck + 66: Traffic cone + 67: Cymbal + 68: Lifesaver + 69: Towel + 70: Stuffed Toy + 71: Candle + 72: Sailboat + 73: Laptop + 74: Awning + 75: Bed + 76: Faucet + 77: Tent + 78: Horse + 79: Mirror + 80: Power outlet + 81: Sink + 82: Apple + 83: Air Conditioner + 84: Knife + 85: Hockey Stick + 86: Paddle + 87: Pickup Truck + 88: Fork + 89: Traffic Sign + 90: Balloon + 91: Tripod + 92: Dog + 93: Spoon + 94: Clock + 95: Pot + 96: Cow + 97: Cake + 98: Dinning Table + 99: Sheep + 100: Hanger + 101: Blackboard/Whiteboard + 102: Napkin + 103: Other Fish + 104: Orange/Tangerine + 105: Toiletry + 106: Keyboard + 107: Tomato + 108: Lantern + 109: Machinery Vehicle + 110: Fan + 111: Green Vegetables + 112: Banana + 113: Baseball Glove + 114: Airplane + 115: Mouse + 116: Train + 117: Pumpkin + 118: Soccer + 119: Skiboard + 120: Luggage + 121: Nightstand + 122: Tea pot + 123: Telephone + 124: Trolley + 125: Head Phone + 126: Sports Car + 127: Stop Sign + 128: Dessert + 129: Scooter + 130: Stroller + 131: Crane + 132: Remote + 133: Refrigerator + 134: Oven + 135: Lemon + 136: Duck + 137: Baseball Bat + 138: Surveillance Camera + 139: Cat + 140: Jug + 141: Broccoli + 142: Piano + 143: Pizza + 144: Elephant + 145: Skateboard + 146: Surfboard + 147: Gun + 148: Skating and Skiing shoes + 149: Gas stove + 150: Donut + 151: Bow Tie + 152: Carrot + 153: Toilet + 154: Kite + 155: Strawberry + 156: Other Balls + 157: Shovel + 158: Pepper + 159: Computer Box + 160: Toilet Paper + 161: Cleaning Products + 162: Chopsticks + 163: Microwave + 164: Pigeon + 165: Baseball + 166: Cutting/chopping Board + 167: Coffee Table + 168: Side Table + 169: Scissors + 170: Marker + 171: Pie + 172: Ladder + 173: Snowboard + 174: Cookies + 175: Radiator + 176: Fire Hydrant + 177: Basketball + 178: Zebra + 179: Grape + 180: Giraffe + 181: Potato + 182: Sausage + 183: Tricycle + 184: Violin + 185: Egg + 186: Fire Extinguisher + 187: Candy + 188: Fire Truck + 189: Billiards + 190: Converter + 191: Bathtub + 192: Wheelchair + 193: Golf Club + 194: Briefcase + 195: Cucumber + 196: Cigar/Cigarette + 197: Paint Brush + 198: Pear + 199: Heavy Truck + 200: Hamburger + 201: Extractor + 202: Extension Cord + 203: Tong + 204: Tennis Racket + 205: Folder + 206: American Football + 207: earphone + 208: Mask + 209: Kettle + 210: Tennis + 211: Ship + 212: Swing + 213: Coffee Machine + 214: Slide + 215: Carriage + 216: Onion + 217: Green beans + 218: Projector + 219: Frisbee + 220: Washing Machine/Drying Machine + 221: Chicken + 222: Printer + 223: Watermelon + 224: Saxophone + 225: Tissue + 226: Toothbrush + 227: Ice cream + 228: Hot-air balloon + 229: Cello + 230: French Fries + 231: Scale + 232: Trophy + 233: Cabbage + 234: Hot dog + 235: Blender + 236: Peach + 237: Rice + 238: Wallet/Purse + 239: Volleyball + 240: Deer + 241: Goose + 242: Tape + 243: Tablet + 244: Cosmetics + 245: Trumpet + 246: Pineapple + 247: Golf Ball + 248: Ambulance + 249: Parking meter + 250: Mango + 251: Key + 252: Hurdle + 253: Fishing Rod + 254: Medal + 255: Flute + 256: Brush + 257: Penguin + 258: Megaphone + 259: Corn + 260: Lettuce + 261: Garlic + 262: Swan + 263: Helicopter + 264: Green Onion + 265: Sandwich + 266: Nuts + 267: Speed Limit Sign + 268: Induction Cooker + 269: Broom + 270: Trombone + 271: Plum + 272: Rickshaw + 273: Goldfish + 274: Kiwi fruit + 275: Router/modem + 276: Poker Card + 277: Toaster + 278: Shrimp + 279: Sushi + 280: Cheese + 281: Notepaper + 282: Cherry + 283: Pliers + 284: CD + 285: Pasta + 286: Hammer + 287: Cue + 288: Avocado + 289: Hamimelon + 290: Flask + 291: Mushroom + 292: Screwdriver + 293: Soap + 294: Recorder + 295: Bear + 296: Eggplant + 297: Board Eraser + 298: Coconut + 299: Tape Measure/Ruler + 300: Pig + 301: Showerhead + 302: Globe + 303: Chips + 304: Steak + 305: Crosswalk Sign + 306: Stapler + 307: Camel + 308: Formula 1 + 309: Pomegranate + 310: Dishwasher + 311: Crab + 312: Hoverboard + 313: Meat ball + 314: Rice Cooker + 315: Tuba + 316: Calculator + 317: Papaya + 318: Antelope + 319: Parrot + 320: Seal + 321: Butterfly + 322: Dumbbell + 323: Donkey + 324: Lion + 325: Urinal + 326: Dolphin + 327: Electric Drill + 328: Hair Dryer + 329: Egg tart + 330: Jellyfish + 331: Treadmill + 332: Lighter + 333: Grapefruit + 334: Game board + 335: Mop + 336: Radish + 337: Baozi + 338: Target + 339: French + 340: Spring Rolls + 341: Monkey + 342: Rabbit + 343: Pencil Case + 344: Yak + 345: Red Cabbage + 346: Binoculars + 347: Asparagus + 348: Barbell + 349: Scallop + 350: Noddles + 351: Comb + 352: Dumpling + 353: Oyster + 354: Table Tennis paddle + 355: Cosmetics Brush/Eyeliner Pencil + 356: Chainsaw + 357: Eraser + 358: Lobster + 359: Durian + 360: Okra + 361: Lipstick + 362: Cosmetics Mirror + 363: Curling + 364: Table Tennis + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + from tqdm import tqdm + + from utils.general import Path, check_requirements, download, np, xyxy2xywhn + + check_requirements(('pycocotools>=2.0',)) + from pycocotools.coco import COCO + + # Make Directories + dir = Path(yaml['path']) # dataset root dir + for p in 'images', 'labels': + (dir / p).mkdir(parents=True, exist_ok=True) + for q in 'train', 'val': + (dir / p / q).mkdir(parents=True, exist_ok=True) + + # Train, Val Splits + for split, patches in [('train', 50 + 1), ('val', 43 + 1)]: + print(f"Processing {split} in {patches} patches ...") + images, labels = dir / 'images' / split, dir / 'labels' / split + + # Download + url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/" + if split == 'train': + download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json + download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8) + elif split == 'val': + download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json + download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8) + download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8) + + # Move + for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'): + f.rename(images / f.name) # move to /images/{split} + + # Labels + coco = COCO(dir / f'zhiyuan_objv2_{split}.json') + names = [x["name"] for x in coco.loadCats(coco.getCatIds())] + for cid, cat in enumerate(names): + catIds = coco.getCatIds(catNms=[cat]) + imgIds = coco.getImgIds(catIds=catIds) + for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'): + width, height = im["width"], im["height"] + path = Path(im["file_name"]) # image filename + try: + with open(labels / path.with_suffix('.txt').name, 'a') as file: + annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None) + for a in coco.loadAnns(annIds): + x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner) + xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4) + x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped + file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n") + except Exception as e: + print(e) diff --git a/ultralytics/yolov5/data/SKU-110K.yaml b/ultralytics/yolov5/data/SKU-110K.yaml new file mode 100644 index 0000000..edae717 --- /dev/null +++ b/ultralytics/yolov5/data/SKU-110K.yaml @@ -0,0 +1,53 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail +# Example usage: python train.py --data SKU-110K.yaml +# parent +# ├── yolov5 +# └── datasets +# └── SKU-110K ← downloads here (13.6 GB) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/SKU-110K # dataset root dir +train: train.txt # train images (relative to 'path') 8219 images +val: val.txt # val images (relative to 'path') 588 images +test: test.txt # test images (optional) 2936 images + +# Classes +names: + 0: object + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + import shutil + from tqdm import tqdm + from utils.general import np, pd, Path, download, xyxy2xywh + + + # Download + dir = Path(yaml['path']) # dataset root dir + parent = Path(dir.parent) # download dir + urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz'] + download(urls, dir=parent, delete=False) + + # Rename directories + if dir.exists(): + shutil.rmtree(dir) + (parent / 'SKU110K_fixed').rename(dir) # rename dir + (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir + + # Convert labels + names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names + for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv': + x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations + images, unique_images = x[:, 0], np.unique(x[:, 0]) + with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f: + f.writelines(f'./images/{s}\n' for s in unique_images) + for im in tqdm(unique_images, desc=f'Converting {dir / d}'): + cls = 0 # single-class dataset + with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f: + for r in x[images == im]: + w, h = r[6], r[7] # image width, height + xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance + f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label diff --git a/ultralytics/yolov5/data/VOC.yaml b/ultralytics/yolov5/data/VOC.yaml new file mode 100644 index 0000000..27d3810 --- /dev/null +++ b/ultralytics/yolov5/data/VOC.yaml @@ -0,0 +1,100 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford +# Example usage: python train.py --data VOC.yaml +# parent +# ├── yolov5 +# └── datasets +# └── VOC ← downloads here (2.8 GB) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/VOC +train: # train images (relative to 'path') 16551 images + - images/train2012 + - images/train2007 + - images/val2012 + - images/val2007 +val: # val images (relative to 'path') 4952 images + - images/test2007 +test: # test images (optional) + - images/test2007 + +# Classes +names: + 0: aeroplane + 1: bicycle + 2: bird + 3: boat + 4: bottle + 5: bus + 6: car + 7: cat + 8: chair + 9: cow + 10: diningtable + 11: dog + 12: horse + 13: motorbike + 14: person + 15: pottedplant + 16: sheep + 17: sofa + 18: train + 19: tvmonitor + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + import xml.etree.ElementTree as ET + + from tqdm import tqdm + from utils.general import download, Path + + + def convert_label(path, lb_path, year, image_id): + def convert_box(size, box): + dw, dh = 1. / size[0], 1. / size[1] + x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2] + return x * dw, y * dh, w * dw, h * dh + + in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml') + out_file = open(lb_path, 'w') + tree = ET.parse(in_file) + root = tree.getroot() + size = root.find('size') + w = int(size.find('width').text) + h = int(size.find('height').text) + + names = list(yaml['names'].values()) # names list + for obj in root.iter('object'): + cls = obj.find('name').text + if cls in names and int(obj.find('difficult').text) != 1: + xmlbox = obj.find('bndbox') + bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')]) + cls_id = names.index(cls) # class id + out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n') + + + # Download + dir = Path(yaml['path']) # dataset root dir + url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' + urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images + f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images + f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images + download(urls, dir=dir / 'images', delete=False, curl=True, threads=3) + + # Convert + path = dir / 'images/VOCdevkit' + for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'): + imgs_path = dir / 'images' / f'{image_set}{year}' + lbs_path = dir / 'labels' / f'{image_set}{year}' + imgs_path.mkdir(exist_ok=True, parents=True) + lbs_path.mkdir(exist_ok=True, parents=True) + + with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f: + image_ids = f.read().strip().split() + for id in tqdm(image_ids, desc=f'{image_set}{year}'): + f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path + lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path + f.rename(imgs_path / f.name) # move image + convert_label(path, lb_path, year, id) # convert labels to YOLO format diff --git a/ultralytics/yolov5/data/VisDrone.yaml b/ultralytics/yolov5/data/VisDrone.yaml new file mode 100644 index 0000000..a8bcf8e --- /dev/null +++ b/ultralytics/yolov5/data/VisDrone.yaml @@ -0,0 +1,70 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University +# Example usage: python train.py --data VisDrone.yaml +# parent +# ├── yolov5 +# └── datasets +# └── VisDrone ← downloads here (2.3 GB) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/VisDrone # dataset root dir +train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images +val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images +test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images + +# Classes +names: + 0: pedestrian + 1: people + 2: bicycle + 3: car + 4: van + 5: truck + 6: tricycle + 7: awning-tricycle + 8: bus + 9: motor + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + from utils.general import download, os, Path + + def visdrone2yolo(dir): + from PIL import Image + from tqdm import tqdm + + def convert_box(size, box): + # Convert VisDrone box to YOLO xywh box + dw = 1. / size[0] + dh = 1. / size[1] + return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh + + (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory + pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}') + for f in pbar: + img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size + lines = [] + with open(f, 'r') as file: # read annotation.txt + for row in [x.split(',') for x in file.read().strip().splitlines()]: + if row[4] == '0': # VisDrone 'ignored regions' class 0 + continue + cls = int(row[5]) - 1 + box = convert_box(img_size, tuple(map(int, row[:4]))) + lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") + with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl: + fl.writelines(lines) # write label.txt + + + # Download + dir = Path(yaml['path']) # dataset root dir + urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip', + 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip', + 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip', + 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip'] + download(urls, dir=dir, curl=True, threads=4) + + # Convert + for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev': + visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels diff --git a/ultralytics/yolov5/data/coco.yaml b/ultralytics/yolov5/data/coco.yaml new file mode 100644 index 0000000..d64dfc7 --- /dev/null +++ b/ultralytics/yolov5/data/coco.yaml @@ -0,0 +1,116 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# COCO 2017 dataset http://cocodataset.org by Microsoft +# Example usage: python train.py --data coco.yaml +# parent +# ├── yolov5 +# └── datasets +# └── coco ← downloads here (20.1 GB) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/coco # dataset root dir +train: train2017.txt # train images (relative to 'path') 118287 images +val: val2017.txt # val images (relative to 'path') 5000 images +test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794 + +# Classes +names: + 0: person + 1: bicycle + 2: car + 3: motorcycle + 4: airplane + 5: bus + 6: train + 7: truck + 8: boat + 9: traffic light + 10: fire hydrant + 11: stop sign + 12: parking meter + 13: bench + 14: bird + 15: cat + 16: dog + 17: horse + 18: sheep + 19: cow + 20: elephant + 21: bear + 22: zebra + 23: giraffe + 24: backpack + 25: umbrella + 26: handbag + 27: tie + 28: suitcase + 29: frisbee + 30: skis + 31: snowboard + 32: sports ball + 33: kite + 34: baseball bat + 35: baseball glove + 36: skateboard + 37: surfboard + 38: tennis racket + 39: bottle + 40: wine glass + 41: cup + 42: fork + 43: knife + 44: spoon + 45: bowl + 46: banana + 47: apple + 48: sandwich + 49: orange + 50: broccoli + 51: carrot + 52: hot dog + 53: pizza + 54: donut + 55: cake + 56: chair + 57: couch + 58: potted plant + 59: bed + 60: dining table + 61: toilet + 62: tv + 63: laptop + 64: mouse + 65: remote + 66: keyboard + 67: cell phone + 68: microwave + 69: oven + 70: toaster + 71: sink + 72: refrigerator + 73: book + 74: clock + 75: vase + 76: scissors + 77: teddy bear + 78: hair drier + 79: toothbrush + + +# Download script/URL (optional) +download: | + from utils.general import download, Path + + + # Download labels + segments = False # segment or box labels + dir = Path(yaml['path']) # dataset root dir + url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' + urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels + download(urls, dir=dir.parent) + + # Download data + urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images + 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images + 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional) + download(urls, dir=dir / 'images', threads=3) diff --git a/ultralytics/yolov5/data/coco128-seg.yaml b/ultralytics/yolov5/data/coco128-seg.yaml new file mode 100644 index 0000000..5e81910 --- /dev/null +++ b/ultralytics/yolov5/data/coco128-seg.yaml @@ -0,0 +1,101 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics +# Example usage: python train.py --data coco128.yaml +# parent +# ├── yolov5 +# └── datasets +# └── coco128-seg ← downloads here (7 MB) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/coco128-seg # dataset root dir +train: images/train2017 # train images (relative to 'path') 128 images +val: images/train2017 # val images (relative to 'path') 128 images +test: # test images (optional) + +# Classes +names: + 0: person + 1: bicycle + 2: car + 3: motorcycle + 4: airplane + 5: bus + 6: train + 7: truck + 8: boat + 9: traffic light + 10: fire hydrant + 11: stop sign + 12: parking meter + 13: bench + 14: bird + 15: cat + 16: dog + 17: horse + 18: sheep + 19: cow + 20: elephant + 21: bear + 22: zebra + 23: giraffe + 24: backpack + 25: umbrella + 26: handbag + 27: tie + 28: suitcase + 29: frisbee + 30: skis + 31: snowboard + 32: sports ball + 33: kite + 34: baseball bat + 35: baseball glove + 36: skateboard + 37: surfboard + 38: tennis racket + 39: bottle + 40: wine glass + 41: cup + 42: fork + 43: knife + 44: spoon + 45: bowl + 46: banana + 47: apple + 48: sandwich + 49: orange + 50: broccoli + 51: carrot + 52: hot dog + 53: pizza + 54: donut + 55: cake + 56: chair + 57: couch + 58: potted plant + 59: bed + 60: dining table + 61: toilet + 62: tv + 63: laptop + 64: mouse + 65: remote + 66: keyboard + 67: cell phone + 68: microwave + 69: oven + 70: toaster + 71: sink + 72: refrigerator + 73: book + 74: clock + 75: vase + 76: scissors + 77: teddy bear + 78: hair drier + 79: toothbrush + + +# Download script/URL (optional) +download: https://ultralytics.com/assets/coco128-seg.zip diff --git a/ultralytics/yolov5/data/coco128.yaml b/ultralytics/yolov5/data/coco128.yaml new file mode 100644 index 0000000..1255673 --- /dev/null +++ b/ultralytics/yolov5/data/coco128.yaml @@ -0,0 +1,101 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics +# Example usage: python train.py --data coco128.yaml +# parent +# ├── yolov5 +# └── datasets +# └── coco128 ← downloads here (7 MB) + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/coco128 # dataset root dir +train: images/train2017 # train images (relative to 'path') 128 images +val: images/train2017 # val images (relative to 'path') 128 images +test: # test images (optional) + +# Classes +names: + 0: person + 1: bicycle + 2: car + 3: motorcycle + 4: airplane + 5: bus + 6: train + 7: truck + 8: boat + 9: traffic light + 10: fire hydrant + 11: stop sign + 12: parking meter + 13: bench + 14: bird + 15: cat + 16: dog + 17: horse + 18: sheep + 19: cow + 20: elephant + 21: bear + 22: zebra + 23: giraffe + 24: backpack + 25: umbrella + 26: handbag + 27: tie + 28: suitcase + 29: frisbee + 30: skis + 31: snowboard + 32: sports ball + 33: kite + 34: baseball bat + 35: baseball glove + 36: skateboard + 37: surfboard + 38: tennis racket + 39: bottle + 40: wine glass + 41: cup + 42: fork + 43: knife + 44: spoon + 45: bowl + 46: banana + 47: apple + 48: sandwich + 49: orange + 50: broccoli + 51: carrot + 52: hot dog + 53: pizza + 54: donut + 55: cake + 56: chair + 57: couch + 58: potted plant + 59: bed + 60: dining table + 61: toilet + 62: tv + 63: laptop + 64: mouse + 65: remote + 66: keyboard + 67: cell phone + 68: microwave + 69: oven + 70: toaster + 71: sink + 72: refrigerator + 73: book + 74: clock + 75: vase + 76: scissors + 77: teddy bear + 78: hair drier + 79: toothbrush + + +# Download script/URL (optional) +download: https://ultralytics.com/assets/coco128.zip diff --git a/ultralytics/yolov5/data/images/bus.jpg b/ultralytics/yolov5/data/images/bus.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b43e311165c785f000eb7493ff8fb662d06a3f83 GIT binary patch literal 487438 zcmeFYbyODL*Ec*DA)V4KCDNT2AR-_jqKI^Ncc+4McY{cYlr%_p2}pN$ch@`USHHjY ztovT;S?_xPdw=KR%zS3gKKtywPs~1NhP&~*c>q&NTv8l>Kmgzc_yg`15Z%O_j12%l zMh2h<000p{g)1o8qRR#s;EfbnZ1OACDp zrMLGaQ2TpLexKRcnc0{*0f3#AjgOy|gP)a+f(<-!^K)I_N2wvPif4y5P7$TpJnjO9wb!b`Bsi z@?ZSvkIrnYte;^1cn_BT6YL)h$NL%opSr--$@s1ReNO-~Vg8}tW7z+|@c&@YvzZV6 zgUj%++XQl<@??Vd0>j10{8);zj_CSu`JjxAYeZx0Bc3MzYk_)P$STH zFwEd3CuqTayBYxitPbdvKRlpje{mTo`47Dm=uaPlBLk>@ z(Lo*HXaSl(JPj*>x&%g#S0XBdw$Q(o);tsq5Im`h= zpa8N0V+1gOifV#296_y87w1gHgu0Am0N!VJRz zNd)hE0#NX`4S5YC4ak7{c>oE37-$bOj23v`9Iysn1JVFL%o`YSKp5Z!`Po2zKL|BU z6l4kT1wMmbNCw`+JcXeHEJ4jEKpi=O9DoXD3vvnA0dO*AULEnA_ zGC;3>0y2RKz~X+^|CL~V^$ZaHIsYaDFsOfe%P=_I!NEU3KzwIlrfq2Z&OzJEUSHYH z*j(RMSKCbgoxYW&t`R2WAvmw8%rzYoVhbd8gChYE3!n5c6AQ24Z-KuioqKpcy8bf> z-`$-|0&x08cXv-H0ALjM?rxb8fVc^ROypn&^@If6pV@fWL^wFOxS04jIK`MaIoQRS zp7B0sW#Z!$eawYKDCYUMkaYhLMW+xz)0?AllzMq|b%_iXa zULSBy{ykg$AI}^L9c^7x3O##mGYVa8bA20a3T|_A3Ii7Q`{xdT0s0IaivY|k@BpHF zDd1dza1I`S(G~CMaDV8Cm>|0M@^4Q+_(caXA{{vA{8JW@71ZNbS?T+-Xn%QLfFAut zm%pcD{iVMK=aYZw1b^vD0O>C}3MgL-^y9t!`?}2Ti-U;{%=dcS&)MJ^^WGzRVE+BI z2Y$r`ARSrt7acil95jRt#P@UheYrp0d-VI7)fE7$Spl>|us%|}Kj(kvd5{Y(+ZO;H z8s9A-;~Cl6S@E;5SlBXa>sjjPGwWKKvp8v6v9K|-vH(zFCo9nF`gRmL`i909f|PqT z4U`nddV-XSTr#XOR-*bw#xGoK^xwL?lGk-H)#cNp6c(a@I`KQ1Tbb+IX;V0vn_1ZM zI|)+$63!3edol|p#V-~+Q$b24nb#DemNxnnT+E!ztdwAB8$APlx#!~llm)K@DgRN@ z(b19Fk%QUN#*l@LkB^Uqm7Rs1oeAV%vURqw({^IAu%-GV;W;=WY>ch!j4drF?j>sL zSlZhOQi3)AR>|Dzuh{?5_CJhPMwWJ#wnmo!3;W;OzZ`a7$ckUoMqk@b|2dciDev9R z#LB_M$|nCOAYukXhu@4cmU_kp&i^ape@L^mk+-xo6QukdXHio8t(O13^zRD6R{7s* zV*%aD@{eEd;ok-lqWEw6uLu6?f&Y5ozaIFn2mb4U|NnX5-w;pV0*oLW!2k}p+X0-w zt)Aa;4+RG^E5Q3qQU>lmE(HK#5{L=_OH3m{0>-*901OF?Fz|qlgO!_ug9JthK)jDZ zSUFhPNMLyW^8)&Z>9;JJU$QXK-j+vFJh&RsMwth^gcarQ7GXFgMMX7V%gKsMz7+el zQ3gY;4embOS8i@$XCo)^j6z9Sg#uv#jMNdps2mTV(AKrJ5_$dl<-N>5=U?*w9!^Jp zMasYs)4i;2q8Kk4PfQu!goh&oo48(o+5TsMtOv%D;H_&g>+4$C*nwg9eSA*kXlHeg z{XvXl11bgLx002=-D`y*HLnAwi-#a>z7P`!g6kvn$0KmP^f7g5T z=9e!act8H7dCviWV8h+rUCqBVsRjTj21_DW|4XCe1s6=w(O4~;Jm%RH`4vc{T z037Cki!5buUGnpOtz&Dz!T#$$1oauXD4e~!JE8^Gb5Q_r6MlDh_4)4ZCIeg|O#?uq z#a$zSg$TzBOAia71Yocruvn10*82r31RnA${Z<^j{%7@!gp2|*l!MDS2rMiN94tKi zedmU_-)|K+^#9vK}QpO{=&Tv}dPU0dJS zJUBc$J~=%*zqq`&3j)CYHVZudw(S3~3*7F4z`()5!Xez-1%YwAHyjHN{t?>)Y>_tz z+SU&#**_rSJc~##ZbG8sklV-Au^B+dqvl+oIk-3Nmu3HVhI#$Jvh1&6|JpSLh=Qa2 zKEZ&0urM%SQ^A4>4m1Hw@DJdBr3e2cgkK5qJ|X>0cc7485@2B9z(1r1@DKjp`@aTv zGvGD>$K51=3JY#2V8LR6TTVAP`&kQR)8Q3ubM3sHf~F(dHL6v}Y8|*gG-ncUJ7ld# zYk6cI(K^1J^FFy$%r#!?32|^}>QK3r{}HoddzQ!`T0Y2lTt-~5z+JV(JqQ)Oy?9%B zoTq5@K#x1FM2{?r{)I3rZi7mezT;|Boubi9Wnd&_FSk^b@7_-vf8EC5b`9ye7Ld;+RKVL$i%u0L zGFFFGA!Iip;*_HaoNIxb!cyQPdDPCzN=|rVs-XHfk^@tHi7ffyT&nRQE%EjkuhYRm zH2d1RQ-0C8#4%l3Z)G`N{}wFgDfRJeWG|=SNU{ahe z@m-vHUumAK3K`)jM|}z!M%-^~Po(ule}dX@tGtp$V@ux7{aHIhg8AcUsz+K#o&7}` zC*|;0t=*~NhCE+evtcd10#@>Rj<5uUl6F@(6<9f!?F7_hkh3DWQM(Mml6)2~g76n7 zxQ*FKoZ5-=dUlG*Y@xP?$-Zr5DfaIl${=lW!TpReOe^#?)j!_ zXmyZf)ime{x(ab-=zhF-}W0Atv$} z`pNm>MZL(+gho!*gpb4NiS^mY5(w4f^ECHfE1djXNY#`Rpqk~>M44JY9T18Th))#r zQF_TNUt{xdjiuWE+O&oY_h&h;PyJUE=X_l6uXO$O_@Sm9WnungPn>+hf}q5FKC+Vr zvKSgFvmy_DC^{n^n%l9Z<`G(&jk#vHNe`6s<=go)+aqSh$IG7jL`Picd9NfSx<{I8 zAu^+AE%9z?>Uv$)iP;TFL?}EA8d2I{@xWLY!mn2qM%{8GQXlzY$rE8rMG#0k$67{x z@m&ACKwR=zlqor~#_X!y4 zzs3IXmifI_P0XACt_HN}4VTy`zAL7keE-r|=9hsoMH7$h*YVV6wU_PstXMqtFpy13 zBuwuBB&Kn{43)CRdUUI=Ty)CA**4sLEtOI?p$B@O1&K~KyILLb)(Lo#+nhToSg9h~ zv^P^Bx5NH?u@i%0!~q}udbF0cPqB6a54ZFORhVAI>ynl^2*>YD3g04a9Wd2C%r*Kx zTY8g|DM~-n=59eGFlGeHP9?gcrpiX|;1--7@7qYCxH1#At$mPJ25QxbgPbdB)c7EQZ6o+sI%mYQf}FLtb2wKG&_ zBWr|1Sg#f5)saR@I>_9Uu?(?d@vQXcj+?#FhT zYeBJIWPw*Qov)yX8LsdHSWpdl2iOE7cY`4y->aNMyOD*lZ&?|1Xh9-C#D91yv zraSem6YdyyyJ^2ZXYaq5UF@QO+V@U5HG^RpP)Q$<07!Kq-#NrW?}vuF^GrJT-$p0ZO8{@wm0& zoCdwpG`$zY_gZFA2Ay=kU!Ex~@OT5=x_ok2dGm)uNKc8T#y=m^4tTZH&>As12tBsSf%BKEY*S;gy zo@9PLwDGuz<=hXWZEs?A+o+y%2&%fjJ2(@|+wZTN!g=^3Jz9c7d0Pn=%4ky|@h03_ z9V)q`>F;9ZXsDoxwbA?>4L4@_iNylq%t{ALeao%{$+BZnc23H$OAV(pE-R+RWJYG% zf`gyktVJYsdBlsu`tEc2tz`P^>SJnbw$Nm9k->Vh^R$+VCp0+|x)x z%~9T*W%jxQME3Rjf`lg~@vD6=a{L&3VwF~Oy66ZYUXc%+;l>>Idut_}m#UbyY0a64 z9w4$r&px$yYdl5S{qB@>+T31CT!fE7W5aR2KPb^R)u3UJqJH+nk61;vGH=o!GG+TN z^Os|B%Ck;_tLFT>w(!@e(1j|zU~liLU18R<#mZ28G^jw!;FpSu!qxp=YphnrSCsgp zw;MZ`Ypt?7GGu!#9&CPBRByZxLN~efsSGgo3Z|_NSPA6-dJlznT2IgW#-uAF%*#?> z^s7e}g1ZeMo*t1AYvuxBdofRW-RxnZ%dWHy3k5u?RbH3G7lo;hzXy`mUA`wR}gb`{hG{=`cw-e2GlRxP9Z;vxaFLnOXo0A!?I<2mu zE`B7VD<9_d~^{tef~he11e)Fo~|05sKZh^fxKPW zATsisw7pwk>RRfYIa0}#RhFslaHf~Pu52KK)z?*7%|FFp(qoU}AY7!VU_paD=R^Pg z@Mg!fV@<`Rw7cC@Wmf;^`99K{;RB1$XZ)I;qWR|tS8s0n>PgR|_B|IqIwtyE)9@R% zF626W&;$De6Vse%?Vwq!?NU!ds`NVHAiFvbX(RmFWx6SA?x}Hnp53~2#GYo`+_psS z#%0b<@4jiXw|Mc;?s1C4!3j>qhXrNY>dM4z#(~~?S?)=t>G!*>352&I<@i_31D48K zIKht8}?gfaIHmELs@0pS{X zcLTIs(AaaKx)y=tWd!-T1XQU;Pb>2x(%8x41pxuy(go3#XPe88|6rlH+*2Bc_n&sm zPL`+!8!#G-?*Lpe>#L_umaU1xmqIzZ3p)mM7N6;9Lj?*%WkQ;(E~3k{8=DZ|mU4?~ z<`d|7#}y;b<S!9@-eApp`w=bRoa>?TwfJ1K*AG&cDc@EtuHeXgO-MT1qE>>rbpT?8#>I~GVBBNTh| zx3i;UXbUD!FU)?R)IHmhN^5D*llkamGaSmZZ)7kg5IV#ol;n+z16Ye>PQClPR z#;Kv;d!s%`2i%gNaC2=-N8E=o(Eu8(??$H|9O>XAYTF5SWufSE{jQ7cRR<`-NYuny zm4n+ADHl+Ym`(s)6gG9XZfh$~{%xS7iHBoohwF=1EHa^C@@h^#mDDG#+g_X-`|B_~d2K@nE%zV)~O-#Yledh-lF;>3-nK(fn|?QCvGvCt^ivzR6|&)Si+ zJZ57*)B4BGq0Z8qV!-08*QsOY^JH3p5P>nPoAA&s%SzROV8-~f_yGO4(3fyBRImdm zxhUUANEU16&gl$4GG1$6;bS28TA5?dz1g44YTrN#yWvK3)F; zYi-5AqbX)U%GxrkKS_w;Ty+(T*Plm5XO<+w--Ao@ zP2O6EC~#ZG)Acc&WGtQDyggmJNuVjI2zAacsui`R9^!buVZxcl6s?8bVVmJ>2t-7A z!MjmiIXitnJX&nn@S&L#1GkH_q=+s z09GE1IpeRf_CxYFxOOUh7I$PK2wl{a;O=OwuI!aDe0hchNRzIS8%;Rm<4_I6ZhABlq0J1X#sN`{HZW-6vm zuv9Z~4c|8KP&20g)29=bkL)=l^MOTHM1<_q?-TBTEx9(E9_uoUn9ljj;V~Z@+o`~d zGh$Msj?~3Py5V*tG~dRvB9im+1K6fpjKOU;(WL^N{+3Y%6`v$Y$FFLlrl>}SPnEhj z=$A-k9A@d9R|m7N81o~UpVC`d2V0*jHs0dh#NGjhvOcp^mN?VrCLMCayB13UV18r^iR^Bs={c9IKM<;f*Uybp~`RhqcRPx4BMCKk-w zUQMh*59EpSphcOg{pPx{*Srvdr$42MrEf~vMRQ(I^{u{m94qrFMl|r2&W+f* zNXf*5pu(%~Ayd77F)U-l7M1g}YGMeiEj&Hax^2JI?XYFh!an&mmdpOS6-`!b#J-0u ze3>#<>x0A=6ZA%dhG2Cv+@LlgaatB!H3Z2~e@N(z(ufAf8c23Va zyTKUW`#49+rRkMcD%@Ph(~$}{lJ@d|Ho?(8+r))2!lZe=uC1-Tz4SfJvW>IJ&bQ~w zKD>{!T;o0p8(DgL;@T5(Ho%*X9&X|l(@z^$s^*^{68b*tF|;Y}C#3qM2L~>+>*1aJ z?f>({p*z78aDtI?JgSPTkhw_YV{kQzD<+0R)pY!eQvr|=BWARdA~&s$(( zD$Z5SY9C}_sVFI3&NGL5K%hN7=1!zyQ{REcAD+TRTaY8GYIX8;+T)9Xu(a> z!V^$YW!QS36iSL!&fmXlJ6XLx&|EPKec_mJ29*^8sF zaNR?$Bg1BAy{L}FsizXx?y6n_hGvn|%HRCm&QR!y+%DH`A7Y3vHUl=_yl03;yyb8qfrEDc zf_m;%4!?q4>|{uCsN8cp36kUMHm9|nhuV(r`=T1&FGOit5T%%Hs{$Y$vO@%d3}eXQ zz2V5A58O@LgpGr)LLQ%b9^hpdbH)y~noD(|;Mm_>t{H3ChVpLhscNg71}++1Sf0My zpDp+_t0wlPv6DI^z&uG2R;Q3V(i?h^c&WGu^VK*4fso83t(E8^?o|6cV(|{ZHyJd# zyctq|9=ko??W6bflbM`U@MUsx;H7IvG275*^>H*xFPEbTZ%xG>BaZ&ma=h%Filyvl zH{Hu&1<&;e?*QQi6_|-n-vUYCFJz_q53{!)2*to@T&CUqyg~VC*FZbp9WSqg)X&Ge zv!M}Xwpr|+@>J*!km?x3!_+Z+twYD|UZYbZt+cbm4n@VS+UsMupu$(L%)Ppyclhb< zt9vtLPOr*W&^e>Z_(`|mjW0>z@T1aRr4JfUcrcNZ*SOXyZE|FYtO>49{2U0syN<*+ zDnpj;fH9??0?_W=8i%M`7X^PqY@jySc1Kl0N9AYaDF>&ac86%hj#MLV_t71&nVFJ2 z^}XGy?G?vlis7oH1x++sBkIx1E@>IDkMzk)sWBc*d!flA??RMFr_pO23RsvZCJ(Sh znV)hJNVV7#Tk;PX>EfX~qQ`U?#~M?;ESyUELABMm`rTc5*$%lHxn)0phJOlQoWx$R zu4eSy*mZp(XFEZ3I~Rt{$uE{T*?KB8rbQ-Sh|4g z{bLy!Guoq1_L!ZKnf~3I&si-4_jHy!r#L;nmVXOMENNoc&DBC z<-pX37K#M9^Kr)9iaIklLHD(Nh-cr%O0+8l9{wZEf6Ppe!>_t%5Z6FK7r+ zrl?q)P>g*QB(nWjPpCHk68mWl1{~zAl(Y&j)C*BK3^&78-yTWWC?xy@2pg>4*d=?B zIEnf&JV(%3kb$5}a@}ZgbWLD^lo{66-m2v+)htJ7>J%IxJItK%7TSuPa6D=*V^8L% z0`QDuF6075c47@^>+tYHow$AG$re+Tw!Uo4wkr=2iTES(lDA#om@0{I)xMCrZnX_f z$c^BsZ*2~*yF?!`Pbm0|W+RF_pJoyxLv+OL9CDjx@4SS8&k+=q|51RtY%!z0q$UODLAAdM#V3e!SrAC=$#|%w+T<#J>Za1*-!OEz895 zA+)cTh6uE580cTrx4TX8PR^uJBpK`bh28=5#jjj!$_o!ZbapJXy|XR$s&2BZNwX+# z{@Rzc>RoI?ulo7pqa7@ zWU5*P1pV;yk-pk;krrG^2BsH>B z2Z`J*>4pBuQnhczzT^S*#KUGqTK!4(`lf;-!4VygULSN}OCGWVj&|1!5*=NJj)m$^ zBb>##k?N4-8X;q(&iyJ!S2uL|#;Acm-6Wwnx z75}_$UNb-iK0oo@VQ1x&$U=wC%!h}awd~bfUhvL$fIlZOLrr>a51Eu(W+*_)5!$#` zVDD3^e(PhaBgwN&e};>+_?pXbpdp++lQ6uag8#6=G{d4$x0J^GO7k#DY36Z$Pp zHuA4&m}-z1gXJQHjK&Wk(ESO`mBgbE%jf4|y6MDd0&S}TdURNY$2W%^!SwOFOe+ZO za%tG8{+LgDt7)WkuG%t(Ro+v;A~*P``Vfa8)>z|-e#j8*i&it-A*lUQkp_dH5bk>7 zgAB(k6=SxI0gv_PKB7`J^4dWw@ypBJH97UB!!4`0l+~ZM`}h{9T&WIN+Q|3CW&Owq zi=&jz6_-%Xbt`Q#!=8`kb450rLB97Zy?>F8ykwbHQ!i^7;PJ$>iQm&G40V0!N8NsQ zMHGct_2_ZW9e{2wQsYV(uA$7K2MOcU%_V5}%&T!nCw7RR+Zc_zwR(Lh4QC)e)!Fl& zH@26XiiH(t?Xwf9wqKX=3=Z` zU-hmW6C$(Nq35}w%8x_wUh2UhS!5JR-OhnK;%g#fC*!w|rq&bfN7g1LXAdWqVtaPj z1Q0G#hgmtOP&55j)xwG4#`@A8-oo7W3*(sU4V7cSZ>hxe^)WHWqKS8`@;;%O$seRQ zjDtk)TrYOD{NqLh9 zEyu5nR1(61;m4)AhX%Fm=%$$A%3n@fq^qgpTU(U%_uPMx7BtD#VxofJUv9j{ShCid zD7Cpk{}>{(8vWKJ)Jg?4OzPwtiG)vibh2krLW?G2-f2v~7Z(P;lLks#kZcvvU<_QB zF3FT)`m$6|L_fT;A41~ZuJ-W4PyAMn4WeMYD7whmQ&*(h-fxiv7j39cRKl$syYy#) z;OntT3^BHwjHXlmsqx7a#Y0!WYwYJb2D)bIs*ibjQsYQ(Tu#Z>yZeok> zu1()!uK3%Ek_z~rh^`US4pY9Md4_X*#Di|bissHt%x@D`&3Plsovrk}y`yxzO=~;x zG&l&ib6l(y?!hFI_7RKjUdM`(2g@*d8`%?e(YDR8(aPc=cPX6kDH&H(lV=aA{4j{y zYV0gBpyp7!WjBFEw1+L&3$f*4DIRIrL*Vqp#H8Ov7Z5gA}_<5>kJhR9yehS zsE8WwyNVz9w0|MUtvJ-F3kemHlV+6b*cGuS?SHv`Kp?5`&UCOWZc=j}eUf0hIfPJq zebg;1eIspOriO{7Ij!>Xha#w>D^8*tn+fKGx|EX6;VKnriR3B=ha_WUC(pz8ZEwWU zJT+YGn^mcQk|C;jP!QcJdFqC}_arat4@rG^p0X&5F}3c(9QCEm*8V2lDS)Fjy>zAd z>#mxf7I#xSN1w!Tjrn2^%D8?_iFxPyl-Vl6q8{kW)`iW*bSSjCZc4z;(Qv@30xzGg zYB(gN@9@bYBgqnPyC?EOtz=%-SB_Tk?RjSKad7euvRHlyop@{1F(&L|bxZv{aQEFX zBj4O%$~f$U2F{Pn{dp@D`3JJW8Vof9*GxiR2r@rd*P=t*Fp{=3KimOjEFH3N8)*cb zuC7opwj?b=f))YfoKD=$=YTci0DwwD%%`cH4 zo0WS*q0mwktL9_XV%16fp6eoM-)-}IPNVSobEtr>c}~+!Ax*ni=C115w7ER)mdxDu>%bs6*A%Ht+TPb-8i-wqF??gQvZ6~7h+SnvY}GDm zcs0VZBe5V1zb=e^&9^{~(Nf71^`a-~qYbQeRuw`Yn(Uan_Wz6mEvNq7Ap<&1$m06+m2;h-II1v|>a8!VxIH)glyB1S}An zKZ7uIkyzEfeTKIXP_4XzFWdqC}f1vCu$eHXgfwrN$<;lxoXt5Kl4c2il+|nvdKou(w z)Qk_boE^I}!*>10KhV0jxauaV_TxF3wvUeDC5}eWZ^n92nLDDei?=;!Zl|?wrs(QJ z0wN+AX4AzpJrL|yJ)A?j*5B1cmYSPqfve5Uj`(Z&{ked(1B2p46jLPH^0Lrgy?8D9 zVlQgBxmFRV9_$5j&%w?QMPXcf>X0DuIHRCQB{;FC8IewEc11bmVYufE@`x^wIA|%zXWr@9(lTTM`!`d4Vp%SKx8*b_-BDUIs)32JJh(zEv-z;m@ z8h$U;Jt|D*QYnefkmIiC@Jm}}&4Fj+uvvBVkiaTblNN4AN#G8dn~I3U!G(`paBi9j zX|)haSZqk&!`f81)ZF%4(2JdQ)=rWc)OrGE&atZa(Hyy&`Y4oN@#t(}2ICeRBS0lI z&s8{j^!udbx0b3Ze8Shx>YwIeUIiw z5X*;0z!b+;9rE1#L#(wAG@PNkk3(rd>WSJ}6~dF~icj<|i z_z@euZ}xud>~v8->eX4cn9`3&AD*UCtR5Z zv?ReCeVH+9bgb49nz*+Em5H@!1ofn*vWBR|CaLVPo2*$rJ;V$%0(vhnb~__EC@6 z53P+ZpYQOgeixiukoBG)^0b%>Ov4&9G(N#Va1#HSA^8MZ!TrtL3bSq#g!{d>@w5c< z#8v93E}f887s;~qg<@A4N;Vj%Oe!wgeYZR45ll^42vS}`M-f**>8dF4juEayh?rI! z-k=QWp5|saO750TcPcW$sTc}`ym)zI7PQ< zB_Q}?N^?-`RDwir=*ZG5<~23tXBRr;Tj(Qa8y91KZqlaaguY)YLfk07SEiWjKKX7C zhF1JC7?ZCZ-x`*;i_~<&Lf?EPI^6SeWTgQUW?D@dhKJQ&cP}`#WwH($F6XSRO1=*C9Ja}1h6;Crz3u*c=ZeZC8N4W6@u@D>TeA)2G&l|9KW|kRSL^ceb1$#<5vM!$ zJ?E(%bRGdE!?fYN?wi@8>NSY-H{cgEJAF268d+ptiw^F9cDxlm#ftsxuvk59@?PsN z-yjEN$!XvD2zs5<8k2&QZV9hphje1xz|R7PXJv`|FG)lnxul(>NVpvLNE-_;SUU|~ zg^P!LPH$c#FkR#rs=>%|d986;7si9MJMiZ4Mz*Pca!)?hGDzr=Ym&5Sl0D*}ZB zc6E`O^t%^JgpF7bw#XRI6KLv^V}FX-eld9{%UOuWt6hP{d4`<~P=>tr)p3c@$Y)sh z3_#j{{Iq1hFysKEg@2liak!Rap;u|kA?~2=OW;8Q8AAy7(`vSg&NS`2kV562 z1T%2~mSmC?qbY-;>=2{drK1HVv8>T@m>$%{NtBOA1uI8d(bVbE?Mp^ZGf}Y2)!aecu(a$AFV<*>k?mqs!W>BrT z9m~YhVnJ%rgKA?ZY!)1qiVxO$Iw*`Xjtpf3CEcD5`4QQp?KU!s-*4hQpx6AB-^;%b zvRE+NnI=hZSk&@A$UbPXA(&Ecu{Vo)9)UzDEWlo3KHX%UxZPcH;@>JB6i09A(a}5D zIF_Nn@n%(0uugVk3EWM+1Fmr}#A**3f}vDP=2RX027ZN`3JwmpEJH8fZWbHo(YNL( z4hBn_(+lZDq_)5Q!3)c^-E{}RKhlK1W*DgFx*bVF;|lY;MDQ=G<6kyOG+*)a-_}Zc zJ8|l2{HQqT>gCI}Mut<$Py3o&=PTfX;Nm8@mhIqd-XhELAg%S5zG^r<>0RK_OK zU<{8}>4=ZSbwx!r{X_3v*W2oEBF(Wyiu-%l*rlgW_x-ku7c7J3Fpj@yjk(F*0f?D# zZ#Bipa~_ms(#o`p zBTb-r>cT|{mtp(;r_DFvLi9?Fw@BwP3o}yAhLt5(?3xnri!*9fz62VBHc?bvk2?b! z^{citHE6@E&3yFbLLv@3k$DzUG3HG#63@>-qmFM?Lx&?$~qZo-qbW=M_^~P68{uxh2}9e zRU?>|WJ?}JrR#!Ctg9O{UCTYx{9t}nSsQ=1X#ysF0I!8_ zz17WE1K3ly1NIl`zE=eMtzY=6pYmydU%bwAO5)%+DLwsu#2&>o zn#%u$;7ZPAUnnO`Wv!)XR?Im=yv(q*p*S@I=MKQy<*Z&z6iCmJVN;G7dr~crsi&i~ zmJ7f(71coP1@99=4ZboN+qFJ)(C5H{1jI!x}%S)SB480F3*bFJ;r6;tO5LW4{ZC*V(ko@ce+& zP8?mJUYgLy;yEhR6-%AuqYX3|Z*XE;$Fc4wC}0w@tej+=RTg>t)FmPka*FWfv}hSB zHInx8&Gg3cja`hXZ@i?6B z5%D#XW)Q-mPY|w_@7TK3>rcPw%zwZ`8EL&MxaFltFP+D|SmyXj-pl#x+76cFdq0M8 zmv=$Lyy5u%J@~rCeZo``mkQy&Zfr-6J92Zpq`oeN3}SMfYjW!b2-Gp*=DfRXO?jBo zM809dbZW3$uY661EOCxhBEm-M2(Aj#<8CkIn!j>I zA<6BUv{Jn${v>!?&Nb!pJiaW4j!4JmHIFErdIZMTSV$Od-i;7`I8NPNv?&DgJ)|N(Y?2Z30>*rFC zf4gjjcuQJeL*I;@I*;@)_Rdn^;QDnBUWxU<&Ga=a`l}p`)h8@Ez6*scOhYS6! zf-VFZO{&g&;yDmf2ZC~%lxGKF;pwC}p$w_2o1xn*WQSWS+{a_b5@$`?2d9i5@{L~= z%oMD^dA!2E7*p_Ib`u!eK~E~E(6vByv?|T^_{2*7MzaIICGDK)@s999jO@9J2GRW% zX9hN~hvTTiSc5^%kX|1!PJW8>aGhbt6W+7QqQP*-#FC}`7V&`gBd#>`v_L<%ITNc< z$w1o6b*Za!Pi`^QZ(zY`2!Y4LRk-RlH0=E?ic=1Twz<)As!U4DbKBjoV1;PTedSlI z=PvdR`@4Be$+gi}@+j;_<0Z~!64h{HD`y{s=QGp3`L!C=4;UX1%l^!w&lFqaT^XR& z=`EvYy0*qQJC(C;S{Es*azi?x?{DMA+SEj?RW#32;e{t^zGR5z+c?ZshIA4m;Ff!6s%u!N-!@d(9ZOtT&d2$hA-mx`Bhx8P zJnHFzgBMHw3V`#_ef0L&tQ(niTcp=1eikFga9eNaXzcP@))b?a<&_>7BqzW8#EkAj zULgFsL7`l3&6=7;3vo|VD+u~tuPp+kQ#(wR6Z zWGGx#xRyF>2siUb(HY`WfeoIESZ}8Esq}>k;=X?-}_jnI#Mm7B6 zRoy86Hp=%et@CqFzSol9J; z5UynG-D-lLHm0z^7C(#+JJUl^8`&s{9+>10Nuy}vm7w|@NBCyz^`yEw{pu>-xD^j1 zBCUwBa-sUY$1>*9(S`<>-KcM|JBo{V%BkxI{$&nKVdTWVJ`QIc`CxB!*(F7Dg7QwP z-PE+c!u2;C>QnC<8k3y5HWH7h@&`s-sr<({FABMOHdK+Jr?5gT2tT9tP^-Wq$A_7LZhP;#r)$AaDr8;8Qvw?>Ma2d=_ zf(M-)eE8~ zIa>R?yQxSbfmy^OSg)-2q<*|#i6BOdk4kj?Dw&X$uJWJWu&I?Bnc5kBP*3qbo zimoF%n)U}6B%?7?FLa5m9M%Yd(PQhF^`e=s&nB;PgafFO2Cv!XQP8+og&(S$;B#M0 zeS3Z1x0sb;*B~sHjI*Fdw+6_<(i$sSYU9X=c1Gz22z zF!{%D#a31I;!JyHy{cSGN$EJWa8$~ryj{;su{P4e9b1M21RA5Mcxuw-Lvc34As7c3 zamV$n8-EdLI(k~f_AhT7t|3*1UhUio!=3;qi7TwOo5R*9(s*`duz9l6E$y?&Bys#r zGz{1$)T#Vy(1vS=3cZ5g}ALi|ecq@2oa19mGxbe`WCZ0E|GB! z+beRhFf5q$UKoBNy*ESfu9}juju8C(#re;!Nv}?yGj>NKs|#Ak;XjQ(;FaIAj-ld& z@lK93n;9p#id&?YNfvI=LdB#L8%9Vz;N1^Vv2l3<6(kQXLNu| z!^sd(E@jg$WYdW&mc{HS@bo<7jzJj6uh>@j0pn{|O-dgWEY{-UCMx#v?~*hp3hc_m zc{urkf-%Kuc)!LzA^3mcX{FcYRX_++C?m{#;Z!s%1{tx=+*Wlm=(YRAcSA6<(O=U~ z>+U}-yc_#U{6F!PuKxfG>lRvrt~|twRAxeYDO`sK7&t0A)Y_-Ss3BHpF*s6LlpGQD z8O?iti@pnd67ipftu>F0{sFbR*PN)lyR)^93y(Hn1njRG+g!9`k_j&3Xl41U$Mp}` z58+j&b$^5YG4Te4h}6Srs9d(MWJv%6JU6PBED6aWE>VI0A=12wWfbo0&c%&`TR-di z?0!am-o7Bxd`a*>Q@FR0UhZ3qWR7mTBc5=xDC{=^7d?46AoE|A-X8d!acAHs@LYOi z!gh5pGfXYpayA1gRF@!woH*;+zkmM#XkXZK#@3z^)#KMBw7k;hh|6(zrG2g`h(ov- z?Jfn%#?O-;(ripwykNZT}wT-;OQK#xF+7&+MxY#E8hGs za(}X|HJKoa_H$(%FubXe5F>G9C{U~R$s}W_HR3vMtETAQE^7-}v`ubEN;%UmW^}q3 z!6I9H83O#k5b>sRE7-h6;=NZ;v=*}XGf&WGgyh_5;^N$e+BSKLszjj=K;&Ro+*7TG zqZLjoMtt@o>osPo%37m=_=)h(Lh+5Q#m(-iuIRV-QKGr9YgsJjbO&jgJ(1jdf39qC zfn05$hV|_yLuS)qx`Dn`w^-be7=7{Op(OPAiwykTPj99C3!}@g+ej~baiN#N+Zm2S zDED*)N`OWQBOUT9o$)@Sr)f6>NtWuzRdP@7beWCJYDXAiQFb}(yq|jX@L7#7;lf&Z zo^C%4TBGKgSMGextzI?$H2YZ=Nw~momP3!c4{g~Q4ZvZ?TIcj_HYxPww9}87e|GE@ z?ieIdCL7LBc9vtXKHRo5#@^@aSA)Pex?;h{L9ew74$cW zeh>K5K(s@l$7y{ugXB9zXb*fOU?FBb&m8ox5%6w}@x#NnT9wC$A-mHrWYh^sB6!OA zKmeNp5}_Cmo8$~Sahlz<;?>M*(rIjTZ+EUotfsGNVs7PW7U5-kR7oT%LyhGMGXUMm zIme}X=YYI@{i&H(*zbio&VI$FFmn2bfNsOGjh&BTVsh-Y3_*J>vfWiWr7@!$wrAwlj=<;qdfn;w#3b3Yu@P z$omX7XUSGPy7fO&e{4N)d<##2UM|+&Tf2K(i@jFp`4e5tV|$B2Tgr`=M`*)t9EN?o ze8&~<{{RL)H253hr|rX~{7dlWr#;obhdvu>5wcFnWi0Z~s31gW=8;AvMBNg~%0VN3 z8BRZ+JAaBAv*!xrhT%koFnVXMY*QiHl8jDk;dih-sj3oz;` z>~?d6V;d`wFm|3t)K+E3%3E;TkJ7$wa7TKaUgtY|HqgwyHwy3{+FCCYOYo~(xA0V} zZ>z~;a+Y$kG=U{Bz8h*w0~~uwhy9^m?R?1jiBEBw@z0I7aOvI-y}Y`8k-=qkDPnjV zVSio+9<|+;E?V^E*{{r1W$w$+`0wLShxMy}_#qaVp!lx(;yp`6@CS#lCzpJY$X>~9 zrSjzoEWTz}3h2@@NPhRqa6gwMy+_tX+;R=DS;SK~BYLESEG~5 z9aBM-)(K_seu-d| z*P}0a+UF$L#GeWH zFX8r^;BOX31^4_c$uB3??m#%Rv9f97(xm&_R$1@Km=F#l3J*b^v*KOcn$N*Mfc_XGiaLA z%&RAvV;Nz_GV@3E&Q3VbIIp7r0A@XQ<3rYbHR0_eQq?ret#`zKVuduzhqaB-;ZrA` zBVpzusBN*3L1W0k$ocEQ`i$2;6!AUF4>6j;6*w6L&pM3bj9`#K9S^mAMf);%Bg6hA z@a4CS{8Onxq}q6ESTo0QHP6{gT--*f97a%~(LP=7Rf}!la@em&F2qWWMN$gwcUL|K zEyK#CXu-F$>u#s?Z~Fl0ve|yl-Zay+k^P?>x`&G=mgzPbW7~6lLq@VAD?8&GijcTD z1mIWJ{{Rs!_01FZR`3>&;ajMM{4;nG-YcC(Hkf>qS}>8Lgv1$vT;Oe73j8+xj(=*6 zbK&QKzAWoDR@2}3Ueiat)Z=#CkUTe%T*V=T&WO=8LS&iMyB=~$uh*SF(6n((tXD8h4oZ|AxDjuJPiA5?tB z@Kg3`y73q7bKwR3rmyArnRTdmV_mzR=H!bVI^5gc>G4Bv1%y&=@*QV=@w>V+9KP%> zJ#+pEiJ^EK;b(-uYJU%WKGUqUeLqY1i{dEl?5vhJWVXV_@JmagJ;G?=sFS<7m{KX*d($40D?t)Dbw8G{{X@p;Iuj8{dD?%N3Zc?+P_Zj!zY~(&oenA)N@~$x;}$p zrhmaNJ{tH-PnPFSw}(jZ6}mOMFPaD2w89Xyir|MQ4sntR!3P9>nO?|N?&2>=ANkkA z=QKU}HP&0J!*s;`ztas2Bf+LCe@ek1(n|eNAg}Xia

    L*Ns zBO<5GD-3K?)li)0C$0eKImSkO_C-mybrv@h3v(o^%W|v!&ushFipUx{G5yBR;-;y6 zsu|$J51ixhsqKQsW@2-_Ul{BP)^ga*ZZ$^8;#SVzB|i)RDe?mviII*6T3F6vjeR3u z{RCB&3S%nV_9C$~XtNw*QUl=g{&}mCK@0?OjGiz^=BTdSsxi=tx&-se9$aiu$35!f zElipy%5Pw}SmL{O50Vl@Mj0KmfI$3BMPqR{+oYM1OEBjgXY>7P?fh{{%Gtpk=(beP z%Dm&PZ-$@ml4Vp&lH|83_QhpnVY?iTM;$tI`c^I8otOy{g<;vw-hDD_sB+O-8PI2r zohzNxW|hfOS9W*=anil4ZMkl6VcXRlJ;sf#J;Tc+1>xgwmO~H62EJtdzN4Q{{{Vtg ze$p_qmHz;WcYY2=L6Jci^fVTq%lG zvr#bIOo{l6@CRY(gV@)oU0mt=k{o0x3KRe_v;o)JyllS<8jbTG6T>-uEL5hdE7;^@ z@Ep=3Ew0BSI5xL?z#T`*NFDlOxwG)zT_06%5m?z9JMwbZky{w9x#aD+gAxL9)G#?6 zM-|*$*;(D@NMcoNv>dVJhtf&HyX?IXU+}_0v}XqOTTxMEF*U zccj{8hk!q8-`hXoY*1Nv2jYgm4W+&Sw7R>GQ$jleHCV1+Z?4%C_Rj+!W_S<&3p4v% z_%cO<;%A5aKjPR-hzkg=G-<+c4jvY}hDPg*#~3FAfnGu3&xalu)+C-U5n07|l^a>t z<{ildbLrnXuay2Ncy7zXUL~7I)4z3Yw@48S7TS0u0^PC5=DdpVlwI37@leNL5~~`w zU)OW{4*in9Xc+$hYM+AIU&gB~F5|=TYI9w{Y-g4^T^iDMfsdIV%2mqlPK~sUz#M_~ zpNur?OK*eTCxQ`!Hkoo6k0QcMx5U5CVp;sPg9xgW3_|lP*~)*Knbr>jk3G5 z!RTw}{{R4n`|Lc2j#HF8a!yWur_#QHbPAhd;Cpwkh{VMEicRdz>sZ8_Hhu2(T2y)N zCbyds#>`NwjIIZ$ITYPCZH^Ut9M#1G&vw8+IqB|e&YtH~QfPjeWd)tblW75jza-l` zL!5uIr*BVc?d+Q2=L;;-2Rwsu40A92^&ghw@y&A)tH&>!3HgEGpL*QU?`~tdBIg8j z2iT0)jf-7P;Ccm-)CcdD-V30ohJs>^>GvdDf8+If#_}CHXwKPTbVXb=WQ>8>uHjj5 zt9gE6eCvZVeekzPHux;Iidh8cKYDcjy$N+U8|fh4d33mV30*1TX@VN@CL?hy??q%1MmX6)HT)WXU*8X zt;cM(+H0X0jzAY3fm2>tDr}XRafc@v=DlibOQ@_RwYdU9qmA*Y;P(utf(Jv2<7Kha zZcv0dWe14eNk2f?{&ncrR+5pODf_JRnC+d|j_OMNeZ^BtON6<&Ert%uAOp5Q1b$+= z3)?$wIX-D#HeT|h0gk!cxfRb_YjCykirkBXBxn6o1{p>jeXvezt`zx|(VLZxxKV_>DIR7h%sTesOl-kBxDQsdsa@GW9K+MXHPQEr^pB0x)1I0 zMIo(=b@PCc#~JJ1wdA!gacZh~N13vHe7&F#`|6u<8$li;QJnrAd8VLk7MYsbY!_|0 zz+#7u!#~fT*1DTp{{R(OS_@4#QJy<;Fk>?#-k075NSfKs5a7$-c}yMxZL zbl1gyT~9X=fuk?8_a21*01|v>r^n^V9+7nuKgv?>O*VD_@&q?=yg9+o`s{YD^TU2R zGF#kgI_wQ?6JkWli40=_N=q%fO9t$WjjjPw4S5COi8N?jDE;HUea9RT(z)c*w96}p zxYOW{-boJTcn6Z?;~6apLVp_ij29c#rvCtW1pPGs05i?0lT&NmXW5bJ+HRrY=hQ52 zA-NI8WCDm_---pb8U<5o*~WDS>%!>h6$G6=`8=Du9lrq!-( z-bJ{OjlVQ^2^8qTMmB>Yd5RBxk}3D^SUx1a@m{TMXD*ql>RueW@`NIN7WznI3$(c3 zZ+e%IwmHG$u;2k-Nkfh>bu^l5)qj!aJc_JeG+ocBJYiusi9W++bLHOzypB;Ekq7xu zNxU|ABM1B`d|TjO3N4JQr&z6{Z6R9Onk*LJaKA5JdRNDu8~BUyhvDtSL&d%@gT#7S zkr)0Zx?90>&Ucr)(b!URNotxk>^6&Gb*@|9sybX~f-AOwyJKTp znG)gg$IOv;$;8ZrFpMiOXk>4ZG<-}5fwHm4Z0>x zv)GuVB4}SpV*T@doq;R6l|JK> zj@(y;h@HL@vYamOBz!@wdTNx&su@W9Z{}Pt`rsoZ8HuJ zAaP!MpTkXR(rdqmlF6seW7@yidcD@3v8g!$G~Ga7>7~cf21YmskI{Ww;r^W0 z-)yyW6!JDhyAVSVGnF8(PMEH~I~gX@&9%mIR|Ld)`twT-o7SfN*)&aD6*((d{$YMF zf59z3Xg>;G$*AahkM^uhhVr~mrMnpzXZMY$=(1f~M!osAKrzz3F!5*X=lex?ZrW`_ z{t)YpSuKz&>K+u-S6ht+c#K1BviVz#{Pw^v_le@avURl7G~#Y8U4ry|#iAsCyqVy4 z^sYO{>EN5F(^B#Fi)nUXQ!kk%ymyZ3N`~^JjboHQ-Q;o&eI5^tYeVBno=t3)65B)g znb$mjf8om`;lCMcm)a%l=V-9j*5gZ+#(rfnT}2GCbqlx?&wSTw;SUo0F|@Tdx~GSA z3yB!QU14&B!Jg54PK zdMtZE>0h2+F#iC8O8(B8^2j^~r|A~AClW^51;(S{iHJDM$rY@Z7EZv91KR=HBbxdQ zCmP}8tyMJpqtBj6Rx90iKM5o8zOQwzN2hpWP&U?4NV$t%p5J;iH~>UZ6^bSaIV|J! zuVe8Ch?l{7V&8ac0L6<7nXbMb z_@7;#DAch{XHK-%VHp|uUrLtNeoqCS2Rvl=uYkNo`yl*%@Ns)x8$r>$LnK8;-wf+8 z3x+(gFK4JFoPm#0s$@CHIqP3Vh0o|zx3a7E{{X=}df8;-cQ_qNUi={O*Md>4E)_K` zGDZa^1r}>F^KJnAp{<)CfIOoH{u5j^$HLD9+^}65X(LFBd148{+Kzs7Q_0#+GClag zt}6ck$KM$K6B~;Uh+1XuhGBN*U2jFYg57`s5$BkrwvljqmIs`1T#ldPZ7Wo~{{V!7 zd&ksmWpEX=HiRb7bHXYjgX&i-J?q|~ijq&6T^>bTzMP%bkI?scZG1zbTHQ6=hfuke zD~Kh3y2U1tFe}qx9WjEwg1pbeHhwCy*Y12p;tM-VEw>?I20le(sxXP%` z2N^Z9seDY*H0wxh{3!Z}xRHcqH8B#vJLAo7-e=I@4!qZ;X{W`ywt)A#lr}RXBRMH| z2bxzsHWCTr(379kl}b`q*f986QF3v!ZCLq};tz}UOB=}M@eHs z2F7kMIQypovJHFYgW#)6uYh{j?ICBWTCni`x1?zBHN(5yWdR;Jrn@$$fEcIf?m>XI3$|7|7kw^MFC(shzEfcOcjEw}@)lyNbyxvaa{;|S!Rek8sYFV)-;u1QEz0sSfzKGPPw~#F ziK4XLVQEJV{pSAY_pi!%C--xwH#mo3_SBl=;%^XrqHO;HR6fuby z7I_`80_2{6SHF>9rCSjQ#a~tVoS3SrFlzk{)ArrB(JjB=mzu7eAreDvpy&}oCMHrO zS#1Kg=?gP3C+`!x-oKfz0BAzrjhW^ z;r6+GrCV4}Jh!c4jcmD3vaRgJ3WYI7tX3f^_FcH#3Fj|$s|^cCzPIq*!|A$@pKmfr zEM!I&B6ouYB#2@k7OSHdoq~w{NIk9aW^f)W)4C@*B(+ z(3t+yEU_lkX>w4mB8-AT)|b2QpEHBNZ%$8J9~gXM)@*g{RzI_g3wsG+idYAj7FLE? zB=U0(S)N5gHw^3!Nf_<=A^St>+GFTG8Srhq(WaxN__qH3O90Acg3nUWQgbV+oCIs7 zDZB2OK2gpq9Z==7|=3Nfj7-3&BTRlG2C%AQ1kVH&jf~)Z^86c6oM+VeJN9NE1s|#CmsXFeCKeNviw+Nsgnm~m@ zsTeHa6T?^6`WJw_A9?Zr0K>lyyhWkOp!jo4)kdFbqg*ndv`q!ReECY25<9~S%EXey zHr70lFu!Wgg_i#SvG;{MG4R8}dQ0hkD$)Ekrt2D~h|7U@ajI&UahWYtC@865iy9Rm z?r8?$^5wka_HOYPiF`@%yWvgminR>@@$Uig`SExX8)HFjVIb00yB1>tZwJv64; zZEg6TeiI1{Je4-RtD{ z@JnaGejWI#UkQH6KM{Oes=@Yyr)hVW;tOM!XyjYin6H>r7ue+B;2d#Zpg*)Oo1&c` z!nzK>9Cp%b`p%VTsW4ecbh4gAPBN^>$`7VSdBu2``Q1wUf51OMz(K1?9p{3gzVT=6 zz3}_u?v;Gcp?|`@)KWPA0C%_jJ5sY`AbDlU{n*J5@{xcrPJT%Jlss~pFYGz{U28i0 zZEL4#-YocsG*?4uBsiSO@~&Uyewo2J7#_bse#ScI_UDZ}KjB&BQGMa>3tZSc23Bq9 zs(>6RIoqCj1A*yZ6#Nm<@8A9i&HG1bJ|~^$x?7)!Qq4Z*1?IMvR%iJfXLHBM+*I-o z;lca@SanO&~Q#0jsf=KypQAjT0O_YE6WXLXM#Dd zt=2b;9m_CgXwLz-;PnJolR`fFI-{ZSckE^?SH=2)u}~N65)~|0dv1|3#48X1!5nds z#%t~$7y$Y@u7BmcKl&K2oIhtD1ls7@?e~am^+dlC+j%BEs2v-2T(;e<*+2z8hQ5;V za)G5p%06Rr2>$@b>**Y>bICq*Y2FR753UVlg&*FXJT~wy2;GdHM-0dKn4Bo->s$xRQF7 zX6i}mN&f)r4l9xH%<<|zBGz?Fm}QR8Ngb`Q2qZt~!Gx?zvH4m@V7MQ`bIo*`oced! zm>a0jsn5*Y4;-Et59e4^XH;Ukn#puym&*W>K_dY49ep5Rkpb}AV+1&{{8^{hfsX3Xy_IAT6tGDT`6YTIPV2h+AQ z*0EnwTQ8mB^A{i=Z+hvVDJyJt7(GAF6;VblX>u#IQxcWxdQ{p}ThxZ*1Fz#$uT|rN zZb2Eyt$i#HE1KU658ftCNA5FG;z4N94qF5R?_4GBl#-wA1#BE~&l#@n@UlQAhz<$d zGupiF36k#CSAkhpGmI0Q_u{>*cfxT{TC*Lt85%CRP#AqiKh7)WANVLmsIdP4f=2$) zYaT)m4zdsX>2f*x*VH$65Kkg3VEllRd)Ld~@KKAEPxvH9?GF)c#k2zCo)66=YB=`A zeSd||{uU|Uw7>M0c-&cksLR!UX#OkgwM)BV>nKLr#FE7489o01&MT>dT#%xNjc~jI z4lsRwm5FaPw6Yl11ahH|%so$joxjd%SG$23t!^z!FdxH{*Xldh^pk_!{AQ*3wK~f! zQY)k~IuI8m?IFk1;O8HOb~-)Gb4hlHL1edJcJw=jI{t>dm+hK(BHlG@xX$+IpmjZe zrFFgo)NL+xTl+gan4z<9j@&ejxNbi|j{SRAE;b9;$@v~mb0-`u+U#juL}G>#GQ`Uk z21ZET&;J0bwY5zxMa$fyZY)nAVD#ucsympzTUB7c>mnU-fKN_3=DC}#UTa-maAIwhLECVObHUG+ z4^K~8@Vk51WdPjqxNv%}zE5iUm*8X;lW3Zz6nwWy_>U+MYt+S3wKmVusa3l^miT`H z-b*YXZ3!9Aq38P7#-FrQOK;iX$S z9PLr4NTGiWSL|2AYj|%j?jAwA$&4HxLEd(dLE!OUjsF1fNKF3#!wu+atPb68!~=tz z5A7*`r{!O=9}3@W_vG~vr~ZU%Jf?(nk3;OTs;*cnQvT}vkI(-Aj~){6_kzAZU1&ZT zwiecMM-|7EpluB*Ze?HgLFwt!wNqFa+l=6Y&%Jh^wB%xMj~CaZ$i79jtb2rI*O-Ah zE6B!sisE$3+c}{S!*d*x5^%Wyf&S^iug){nqll=YtdnQx_y*l5x7iX|M}g-9$sH>~ z-A|lKp1o>y(dJBC1Ph*{k&u5%V2#p7UYR-lYv(FdUC%}e#=J00_!#+HJdU;3Xqt3! z{L?n#d!K5s}rvuS0luIvAccO@MS9esyvwS^ofc zj04d3sy1J_Eb0pvQ@8wT?VcID#_o9b?OZIhyP9_xm#-LJO;eK)pkbW#01i!A^2C9G z$r;5~ynXJGAlfiF?lIc5r7JRJ9S=cp1O*si6wVJL?&RjYR%kT#SCocW`T1Aho-Mv_f_TP1g`cxGi2QLKyq97--4O&xS2>$fh5!L_2Ui5=wR_nG z2-m3!Pph%bkF4pz$sa&?Z}yA$5#o`HFB4nYv+!foBa+vX+jNVt{{Y`r@6h~1@K=YU zuxqR2x|2{>@&%Km>SK=^n<20O$Q^6>n)rSDOL$vfQxA!BnRJVlByH3h-ZFk|ge%1( zBM^G+WA9&F{6F}MY2bP8o5J^3dMjTAE@4>aid9Zm{cLif#(3I6>&<<>W56yq_EKs2 zpF4-*NWYDJ$M5Ea;{N~$>T<@`_vo+2R$RuzKFkJx0&Aht^wDvpTFVm&6vVuzAQAM< zeoJ^i_MY)gm`}DgkFVQ>7>4TJOF2m#b2Ym5kEMIYllwvVTT+EDB=F9wq+IRD zlS{j{x`3SaQr7c-Ck?FUQ{HvI{w`+OJqY@aA z&u%#tw6{*W9ifw!%N(9hPg>{huMCm|9S%)q(Mn3?Th%fmGd4lU#YY5LhBGk8jWT|s zCgz^t1O-kQ=jbbL&INrwBaO~?1}E2H7_NDHr%WfI;{GqvZLf53a(+gQmA(D{07{hU zYkA>kiUPi9ggS@haNk4Px}9z<))QGyfTs)f1pfd!r>8^Y{{W+o6(TA)-~usEBx-r;trICdL9ey$;8*a=!3Ynw)Z-oSn6H^*vsaM1xlDiv9mRVptmE*=;c-pf zjXo>*hi4~~;SF+I?V*2htH*C}-!^cfSk}@)M?APcje9?ab-h}W^Y)0!^~h$8vN7qEV_ob}$1)wvS3N?W2>dF( zxmrH+)fu`FmWx9F0EqRE6vKQq8REau?W5klRnng=*E|s-hJ@#@GH^5RUQyv|KN9Jd z5$IM}zOtI`H&l6%k@-9hPQb(xNB|D}SFc!I>RLo!@g=x;7>p4cvTpwXduagvAk|y# zZ|w68S5ngLFRvz&IG*Ihzi23U{{UK^T)!`GpFZ^IX3$Rc6GY1b-po8pZSb>Rg3j{q zQn=IgX%5KWOf$8@N)PV@W(6!$AcMPfWOG?I9u$X0d%N9VUbxmY##qIoUEEIQ7aO;S zgtUCKa6UjW!OwWCt|QTPDD@2*_f*o(7%+->?-jvdMpFJcT|mc0oL5z=YPzS2?Q{L7 zrAsV1bdOTAdt-5qku>OMjx6v)qb?6Sal!WKW|SwSW%uZC)WOa>qEX_VM#|gI(#t^& z?5dH4UBM6lIBap;el_PG7?Z_*Gw_G}A>InJv6|Qv^90tATr`9*03>e8r0wAEE9+2c zo+9|K;rClzN5Xo%x@;kkKAbIet77}O#J18Kl~BFf9zAQgweghtq|l3v8faycD7Mo) zDKix~&y^!2ybKe7!~!_Ybi#Ea?u?~ME$VzCx>tiVPZH1JUlP8fqP)RM*x56|@(e7D zu)E1_6druFM&SK3;##llk^3)vVevaf;AQomOs=Kf7FEag^Vg?aC^`7POx_g~3l zz~jAsn)u_v1L7K3n@k|r188?_%V9!k0h$S;ZaLUPESV(Z zI0K$YuUznV!%LqJm5WW))us@g=5poT+Xg~hmOnlLC$Do}{sW3JaE+V4uk~|+wo^sx zvp~HjTLRYQ{KDnMOZdX_6_5D@W9a z0&=8u1Xrr~ixDWd7s~v<;M~GFeFXJaK5G4vz5@Iq{h0LqM#sR~mZ^JrtfjcrX4Pel zo<_Ibu%vNC6iN5nI~Sh$BEJ6c{GSe5QlM;X9X37>uid?sm@&k;9PQoNsY=x~^dP=_MXc0TO5)}b*N_TiXg zAoe}$ox0TRA%UJ*6@0#1C$>1RoO~za?~OXfg>kHS!{JAYd^jxE&6Hl-MRZJ9$dOXU zS*F@S=wl8$pgdQb+y2yl2t0DJ#o^6=Pm<~1{yoLaWzN%r3{Fx&eTvtB@_NvI@;yaf zoR_-Jui|#Od#>qM4Hq(7@_`9bRYAzl7&y-+znV|kPWikS`$=ftF7WNWhN-NLerrn| zF}_KNxtNGj=I&)^tnK58Lp+Xm959U}nUzoUC#d-2Mr}^+-%wq<;dWNWcPT^2_xAq) z8vb*B5qxR!2f-f}T6o&fMXKphY7<^b6zWRc$Y;*<4xF$6DJ`9u#?i%orQzK-A8MbM z>U>`kJ!5|}`YZ82fG>2#)jltLVbsrw{9Lv-enSLh({zXpynw-^TDfm1Fh9Mza@RK* z`JG}B!yocj@RAKJJSPPD+#XbEYi|dZBsq-vQ57KL=D{0!VCOaZWAQKk3RUBu7TV9H z{5bH9zl9>YjpCN(9YRS9EAZ>~FCbd{%1AB_@Oe@VetLKk&Kuk5Z0CU<+0r=FZv<~s zfz; zzi5s)!ij>ZP$b$F$nS#NN#u(1hWI;iZEJ6FsH8VCSvFvFW`*Je<%u{W1atn^df7gQ z#={L&R+O4B{3D_G)5ZQUhSycq;4#^uyJ+vfE18zm~$>3K7{iET( zg*H0hgmrjEu^zpoNN;W}VmT6k-(=I{x!Q{)4CF~W9FSLO%C{aBr6!xITi9Pq1XoKG zyCF@)%F_9643fXjQJ0}q2u9*CI@f(GNjvn|^kBV|eeS2#{{XeW#f^94et|T<5w*BR zwXMrOx2L`A)`G5f>#M-=CjMBjDZGO)Aof1SwQRL2&lk&tjum`n+_ObZc;x7+) z1I4~1o5Nb83Ex`O?XB*<$*fo^+uT^dbvqYnR?#GqM)Kth=XaK}#~$`6;o~WLT2Gbl zf5`i6Elxy}KR|zBW`^7Lnn8Rouy{i(0o!{BAb$`w``g{p>gfEbA| zN$p!}{{UoEl7ANJH&Yfb{hhSu z&0;@%nHiK1{B#9B!;m=o zAIxan!Wg=)!YkSSCHQ~h&&3ZB=^6~0Vz-O*gqu{+F72-&vb(o{qT9iWlzrV`#_Wj%wwCT^Zd`r3F_YZVU(>#2TaLEsDME>lBO- z7XvvYfsQL)3&Ue_Sd4}k$gg2S`W-jY#LGSP$Ii0GSp2(XjHwv+Mj86zx{DcZc1Ih) z3ji`>Y>%h}3g;c*mE)A41wp|BrD$6SuDrOVRv@Vt!5uS| ztGPf%*HP`99-j5ctatWy>kKdEK6|AD_z426+uvIO^1BAkK4F^d!_oJX zGpRi+j*jYR&AY4M3=@-Fbgp5tDnf!f5#G12E`nQ_<|^HIIT;wPV(INJqVi;hRmi|G zGN1f(;PYOFE*#M@!|u_{-3isi$~O*xduKSWn}6V=@U74M5>NJrW&~%$H!~)abG_E-pi)k{{X=;{xn!f(cHr|rKC~?A(X6_PzF}| zgUB`Yei%Dv6z|$!`b#`cEO)@m)<61EKZwl*&)e84FbZ2chaR6!_1fxJ6F-pvI0W?X z$La^IeNWz97XK*(L zj&)>o{oj}aD}Y8<1RQb*JqXYAl?+rWE1!_!C^aL*ZPrVzUUZG}h;t+3sbY5H@c#ho z*Q)$EjTchAxm<|S)<_WZk{N+!KZ=1*@W;csCh$JB;_Iu0MAN2d21nj8V{sVc?=Ttf zO!#+mzV}cp%-awI+)RFbLGjhyr;T-Jbut(xp>(Mr7&}&0 zRaVDr4z=ZEbmb>DkCEVdytAmEk@R_r^GpUnM6mA3$KJ=f^slY|0A}lzmqOK=6VmQ6 zhU5NOgZlf|$W|JuyRli|DpkLTumO4uoM%4WGhc4}0q}mQqG-2~T-r}&FD@c6$#9IT zF6i^UTNohp7~_iW#z}Ho=jqgGv+Mr=0Pby8L;wIIKD}|%C$Q^Z2>#O&L;nB?*pF^Z zSC=Kp{{XJ5w;x|>`?KNN$sVP56~+=s<3B4LF~=Nw`t`5R{{Y%T>K6E+aTbN>+OOuz|r3ZiuhG2d#ylc zk0}TKK5Oy|{s~e_e#0IZXTU9}YfZ=fgk~Sozgd0~+%iw76W7X2eK#80E{&W|t;yqT z9XR%i{EvwL0BK!j_Rsc;)u9p*50!2Tjs`rH!Q-jTP_ep-?jJ5vu0Y{jZvJ%-?K5); z{h{@vIQy{MFXaLp)*gW=HiA|Arx-Q)hY-j8qNl6;&(X5k{_ZQu9sEjjwUxH&D4Ye(rA)J&($_J>s-aO$Zk`21ozG>O>bl~gplJW88z|sVPn}& z=Tf&4P4dYdyyJj;xtbRr@EH`0{{X050JX$75aS$_^9Mfw9zo&0?L=SsS1TE` zc#Kb$a(|Utw<@k4E-}XhgO9?zn$WvCVFhgt=F?Jw=5ZC3(lH0_?h48- zI6QxoTx3&=sM-t1^Aw|CJ`X@odX~^Z0_?O#h@vK07>tsDo->2_R|J)w=8{Klx00f; zJa?)x+~pYL1J^ZLM!OIrH04Pj^3g;804yKYnCQ$ECK10QCNjuz?hfJl*3|bQqtX0L zJddM9#~B7N*zd<`;ABB8!s8&7UAY}_3F}=JqdQ({!rD;Dg8=UI4&+8G|o!L6mHCT00ZBO{gl_@m`xi;3pySN1CPvC;2-=J7s48+ zi+(EnIMZxmEduG+5X#J(;#ZpDHBIMmE5Tw84@_~!e#3#)@wD6N?|s^yMt5(k%Kdcv z&*q2wKJLOJ9p$(PtQ?m+fNyQyy}mq&v4euEHj8hlr5G4zzVohPEX1^*8!>cN5e8mBxz<+@-#|h zj5KACkW?^HxNt~2xdR~Mn*NH0YZ+-cpNm%E+Kc#AKd-!@;eXm&<7b2!UejF~v`PRF z>TxB^VONeCKPq5x(3uauYu@}n`+odSu+#_IbX!-pWW=%CTuy|r=*lJ%fsgLw{cGl{ zZ-#nSyLzx_Z)-6M%%&*_Q@11*8DI~-Yt8Rt(ClZD8=0lCb&#Vxt0Jc0afKulIl;jl zb6U9J>geKgO9PluR)oJF^FLN}5BMn-k`$j7X_vM*d=D)|=tt2Uk@VU4*Rp6IwlD1I ze|R;kZxBbK-E?;)?B>rO-4V#Z9yfaTuf(k{OZ$9&Tso8&I0Tl54t`VoN*PZb2_5@Y zW?TIojM7CXnHv(jMmk`tVB?_~!Q-`KJeGvCvC)Ojaj;*^o!3 z52b%CFnn6^WtOOQD=l*4O}O68z8Cv3V#gx{Mx``XBo|ax3$U(dSW!$(Dja{yCnSI0Es^?HTVZn~kfhK|jyXGIOlKn;lp`ONc(|yfj+$hb>W0CD zqbIM>)^)TJM{e>1fXG4j6|+9+ZO@r+k^cZp+%Wdwg*6(8)d~_oKBN5q06NDE{o<-h z>c-HuNNhw3cvzKBzR}Hmy>V-CV=F>q$OPes3Nz2sj+ON^7ZFV=`D_>faxys_^{)}v zwDSe7^(O@F+x6*>TKXPjq>eP1;+`r*OM5$uQRTE(3zl9EA1Z65wZCG(DfIkD*0OcI zEZk|=5XZx+?p@tCA>2AsZ5JqvqXdD)deWktEO5@FQaa?lLd6DDf_n6*HTi9hkLSz= z7HCLe!OxhZuh5*<3rvDWj#kDA2B_|Q^F+mHdvQq zBT}?&Hre$ZILMMjrT2sLE(Ul#e_FOYW#TPs!;xtk>y1{%NWaux#+NDcE*l_jCbfitq`R+zGyoQ)lFVV&(NT63+eD^x*e>x zmQVr}V!F5uj=5$tK2N4orykW(;e26lc$$xayiY!faKsy%eM;3eOF5VhTkpXvWPk_C zIO~p0b+AQmATp=kD~_EgXjOMKfMdUrWUs~|&x^|@!GP01ta~WX3f*GSI zNcJR*_OEvbnn^UL6N0`DEojc);oroM59{`@CWqonYuH(qEG@!IA(vrdj=+|{^k5r3 z>*+m8&hlLr=I2h;JjfNqA|?O@1auN9Bsjs{o}Dl{*XMj62EH5WwvbzRlSj0_du;i0 z&uUP-p#lauE|dY92T?Yk=2 z02ADO4IJAJw4KrB)WJ&kiS^Eb;p@#~#UI;R^0b0D@dT zYEKn>Irv}VZF1X8)lx|s#S-L+id{5Pvyl-3WM>#TAch#~Fh*;@d^6+Scf;DO8jp;F z>Q@kn6YWjv|E8QE8krrBzE~(C>Z>c){(i$A$b?E@g^HJh3c@`y>Rk zd6Ui=ImjS_4>jXbfuO8Sp<;vYSiscCMNXlemaMuG>wd%4JY^Lv*nRa5)T&eL=-~O@@)7Po_bp=n}2q zf)HbWJ*H(wIbL_MBd!V0r%ox6oR)mg=R$K_G|jeldw^hq@RFl(Ac^E!xG^^2>Y zBVgE2LL|Wq0o)oRgU)O7tK*ma6Sm_~iM%uLFIwB-O)h^n)ZC!EkX>97*J30xTD+07 z1q=fntfv_x75xPKRkqhOLmbd)_j;X-jEE8l#P8-DhY~61n{rEI7|waGA@SG4odO%{ zJ6k(ge4?N%aA8yv(`t-yk4nZlg?u}`IcjNED!R2zPvtAe{{XT70LRY-YA>g*m1U@y zmnX`*lFH&n136oJ*yDucb{8xG$30DXUx<83`#}6N(i2DcgQsi$9@E%#xzh=@Rbqbq z)Dg*Q2mQ3~)K~SGz6;fK8+(|nUPnQl(9ek@Ax>}-P|7-TI#-Ho{utABC|M%VtnDvd zw;6QtErD(AlEorsh0k1)nEvoRE7ijBwMS^yifj7$eg~UVhv}vJw`2Ka@PCi2Z;|dT zM7pSziAn8m@f!R2cx6ob0)Ca#S$t5|?X?*qyLc__n+gTq`3^m$NW%XB-#~iT@0Y~? z0NBU&U-*p#x}U^f4`}JBvc5&`lMT(p(Sh>$H?}`wxJFhZmLx87o^xL@>R<3jzXod- z(Q97?bvf-BK!3AaY7lBDT#xx{ZL1_VTyz01F_F_5&(Yzy%L}S^kK%Y3yo$4T(Vv-3 z@l!#TMX{E~JDD3e7L4vlQ_c$~{{ULI<+kt_h?gE9vyJ@N_JzE+AP@*39l#8O)4prg zz9oObIsX7^Z-G)(c5sp{?9BQO&knXwh?oNPtj@f(Fzh*OOg0!~XyQXnr5@EH?fqj@}Izv&}U2 z$t-hu{!_+0rhs{ov+h&8IM~sKYndA2A~*s|c^tA8 z=tB{MkVb2=(LN?m8XJETYB8*s!lZVN0~I`+qeuxI{_hp*e`rlRNjn_$vYJu5r@KDY zwDEV0{6Q4o416W3Y4^IJFx~0;wcY3TV@nJxE?F-VA7#`nT%)rt&ps{QSa04&Grj`r zuxdI+x#Da8014Pyj}*fli_aabR+jT>dW6v}{k5{8W}4pZqJh|47m@}O;kHPqzd7i> zBf0TZl3QsyE#9F5uJ*XZYM36XdwN66rkq@FR_wWo-uC1h0SR9mCid_dn1{v!Cx;rHzE;H%6303F+SGJR$%jV{LC z{{T(8f#ijyn%>_0D#3cOT}K@8!L~**qej8_E9_qbd_AxHLj8jD-`Vp@(L5XCd)w>l z`LyfOKeaXQ?Hh~pb8%~BrLDS2Vm^5xlIH621+`b-CI)NZy+=pWt~E*ZO{UiRH@>2e4}!k|JQt<-li}>wx);SAGVbo~ z^HJ1cHx^p_7grB)CYPvPKqZ(!cmCqyNWl!|e4aSwD>N-ppS1oB} zHS^DLEGy;9Ylbnxs;}iltf=YzPRFh^vK5{oA5u1C0r(pJN`GJtJ5|@eZ_fyPQ`RPo zTx&PpD)9uGd>GkfB#SoGkSWA&=I%vIjn0vIoga_tNNTr|=4mhr{D&TZbg#;MM2u-- zY12#W-RZl#zvO+N49V1^Cf{H3JLqp=Y4=KY=Qt#Pg?X3l7va1A02%xw8b*x1Y>%kg zIT;+RWy!`>hJK&}>MNkK*L?ZHTrR*k1oX{$&+RX(Nn!Ao-b+PeA=Rx&2_wcx*)B+E z&h9$#_}9QfvT{C+!KRtU{>)w();vGseOvoR#M%$+=+n#$j2Zmw?fF@bR1WwafMcJd zJ|Gr|>A;-syNsy(MSREmE_m0)9wYI-uVb#r(!iQ}NgM8GP2y0bBRYm4401`&y?r_3 zd3^Jxss0Ox-a&N{90-JPYxj2!dSnye)~z#ok=;!l~e)3@hY=0?x|0A9MB z(Zs1-|JD7~{iiiUdHXvzhkhk^j%^3V8moDF71WNG5MNzAxOKfqwD{IZVuCpgml4}d zm^L;Gg$BMY*8U6lw))#n@eZwPsA)Euv|fGP{mgOP-rfwsDVO_DGkvDs=HNEOmomnL z#xR6|>pl_q39o!Dv%m3Q#A{h*(zS@L^uG>h`n{TJ_WBL9kVf~rE$y9cEvA^Fo2Xhq zvIPPb9J76gYvT_9!}~DB;eQZEY2j;)QpFnDz*tEVLem95=(fZe{Dwv==f?7RFM*w^ zEBJQ4Y3wAZVPnj$zaN+5q5Dl0Yd!V;t^G6e+r)k&@Ylni3u=BO)$T4Xt#sw{ZdO?f zdGcf|Fzoqbc_opRA&(di!)OMZ@XtcjVDRmxv*I*EtlS5CrG<;ak~tg1OhWG*1riW9 z1pr}s`L~Q^kH-En(|#F7$#0`*jTQc(6DVbp@l;C`M3C8Nk%XtXa~pLP^wz84Zye~~ z4Pfz&wug4wc4Cg+Xrn$;?qY}wjQMH^#^>A9jFL0;bF?X0?)5znY42)s`m5Nm)P@W~%9HEO~}k$z~_mdT~k-w5&Jqwr%T;YyFcm$UrgR?yh5M&1V$W zq~W{h2LdgTRv+ z&`ah^KUD-}r6A`%%U>Y=*q2c+$K3|jIG4?q31yYQ%Vb26p>jz$3NSr}I#=6&v$dKJ z0FZ!_=DMlR`)&NqetG`Y_n&M1tYXsMQdY}Mj45TgRRr^)~Pufaer{`Fh z-ZnfM`%1a6{h0-rc8uyejE+j+7E^G?ub~J5uNC-F6T^9^JfAdX00Q;ro-xO#y?yiI zPYC=me}no)o2qN9sBI#W1&Cq%z?;qn4?x76jycY2pjV1Pg*jx*aIj}__57ko70e3ukKEG+#C5p!u^H)k&q2OM+!tKmNpWxQ3aW4-;z z@0^*MzT`>R=~fMp321Te!LN#SnEc-pYLkvX((VYr=N@Z*d}Es5gU{B=DS z>TmcP##f#gyEfOXC9snuDC(oBBeQeP59eRApRxzUty@RyEtF=0EKR zIg{f4uF6TQ3Nw<8Rlke77Uz)bRMr{nalte@{Q~Om^A(4)`$_BBNUAP#f zB+sbW7FFeFYPgH9mnk> zs!J&#I!3%><|zzd{$7;2TsGc7Sk5w|jAPorCE_ZPc#4+(XZfF_WzqK|=#HA&W?7>M zI*<-MD@t)WB}Pc=&{j+l6=f%&tuHmPgU)N?>PqrGm~3cR!yuOk=O50xcwRW;!}11y zD&YLanCwQ|n&>p*h^iZ|Mt%KjgA$IaM{{Fjk0;t35w%V}gjU>fn2Q|p%D4xx3I%f( zdepN{ZOZM+x8;iHq0~{Xglsy6=eOMzIgEszfq(sU zOMH>8&@<^&C_`n}PfcJ1SbZ+X*Fjm6+>fi92)#E{{Vu*-Rcl{ z@4#`bwD%Uzrd&IuJ4g;4033lt+oh#xLI>asv z3#ZQzXFP^?M#cv?Aa$-wTJYwgEu_3ntptUbfWsg$Bmxgycdfm@HAg4aBPqeC*&NmP zfczEW2o~yFiy0f8qIi6V1Re-=+J8#&-xhdG=p~m$yp}a{zxNj=c(OU^CU6EiSJB@H zJ_vZr<2Q`7{{RB`E&%e~INu?f2x5X2KRnVk#L%ynnHd3#bHF^;ar;&N$~yl5?CB1Y z`p=0py?OOe>QhdCI9o}#a7L9LNaa=lkntV37&tfwvX)~?HB}__XEVV~!O6!%^SSQz zSSE@+NiFXpoH{X*5|5Afl;hW&4z=wcvfh-}9~?Xyq6Y~kvVq<`+eSAL*RBWv_s3fD z?NT)tmJtDrthxHFeX;u`S-k!{_(ihc%JaNae9}wHZwqg5paM9++s=FBb>_W1#$UOT z@_&;)dRTa@Oj_MP)cvdY84cu`Ec%SbOPQ8g7?KMy0PIB_&p@g^mG&Qk?i$ltx6ySk z^h?b~-tl9%o8)JdO$?0~Q_q+YSnWLEA46Vc`yyGUo#Cs!dUe5BgmE#)1}AArACBM1 zSI{0G(csm558+LI?2omth%O!FJhKBk3}>j|bE9LIc)l2> zjW>Smf)sJoH*ER?&3+a9Rrrr5g}-R;9>d{nbXi$eLs!Eo`)tf5o~5xSn3;ei;( z!(*emIhbF#+&_8H@f--D|#(xudLS_Up zd}@}z_smV^^w01fI@hm>$gxzOkh=0b`Wc-WYUN|`9?;6O6u+P0#laj z&o$vzUlDX!6K{sRZJ=vW#)XV`h}IK@1LX=O*h?Om2Q}%p7y90l9CB;^AGz|RUBYcT zRJ)HJgswn6@J)Q~D-SgN=(KuJsTTd&TO!oJxn$^URM1e;c`Gz`z4Rq3n zyo~2pOBniX^FE&xg!0+`b$Kr4LxG$gm6K-_g2p)`Q|0411A+DQ>5A62XxwhwmFPdl zwZusyDrvI4?5wfG>T*aUo@s-_cDmk~Zu*o_OKy%?QdC(NAx}7PM?Xr_mKdgk%k<7Y zkLz7NpJ=B+SQDb|{Z|#{RmIt8bT9QKht%gZcoi4;=BBDrP8@AQZgNcQ$3cI5Om zm7si6gIkF&^{HTCZn3P1tuX1!VG0g9^u+XMdq*IqBF zSz1_Xch@$@4xI~sBS;BV$>Ld^5qNQ2EiZR z7&!LLZ+~ypn(vM+ zJ--8);hc9qJNTFI6ZU5K#bF$NF4C=a61+y5v=;iB8CxL=J<2V{;tmEU&N>?TC&s_< zOTU3)DK5SrPj{frB#9J~=~|7&lxSEkRV?*Hy|XGY^A%(sjn5yh`d@(jAtbF8f<<<_ zR!=mvR}2)A2G&px(0XV2*3{kzw$n7z29X?lNd%-r%VJL%BcbDt_1%Zh>(TdNHoj*q zTm?D&NgvG*#EEQiZ<57dcseWv~c|5vwkZU&Jpd{~yY{{X}7Q^kf)_)AvbS6!_WE&MTD2%EOflLmjnV;t7s;JcTn?Ww8R=gA z;Xe*|hvF`hr{Q0P{AJ=@LSMSgp)%PvKJv$O-b^E&nVEqc=D(-gui2}>dVEppdWVB; zwKD(`eVjSCiA#(CBDgLWj<^7RwaV+?2EG{H{fJrke^~HjmKkQa@V(F2nadBkBpFy{ z+IdpZupErw;=P5&j#gCTZ|l(cXUAU!{8;h-0D=#O^eq!u zTbty*)NFj`gHDm!`ypz>QSr8~BF3;|PhH5SRs%B(eA2Nb5C$=T2T@;K z_{rV14J0p5wkAOI1XssDvMq()o8ygfCs7{zKmvo1F(}SDkU1O^*Raiff8xe?^&K3r z`C9b{=bGw*NgVb5Jr2(8iiY$Y);XSB@PAMKy=Yy{8IL2ltX<#d{EDLk|JME0zxW+= z{{XYuUxwP|r><&VJ4+2x;J&E@_LusdwaB<;jvJ?rSq!nMlgmjR;|L*=HdWfcGydCu z7(N;3UMJ+GX9GuN9@+T-vIOiK4Oui*Oqe%oKqcba%r!71VyzAGB|S z{5}1Wnl6zQjGh(KG_7Y<7UJS1vb+~IvuRfU0BN2kjvI-mk+w{*NxfW$d^twPz5SMS zPmkIyzsK(i*}-U@B=H2=uCcD_JFb^dNbSthOy6jl6|u2`Le|n-8Aka-u?qY@@itFZ zijuF0e6fdZoz?Zz&gbkDD@r;^_x`^R>!*qQA+XVWBjL?QSDG_C*N`z6ZxNVJCBrIt ziiN=qwB{p&ljWe!E7m?1Yl)$2k?R*Ndp*Xh1;ke?V=Qs4q!=n=yJrms#bO#&kz0Eo zmkbwff5QDI;OEEh9e7(?_OTq{d@1maZm%_c7Dy-5w5ihG*jOl$E^XyEQX;~(vu$NFh|4Pi09HGP zuaCu2#M+YkM`FaqE>*egelxsnTfi!HEh1Ph^vk&I;MDF!FwJvgDzwIF64-eY`IDC0 zFcG*14-%3MM{Dpy;wyY5pW`65jA-%gnZc9y-a|1@v;@XB1_U3QaK?7xzH0IJ{1i{Y zx>kXw{5trBHjm+-9-TrhQ(A8c3w>4z9`;z4J4yb~uNA?#6Wf{Ph)U`mq}dv>n)imXnS)_swuxafadnEZ{k_3f`Z=Wo| ziQ%h8cpN0=)znqiw*32c(B`L)sFIDk`sw|3JV#HvNp7APm5M|_mA0L!o|$Z5XX{-Q zQL;0Xa5nz6?w&32r;Pp)d_cFl_#LGkTf)9E)vj&su5YYvAkuAML%-~DTgvc+oxxxv zc-<8gs{Zpa*LCru{uG~rb)OITTjEXbhv2Jgk#zPkHN3(*ksM0P4aT6d#>{1B9$N)F z&k93f8-oqT6jft`%Y<} z3;Z?Wn0!0o-3s%=m+@Jx!!oFAD~~m@c7ofKE)FGJu6|ZgfnLT@#58ej#wn(fdiB3! zmNhQaQr`W#A3oc>XrvY67&TYz(OSrxLFA5}^;#W9$IUhka~GOZf0kWC?anuCCpgc1 zVyV1aqzcQOrz0GWE8XjJqWhz))FemKWgu?jgWMjO{41K7$goJ<MZ%+$K6^y+%2aRo#JQ7$AEZ@h{rWcOS4v#w$;~ohfj0jPANj1L?(mUx$j>wLeM! z0O=AuJ}7s=%ho^oQa>(#XP5r~iV_(C`|RXrrhLK=r?q}se$iKx+Dc`<{HyZc<2Y;2+h4^>gLq4@suXlqw6$67W}xpwm1fWVUhKX_Ct~EX9wWpl)|1v9~)$PAm3DU$BwQ9PZg|bSp{(@8Q`O<* zdTl?3dF@{oYXwJ$H545_*FH1vD}I&sjfh3C(*gmIVb3@@+J8UG-o7-|20TN2!~y=7 zIripOAFX?wF8%5JkIZ;Qd(|JO>LRXC5s(P$o~@prTKxe1idkXs?zpdwji`;FcmDuK zLO&dnpKAC7;6fN2?dk8{zW)7+_|bKCA24h67{Ke~FHgh0ds(c%a?$!81zuJ^P5vLT zT~Mhx1~S9G0rVOA*XG~HyS@Ja7;mnWfKBX~A639S^yy!vJ`_}r`cW9#3Uwb(&c87J zI7B-@;x9V%m@~fumh|u9Ke1AqkfeTHi?9q;KR4C z+9Hx3JBdk@kI45?@)tE_<|VpKqHP{c6>Xq){K-NpWrf=^W3u z{`qpt`d6J+tm)ZB@JT`X(MFh9uGRccg9GQ%J*@)gJ1>IONyw!RL_)J+QK{`yV7 z%C{oAifPv2BS{&5i6p_}*@yM6cFiwyte#X@e8d>XYNRGYz=Ag(N8v+UAdk#=ri_2N zzyAP5mZ(x)KH^0%&lqu@80V<`REVCnvpNkOd zw@_qEE?_Ow%!E1|pYKH3s&{vqMeLvHD`_jQ7(csl?emO}&b>Rru$i>vk{zUc!PN7{ zNWmSr^{zh3)9sVVW>h+{+NmKsd-mg0+d-&qdd5E+#@%;q&8Z5wbxHgrh0QAdGdcg4axg!~XymAhEZA z+C?stGx=ct>5rI$a2+=ehmQTbz@OpeO%ENp%9*)^>k6n&y_+`_ISnl?PAT6v(BuEx35W zWMT4{*_da)UMuW>*%HN{;|GC82O6BskaPb4EawgRezou7)AmmNpX7XwI;(h^N)PQT z{pkLczi00%)8WL*yGQz5xCG!Fs2~dV-3i{u;O2uC@7}Je?4?HGm${RYPalWjUo-q3 za|gpzY@Lg8&C~&o7ySMe^p1(B{iosYgRM?NUF%YeAG&N{*;;N$W&PRmKt+F7L`7-Wz* z<2`Glw$d%(D;!6LZ<2$I*jyKjIqRHMn2u@OIcZ4 zWVMH;N-^?WOBu&TZR7G_f1PyJ*E0zfaU8qyOJi@{9>kB*yo&lWwhXrnrBh%WgI8h6 zQ}4$;#X$ElAk6m6IQz)KhJ8C4d{@?Z`HsMUya?y(j8-sjn&_$QXxUFM_L>(Q4B&nh zm3WM@nTQ8#5`LMjyLB^MB=D~ELUPIT41wH_O6M>47>kab#dLFtQ5W2MpuONZe21jD7vSLWs z5WwMvJ6HCD@ox6|*Wo{m@4Pv1Z1p&_4N2{;1DO1|MYH*DynW5BgS)p{{y%jO*&E{C zo24bxdU({9RS&)!sP0}&^z1@bZ5@ABzTLqESa^Ex$5Do9JLmo~bEw$#+L_9XIIaUfqpI`TU4 z(y^`E+Fen$0%sD(@^U2M8#&N=Q zBL`EJSo(~sise?aqOO}iaWwDS7S~AAptJFAh}UlfYL7j=!xQs=%1&nCWu z_$Tqp!k-sK>-bjM{{T)pd5dwpNSryFa<0J~hm5JoZKu#z=Q8+G-^FdQATvg>+|fxFQpi{Q&v9n3y74o zmgngGyn6DgLdM?jxn(U2^Vq8fUO(QgZA9KZqMO*Igah}m9CSU@w-v|fT9w4dFUbUC zWAv`OQ@du?jHH=RA;xGJFo%N{{VFV07{N>gtLX` z)_jqLPbu7ip4k0yUTZdm9FW|~F|}BM!6c{y73%sh#;b)GEfcOjqwuarOONdl$q_qF z;xK(MILEDN&f=AfCa&y!{i;~b(GCVxl$OVChmWONo)_B~0ALTwy#rFvC6XD^GI9Z7 z#|OSEkGM%z4ZsW@=Yd|NB^fKDlbxdtGRG^_e_G~kyvOlG!7vBe)t5XT802%;pXXZU zd#Pps0)x~ZGyXL7v1@&BUz3xtt{0rIAIhS1(a{>Osc(JMd@GD#{IAOM>~cR!=xjAR ztp>_-Xt_zi6Gns%V8O_a>FT>Yi5X?b;AY+)4h6qz1FO%AWc^5Ysay}$8B(+oO+y^+lq3mPBH<>;<Wz58qUW{ z)GQJ+mwD&0x@N{cSm#MC_j`#zKGo`86}^jB)BfFerQGSxfR>JN9EDkVKQs*@ZO0() z=cWfr;%B@JBD7u%@}gk(Qb}+8bxl#cf*Ey7OK_W7c>pY#N92w-E*r1CdU#ysqWI%; zj;;$8^!DBy0^TnK6z()?^L=6{@}|@%D;8 zw5;_zn8Zn+F52QmL)STm=w8LndMHeK`hAWAJj2@4Ry@2;Uprnb^$kDacf;QiTh?E~dkCj}V%!FGX@(DkfMH}-7PMUx){c$V)=j_fkr!@FuSC-4xb zVFWe~=*h@fVK# zQ{Y`oO`BMAaI+G5!{5{9yQ4mS;t}@g1#=`3_Rf{hG$- zfwzcmgl>9v2dzQz2T=$1Yw_jeQ^!A*px-HsGQTF?LC_P&Am_bwtTmP6E`+>H({bCT zhrxfbc9-yvL%!B6eidp{>W;Q{M*4e+9!C2^ZZo0=3561O!6*C705$d}i!K?p4I(Bv z0`(7G_3$t3F>3~s;(cb=NEw?=flfDY>nSB$EJi|sf)sJw*WErXnZL9&au3RH6Z0VA zzDBgKHqUi@TAlUN5!Zo=&GK`|&-wf+^vo_HQV8UBtm6!S=M@)SjCDW%*Zmv#!>D*$ z_Pz1`zP}3oC1|(45YcpI2`$~tsaX80R1h{OMy4v^;E}zQ*~KwS0~L00jR4 z()5oW{3q3XPw_j$@pxZYu+jBBbHlpKlSM9}rQ1OOYej}xBV?29cN0%}G_+#N- zxvv;>saE<)d`o$MtY7ND#>&$}n^^HS zv81J@oj#X+^X!Uy_lxZlEz$_vQWmbV+a!xJEx-+5e|#YLkK>=(GvVF-q48r{(QfqX zo83m!LA|%%JW^Rl2_sRwn&KEHmtDU!&7pXYUhw=M3huP&HIK2p z_Yz(RWW0tJ8S`ClE!4sUgZGXi!tcpA2QBIz2Dtb&;ZF$IXlvlx2^lXf}=6dTz=kh%FN7D4a4(W>y zlWv5`kj%_wk&d0qc%xC${5Lw@>9AeSmX{a< z&4nC?j^smt=tLo0hC2N~f>LS`5!I-Jz8P8ta z)@|0f<~Y|Ww4Sb{f&Tz}kyW(`zR6|gFU+9)-|qFuuO!qwRU~%lYpTZ9=;wEz_hMB! zE4j(S!+VCrW!k-vgB{)qUCL`Bv z!V~mN;*Yjc;?UeTGSnBNt7lMLJuSZ?~I9P%Qy2S1iZEA;2!-TkJk@b=0rF6JAC`#gNZB1&@0yPzbI{VVd*#`jW5 z`)+u$%z%Vyh^0qR3fm&_?djhFzgWUXUjG20@ild_KVv*Z^0&j6wT0F-{Kglut9Y zF7~=!8|EzwDeKU2_;X(#YZf|z)vvG7H$wMU7}yIDiCfd_Ut;N7WB$)GVBkh@dK0(w zuac(LC4&82!l9PpUb6M4feZXd8(T$R`ac{B!zcg!x&^zKw!*(K36&2xaX*^ zvwvlF(=7i0wj$H5NoX}6DV7OI1cU$(vV+Gt%C|YMTOCo#4lMl-4-}-2(@zS>t9#CP zi;u^pepq~ByM+8#)VqU!a7f4ZS%4?s+P_V_8GRka$w+rA7}R{rj{dnd`CIW?U_LGC zO5Bg_3$u?=z5f8EeB9NQ&j*Yr`-t1RKdUd;0$sncXTw14yp0kvTc$~o$v=&Ll6)SR zHO8Px{{WUqG4*=6?Ql7t_UJt}RJ zLZwbOe=$iE^6%UaBRMsNZFbQ!^&09;3kg;6*srL~WCD!Z8x@zUd zRy`>$B}G`3h!`C`s#x!CzS3>yCPZL(a2S5IjSTF=o}!#2mF{;&z;J&-)~YnS7tW5- zT|NcTUh)XjJaC|=L+ZGy&mzWfC6od=A1sPL@1TF3L~qT%h9aGFwoDv!$z$nU@7vnu zH-~VK%mf~J=Yj=v)}v;Osn2s#S#9oN6FiWW2P@_y#78*$%EW);weSb+bZ(o*nq|eh z>=4=EnH-UVc*g_Z^RKffxr!K?bexN5(D1_k(EQ@>^(eU0q2Y{m~L`5l~0C{G*1*=sRM)j_=@Sg1lp=?D%8jy(d!hBMNP(m_f>eNd zZs2^G_Nag0p&E2Ce$qMx>?#8v4_(Cg;O$$OT|nvFlla%gUMleN!=Xv6s~zbGkSPI% zasJkOoSawaam7mMuE_bhVdFR}pHEzV$KMt7*vh_}YbvSX;JQ`a$55}Z{+08G?NRV{ ze}&%+{5Pn0hzPZPTT;0#515Qn-ULNW;WD`{#eoN=0rahphMyI_Cuv$pmqypGtrjN{ zgpOe>e<&ZpD0Lr93g$m)-xzqa;$MX{y-UTn{{U@$Do0pb$ciR!v}_N&#uqr+3h`Z( zF*mCizUC9cwFfkQVBBwu#z?lqVyrTegMpp=dh^f^PHXfB_BM&6__5&LNq4@wXC(D; z1<5C#c_W(q{JUufj3mh;5f>eZC5IXB#~rFW@o9DlBc&V{JPjWXOZW1Zf-bj5e#VY4cJ zTx4VPuNBZ4?j|Bu+MsfH&N;5`#%L{-mvK8sRyil!pXXngVxxC+=;JGBcOPm007U>C zuq2%QDI&g8DB~(l2d#3gda^{VpOyIo+NZO;fo?zS}k;NC4ctWY<%s zNZVrL3Kmb-73Z*DTZKE1e_!ccv<^0+Mt_B|^cb%$w!5A1eNCIY){TB%)mFy#b_a0d zZfiPgg%OhciXpg#V;DK$RxoR!Qg=Tt{AUlv3$KgbGx7I@?yaNK^iPP|CWANGQfMwx z4NBs{Br{w?B4x*(Sr$cPF$T^;?LVRa0JUGm?}~p2{w4T&-{HT*>wg$%H}>~$tGrUr zY;9UO6>a>ZZ5yjIp=Myf5)=`f;QF`Qe`ntV{5SEAy{ve4=1be%I$QhG2?cI0Y@l~X z+vX9toy0!C!*)6f`BTB)7-zrNt+j6(d_VC`thZCzdDCc9jY`p8<^^cft((Pi`$kuY zTjvZ3;Ai&U8F(txB@9YV*64Z}<~FW9(v}vMl+#wxU)_q?G~JqQJM~vSjs2(mJD}-5 z1pG;<*#}5&v~5Kuibvi`EE#>0F2cDCM>*%xzn*V}*B%1+Kk)AA>%%%tv^G}uT6Sz= zB@yQ_uwbgpLT=7mXy+N`ziNMJ{{V_!4e?LxyW`dH8r;FCX#N=0{QE1bON&d3fAn%9 z43{W?v1D#RZf4u86@}juX8EDQ}(r^ zh0+&VEw)GH8Op6sk~oCO)+6BZ<<0IG3-8Lf-}YmJq2(70K&@B?<^k8V})Fd z1xbE@U_U>HUrNE1W70ecrTA9w%SmQca@>FdZ@|d|yX5^V^a=^{E1w@Ka*B37b@4WV z;q6NDX>2~uVlDF9-F(c6{ogUyErHyUPpx?K_;<>GFGgp!h-4LlR|)|f;dxQ`4uci+ zz3+x>%&yjqT%3X5Ae;_IU$1)dy>~^rw7zLDHYolc3t;p5SJBa^z7)>}v|lykk2Q+Y z{7)P@g#L3fgP8*7JF)kaE^F;i*r!0&ZN4hOb*C&%0Ml+IoU>&8mSU^&gVp@doCCnm zHS$HgGEc6@1bnf8{d2gIM?X$0^k?>8vy$hX;O5+SjIU|#f zyw{JN&HY|T-!0`>xXAr%(X1rW{0VV;ZvncVJ9aA?XD-`t0*}Y}*P(nSv%b@H%a0Cf zR?}KtYPxl{r)w)le5n!*$ufuOy?3rb>&_1bxxWWXsA_sj+F7WJY6Z#Uecp5USI}A= zhuC#(6D&4cXlxD?j%>3AmGtb3+}Ria50VYnyjT6cGfZQ3Op zi8<@&2{nhJ+*^oJH2cg6Ao0&?(Z02oYf~Z>`LlozTKJlh_q9ERvC#N>c;wR|mK^c} zAI7`uClW?jADbLkllX1fV|6Eyfq~k+8&8@fh-93cy!Ow`_81C5g;KH ze8ETqI6um-8(DtW=LBe-v%DU0jk)5#AvCYr7U#rTm96KE=AXou7Ru1u-V4bruAoxe zn_{9YZgbv6$>S%1Urcyk_MGs*jyro@f5cjIM0T(Cgf`lYVLsu80Q@J&uY=0+T2-5CO7R;z!Tha*1loTe`%=o8Cu%jZ4+HSS&%Gp zHlKFHe-D#3)4^-5C#o^6<3E@ca zt16hJcTKUnm2ftJA=)x>Ps@OKu9DMNjwwn?rFSk)n{{Sgm``1~g z>hRmVmy!pOVpejIqdT_1P8C-qo;@lfN0&#q?peRU((FPgVYWa|{0oYUbf039c$4K= z@^jPB)9qPqbenk;e69-sdW@6BIhor?mewvyBQF)DgQ?NzP{SNwY=SVZ(IM-|`LSH~ zwcy=1R`B!_YLG*B=knfkVfYS4K45To;~1{9M1@A5hv1?{PvXbh)Yh2Gcu!AKdGo^K z+_}YYx_r%@@RgC_J~8-pV=dCyM)LihB?ytT`SC8`H)0vYkpe*jJ1gd&6?_o*fAE_` z@n*T8jlAdYt#mENiK2m&?M#oUUTfxm z+Qtxm4{OsX*nGPMKBWDoECbVmJvvvnfyY*alvJIYvCUeHWUkJ8_FwRKg*2^WQ1M5H zbvW+fiM0^PK9*zhq>5Q% z3lWkA<|5;JBNWf^5976(R-w&Kl{-fMt>3P{*K2kCtNA@J+?-se)(Zza>=eR_Q^;!A5L5hdl-+Nzjr-J+64g#>EK8|7l)x95k0e`;Tg zI_JbK8{)T*HLYvJ{spquUf05Q-aL*LvAHc_a~<}vrCdfJloyU?i$|6jOluP}yhV!9 zmb$pBRpxw&U9ZV}?0DFUmR3uD_yHfpo6n9v9Q-k&{?FbD*Yr<`lV4tGnvSKeY8rKp zmwF4yv+cH8Lzlc%wntHH#@ZPl%nlZ1h0pCqoACbtz}6oN^nVq2iswP`t=^lfKAUN& z>bjHZvs*r(ie|AoWBj^pmDGz7k{E=Za;$PrNy}IB>7;9)0b$p)C;gmnH9Nbze-UXq zE&a1ex5l5^D;$ztYC3({x`Rx-i&DEWBf@^p(9FQIL{ut&N1w9i_CAvwvHsA$5!8G; ztT?jKt*$&x;s(7s!g-Bt2A_Dkq;a&8UA*!~aJGvw2@36+b-@P{Q^Yybofpd(-$i@B zUbg#_TAcW5i95gR`uULf=fr*w(|>2EJ{kOSZBtd(^y`TGwCbC84#r zYoH~WV)Ki`o_dd>RXGsV0)QvHtI6S zOEuM;aNDfXEF)@pjCL^UI{kaV-VXR9;mvpUt@wfD_!c{>%Ny&xCtB3TpP*RHBSUU{ zySe4cK_sfPTe$hsZ{0~A$5pSQJ_}ra&EE}vAKrMk;l0(Lias6q>dRBrZgnjRNNy5I zH8~o2C)90h%flg)F<^^wOpNM-A1!>HToqhoB(T~myZgFd)vey2RJw#eXhjl-W6)&nXHa<=9dU~KH}-b;wBH##3jY8VJ}2oKzl8K#-|X16 zNW4d8EH!BF5m6#8wv1;@=4B z3O;1MK42ZeQ~vTQ=2nRgJ94Hj^7|njq{?!_iSbxDizAsqDJi9x84aA;G3`Vi3h;0e?a1>xJ zF^((pGsRaHmcQ^vFN}{n1XsNA>M17xvv`v9C>iQW;8*F-?OlJ5*aPE2L_rPVa^UBT zA1?~we5*c)hNAwoo`Rbyt} z(ev{Sqyg9p{RjPu;E;SS@k}xj7C#v3>7JZ1jfnko_2Rw?@a603AMjEM9$lqVS-jeR zi{%QVc6~4yeQWP1)RU=Kne305sdr|6fqv6EcaMG<{>z&8#NP;bmhVuTN``$zY1-6Q z*H)|{Z{CgZ#Rb59iosjWAQQ@({Mq=0ZQ=-Z+k>yIjM{)iM>gJNx&!4YD!aV(!0D1e zIL{g5^)L44ceVY6d|r_f8skR1CmfxH9h)QE^Iw(!02RDKZ+Di#E5Sg*$a?zwD!K_N=On70U?7a}Yl_SlM?gsri|6jQwN#J$N5O z)ULH{IvrnBMomIUU7uSprAe_x79QqIE`F&seHMhhqf8oxR;vW$B!s>lW?l)&5 z-qJ`IM=6O|qr$E?ZQMYVV>lSEhdg<$>Ng(~wXG{vvxZ45ujNs546h1H=5At4Y_jb+ z&QueQ#=I)nN!g{)@HnCz)K{tfV*dcaJ+7mZ_9*yeB4Z7rBYeF%mCtW_{T}#FC>o{e zXRHAA{{U!L;GgWP`&VjT2R;P+2lzjE@b6jI8^_i&+UOTrE#-{fV_AltVRSCq&O2xF z_sO%&U{x5Y$i;q^XF-*at~u% z)`vaTnF((tu0iNybt6Aq^ImiDkM@=LQQ{AYx0l`p@vfP14yx%q2-k7M96V@Ltalz; z9pjbb1adeztv2|F2B0mVI(zYWeX)m|c|nsYzQ{YwWm?BlOQ zd!3EgM-nnRh8S!P2iM-VV~JYiDzmaeSrW6*?65f$u+(m?9u90AiA^{cxjT*gOH*0G4zZBF}P zZFPf#7Pg##83;U9eWZ^94?Xu47#Z(fb)$P2#n??kTQ-7Q zN!uILp!E5;>t7-M)VfR;vS`LP+4d`TWd(DUD5H-C;cRV6E z&N4yDxZBsz*UjIwhM}+N`VNnEqQqWU^=;CUh4$h(7?KB0M_V;9GWzc%?-=j`DzXw3vJpyVaVsySKVK?laKgbS`*+( zsp089T#=vOTM`KzjP&c%^R6f2CyYO4jc3C*M_Bkzq=^;{$u))ctEbGM0C<)wmTdLG z!64V@Sbj^TBjqPHqwb#__)oM@vM)D-ZAjjwczom zX_p2`q?H&08>qlya!DOMx|;S~M^5+y;_W8d=fJ)mywfB`^6ntKzn4&66-t=pmKbIj zIR|q-;m&i{#y%%_OT(HUg?`(m+K42EXw^t|VTU*%hHgRq4R=wEKWv|wlc^_3-1tIG zt>besB|w0yEUvRz7n`BJW|04 zC1T~e4q17xvwvi1WnYYb6_F3!p5=%f91B~Fp4c_@7}fikdLIFet!#A|+jf6NzX{_h z;X7+9L-Xw}SZ9{N&;I~kzUR>G6@CWzDk#V@CZRN&N%={VX^vYQjEuXKGRk~Wu6 z@co^%YWI++MG8E}*nXIN8k!wPN^7q&Dd9Vpw2RmCs`r|_(|CT`YnBWo+m(JsGhED9 zT1s3R7XozKt%Tyo0l)R*qleui2Mb1De+OD8HVcos24Hn02(T z>96E}LoKH1TI?r6*43WI_#0{P#SfD>^5nyR3E0P;-D~Hc2!78W4(&BzNaS@*KK}B^~L*0cz@!anfo?;L%H~i ztR}B{b>R!mHpI*Yw2oKKIK{++mok8$%;$o44C23@PapovpS2gke}H};{i%Fo;LEFj zhdwKo7YpO#esQPd3QZSeUF|#Xtz~|)zaC6h2 zQ~06qf8jsu_n~Q8*NQcrU&NY@qkAR17FtKyG`l%SLgD8##dmcKc>zmA2`=3iAP+F` z$L&cMgMK3Db~F4m@HVO8y$JoDT^q!97hWcg>e+ye#mx72Fv?jD9XyqUq>8P%hC%cr zgy)Yw9bId_hn4ltODgWn;AHWi!{=6#{{T^&No4!~0NNJvz^m+ClVRr_7}iFru<9^9 z-h->!UPH!wi6WR_@%$u_$rbhI?FHfg0EK@Lyk!T(4}zW*hroUu*Yu4(?kyiop6**a zdxwbm=GiY=M~XK22av2|jDxf98vO6^PlPl!)^BXDpo&Q?WMuQ2G!2;gVU#H!hd8d9 z7dw(-i@mU0a$OgfN zJ?@+N;C@y4v*Ey+PN-nCk-`WvBQm>2GOPhm#{l*?>tCjyuryMAtH#o8KfBU&m@+zi z*E17?><7JJn!!2}{<@w8n$2l?KgplAUJ+<5G?LJP$ZX@e+sEl%%LR$k?{qzCMj%O| zET~b~Hry`+bjDAoKhNfE2U0e=YTL%dI>dPPAoTaIrmkX{Q$>Ufq*@Y$8Og@jPyWqc zl5q@IvQNzYgDZO2^nDKfCz2v%Y#s=7R@_c{k+lA`>5~5dXMKgGaRJz*;Te$o@WH>G zc>e&0)EjX8lbnH!e!c5!RJd~n6!$8AgjeU-on>Utej09i4XwSbWX&47hE;5+3@}DV z-6Z~%F}{IMl@!U5+c^Cg173Zj-At-iCjnRV;C_|VTgy3O%-fXqBQ@q?Y3r%cPN!qJ zwsvqBE`FSk&aO1vb>qEq@w`4-pDYeZ`EtC2?TXm8okU=XWWmo4clvj1p7r6*DC~@u z#g>&^oSt~=NgEx-M^8$61S^w+kHVxD@UxjY2iS^GK=(Q=1LeAtwm<{(&2xw{vqla; zcLW}T<~=JCX1`{)hT=GqWPr>fl0dB3EX<_|8&0{TNsoR(?p;<=g z{K)R%TY~{C_B#Q&jpC@UQZ`!ODV5=Z+#%~n-Hu#U> zba^#x0f<+?COIO(91Y>Cm}JHj=?YGq4A0l0dJ$z8UzDz9M`@)IJw{ zD%Gx+SJLcLSb6P3tZ8cC2$AB8=blL=8Hr#82zr@{MZ}>@kJ+J7p-C574+{cI2Lx-Bqd8RQaod|i5Okppy z?T|Ohe5M~6c+*e#jimSh>6`6E!duU$T?K-90=a2QKK-QTG8inRA2SL`*blw_!5{Ea zZ-AZ}{eqzIPsg8$wmu*6W~Z#`s3F$x;e9^J+BrPvZiVKd6xPN`Hmlmj6k9;exQ&A3 z{W0;M<3EAFWX}%8@KfTihZDya7dDsL{kE@b7+JLY`-xM@p3>uEr1nz7BX3ke_$r7$sy6$YlpD zf)07-C!TAZvp`&or_k#FnryOvdZD`J9kf zBn+;4rCytskA06xRf}m~bM0*zl3gNV%rYX6oc9iM`PPlP?$R{GW67H%>aG5I*CFA{ zI3m*Si?&@ORxGS}Ju{Jxq-MHHRx#68e!I!de9ik?DTCnGh$V1US*&tTLyMS{j)%83^xf*+rnZ-I1bLMK1Z8*`9Xa=} z0{x}*ZC}OT2=zS!PKY(-$+eO(DGG!|IyuWIY<#M5$K}?#aPHMr`=LLC`S129m(0HL zDzPmR+gd6(BLsPpWB{Oj-Uf0(&j*8FSZgxf+Uojr7X%fO?L546Cu?K>0Iy#!e#o8^ z@gIh@zY-m0DFR(v*~0|0NQGR9q}r>s*ea-QOE*q<9X`bI$AkP?qKz-a8jYg;j@w(4 zPivTEig>=&6fzQmNS)N2at}f}5^LPWuij{I#%kwUTVjQX_ z95KYf9!c&Q-dG`4A)0dr&@sjcHR*ak>{;Xqg)8 zV#6R(G3Ou=wm3LBub;db@uT9Gi?l0Cn=KFfH^G{v(9^BFO>$$gOXUVRZ%j}Q>6(qQX_{57-MzeemBh2O?R6E(+s7zb z;faB@NcOr$8Df=#BmV#nLl;?8lxjQnwZF^q@;_l%nQ3N^gFkC;*>~dXzqB5a`#*eG z@T{reYj|!ozY}KqOA8+nTEL%XhfiDBL3CMJ{L6{@g{aWrzrq}Ogo(m~%^t;HTx3_%~$~KG}nOAG?kPy2OoA)37 z3Kjb`U;f*_2rTb(>+ccRTj{#h!+7^kyVU|qb)v&=?=6M9Z+NY(rn*Re)FP4tENLQy zA;v!~J|t-x2ZcOYq5L@T-+{HQ6H@Y|(=>TC+i9ZGQquGz-v0n+N2sgY?~OdQ{m9-6 z4C9P_UNbeIsdC}n-pc(G>ify<*)Kh~s>#)YlheP;^y+-C@hjm!?CEMeN${(|zA>}8 z(lre(@nO|8IBoSA^)C=u7*-1_)YD^vIH8VdCW;B}2yKyN$C?Q}&+Oa#IQXCTk@)-J zYdu$9y|&Y=E%f_e4|swrNHp846$Hm`{g{^)=F(eRTbppcQaZ#O$nY7aUn%@E;|8^= zcpt^qng!kVnWXsFPVnSUD4y3$zkP z{{WAFX?=UaUMbUl9r%uWEh5uXwX|(!#$7v3w~of&eZ{oWi`IE#nqo!4k|vDrX#_`e zZ9X0))r|*UH8p)2+wlIiIH^j`$Lk-)uND6Q!9@Q6XPp+~;z!5-02+-#+rv`F;v4uE zMZUOe5pg0~A+e73NiB7GUS(^KE(nm@7g}k zb3?ZRIo|~m2xo#}xP1f-Sl&Yv%GwVJI{i(ld%`Q(5{5tWjng0L@ z#og_je`afXUaXI&YI=3e$+VImv_{ffNp`b&ZZ8tlJSd<@R&U-n>lM7ZPs1Az8+=F9 zv>V3wnSW@WBJnM>7VwjCs@UnDU{sPtlgK-4lGsaczF5Rhzd2@c^Gk^*N~9Jd7E^q; zy57pyS}m{U{EnE@QGCnr(BM7>=)MluJ_Yzs_HU2GdajYG>AD`BZ>e8+k~4VPt6DOj zK1rHXWV=~ei%j3^)$q;Od7h)-8@~>GNdEwZdE-m#eKH94OC{)vX;om6Lq#J+60@%0 zS8!|?&UbJ!ex25TY9EQ($HA=@+UDOv@bASb#kQZRY4>uxpJNkS3!}bMaCbukw#HeR zhWri8cs_XkFS7ABhqO{0-x#1U+T3tp>t;92-;gwx; z@5XBf#a6OIYo}ZYn3(S(ImaPf>|^u*^ZHfYN6enpqn;ITGP@*DNIk&}I3u_`)+ODw zq}qH?h(ZLOAOvKl0AbT<7_YsRMay%UM(q4%*8C;l{Wtyy?eUw#Hr6poWo@eX+GwMn zGX$2;Uzu&BPc*Sth(?82au{y=#G3s+{j%+CG>`Zu_r|>^K!G8K)4?wlyb&(dMTrzf zh!?g101EuY@l3N?{{X=zeld|GyJWxd)IMH8QqSTWpfk7=ocbKs>BsGnC{Ne}QPC)z#}_%_h~(YkCJRFha3_1_f4jcF@G z<)0$e*KXWnf8e{W9<>j%WX579NNgw^ApN!M^St7Srs~2S&S@Pu>{D zcsqw)nI69N^WKrI>iTA*d#l^KF^WQ}SZ)|HHhIXw`W*fh?7k10SJ7-5Cd)0NB z>*{k}6@T{oO;+)>t21pQvj>F6*2>Bp{N7l=&N14)lPt2GMcnxA9gXW%`F^LN-uS0R z)aTGd+G|?R8`>70IWpU0lx5>=E9YqF#jtr(n){#jR+CJ%)Vx7^;f+Oa3BQr%X?Dt7 zln0R@1&IV6MnNR?ug(iwk0$F(o+(-xP^uz~<&+Y{2EhZbBad!t?7!Kb((gvM)#s2y zA(rK4jiPj#GrBy3x-xJTxL|O@7{INubeAGgKFWn%edFxE*<}&F7-;N(s7qE{oab{~ zN!OhA$E|*P`08;t#xD^&a2rx}J%5LPx6|^kyZ-=WyZhPx4e1Sh5hXi;F@_1WOD5bF z_sOr%Ul!^RABz4X7+^oOB*`QYRSS*7zdbN(hDzM)`rPsOrT+l4AJFIQ=P@4+zhh;| z{nG1hGJ1c+n(=e>!+urv-|e<6um1pGkB-)Nkw-Fr!VjrR71S^f5JruFJZ?q-l=TE; zSLb)^?c*&r*TTQCwv9A%nXYa1uP0UJ zu*b(D!6fUx*(Dd<*+N{4V{H{3hC8hirzWarWbJcMj#$nFZAAm7XR^ zU63eL1&+`^KiWUq9(!i^xqEGMHuWsM6&@dxb9;ah!5+9_PE z%&I0(`(N#o{KFvN^Iwlwt12}sCf$_(09hZRQinWg_vQZpBjBHdzaM@%cyGjBE7yDh zYvRpkM$|k}qIi2rveo=Wd1Tr=+PWgf(!yiAmUNa`H+;+jCIA7lwffiap#Iq&1pTWm zz6*R-_>HFc+rsjAX7gV&{{UpgXM8RqzFTCq1v8jXNVt`cnBX129=`_M#W#ljBKXw? z0Z)s64+3$8@}!E+Z{V?BNA4$62|2Dnzql^7q$jAFIoJJfDJe;>-Yq_sPs?v1z-6_08ujYl85 zcORi7Q_^cRLo-O=0twuqhu5I~b(Ddv;gvkXcahJa9@Nh=+}gdh)19aA$n^Z{dIoi5 zbdMl0`SIY4b_7;@zHG?T4hI7Y-Sg?iBE7xL0wo_Su0T`M9V^H@b>oc(!dg?!;ypqg zHYMlJxtcgv<-t6=EN2F^*FP!i zUq_K;6{**C9A4d-!HmU4#cFDJd%)k?7Eo$hb<)Q3pna?e+DSZaQ~Kh*d;O&Cwf_M4 zR&F$RXyk(WJ>_Hz(Pdm@{{Xe?Ub*n=<7dJxR?5#y(R^K`U0uZ*#PF@;Tf?CtfmR^o z9tiAsu2bUFKW_M0t=vMQL=s!LVaopiuIrJ^dP6Xs9bKH};AGwCqu z4$?@z9mqKc3nSaG=zm)I+u|0fZKrA0-XE7uSR}f&DLjFtQg~3UvB3c0yI>x*>_4^* z>~s83(XLUy)_6|Y!*Vhk%jA9|^sC<-t{Pblm?Z4e!hzqXQD36q?aM2!$HrEZN-24t z9!0Ok;VA{2FbRx~r#@$vK{y_VIs7@S-;Z81v%S+}(JZXvw-N-Dy1sA~v(p^z>7Lc= zKMtaf_g{|Pzjz+-WFB~pbAWNs;@*|UlD3D zo1YiSY|Oa`7mf}~0y)9s0N|g>zd-*0V=F0bel+-I>4x^3Oud+>U~s0|Koy5)85vW^ z&*k(OjVU|!J|8fm<&L8z(Vx*D!UUZ>6JcifMULGak6)W$1Ft8iB=h}#h0;7p8vG&f zu8}(BrjLA51CA2$_bxHdP)|JvO8JlBro7iW1+X}ZF$$fz$-@8uCyM$m(crfD1>t9S z%e*e1XJrJHW}Z;su*d+f9Q8QwUzhO(K5Q(}`kq@WPB%G=9}(VN%5AO4PFUlBd-bo7 ze{3JyD@py7bS(p0)%02Qr`K*SZ4k$C9kejKF$q6$S*ZUKlkw2N9-}5pyIwb z@vr<8{{Z&O@qNMB<6Dh3CIwm@HXC~=@J}FZib+7nAM3IYAlK*BwdQWzV|MJY^cXn< z@D&Ba<<1lrJpkvgap_;u_%0F4=u6zAADX}CbK@`=+O_F()ti4iepWp@#lIK+B>YD* zpB-zLy2>%$tEgRE-Xjuw$9Fuj=QzO%IrOeqO}@Xflr@x}WHR#0Y&?vdWMo7Xeqy;p zb0WSt7-7Kd2VefZY1-Uez^qpcGoPD`u5vM7MNWh%=@nz9l_)K2bsy`H@Et}O_X6#l z@JT=9{xzX)=&BHmu0C9J`VX(^SP;uR4(TTWhDisN&$;hbqI@C(Ku|tWjE;XE^^DfK z9Y*|jNhdIt3;-BDxc>kO(2naX$;Yp$$NBo#I}OXMjpQ**5I_WR+w1t%zd2SwWFY|P zPY0h<&T3jZVO@Qpm(S*1$iwck?ZH2o_wR$pYWnNouf<(c!5<5r!6!EQedWwsK_la zSarCP&ec5G#FsKh6736|g6uMP42)+dfz5Q+rwLL@dmotQc&UXRop`sInM*HHR6^lWp}GWy2aF1k;wR#>T<$3RQ>rR zD6YX&46zEw9N^ax;jf5#ori>Pycw(8i>n*!Q4A(gx?4tPNd%D=9J1i;QaH{51B%$t z?2n8jyt6FuTi$N6hzuDA+7Ff-k&s(!bQ}ZR^`%1&sY8-)spjIV`+BNTKWlX_*-PRv z@HdCNN#GlCdmYY~XDs#&Ad2D{%t0I~$iZ9@f(}Dt?+%suCF4sA_&i~)Sn3F2xr+AY zIZ=ouB#GS}PBJnXNI2u(zoO3r{?y(E)h10h#qckOFX3g0V{;_7ZX)>+yyF@eizre= zg9AJ<9M|)~<15K8yjid7Z-XV?qo`b*9m|<+Ws~JS)Nc7taf4qek>YF0RUuhg+a9hu zjWm;kJc-#M)!Dc1^5Bn#pVq%rKVdjAapM`7^@~f4vvnXzaKqbYYPR{>{|%o2b|w{vT8k^MSYQ<&H?kNjT$- z0bev}ax8uiym-}1q*4^)<>V94divMX{xP|lE87cBH{0m&s*LgrtR<9=naIt4Q^a~< zoAWQXWAVKb>%X8oRrVi(OkZK|sOp^flVt z>M`6x(UX9A=jmUR*KJhL`b4fa(#@kSw0yW9%C(|%235cM*{4|rXs{S?7mRyUY)0k- zv92oB+if#wt0P4&302Qw!Tf7l37M^O$DFrL+>BQ`T!ahgD%>|1v}Zo2kIJ~G6IDLv zOBCgh8l5HBt}=N!u5K%!sk@--S}8KRd5U`U=CU+Q>oj|f(#Qr$+n>Z&J00+m=8{EL zVD0l`t~-O)wDg8;(z5>mbaeVxAZL*+_5qB(bM-ae{{V!Ml%A&_@sm@wUxVH;lJv4d zo*&fN*s&@UTR!ZLPftqzc>Wo9U%(zI*6jZP;SbfPw4VwLx@70i5yQ3e5J?+t$QjE4 zoMaPUynnQP^l*O8UlJr{KfCaruFd}dfUncuznj0=UR2TiU9NbCP%_CLli|zT)?LXf zHZhuEEkKiEe`2O%K_}?_en4 z-oZJE5*VeHH(xAo`4>$1wAydPq2v4g2IK7?WBVL%+Dwe8E8$VYIgI2CoE+qV)0+D; z;$MU9yjP%G{9n*5b<2BXiuLZJzqPVDY>!~86vEm?a_mx1n8!26GfL;nQi=t0=QD(5 z1y@CF{QD7yhb$X!U(oso#yrP#ulBy3robk#yn@O`S9Oh|c;>4MhAMY@x1oR*0TrIa6IkdoaoWS%u^X8SnTAAIWH|^yShl- z?8F5^%z`&*%OLt&OR|IESByM6@o!GhZ}fc~tzpxyY=5+M388}W_T_G7w)<4paN0C$ z7T1ZUiB+5wB^a?k0emd|k^Un5F|_el?K$C{2Ts*|dGPnfvDoUGM~JVZ({41$Z!KC| zyUQrxmf{UfU~AbCB3Vd|Sjz&>76;fr1i#>?-wiw)@ZZB<3qNRmYew-twD$IzcCjv@ z9kNfS*vch`P8)PJxVXI3?9wRy-F*~K6i;&mipvy}1o({Wgz)vBHX5Gp@=tc2nsrHh zmt=H%s;X6WN6_u!?*m=xx85i54UVKDww~pz;M49crMF_k%Mee7iJnH>RUHccOOv5Lz@yuCv`i(JCTPPw~w2^jg7R#sS>1R?vNlg}O<`#tzuSnpvveg>ahwfKAEX{_}No0)e;&{|u?Bo?}@oN4Ewy@}(w6Gtjrz+Iz2{#Y;d$BVoP z;n{8M{wC`;w()7Ygu07a=~`Mvdp4b@X^SK>!0RNj&Z>%hyMhl!AVtjd8cqbVVWQ@n;TBreh1Tf+YUWfFrdO}}!w80)6^S0{*N_-CNsd_%sz)Oy2CC>7>lv2s{w%D(NjqVxINr&H9z zW4W4zwLQAxMm{dLO#RpiBh($=)K|*RE|2} z=N`56vd!jr!I=(9S}Nnyaj%kpYyE24{{Z0>x`m{xBu4v6RbYNh8-fAI?Vd^WuX_xa zGXDS)JFWQ~m+Z-^Y7_iExz;>Ut^g=O*S>#fO)bpPCZBGm>f+wo(g$a`n`zvsET6lH zBpcu6WZkr_dp?V4;0eW|cuvFn3H&<^%zBm7?AI{gA`~#(!26B5MI17yl5r%5dXU># z5I$%44WRg@+feaGiY#T8#$7oqV@#FAx9HN#`?6IT$_R@_%65SHW5@^5#9t5mH+N&< zFB;xlXtp}^)~{pY8<`!Y(ykh3xLe4ru291=O|_saA^=N=T#!R{<``E}rR;f?sJ+uY z55yiW)U-`qygtxeBf$i=4RWrR5ZOFWBRtYbM1D*~vmxBB7w(61jQvre{?MPXmY1Sg z>Ao!Zd*b`;R^ABWyt%cywlGa_iWXTS&C;JO+!jozJ4oPH$KMhDHvC!m(9&o=3cI(m z@n(^zMR3~X)y!9S8ia5_$#l}#m`pG|)rokbhA220aM3p-#iQ`Qg0;xkTF|^xV`pP{ z1ormh!ehT!)*L8+1!o z`M2{wPK4E!o~QIr;m;Pq;O~ho7sT6b89ZUGO>N=Zsb5#CMTSpZpWs;J55OH-WFrx^A!HZy4yaY3IbZ8m6~q*BU+C(i5jx++JBr z{hMgAtmYY37m?++RF2`KbyPo~e+&K-=pP6?C*#|Hg`W_uRV|Ir*z~Clw!5brU9n#n z^$6D12f&@Cw}p~j#ubYWHkild`G#3Wo+4F~vToMa_e;*pU+TuN#NXXtmY;`X^1s91 zu;!2B-xk<>K=`}jTdfPlo++9ed#x>eE2!H?bPLJEmzu1z-Ai#al79aAV=>4;I|7y4 z^{2sa_#`Zz5cox@_%p@&z2E#NFMAfJ9k-Of*zjC5Zzzh`;x@RtUGC;>vV|iYE&#XV zAKDL4);tB{ABSEDzPHpYwI8z09oLPOax##X3kMf_WLDR7rqfj1+DKYp3`( z@yo=%AhbGWkK!FK{t`VD$tIDg>Ts&;nh52@t>;Wxp?E@#rZt&KW-+-cqYPix=+9Nm zq_yA9_SfdR9XOh6?CEb$>&QQ34+3c432%H!@KeSbUX!e7Gh8kAhp%r|`$*MVE9Ph~ z9zhkeNA|Uv0C%jRq>*C)DF{!ee`ffr!rv0@Zu~HOMdLpUc&SCj!p&=WHSwNz`x5F4 zs$0sfhJ#|q9B}0pHd*6F#&LW*@x$QHhxNZ0-+XrQu9czQ-d;tn>T7Pc#>Qx&jun`#f{8kle)@ z$|6}V8*&LSn8=VMfosX3LcLi^6%yo&Z=!egeOF8OJoi_YUZ!7*d^hk<#2!Dsiu&H` z!&fV*#cGzb!h`!pHH;*S6^pXE%8mn06;dZn#R@k4zct(bz+V@B5`0Lt@kRHFb&nP5 z6Er5v#8Fw;E~BKi^T?Cww$^b>V$>azbkd2*7WUzGv2sIjci#~8PmG=x)E~#65A`1j zc-O+ZkkkIqBSfCo`VJY_@Ok5?Pubw zO|97?T&0E0mZM~ir)qk0Lv0*ZPkz`%o;d~bM=>tY=5^f~GLHN;EJW+5S65A~?wb5R zuf*BnC(C$C$o&BD{{V>oD*QX}>U=!Z$(zKNi#^@-#1`T0B72r;tu1BSC}s|2^5T%Q z02Ppy2m$LgW$`7b@aCmwq}%@hV)##2OZyA!a^m6bF5`8QJB>XgjiPrfT(m07GAVp; z!2WMq>%Xmdc zMOVfZzf9A|kXggxFNz*0zO>UdiwkeCNo`{=p7vFOJ@+OLHaN_aMIKCN$OmgOoV)Sz z8Kn$H3lk-Wk2U+PZLQaBG}_mCCU#Jt+Gob!wO_;CSHhk$pT>8(nAMKAs9r~S+XPZu zUq!M;w~;bIQ3R2+PCoQ_EETKd-DfYQV&7?)Nx3(Zvvv;M#eQsOt~vDPze&C=d>GQc zA=*!Wp!k`uZhTLw4Q(!^+|evCNVc-=LO@G_Zz`vjNE3)bM#lr;FN%K)d~5KQ#@6S= zk8N>hd#MXMd#gE2k-Gur#z-oxo@_wKokjx<+m(R*XNLHuhANVzBvBwx^c4N^%B-ifm#Qy-<3&wx6zx)$l z;?sNwyPHz+97>^>hKPOc_O zG3TkS$$N=>kCVq?r#vi_b#{;DeW?0@kCRFZ2qS#)s~tddNK-)g%l906aP679ma0~`$Vn*5B^ zto2PZ;Fp8nQMPE->Gey9W(*`*VS9!#vbg1e4U$Gw9Dq*-y>s@^@n((i?^f|=!Ec0D zUM8#-lA|_0*DGb6-);v%xSS7R$KzjK=pVGN z#3ucx{vUir*YB=pxA5Y;D{RKrM1tDknPx~XB+Q7Vog^Xpl-j#igkB@w3quBUr(#uKl2ZuFX6JD~s9%E`S&u)nmWVe=~S{ZW6R1kW6%1$tT zn*E>bbSR|NZoD6<$9ojBiCKw_2$RTARAIN}amZy2Uuk~de-yke@tgL3wAXwgs#;#( zX!`D*FP3B9aAT5XfNcoTNf=oqR&jzGXNwApZq4i1lF}b68IARFCc}cjqRH( zWLs>4sz5t~0l{KBXNueVQa;KqO4o1nKGosZGg14`nLlQ~8l+#N%!j zNtb{JQgC|X8L!O`8BCJ=P}e{s{y(2RI1bO${yF~uJpPt`&eL7pe#d_gyje6C3U971 zU{{tg9CDZ)@X=x2wvbMDZR8vba(^uRMSBF_5jEC=Sn|4*+tf%4U>53_3^2zT$sH@I z*K@z0=6tslxqAyE`V;+=wJ$Hgf3n0V=K?Pg=Nx~_ocQ{TSK8mUf?8_7u+PSuJL`Dv zmQM)Yd1)$cQ7CwfP6zjq@XALafFi#)zh^%fX}TVh`zd&GbdjgLx7VasK!s2}tjIjU zxH5)g!P~T-lpVw={SE!9HQg%D_D1-g+RX9WK-w3Vx@HKOlIGn&B;&4qYN^BBN7UsH z_jJ?pJrnkrTWv4nG?tOaw)R^YV|wisbD} z#H_N6U?1g7YssRMa5x-v`hSgilYLIgb7@%bqLqpSL%4Sbs2!=dvLeF4j~#jUu5KMl zGmsw)M;)q-#nkNKuN-`%9-pmTCS^9w+g(EPD`Dp@4&H;P9_PJ$WAT^a&w@N({w^ul{`5PI=ab8v8`)DV!5UPSA{o;l_ z!8!V5cCTv*iEx$TbIOu&XMq05ejn1jJ@L!qzNKLta9&+_&r62lScjHnL7?fg0Kjp9 zB(gtGyyW+<1NdPSOZzlfq-Y{!@o$Y=_hV-*uiXvbE;+y-m3yb`(XHt>KO4R}NoR8u zj~|Tm<07N06jkuc9^s3@#QV`v!f9WU7<0?X&6z9>u)cR-OU&3z! z>z*a}qjB~{X=L$f^NET%RG;j-84g5>;0^LKagJE$n)$0=@L$4BKjII>*d){;)9!9; zG-<4?#luGgR|HMx8(3jwRgzCBOn_q~bl3;?jyAmm`EohcMivZIqE(AYxD{^HE2pxl=?5i z-{g2TadfBfqtX5-_}<$4;;edCh4s7nEp+V$#>V0+q%wb|r_UjY?!>Rgav+H zGguxf_^bOsT=&Y2#R0GRJO?A>+Ypi4}Gbobe&!Bd-T@lFTyjA&!MOa-2Vbj#)``1E@9cV?zdzoFTQg_(-b5^srZxh^2Z+UAj=+yZ>XpUe5 zZet{JglqwiUOg-HqxM-Ed><8j6Mt^eIA0B28>wS;U?+H;b}ZkR70Y@=iL1Il&{augQ;&9vFwizq9jrli}pI9t+gQr=!}%ccI)* zZbDw_kXcHt7n$U^G0Z^RhiStB#e3)N1#jc;hkvltJ~a4c;%oD$Xv-Xy*4nX#_fKFh z+BXsgfKCfXxPr3`HZzfse>cu>9N1Y|@2BFA(em6+?-rXL>0z#TYS2$DiqC3}!QXm^ z1G&eRP6y#%6o0`-?X<5P{>HvBj>6_SCeqf|R7D|`kJ#>Gb^{=FLc@yWelvKR;-A8Q zhML#Jdkd=%5VnbGZf3ET)=M^&DNz1Y(azyO$tny)oMR(7uO|5C<3AbSd<*fNw~Tb? z*H8Y(xJ$__FMiU{iDUVgTiince=OjTB*_5abgz@h^0y34D)D!;m*COs<`vYbN}F8| z=S@+T>L}EMwEX=P=PvIw=*Y$DmkM?{0l>9oj zm!2B%CXIO{N{t?&s9GkWa>17(Lvc1)j?=?>U{~o+gtfgZNw$v1LWU~{f^Jc52)951 z#xRSF^x`V>kFR`X?mQV zRlV+`Z*dG#zRmk$GNfV3#tShVU>0K8^E zcc|Pxb>orGHT@5N!BnBuv@F^{3vQBgo;`u@{{ZXe zw=|tv(A&BN_4};*5Lt^si-rb?V z!ac2;w0^xVanqAucK93q2(j>M!!}ZC{{R#GU9D@k7O=dA+fI%hHr7T}Bz(kAb_ROl zU~3$IA7wNnZhmh~f8c&64K5$dD?7>C)t}E4ej)KhkYF-Ihk&ZQF5Zf`=brfLD(;cs z&k^{$P>NXWueD>#Mu`-%svq`Qw<=?|Omwg5C-#f|jz45CgP*cjjyy;3*TFUxTE?Ga z65DGR#$7`G-Q>85OUHF|(n_th$oVnBz`)|a8N4^IUFcImCZDd&1-x&#!v~xb9OM)@ zPQKN7HyP8%Qk7Z|vQFCiFY`Ri*Cn17Y7>>)S3Hz_8Sz(!^t+9J#1;a|J5((GXD@@m zA$$E!Kb?F2i{R*dF{8zK_LN4MVwF%LD*1#fugxK5EEo(B2hdj?9kLnjWMW*R`T|XUUuklo)pd7u1gu!g1C=30*zI94suj+l&kzmGs}l zxZttZY~cANnoTJsXDNYz@ggQkJBSDG3ixt=6l)h66~q?kRtV!}eY{{WJ$dKfkHWs# z_>(jj-Y}0$Mg{FOTSa0UKYB&uZy|o^&#!v?zlv_fIe->{I`E9(MitIUItcU)frfRTp!Z7h;R1r$FHw$)oCXn9gVxEBE0If z^)AOxCH1UtnWXZR{{Vd%dHU_g>sPJrZLVw^?9#_JT>ZvY>y9`z!@+rSmjFj80B0lD z6|o)G?oJr?CmF0|PeA25XuQCHKT*@@D$H_}gAIUvYbqtBz)9Q}~&wVxJ4qY;%L7&ZFk@uNyzW8lY(bSUm*fv@yyyFntZS~D_v zd)KEcoQnLZ@Mplk9{6Kz$A|o5b#HYG2C|eZpo#Z#To-(LEfs|3;6Th7&DhBz%Rh45#YZC+&%Uo4QiI*8=?L~@yF{>@(qyk+sX zP4T|5quF?J_52@UJ@wtrtf{AK5?jd;UoT0%xO7Izh?%Vl77WPy&^qqiI_@q=p>JzGa9qUzpJ(P zY15#;=ZSRL=8JPk z>2(~)Z=jLwHZ}xDnHkx*YXs*Lj zk)eiZS(Z_<-6hJ-+tD$#*?wi0z_&jdEOal5?|Y)@8inqiXQkM|Wo+s+>sw2yAw;y( z-r`qygl^(E!w`$L5N|u{>yL-p--Es$d^GVF#7zgpI;5IjscmuL>%BT#OO2Y{;zWY> z)>kcPVtauhUn=TXv_p`05rO%>Jy44)&H)r_h`afMRd6-!=^;@3f{{RH!_;2vO z+ep_w8MUpQs!8FkS3uD`MWMC*&x&jhiKUwU)_o?+O@>&V!I~)L+R?SDDoDj!a}PiG zY5O(!Ewqgn!Tuc4p8Li=4}wi+#;GQidpk#}JcZ_kwFH$O8-3BV`{uSGxeQCon(;4$ zciQK`%`$%!SzFp^%cqO!G#x7WUQJwI$nn_QHKnzt`}uD%6GWF0BgXtFYNR2BSrDwg6(`Y;%^md_EBkj^*^>gtYf>2Pt@;LS=|=eTU%#0a9NY~W}RJH zLnQCD-Dkp7*1JMQIoqot54QHXs_AV;tz_okJ)QkfqXUb2HMQ) z8b^p_^XAfYcp7V_7LnOp?UPh%p>Y+MxQq9e&lGntNb2uja$Wd0_HOvK9*N?sPYrzBnTO%Xb`MBatKi%@8VvSCToT zI5|>)Z2%vjb=kZFs(5!opTkma z9@Fi-ts_lunRQJ{L2qXvGB|zmxkW@xgs_uiGcux+kzYN7sY!0YWw&f+_ZQLJfpt#cb= z%XcO~T0Hr_SY66w+pz6!hXTE8Quu-3%?JA;@@-z;S+)5MoGUuXX0cp{bFqx7Sp&oo z*Um_avxwYp9Q-f)MErHLljF6&f%MCPHoxILBG|#A+}p;DBr70uslg;6VwcH7%(pB_ zaI2Dp8ulA;nzGjS9wQ$Z$3vv}bTn^Sl4cPN#E zf#sdhLno9zMk?PeeH-yV$KMJ56Y4e={{R_Y?^d|i?6mt|DcoEw>)R`{KX~@;(?rmzd{)=9MQ?oa!4&d9*HS1FTS}{!VAYeN{?;D@EOcv2D?K*X$%YuwKjM?n8|761 zb0(}D@!f!9+yh;XjarNMbljJw$DN49sJ&1B)8al4{3iHa`&0Pm#JWGnUx=E=hdd87 zMjajzVJbGM_E{R{Nux+@UeeJZ5xvxr+(OEm*qJuQT>QoHWA<3^N9@h}UTM*MOt#ZL zCHPZN(ypY@6Is&aSJW&nS&|!t33og&TwCo6X{lT05?g#xDo8;4XZF{n@vcJQX6eLR()LsyzXYUxANkK-ZReD0jv49 z4OX>EKGkU_eLCs$zubMjO4{3@^k?j!FM)q&-`Xh~5}M0(xsf@Ycqn^Kcb(_yn_6UK=>iZN;MWLdUubgz=l@;aExtxtBXrI$}s@BJsK z*Gi@1eb3N;jFWsD_}lQ>_rzZZwCyic{@MF2?Tysew~;N}hUL8Ev+*9CBU{a73rNjr z1eWYNt9foo9yJxFrQuHlX`dLrIp1npC&Q`O=o4GtYE!0*Zuax9mbzx6YcgM76^G4e zjGkdP3S(&SR~`-GZ`!}$d;ZMuXkWG6$njK==wE5l^mr_dy_TJ#CZz9S1DLabrPnTegT>mOx_%SsU$jS$eje$*4$!Qg?D%&2(mSJTr}|w#`p%`QUFe<{)FINmKW8it6n8fg#A6~GYl~^s=De{i_e0E* zD}Hvb>ZibU{{V(Y_+jHek3Y0jaW8*eA!Decp+sU3^W{JS(YK>IeIJ=4&W| znY>jcs#*zJ?&)6Q8^(KySw7a1C?#TmWG;S9{e-`0ZyRbaKCw25tWDwX9BcQmcwt;3}{yRSiVsPk9`KAEtEG`a5{ab z5XOr-A-59wkVy|aTW}*TenC~lQ^i6!rnSAAR$RR_=?L~&n3P7r>kD1rqTm(s4c`3VJ^d=c-8K0);~IVm5ahBMTwb#TKfmbdQXBp zLGbq8>*72Uzl9rF)5eQZAh=Pv(ZB@59$=YZDHIxuDp`^htwG(T+r03Ucq;;)CbpNHD7fo*kbEo;I0&btppJN5XZ_;cO#zJJK+1U^jK8&2lzK1hx$$>e@ZX5y@dlcF26YP=qLR;1 zvb=$$W}Go8QM0wh>@z{K|;aMof$@B4UM9a;G_66kSg)k;_2#iG z7dDo+N#rM!r`k2OgIPlm3%yy1eUcY5kzQXG@P;b_(~4=ur+e>fTg$flSss30n9{Fz z7PUSO{{Vu6{{X=ed~e`S3+w(n{g(Vss(eMCLeb*XJWr!)zi7Gf1hPmBmpYw{!5%$M z-f+U;Cgr%=lkGCdo=EYIt7j!=60w1-_$o;VJcZjw7$zf@8h1is*?hJc$D%Zjw0_({0pB<_0VBkL`u~ z7JtD$KWyt29wyRlz8d^(@d1wd%IigwPm@^Gq>9k3)Eb4HShdtwO@Tby%WFv%@T3w; z1Ywm4_xLZxoJ}rF24@E*-^7;MbzYr+1LnAwfM{Z)?Pxw%`JclEi10;WZ;Ys0xtI<{ za=+nF-rikH;wV;V8I`SNP>Z$lH>p2>J!>k)RbR2XJU1~#aWIbJ-^^I<0aLbk(on9c zD&f&tLj@`r2FR&`MM5*y;DT^!|@}-!bv0*qkbAcPyiW);VNkJQ4^h zN2sqW*Y7;7G7)eckWT?(fH43#Ambn$k&X>my3`e;Cgdw8Am<0=`WjYTkzQv!aTO`W za!I4xejof<_^+h=3%JsB{{Rq67K`B_VD=hUlW+EMCZ&4NO3St(C?FPd`_8_CzI40R zZ#7L`d;7-!0FRl3&Y)ofvg2?Zk<%E?Dy^*M-$1pp^2{D`M$#|L1At2*AP^e_<#U{M z7_5|UD)a?l2I2yec{n)d+w`wPnch}A@mYmhjlylaAGluv{2`-wg4^~|@lK@;tn%rR zYf*tcv~sx-!7T9Ykl~cZ>A6AN6rI2Z8}8d&s*t$f+P(xe4qc%x=A zW6dXSPVzUNxXG{0FW4VU)Vw|WA^2v~T3FIXmg~qwwie|R?JNqihH%VTSeD2KI0FMG z^tbku)M1laa@<&1%}or`$|G z&>+b_dtg@2UaA4FFSFIk!lF}xjetP}8tm5R%K3L^oQ!+)ugt4blUkoy2X%A5i!e#H zBXI%$0Agn-NBgW;RIpv$$#M2kblo~j5Q(V5Et6e>!te6g?1QH1!m25|-pR#ZO zkS;y5+PtaLX`5M{ToTv-Sp4#SOB6UwZZvm*=~HMoxJ>M9vz>q*pz~U{ z8iPv`$WL6?J$rt$={HeK>wy^~BO{MrQC;+-p)z(pW&N6Gwuj?q#>p+CKqm2ym${Gt zNpBD7ha`?q%t`u^dz$=o{i5{?d4FbK2t#ZHGAD@qT&|#FmDZ+KCm7Cg`QpD-{{Uv+ z5a>tacgE-QBiRRwG}e*6>c%6`Y!S&MV*tk4!Q&j);-ALP8tJ|!_y^#vS3sA~vAgjn zjHfILkXGYZmV0xREC6Vv3lYpx%!{2aNZQqY&Bg|SN_m>NP*$ls=xqBl5la*@xjeU z;9rRn=ns8sHHeg4U5N(QD&yr?_TiLd-~*1l)=!4~Nd}Fo>T=!3A@iOszFrs&s(3jg zk)CVysZyP!k@66fbiT(maTH1MTT$@+w$mTl;fu^{nHPL<3}-ka=E)fSYqZwC;!wez3anBnW!M7)yF79STJs$@R<^wOy{PK>D+#}XMlFCw#EXNBe)|5>8iPmsGg&|nGV6XC=N*?^vnTbhNd2Pqs3-k}ZM2cU&Azt`(jD6u z&AlK7#~C|;uL1p|*;n>&vaxBULi+EAKh?I@Io2&n=Leje@z8*4)W2y{J@4!-X=`J0 z_Dtr|Qn=b5xWaFcyk=8w~`6Kb+u&o%w7NVxr;d~B+$9O-v( zjCCsPs-OYXo^kyv$o~LnABEl+)ch&pZyDcPG`F_84ASODEfN@_Z@C%yLxYY+2tDi7 zziJlL;{BccMJ|?!b#Nnv2cIXF92=OGw-r|BJ$_IRwN(9}Cz3CKem1=^mT5Fwz*Zxk zN)=)W+DKA!kT(!GQgAEaGJI6&#+{z?fBR|l_~>2@`5q>~y%2D5vl= z_mae`!^?1nSCNJ=PV=8%O8r05{5xR_!7Zw+PRgnR@%I!020CLL4%PX=X{+hhKk!X9 zc`+b|z{_hRAZObrk|QcY0)AHEy*bIR)h`WO=~|-4J+|ajZ#NI}xZVNA(g7JAn~~nU z?j*$2iTIQZ-P)UWZV~$XGBpBpnaNWw4$nGmkPqMcVp?+iem5}-o zU93@9%#j(QM-dFiy;X|y)D{GT?hSm5vpefFdY@HmVa`tH>@Y0(%S9PwQ_kWtM<1nrUwlrt`0?@M zOYu*`*8a@Vba-xHz5f7CxVXBO_8Vqfu?USJjUbL!MU8-#Oej94zK5??b zjn~H4&dbpJ^NMP@*NeA9%&vT4;rsnFQ`42h$m=8uq#jv%u;YM-xyL@Wv++i2DEw_> zb*x)Cfh;2lIAEb(9qh@-U`sCnNXJ$g!LFC%XYA+k3*mo-tUOKQEh@qtK1<&qUFrA6 z=3@H??q-Tu5xlj*CHEeB@@va}F1%7-rQW3=vXt8@4ap?g0a)%P1CTICUI{0)ecW*C z+Cu$qeA7}`dB#gyqwB8)>H3$%PYYRip32#+ZEs>ri9JuzLc$3GExZuj7yi1dvv`r7L5OC|pRM~X!=5Yj0B09W_W(C{=j7TzJ$8ulrXn&RCT%tnuvyoZsy8$MR}w#$9j%?6x^^6Z=O0ql@b|#uxcY;G ziu|@vvGs3Fj_%)6dxS9al_ccz-n1gr?jul$N8?;|y9k|{R`1mG#cPLG!K^0BjIX)a zTVJy<1Fj8jMRZ6F)1`5Cj1c6WK)|ioE(0b>1L;{f+-g=j%X@;#9kMbr&uXwQBi=zg zfE(+Y=i;0kdv~W9e858tHvk`CX(%CF?ycriW^s%Ve_GC-SmKSG{n5@vGTP_;5tELb zkL6tcv#BMHopX5L%CM&5ft5}dB!FCn9CsuRE26Y76p=7?IA4nzMyujqg&rsH_K$eh z6W?jFMHRr@Of2lXWC2RHR~?A@*XO>O;6K`D!?7x8-XpfvRiEWcms6gnZYPU({zb2J zZ;6_}jI<9Dcz?qe5ZmA0M?BW+dwT_=CAgM0`&l!U%u%KaqJmr;E_ttA`X48sLC&;!dmaaI z@jK$>zl^+X;GI56uNTDHD`~pkoDA!3(2bHzZf$LyQtBAG7$*`(wU}d?=sq2O(ASne z1=TdG%|}qv;=YydQ$^G4qmsi>HZmeHk)Vc2(p!8nRxKPVqYg^~OZ<8JJ^1s$J{i+L zX&;DQAHTcM{84oC%pg0Vx`ODHGAk+h;#mjplOt$9FdPx*m-m_%#SaJ1uV^;9oLXOp zq=oKnwCk%Dw9~Ei8C*2*!E*6$`&^M2PnLzU`<^m6KF$*nhpeY4JK5R#o)na#`CC1U z;eU-U^?h3R;%2p|=~g}&@Q#xHJ85o}*HD8`*)5IdkrXPebeDmcK^s4na*E$K%23nz z-zUM}+f(7^g!~iW4;JZd@qbU$fbgb+v9){e5L#VZMGNUu>y~!578-u33q;dCn|BaT zGs_-!&9hg|UMhpYQCfJLR`B?_Tg_6+X)U1EwB&0@V)>pa?P6&OV;)Eil|Tk!IV@}J zUxPmp^!x9Cn(yrS@P|m#^!uNQ7g{#A4xe**EZ1XIMO!wK*HO8a(V*E3DhZ0+gsZn_ zmht(A&98~4g_N<5=`Xt0*ZvD4qfRf{?0mi9pV_O%mwyDMJ}}X5JT0n02uq3e%S(+W zSmj(QGhiNvMg5uVym9+PSbog2UyTF9mY-shO-fmA?r!z_ zk!>V`^2#fN_Dgvk(ba%Ok>Ef{JR)@;5B>*!(q9w&ZuZ_k)I3$=9cl!)&@}0_KN7>K zE}d~Kk=))!$5qrNF_|r(ks$@X&*w9l72Q=U+O0ol{{R*E&rZ4Uw6}ui#(oyp7HuIU zyS6ve>4GU=`#rAg1FD4q?c8H5M>34@Zmg$x%i*%oUfp{C0Kq)y(u0yq zW8wAiM~U=56lmH!n!UcO;VT_N(c52xPjP&gPYRp&D8@PEp4LPb&lr(o7~Z*7t9~8$ zm+-0=+GNzbt}PeRNugmTf-)&74eN1%rTEU&D!CI z$s*SeuIpYM@mqLn_JRGQwC@^fHroEJb)@RocD6PazuH=TjkBlNbg?uRHjuTX(Zz3c zjK$$!G!3(=lkH+DDaCt5b+Su;_y*XRIuDwY*8NZEcVF>e?3r=^yiMS1 z9Z1Em*y$522Eyv#D|wc(%?hJiM;P+154PUyon47wl>9-^Ecq=Ckn<>rvINY_#iL3&eBj@mYPA9W6Tdz#;?9SLGa$w_RH{3!LNiLwHJ)MEv0zR#@-#4@B3#_xwVf` zpH#GViYd$=XNbW*qi)wwJdE+PykS-)N7%l02Oy0MN7gA+=H}8-nB8;x@hEh$PW`ReZW7<(gF$d#4RvSytZZ4YW~t z1{38;r>S9 z%dZfO+r_5GclIEr=GrBe<|c+>%%(+_Mt__4XyI$(;08a3s zySBH`cHLf0VH8TRyf)FolEQ{~82PAWR+?zCfxdD)ALGZyop0eG)3twyz5vzjd|iEg zYkT2$y0&|Zn+uyLq#GiKK0{njZ!ecEu4I*?B*r(XboGB1d|CL7@c#f@(vwl}<@bzr ze~FsQ>pHfXZFzNVqB~lw7U^ueWtuf>G<6#!FvW2pKf=V1zonH_ohVdIZQp+!%f&H$24*W*(Ro0QFcs|!&ZBNNt-A4Z2_QO`Ncs$sQl0$7Qkk0BHFkd0JDzqSC zUCB3ud>!zsTJWZqtm+h<_dnZj7sj<(s`lQZwW{{sQdPSsYM0n6Vvitbsl6#`x3zbv zy|>ohDt4^ei4j5gK6(Cu{P20@KIgvAxvuxcM%vw;e=(;@hr4t!)Xmt^qnYkHb7c*4sopg6NsKkg zv?N|f{2~?-{6J+F3F5tXI=gVknP|}x1?mm?x)B8={_-z|aizGb>g+w>B1lh$LK$c6 zLg1wS;D}>OG(9=Ptfp{iC|0E3Ouy^u9;XGE!>n7xZPACpC`--v?}57{t`t+Ta~Z_UaMA8ew}v`~_{y1XNtSh)X?s3OqY>WO88RN@#Q3A= zdvNO|-A!#~lh6b<=BW-GUN`Je7l}3U_}3)G#2*6*D7SQ3B!WClY8*wIT4ijF2H$Qf zbH3s^3q_|}TB;k&+~K7CO`TG|LfVdk;bCqw{*FVkq5Zma7SQFM8~-8ZBw}4$oC`g; z(67`M>|ZUJdBXx z_5GVz%FSh}lt1c32yK-y^6aTFiH-8EC0RFeJ*gYgsbz_SDlMC% z=nCB(J-3o*oidnwv|W7LxtC}os)h`4PPCRhD&DE0I{8-T8a^j<^VpjD)vF&vis% zHP;1h{Tmy*x4i3Vp69LYxW^YTgxXI&g1QfOJ;(G{wT!i7BCoRUzF4H+KnlO6TOi)eBjh z%ZGqS?ic75n8r{Tjm%fUObdIa z;R6{=9rW)soP*KgZEbBr6jW;ib-fS8&2vOlH(XWsy0ywCh+4R z#=Bzu@P<2$V@;)WKV=Z&TV^(le^>l1%T-_?t^^=4GK7-8J2?#^`k32!L!Q2F;S=Z+ zEV-;J=W|~1NApUt95aY49qcB@?Ng=qyD6}Y70y6XqZ!1B0JU**9eAfL!zttsS7*Jp zK-D6G;G>F@AeA$5KhY|?_atuRr5%-s<=s5}oDsqn-p|Iw#yTeeQ`p2{m4hp}qpDX| z#y$7cN|dPAiz^1jry?VHvi$iy2Dhmxu(z0~O`)eD699VhSQx%@F=nrqDSl9or#oXy zcdqpOSxbb3lNm_SDAGTbJ5j?#F5y_%(H>|D)e};b$0!?PjyD7Vy?U5K6>~6%8sn%t z?d}uNs1>*DS-Spjdf$6oR@;w7MPlrfCS_&lm?HBDUm+ko;RT;dO|#p&*U{~INLwP) zAAnCtfAy^3JU+JoCORSh{mP>*SXx^B9r zJ>aTd5%NWOqZ3f;!veO$vV?<4cq>lLY!dST?O=QjXMPF3XbWP{?yXVN&zVzYRTFW& zRdYsrS3tJt@L>|$KO7Me&<6&=pPmjG*CJNE`;7fVSY}{)vQk(Mrr~6icqPKXqpVC_ zSVgwsti?by>W|)a8d69NvyK49-vjb|D}@p*DHjXhcMBg#$$lxmbe9bn&z%VnfQYA> zat#<$bZ|S8jg1UxVi>pf7i;w!WZa3>Mh@W4C98^o?RgE$adkJ-LAY=$;|O^!WPdM+ zsRMAAQwpuWkf^CeFo@qu7i!6Qvo!5X+#yB@>iG2r{g9k?A6~X36#vEC5)XvZc9Fse zrY_>%BNa2kDB$de zuIu=?!DB6XFCtC@_NI-5v|4BJ#-Nvll%HO>`p@laGi_#x>Vc|AEpX~U)-&cwgw!!1 zjs^VYF793)8h%fkkyK*(&#ZHNwX-{Br=vSfXQ~ROEOJX*lE?3*B+&RLgI8~jFrVAe zD0B2|%ldroCxffKyS?6_ePJMwYw2F{uyvVN(Hw_mt34QAlWiUliU&3fhxrsFJzSXC zz3LBP7v9g-8q1l1&xEe&Rz%kbY;>s$&Qsf}PAQ4~-rYo3&UZ)V3*BYa3J7&E-Otd& ztM>*Hybh2q*?yh2w8afnxh5650sWIp z##=lwKIGBxVDx7=X<{ouBZV?VVO#2_hG&J6>+S*+;KKyt-lc0xFN*q;D)Y2fhl4v7 zWK^#6q3-tGf|mcU#+&`%U{WK&r?S6(12?`EuvRIu!elT}h$IFKSZ(TFeBVr^sYD!1 zs`DS-d*oG&yhzPZ+Z)*d84+Bra;m6?y!i~}j;NbJYKZ8pq7;l9x7rdjL0;y6hXlAI zgh*FR)=dTG-s${9e`1kS)zF|EVva9A1~rG0&~Ho*0+tDf*6BMQlyrUH0+C@QW?_nJ zEc5XW=0H*<#qad+ZDhOolEA zwYRw*3$g$C3-#IT1KN06tKf(pS)o)RsOWM?Oqtj`2HVZo;NodH8W$i~o$3dBrmg=@v`G~VXPuFXjQ5$w`5x8UA43FFaD#rdlx-JHpf>2bRM z2*9slEDaECp0f!Gmk+9RGDf$J2|Kq%#X_E&kjEhEW1WwVjzgyRT3Q zTT!^|sRW2~wO}DZ>GyHEIIBhaSyLqzdbp3a%`v}7KkLe($FSh#15S}H-2C0}t`+Fc zDxoM03&L>SN;!LtT0TI~km?mcJHz7lt~7f4 zr(fvkWFn9V20_XpPNVN1Vh#?q^RJZCtyA~Z3yw3q>6^ngIh$Iv!_|4T#m?!T%V_bdyUMx#Tjy52HOv(>mJcdeP7(zIa_A z@YT~nGLO9c4_vEuEy`I5q5drTN%9BLp;)}9m28q_3@o-k@%#|AtD4=*lxkt!|7OSt zyogJ2jHuSe&M;nq>MSnfX!)XuN32^l%2vsNDZ|gp%rK>W^=r)KjZX@lHu;#<$G*o{ z=_u+;vtE&P9$u1{{b`y;`g+~ee<`L}n#Y7$`OK|H4j?_C6D*$B-bpUae4J&ht z)C!DArH4emK)U~V-#DrJj9L*q9nSR~(m2E(G=fb?WO-P7=<8@KOeT{ zTG8uuhfvGEtoiYdp~KFNhp)wPN1F4a7n!2o-PdYY0Y##J#>TR7<|5{QnPe!c+(MRw zpPGE%AXA-9S?lH;=PlN64;|}9Z(X>uESLTtUvS1zY32fKP>bPbWo6QhWn;8CSDg+k zRAzoHXU&q4B=& zzZ=ME@z2bt5p`?Y+|}6B)!2Y3-VER{l^ml|`Zj=Hvf=%kB}v!i){U^G>8{>qb$=8p zdQr=h+?L*@yBo@~C}>qUf(y5J!@wZHb9nE#c%vIN!)N+vy!%n@PrOjGg_hY9E+1Tv zIMo{>I-dDuo&EkJ)p+KFF{*ms&5g7zI4hPy*bAr!$}ucEEx)YO9B6|SWz4FdzqlZg z&0dJR(<4r4$=CQts#n+EB4+*bDLF28w${x4ry()vp5oGtF@Jtr&akb+jE27S*q(=H z?~Py4twray=ZDt=Rpp(!0H2F}(~`Gpi;rr(u@#bn-yZY~Ngs*8>-Cgu_}ar+aJG8o zl*8d_hp`-=a+BO&+%D@3;*w$y2xvBuu(Nw2?yjHBzl9~eX~|9qWTkqv78 z{_)W+io1pJy&91lOEvgf)%K(2c> z8@q$kclve%{sBol#0pJw=8_B-PHSwbp7g(N8yh|q!QUmU37C*&Sv*|fk?l6gVUHKNRIC+vVvTW4ZT?B&ZSDOA?`Z|^4Xwk3C^hZ!fp`?X>J;o&JN9s;R%7sS81 zru(c@eF$!Y?>ZsURT?{#Up#@V^9{#ad-t+mo?hxk;>MTN_neqtsxueFajpE931p@- zc=fa@bq=d%&11r9#0AB{yU)A0X;}*Ag~mfN6@y==nOy+6s<1$kbp~9Lpa>1Y85ca| zH^Z+VUNt7F!emd6SM$}nJ-s&$ahwDL6L?0DXHn1(G*ZK@dS)%c`e^+J*Z#(g8 zufzxpH+IO{?53_?qWx?kK2x#z&NK3$Lh1G|M|gqDC3%GGXGs8!k9l0Zrs{0kr<5`N z2aLm;mhPw=i-!3QrR{x)IG80>{9|Oi^^}Kd0LxYNe$!!5Q{AMV%B;Vlt(Jc`N&(Yo zF@|F8_%v@mpV{4|8fZKVBs-~^wV0vXAG5REe?Y@)HQ++G+}pDe5R}7{C=A}!vWpF+ z09}7)gk@TBzFVbiVI(XORgm57ib7_5Dn2|@A}A%Hc1?Q=611bLWULj~w8O)#dRZz1 z!_?SQEIaZLX^L{9#>4vmS82L{zbVp~C?{8RJwu*d;xqdO*#zt_UmRL~N8K3f{*6<6 zWp3R%J68jRw1uS%f4G-8^FLNAJ-ET~0A-1_%B=y*aOtO!?7*NP7QTUU_Q#CVK>uRhSvPQn|u95a%o4lWjE}8GHxV?FpGUF))8^{ z!q5bQFIVX|6jtEk`Mxvj`^hpXBkt?L53RlyCO;hihauvSrDq27@oJ-gd-Z9rLi-**g;Qt%e}b__+IM z8OhO8fY-q+6{Se45^M{uoM=lQ@YlbqF>1|Vn9m#UBQSdUjkaf-O-w5uDNZY;Pu=dF zkuh^)0s0*v`5aQ#vSf10F+x$ANr$gFA|vm)cu_MlB)vFFB1#jIh3G(!H$KcM$>14g zZ+NWB_78K%*BZNP{j@4JzQ@Ydi$JXRIwAyQB&nFYWD`4ZH7uc$XM6qry?}?7_z*7{ zLadn-n;5EDjhl+KFU8xo+FK{h{P>dX_uQ|JttiHy>N_W%ce01)Wo1ecisF_rt3b=1W3B`?ilf_h7ys{*PTTGeGIy)^{rR`eu zeo0yON&%UsBUl{LCpnn4R41bpIoG*xtTXEVHW>S(IeCRm@B=2>^!6ZWSfc{L@vYKv zF6zVjAZe)b4AAkEuP?^K=hmGP>ZiZR_w;u?Y2XxjKAqKcOVUT3&G2PBHB^#HT0c(q z0V0IH4vL90HOI)VjI<;w$1RIR{C)M zkM`AyM`@)Ca!@rum{QHZKOu(5jE7wIepNGzuTZns2YtV;rO;4qFt;Fa$Gpfd_6$XK z_bqs7?Ti9q1nrz?3!eOfPyWn}cXP%6s6PCGjqhA{%d)ui!%_j4z1H@prS+Y&HL53X zLn*C-p~ITD{pbmlQ2~Pdb3UnW)59GJI`hcU5cHeomUpkV9zR%0+{*`VkjFCR2J)x5 zP>`(T5XSKk2-}f-_3-?t%;r7BcXACeBc8i%)fl0QJ5xMGvScIx`)@s;k<)%Y=YPdg zL9CwK65<)Q={dJo!&h)uda){rW**l+;Y>XvC+px9BdL!|c>U-we>B&3SYif>gTKnV zftiKe#gZOzm<-91Wk@O7rB))N0Nu z0t3WpwC@Xo`LP1v=7i@>l8_pC5M(A6UlJ{<}HOvD`PP`sdxa zk;S7sMt=wPS~sqHX6uO4HG7c+D}FHE>;4!*g5^Lu9&6!}1dYS6K>I?A-c92G(sfKH#wbIh+r@b>s0f^z7xB?Syq%heyb85&Fzeg2>Gb61I~xV)aC> z>3D&wUPbsvN`Pvop=q))@{o8S3DbE_K#{3r+F8nQnXQF(M?EJo%eT6xqM<-!t<+ME zWR2fD^>{^t#lJ~=W|Ung8^#=u`^z7A5q@Wx|5tktNtjTG3Uo<86HG6y3<&zf<%o!9 z3_0b=|E=5Q-r)$eqipeIoRqkZyH&cM0#e+wVyqE!FeR|PU#gmG8IqwednKV}TrTVR znty42S=C5K;y1u_@jOqYkf;QSF%L^(fhP9wt||loQ^G`i+h4=O082X;Dn-Y+3u{22 z#>TeDm!qzAp9HsjP6nQ<>QRa1vKHM5>b)i_GSp5IW0c{%CePov`=Lm9K;I_R*UhF- z5OaKCr=zRQh-)x^{#>a&dZ{QpIS!!t5!M|m4l7H2eDnzl5KfUpARyF*k$Fxj5pHIYg;E<|<5aq+w zDm={WW@I65A_99~k9>T)ujn2l9_P+^p)`47(^t`D9o+4ez_E~3iD6i+K4oFL!8YP=_ zzBaW;L2(6;=1+)$ep^b&I@)*uxm;$E(L8o--^*>XKs!WP|MKS&m%M`W`_CZp=EZyR zZO;y4@z$j2P<$B6T^10WK#VAe31QI*_G zwo4Re4?prUZ=>-ah%FGu9QGN3ei`>o;$aO?mU$bebZeOYK1xP@taHh@FEH}5lk9z4 znr>6%(r4pgJq=At{{20E0z=9i7$6XXf2)fr98i>*>Co5`qCW6vV;^jaDsf_R&gPtH zh;w?A025!8eNx3UO9$tze%v`ynzO5En}!@h*L>2=P3`}3!@05f6U2i+n0j_o1@?8TzOiWr8+b=T(i9> zYCq!?c&bLE#MR$kvD3wk9PV|;eJRE+T+sP{cr-3X@QD2CN>k@OP-oN?(&X=&V9wol z8-Wa7j>Z_b85t7Fon8~u>1L5T5NdC5{S%-O(3cmqQPZ@j$TZW%<`P)(0h%_@mYbP& z;3uhrT2e+kai#h=v^EFD*d_{xG1ATJtB5|vByv?Bxy+WU1`5It;Ck1GXL147`hdCqk}}tJN-pS;9On$66#3 zG5_^5zv}6d?qjSRrWAL26J*iVD6!#CLN{LvuZc;MX`Ai_Q~8$}H{%xtOLa@8W|NP1 zy1s`#ojA{F&(gDlb7ZI(6C-z-uvKjtq&sWDn+Y5iR+jqQnxeN0DeECRlFjn1w@ zM(C4)k-8$!4{xT#8dA-*xEex?N7;ogPLKAG>zkoR3HC*p<}HEz#|OXpB$Yd_?bvz!{9oJ>JZ+(G!_C zJdn?gT&t#yH*-SqFQAdD;!G>w_|~32H=T!-e{uJd=41CtWkG*6bURq3B}mLCEhkb#J%a*O71e-AyLGx> z2%*7%5lIp41{z56sNGD1S&kqL0YS&QmcJS3?BKyRZSN9YdBFs6q(!CL%j=ZnBW+mW z#yD>grl4|FX_FMFJH*hu zWY7N)%yE~dFM*>)o{ufPV-m`#nS%xSR;mPlLu`$<&5A=|TBSIEa9+(1H}bE4%FGV3 z+qnx~t~@!B>UC!x5M+FkHKi!7NQ0Zr;R?7MtJ{`Z*sRXN5hqjn$&a)BOooWJ$^31> zrOBzvoa5-PyKQ_PiauY(?aEQdp<8d)e@*uA6+{DQIuvU0ZF4{*`+n}$Xu|A?jcen~ zDT~ellxYkT=of=+(!{y)SI~2%!MJ`cdiu|0HEVHur76WAr_58Iw|Bg4Q>8d^N;UKQ z`G#Y$ep&yB!IWvpUiOWEc)w82cE`Jwjz17_l%~FF^EIc{vY*=ukZAkYU3CX-B{Y8& zcPQg88Y~Rnr{YrkbQ5I+*LF{Q8k(EKb@}*H204iy_KVlGP$oobf0Mbj9RN}(3gD*a zs*1E2^R2~W?UKL$?g=r@o0v;hvA%5W2G7R3@eV%8Z0(+>P01Q=5xBt+kK=orIF`qt zP(!2*`GZx=^K*0=Mj+t(0ULMhiGbODf^}wQ$fcs(4lO^rv3InJ2#o-+$crFA%OI2P&`7vZinVVIE_`FqM@XM@}g$sFL_xDqpvlRf7?$^+<=alabnLv`{q~}2hx8K zo{?7mCez5+6ZA$Ov1U(BQ`z-Ta`82T8{Wp57|24W>VR);^7lmmd-de^|K_nNNP=nv zIXTo|DASS`Xab;-uLX{yy%>3`B5Cz{MKxrLybvAjDm9A3L@2_|61F ziLxDDCsCv|bH0)KbmVjT5ZVU6)m`uj)-uUH_z!Q0dTAhKrN2~7{F&XHeG64*OWG)# z!)~h4QfCJTj=*1g0i<>U5)1iGJ~15?nRBl?fjNKYPTOpEuK5X4nYB;8OFXz56D^Vw zfutI#q#$g=LZG;1O0O=Z29Dh!n|Yj9is_T9HXCQw$zFp{jhamR7ONKsd6rYi=Y)N7 zIQx<6oU3Z>Yn^cq&eyoCNSN19E4eAQ>n1N)NkLy6wx}szNs|Blg?7T^X8<0BaARdq zQQ?=>)S3<2HVbGl@vXAJ$RJB?2vYne3q*-{Rh4L>FcECkgksd}<_l z+;acDFw(Z`yZ2@Rbw6uDS7Yg*!}RNHw^C0xoW$^O%Ig6m+j|58>Avef;W3Zf@Pat2w#VFHuYU+JAH4Vtp#5n^<&ktWa z0|4aVQc?H)eh>*pt5uQgvl$tx)ma@4ZYOGerzshJ4%d;QJJMTioOWhCy4xX?%t_=R zrULvQ9vNc3k?7(MIMC)-`l5{w;%{HP>>TpuHC+4Shm(&S^+PA@8Tz+C85jt~9g2(8 zm>p!JM9~hT7c#+~o8W4?-4p*LRpeb>a+Hr>rj(YyySzcg0OXa^l&fRHss&-!{ckpo zyP`&N7H1H3L)@yI(Jb~su}d3RsaB?OW_#w6p(H4ptCg<)EVF*4h`ph62Buz zTnTS}R9&XuDnh$AGm>~B6)AD;jw@rfUp8+gkoB%R2ik1*sl&J{`{ZD{Q1}nE+1Q&W zER#$nk{Nl6S_nYAyv!{>%p6k)LB8zMQqUb(6T*dhvQCs*)wDTOrP1I}0CP22KN4qb z*qjg%Z|!$l8mV4SbFa_HWnm>y)ctErm^x&Rn#LtKPZP)ho^cU#MptMpaeazCK5~04 zf!M!pZ1RHD4+$T){F2(cz6TN!mFkeb_G_-)YaThQJDBy?Ro(?MLPs|)_o89ch5y>n z-ND7su8Ca*({D|!O}IcAs2Lw$+;Bsxw9OZBHtm%-?$NKdF%M4wzy&tNyW$X9tOru4 zUpGp2?;}hO!D>55Kk84L8S^9TR5_N9*hg$VYeNs(tUM0=zRZ}CEUNj{*n0avyoTn; z5K^4<7jI5c82hxnqhadUb!}l?102m$pMk4gMRn`@S4PP(&;RngF@Ix9@|`xb1bf{T z7aWR{lpJTImn}PYk)!ZkX8+y1hexLKw+T$OG{(IPhl~*`^aW>Vmr&B|jD36Y$6<2B zTG%E1h3$U(!R)nraDG8Xmr9>#pcbx;y1Orx_Jsawj_sgF6hwxQv>g%Dp(vwLg~8#d zlcS5@h^e)iU^iBqg#q~#xcRFY#nLt&0N7OIp?yS)6h%aBO}DFiOj~pBS0CL^z($^r zSaK9!uWUjgCTzH$`A6e|z@?1od}9!}@&zKu$?+QP8vc0u$&ez&^?EF>wOTNvHKU=K zed{!2aU1R=hq6)wofCNG|QrHtX?suLJ(JaZoi5gd*CACD*3{GbU<}cI}W55+G~nCK%}~xi^DOl&=tZ3fl0?T9%tDkD(*LDaKKa#3ZJWYfiN;9YBOp8_t(Sa*g*Q z$1iToR;}J9J4o-o6mFlx*~?Tp6n=dIE#?wsS|9Gvl1mfJrAijRAy zMVP7{tJ#_X9zw%4TY{POXHQ*An?8&6%0E~#j3RE5ba1_R_ic}M(FynDROEvxB8`3_ zYy0z`&HF&`P1@?)=PsHu%o&PXX8~isQo8iy#a@juva-pDG>AC$y(r&wj}HMN-~akk zr0^>)VxEn1|smGY8{*q`l z_dK8P*hoY2SdY8gV9Uv>d>S&9_V!Pl{!D{1cMex^@fW`rHLRM!xmBMx!k+H!P8^jD zdnRi0EzhNy;On)-|Jl*_96%#UCQ|3!!;?rLW?70H5hBKD4K$hE7lQ?h(3@EgoCZ?b zb5CNHpzM2$Jj^+SgtUi#Y@%})aktgL9zPMa%|lGziu0tc!&v>p2if#a#SgGQmCq`l z_4eg9dfWW;`dn*k>ap!fmz~k6n;@_3Sngs*6T{!-_T$@^W~G)e+rML9A8Q`FsRrUG z1!=odzxg+s5-y2@2<+KDIKeKX+$h3E^Su-_hDrF2fD|y^skzZo%xk_sN6TE=BjhrM zpN#a2KI-&;I?o$ZRcCd(XJ@CsWew=zX)c5Ysm}>or&oW^ zXB5=jv9)E0uZSRJ#&2;OI(aqx);1fRpp4c=fg;2op#(<$uA6t-loV)5~s zG?ezaR!8%UO)( z#TXp$d(>FXAq9%`dVjC_TUls#$aS1-VX=apFpDwXK$qQ&Cv zv&HnFm@RvGan{NkHViIE;1K~%x$2B%Ok6u3zEQ120SzNXlW;HUe%9QNsed7oJ?3!P z_zgzGWjy;B##*8+cv^ky_{YrvUT-5mtnOCfrhDYQ3>ZXq&kU`^1&+kH!8lmzoS7sm zj;$5$))r!qm16*7DsPM4?lae|nY>KaU4id?{twT2GO2(>2q*X3QI> zLH1ld&jBQ0SF-DDE2UdTj#J#h{}|{E`j-Sjj23Z>wt5g2HfydoqHwN#a4R8}w0o$_ zs7Z^6yS@EBB*d|f1x?wwzrKeXCjN&fl_2yQ)i^w0VLK3b6(v#0PzwwAc1S7tz1Y$$ z&C$`ODOG*Vhp2&L$h4jSpZ65>Y6)7~dmi#vR-xjG&Cg8DvYWtC@sctNN zQ-1GTxVusmefFv+>2-C|obg3m@a>b3q2>cWsF}H;hZ5b@mAWwQ5!ZiF^ZGx$d!pgn z7i%(LiG?bB|3r);`HVV_0fF(1)722_zJIXDCe)`e3lhTcoR79-0!1c2Py`46(pTso zB_De)DYjyKa(9JG7TQqQ%ACO()ZoB!88dqS;r*CfB(1=`l3vL3c`}FEVqayE={%mu zt)A@86ul2?1>tS|KBo3T4~ZC-dN`Yl*uw4m=wN-4pTNzE)-?1y~}F_gLK9TB8*ILZ95Z zWD?n0cL1M-x@~e*lyw8nfO+m=W`5!JsL3tbepSO7tf`HngM$&iTD>2$NwSn!v(kiT zE*@dejcRK!vU{-LDNJgER8A*s(r`|Kfjee8DwE}AET!%<$IGy?B9d*A7lWZXOgvc1 zH1q&6Gyw)efWg|-@1h0*^O}A#F2({kBDgdC9*(D2fe>)iZ{^ZiVk3USW${;L7@2F^9f+O4=>CWI zm><(^i&C~kHST>D$DKJ1#87iq75~Y2^6YrLmQx>*886B5Fi5&?|`( z`Pu-Zhj}K;m8n%^P56Zu*2>xC_0po4!fUYcd4GgM#!xCXA?gCoRmv+xKzDYwDsAsq&|N zswq%-k3VbD+pFi@I^B-AATIEhZiG)#T%b@qR-t-7lZ|I))5)Q0)}3AGx%k9;@u`xn z41A~CZ=XJjfVdAr39&Y7FM?m6YMs5w2vcaDYI`PX^|SY#zo0NV>$$l>u9eKjc8&%> z3?|Xg42osa9D9V!a(MWjorjW2${nueChVntlgNiyiz-n@5abVW#%jR*Af?Pd)!rfl z?=33-ty1@xl}2FAX(!VeMT#nDEu`q|;h(*)w->)++WVOn>H@FmKbd`K1KSp^w&ky+glp8bTRtSx))lw^2POa#o1WoXy(Ls)d#P=o~Sb z#6t}cH%r6B?@w%qwqaQla%|9AQ-pqG>F}2D_}0E|-Hq<;tFdb2qV6Qa;sy83bU`XRoC_d--5f z2q7&O9%vUx!MCI+muG&@==dgbu1KX3!Y$>fjRC+t%KB1ePE&)7e>?n&`%cqd5c;v? z?uRzT{j9bOM#~>UaCz2P{j7P5akUbD+Iu*Q&F;Q6HXkNDD&5*4Ze3REy)s$v&UXU<%jK6CB z~3sRkb>JG{vAlj`t?!Vj)<@4%O$T6BUc718l_B_e-W$ft~V1k(_CitA{)DabM8 z#4&PVv7heKM)Vlt!p*YZe3HON<3}m+TWL73HbjcL!>Ps4i!4~}vQ{qISz|&!bP_mq zFuFs_X1GKJXXHqf&hn2xzG6JJApX!d%lq<)-lt322*5~BWY6%Sex(TeHWistZAztz zg07M1KOdFU*ExaV?cvJpcBwi65?}068NT3YFwokUGJEOnnY_*xPpjv1q3cr}`z*{O z|Irg9eLvGy-5sS!jY%62J<_xPaUd#I2glQLCi)}IdiXD{6taPzyEq)$tWYJjUY|7Z zJ_jfiB|-Q>jCUnjjJ!pOJy}$SM4CNJ>FTVk)aa?XWVhI#At{IH^Tp%O?9)J73rXT3 zf+w{w&RDGi{tAm_kzTxX2IaK<-?hI<)zArZUA$OZWW&#YQ%>2INfip09d&;MMx{T? z+y93*Upk@}gU2f~ERTzw&B5eIya}9nRL=DY?NU`&J`9bu z+IW$Xn_=G-^#6xPA|RpgjGv%s>PMS}u%z4?N9rk4y=+Vz?FKfS5s$_8hP=Ni1H|1n zfzyaM(v|bSh5WtIMc1PC`rWDjnejwniK@(87AX$gJw0j5*U`|ouEoXd)(q_r8aCT< zJ-{0U@dN_8W^?@3>CeWiQ#(>+-s?{+$8bnn6gkFT;B2tYmZZ}{?CnT}g;GxluX?tC z4WGBTUCPL)+iS|nl8pe)3pV4eeQ~f{p39YSGd-?3I_Po)^>fD3*n+Pi$sw-CR%!}? z#;a5JJW}QWAVJ#|P)D5a159OF@X1nh|JlcI8GZYY6#ia{8zcK zQuZ|&5gu`SOx>qR?q~7-wQr}~-R&`T&nIH7!j+qzYNcCQ8r`#g<=_j$-}^KObwB3i z&-{hS()@X5tn`VYyq8G4KCNAPUubl_26~v!CY4eA?p*O5a#Y&15oM)S@8Kwf=5sj;Dmal4GsaNzOdNaSQzeU0YHJ<|>`hq^sVoEfs_^wPYd66`sc zdBzp#_bGjn@qq7A49!2)0HlD@@jhzb{W)K=V5os_)v7`5RqjfWFtw52QZ}{&m1ENZ zX?OH_9d-Y{;oI0P^(_gRoMiFW*Yfl&2WM7_msNRtmRY$EV#y18@HE~HXD2rKH@tRx<8YF!CK#voKI-G!QN$W!`v{c87{2f z7bSv9-fgNY6;Cq4*whW!S^U|J4NzXvZuZFe+^K>!+!Fr-ohqO$y?ElmB%5WRUsWh$ zNxIZABXUEVDkq{2MYGSx&8TP7sC&z3e#QQUYy6dEx!ei|**RA^^lkh7Mh}6vk{(3kLImZVPEdbn z*cgx_?vEg==mgVP9L}qSC1~+4T11;szd-TyBp0b>b{)UZC7x-2%`x9Q2g}Z`p*3VK z*B1?CYpFgA0Q$5XyxIer?XnTgcL$}jP>C$m{(*`g(>5~V%PJFV8q#~`#g2cJtHa0h zmq2j&+g9fYuhHdP2%d}>r`S51Nd!;~ncAw_o|Ak^$-dfxju6s)K9D&N-pH}%+`x9M9R7nARRn%FKBeZM=L*aY*batXsc(3CBhBU_prL!{xx znIV~|+xQ`p|KYReqV(JHw@K5wv9DWbEJ7KLHQ;{3QF0UxEF|z!0E;If7ezGE$G~i6WONID{0H z---}W?)P>QJ}5dcqOyGP$*MkUEJY`U_i5$x@X?5#e~*3t!+Y96iIVHjC)bTvWS9{= z6@a*nEuKHI36inzE&$gUsyJCc3AAs=e!i z7?{j+buE;1OQ!Dgaa2iWL%NrYU8fltOH!?D2uaDml=aj~ZQ$NZpLr%xTuqq}N8jS$ z)D@>x{wrROBhb;=az#$?kLg(-L4O9ut&}%k`7FgNM~#=QhaZ1G0M%zhZ9+*8@5wOB z!QjoN>4xRe?njt9y}e+9`+u6hmKxs4i@Nwp#V^sF@oA9ssgX0wt2em$0x0ii?@5u9 zN4VNganVhLp&w`){~{SRaBmpTq#Nx9VKe`?W@1|Osip*Ha`@2^DrBYV%!tj$X%ZHP zOc1m3nzkKvvsew5VHF(aqS|%)eG63G^#QYL8ZI|$Xa^wpzUjd&M=wr}<>MY{$=SM~ zNOE{J^&$G3QERGnO;Ky==A&lG1V`6Yyo2Airi{2`3wB?jrVdw#EM+Z=if)W6wwacn zy6n_;HcSS1>dN?|M?ZJi zaha#ucRqMyfi5mzGT)bF$*5DUbua#hd?~v+zVlr5Ovxk8$tG(`+#oCe^&zNoO$-;L zO+O^No3eGvGA5w_81Oe12wAr7^8ebQ7Y5m)_-)6WPWgoRg1t7+KC-)Ih>k}jMrTvwLbZBrD@uSQIwfH z)ZenRaatVJAg4riZ#GAD$ie`dr%|#NgKObi+Qd32O)#E@cg1RN;8|40#cRtKdfY~- zT+VvPQm@MGg4%8uP>k&3y`%Mw0x}GhfUQQH&I}wJEpGsErjKPKb+Ds1k}@#ie7CaP zbLJLi`dkBDAgJmv5%O{x=8OPaXsNX$C!?!;a)cg=`?dLfaxYhNgGY?*s&#iYH^tC^ z_-82=?dXJssVJnf_>vxf+6~_}YP>%$Wqi`kgS(R>>uO+JNL@{g0Rns{r#mOGSp-e?2pzi_3@4^(MhYgMlZbhyM@nnHkF)#jzjLmFwnd&IsPiff8a(k7abE&s=ev{ z6Ph8t9X%|M{C(5kGus#LsSnwM*=aE~uvC{Q;9?EnZ8GDkjLa zjYbx1KEj!LfA}_4PP%_(vPpHOC-VuLI&6wlZ^!y)>i2+!#J$jkeN7^ze<5!$nOlTO z?)*RI6xm&_GAS(Mar93lz6vO+@`T(&al{9e1Q;#Zn9Dp3j0>JNfR>8Ep7pqur zKm|jmeaCg*2Ad6`s<*Os`bQ3* z)QURB&y=~|>x@`CMT!0YQFPW}O}%{>M@0eYZctL`2B`^3gD6PDCIZ5kbdB16(%m5- zOiDnyyGuYqx?@P!Mh+PB-TOD!buKuZ^PK1T-uL~v)8yBp@@5Ltgt?Rq)lu7#A8LWG zq*r;SMHFMD3rr`~{Jqn3N=VdVBoat7@q+XsExxjbl1>Y$zu38fh)Et;1Vwq?E_Kpi z47CCc_3O~UgtE!KO9FG^zbP6n+!|s@S{8oW^bsRZDwXlGF3}ioAn)83nn%nOd0u{dxUf{>;XQx z+!SIbwY+#{#Z?Jb$4UE!IEb2J59uRNT2es3CW&{qR60W{;`0efepu#`fCC%KU01fgUD zLb_*(e*vf>xjZDbs*8U9h)*urS*09Z_sk$EmH0~UV$V6pDIjq!-MYOaUWbzrjAy_~ zmv*w_<@Jr+Df}k_D>l_Jn!hHK?!KyP!qNs|0a>*@8TSx45?|!eqpuzBc>aVWG`J@m5g`*lRf;u9t1ZH*CNUZeSCl;E6WO6j6(;~M7{%cj& zmb5K-615wW+Wu?p$I<7;g=0u$-z`JF=o#SOET-u4E1n1h+7M*~)8d92bs+02HWCMZ zZ=%W}d8Srr{${pSLHo>HGL7$E^JWa!4cC0VS`PtwAQ7?3(%n8qxG^{(_FWNh|0b}o zerwu~z0Ulcv611=!&=-@Tl%lG*;C?$kpJ{(zT48|2mJ@#PA|byr}r-MHpW~8vS5L~ zZbD`=8S0&gYo`nEmV*|%3v(tFe6kG!mb+tO@!i+5UukjF5IBcUakMB~Wh7Qj_#EO@ zMCxlZ^C;VeP}w%B=DNey;dPMUe@A5V;<-IxoKbdd)9w8}&XpD`IR3?LQ!+K8Ta4UI zDKmgf5#)lF)Skl8L(jU>8*qYC^~6ux;0@)oMGu!7IsHiZpcCB@!-LMJ5jMO36`NlQ ziqfuN3^$D%Z&jhJg94d5VfKwvQgyQ*m)!i)_i6&)eKa**UHJVqA|i>WvB^Y`VI_$J zvU$}jN{)YLK{3X98=W)`e%0w(Ig7ZZcTJ6<+hkc?ZQ^B(+Oj;hR8=|J+Klw4;X!Ry zWgydk1U-V_VoDMy2-w6TlaCbq!@X$XyJ|W4%C(n-%r-@$`ANUCZC0v=VS}J(z)6Pl zKY~)2`g^AWJ7E76}UXOUCM; z)$03kv2g!K$=~-ntVZh*+5WtD*trfcyyn&Rur2p*au04zBmI>5J8KL-sywaSIDvq!?|mUmgga*HhY{r=uK zl~m2dFMdusV7Q5H$V*t}Z8kV?t||-DVx)drjuZ`9RX~MDi&RYMPRxkpL+eHkNQ3=_ zZd?;0W+6kF&x_vXgYBKhG=4{aGciQX;U{oR9puoCIV4}Q<5eSrZkUeiDQCR~bbbGy;5vA0&@wxz^TDR zF>99@m~ekE<-narU(U1WH+9MSjfwnCpJYa>>RWXbr)XXH`fXUU%U*sg_!577uyJyz zc54rfHg#cnWo@(W(qK07;mFtH^3g5(v>@Rh;Q|0S(b%->>;a*-Vseg#PtpHn8Mu8Q zm)sA`_~!f6+y`Rdv;_5^kCfjjttZB_*^dy;=5TJ&OZ*n-H4aK`07ELSTyCmggfbeB zNi-(nJknXxV>nfmDW^WpmPr{Fv%k7k)<}ccKy6O()woM_Z$2uUC9^KPnH3_q4)o0d8 zF!O5Wn?`;jQi!dkZ#W3XRo?H&o={fC7;bc=wNQ59ZRJqsN%01$s=9`$&9_8ss$Z%x zb9*V((mpXlz9-K@>XUIDXBZX?ekVux6@TesEVKsi66wXClybq`p%(3qJ;F3gY}m2I z)c%57dF!;5D&<{g$(vTx8jigD?q_A54xahnA%kM`Ul6Z1_=?|u7^!5xFqQ_!t3~qBzdqhQ z4%SJU$06=KdzX=18jHXFG*PyZ7ZI{78o9-Kc$oPTy1oZ@hQf8mZ>F(G4EsNVM{}?) z7_sJsel!e#2E@fI*-|YiHN@M0+j-7g_UQn8^$k5(4oio=!jY)p|H@z#3_+2_*qzO4 za!NG9SIaw4B-+Z@oOr75G205dZ{?V{Tm7n7-KlU$nB>Xz=Qn2VBzWd}aMXoAv#E?l zA~34N%g6ubtG{2OcTDE_)Tv@6jy(f^UHCL;qy38~#?PP!Zt2Wuh<(^_Ykhp0#54nh#WV`&C!QR;gQAD}y$@}CB`|ie0 z)T>GiPiMH)(hMeaeU0A1hxL_N0SEuAk5#F?tLAn~VAh)lY1giS(DKfO;7i53IJiyV z$AkZWcdkNVL*@D%auT3GHI8c~;{Hd#W?ZQ^DZTc1SlkV{BEto5OSdQ5e1A z&o|B+U%`I_xm>dnni;*#N8UiL)$Y`eyw+#Zog$RtSq~2Sec#}@SL&8a5P8r1${`;{ zK-S|diz#VLIhmjTpnT##0-+!H{na^xG(uqhZ;FTky0K4Ib5)M@%iwGqTx;&+!b(LQ zx-#~BZj}-(Qt7poWroff*54Ow{DZw0n5WKS%0u2gWX!HyKlOP3@hov~;W#9{-v`|g zUjce!d&cD?e&uDz@Tu{|F3i~TV$bRxI>qUX8}|Zd^w&H_))1u)tUVj{st<``zwaq$x9=Tnj!+djb+7Ejc-+kOiz1y=Uhp9Lrpb}FZ5z=r&*fjH z(oW-zc;i|1`PWmxxML?}AJpS^5D1XRDBx&G$8yIvv{x0U-@6Y!n5Nu`qU-(u@;HA) z87Us#og8n22OF0cEAxHsfeOT{Px~KxmMZwg8Z&vgt z3o$8Irvu?2{HlYgg3+czJ}wa1`dIftFWwU;4t{OMOQU3`ds# z2JMgdvrT!?m^eZzU+ADM*8F>=k z!8Gl3{3k!dZn7NaWgR3dBnEJVYqg%w18J%mmxX#n-Cf^X6Z*dKS8~U%yPVZaUV3}^PjVcFnPYf_#;IR z@oYFk6o&Iw)p3nnkso!UJ8eCcGd|KjqnjB!(ez%Yyj*C^N61}F93_)Dr~<0sq{6zU z16iXkHF!OvLz`@cG-b|GgLagv9`JptM#^{u42v+f;%e5q_PhD#Fq-4z99B_k23&_oGjd=#>J~@8r;bPteXd z+jM{FNEct&asd3ZI>tEIiPAoq zUqZeKTVxE!2|H#w>bSYMWsL}e-`s*HH|`ClcY6|SHtKRfQZe}d6rpo9rU=z&hVj^- zjN#z$oY@o)Z>!Cg*;Y&V%X5_Ay;)pobxNsglp2}hM2Kv=NVc9%N%5X>!P&nWG-({b zf#Hd#%7ysryuSNh1|!--kOnYUKut{2^{s?;(Q8AWYwm)!NwS05_#e)4(b4#F^D|2y z$d6-bqc8CdFJLDuUt_S_i<-9jln+Vnk^;2XCM`=kfed6cZLs}*c&g_tOcp(x5r24R zyf5UZ`;TBmdMI+Eg&rm<+X+vW$<0JQt<~Sc>0;M0;V4;TXZLNB5bpV|Nha;ea|hTQ zM_&SEd(BI2arUl{8m^K+52yPw>y}haFMa`LJHN*-^de89F7!G0L)#z$H*wiMPJm+( z?@^`8OydxMct zSSO0&q7OH=jG7z5#bd{}=z1jX{Te#wmuCB_#uM{l6N?5-tF0Zj-aduKHZDV1)nePN zL%QInw8C!Y=~&v^ONChz((fY%_8- z|2X2rCYe)Th5_fb-boKwj|35R2w?c%p_ERdq<@uNFa>GGlYeUyd_-vdc89CJ*ENnW z+qBtysG`GmJVLBS-{cD3ix^rvy4#3eqk)Zwcekjh_!L7HUo#-hWCZ1hEy*srmXiO| zWSiS!$hv(J;FJaYpNy11Um1;4oW<{2-)70IQLf9gQ|>eS?CIyjN-P9TLvc zX*<5Cd|=M;2+>n(wZilfYBLoh%ei}5zBSHG=W6je>Dh~W9o7RcI9Jyq@h^PVS`EGj zNUH$a*$ZNo4iq@h(23ZHLiQ{=*jf~-!KGz>xYB(nF;LR;Fvh>7a57MUO88&{g56Ug zDNVxE*I#P8F+HD5jS+j-*Z&$4vup6T%Z6mv9+FYV$CtFwqW6tezW>y#i*rA3JakLBdKOHWmjn?C^Q>UtAQ?^eN;r-1r|sutldMobm`x0gdlv znTU03((|&L@=*XXYru{S95_+0{}C*uZvaA^>WBlxAwP#4Ypb0U-qojjXdZ4lByRB7 zUMwo7X6quebq4U5gV3qs{UQt^A~P<7BlMO)qX0ZfEdc#!kt-k-;qx`;trpq%9^z{l z8+CBhP5xyX%5DTU9=}dbgM>aTMqPeOQYfnt(}~usv28K)NwQG*#=t}2x1+yVdDx7G ztcQ19;x!8$)s~6+Qg(7-p8EEeF&b&y!wLO7>VI9-?XJe@_dy(<pm3LazYP!jlHW zf057lod$<(A3S9(7SLiE5c9xll&v-%eOYH$9^gAIuM>7R(;_2?^A(<6KYUvC=ZV}0 zMs7F4?=F^@>W$lLMW^-Gwq43xzN}kHwEFEIJTADJM{QnZ031#z9kpoM8afzfs5&Mn zc-w0Q$AJ;^H<{O;c}ly3rCq)_VU6X!C#oQ0bfV$boo&G`Q-uM0sM9es7%z14Zz+LDUDdKH@zexP zv2g=kUMB!E?+bd1TassL(P}3oz%yfo;5Irkt9~!{|XpA~+v!GuuW)>g@9~lT#M+lpobN zcxQZO)fh8~jE>-`%?^H~Rqpg#j}lEb#B%cL8=J(%!9~`J22bl7A|+Xvl^akC2`8|` z^y)WF<|ZFbg=slC%Lza16JlY0sT@bZ-IAm*=eEA03oY%X+D}K5`p(lsL zoqV{yer3rKVgeJt)l@I=bHG`!owEej$`iJTFX)hHjGzRY|8ZmLC?E)?IYuri?$HG838Zw(~mR|l_IBGu^Etjtg&RP{Y=l1 zygj8-`asd}enf|7Tr6Lg&EgKBH&KtdRTrG$AV{#>@V%;z3Jv$m9#v*)>UZ4Z+#kuK z%4Bl%{6fROc*fHQaN;>`;8;DE6Kj(ZfkQ?~NdjVKid^V`37bbEupd>sjtFzcN;2dl zmDD#zb0zd_Y=72BJTf}n%=ut*#`^RdfwnpcYZfW!hhar#jbAxs#?MSUQDOus#-wW^ z8+asg0^FgQFYp*h?0rns*eYvEY-jfJ5zot)1jqgUTGJQou>BE>KS$-~Ntj{>W5-Oyrwa`4uD6TmKyFsa;^bQ(as+z1ztRO@*oDCyazIX z>aQp5xeEU#{rjH>Ysgz28}j63+G);8`q79|rv0%pUVga+PV({fGh~*6sr0CUbzp=4 zRtt0|O+C}>(TCH%Fs3mAQZ6CuU%xXHAp4Y|2+9B#(a1L0^|eO}oK*T{d*JegQQpxu zMxT!|o=suHl9JbxeG^FJsaT-`%us6{3lo2?tJdECRj5CjL_9`9M8Andd7|ICrCuC*%=WljS?=Rl zvDTP-9;m@V7QW{1J6C2}X}_R(L4U-X1CSAnu4|7TZVm0L{%uOj zeP6S46Y)h0$;r8l9}5GldCD(8c=?CrC|vW^etO^8reXcr`LgmvG3D;KyI$o%j-cfP zmKpV+PkuZWN42mF&IAM>@;ZM9`gZ<^tWGvB2q+Rri)Ls=72#+elw(|Q>d}$BT8A!WCnDeGyTL9L3&MZv zRL!?v5Jn)Lt0bP{GwC39O#Gm6rb!P;U9`)Qu;jbeSx>y64wRZ}6%r|%Wt^-yUl51z zR%WzZvi^tu)p$>RGWRR47i)k%iLX?Aq6n&l26Q7`s1BzCwCsEwt&?@)-<`@_OZv*3 za9J#E7;EJ#^mn>sEltK+0L zw}PPf((|=jQuF)emzT1Z1b>)ro!y%j`h!dinBQKh&(;*Gw*cY$OUD-^H{sE3+N)Gf zqJt)6r$ZaJ{(>()d-}d3N-R=)IMmK4SLcvu7xbJ!^eN42rqFBF_2bZWLey*te^>(8 z#P9Q5OP;yuic(fxT9uf^cHEHMqB zwZ{%xm0%)^X=D?kk5QGx+K??t0cfR2T7&#>!Z~Kst5p~Jcg)dfCuL@3wZvQ6)O4!o z7;gTJcjvGW9~e@8fcI2fZ7L>?DBkohi;*}R85Nk)YwGyR5>rRkNSM;f#t z#{UsS0m!gmRB}HHfA1Q(!`!3sm-RE8uNvkUUd*DU!SNYxN>M|#kY(=JA95V3xtAgH zkQ4ZVJG)Jnxiq4eC{Eaapcc4)X(H=qcP_KIQrQ1Z%ZF?cahdTxT`!8(H7+3(Y?cSj z%kJ`+#(um@X>&rSBkR!Yp8{c%gZd`zP1B!Pq_KP?8FsaG^{4o3QTlIQq`R(N{%0}z zk@S!DA$^@?@2}*A;gp8MeN!>J9UA51Bz@Pg_FmAYa&aLvkAzWC#=UOA}^}85?p$nu3w|0~*nI1r*ZDU~}ZBSJ5im ze)l&k>0yqsn1(!YRootT33S75?RF+%E*kq5Be)(&bom+G8F`fdr@sYbywk_97#Ci& z?`@NBL~$e2W!qtr>t8wj7AJ|1~e^zL0b ze*+Ho5i5(<1<|F}twlEYB!lHsTcu<6c&PQHU~m2gqEtIRMB7HiS-6oi1(um2-cI8b z&7sLXEhiDeFrlId=_V1Uhd&U$8*_CH4O6qLnv0~_=6{}q(9`H_OAHCt<_(^yXO$}d zBQQWQq;Il|OafT<mymw89wa$|d069L~^o zN~FN*kLK|EEguF;+5weK&aqa|J$zF{BdW+O{w>P5HLze+jcnGbW%NN1(1t?j-K(@KD_zk99glSXem{-&QYr0pIMM#sHS7fHl zBfXf&AX|q)e!*UxNaM^C9jkZm?A)0@y*iaSR+kUmWa{p|%#Xyy`&L+Ko3_=|ROFVv zo7BOr%>EP2XYu#W%K5E(-q2j@iRjFBIq1Jn1@OKx~K@ZMS21fssMzZHW# zKIp?Sp$b>Zu5y?fI+`r9zW&Zg+jOcEm2z=q!t0*uJ)>K`E@_noQt{y&jOiQob3JQp z2Y%kc(v=a%QduV?Rzl+Ch+a>wHL7lGzkNPU2S~N? z@Fjz(+_FdMNdaw5s9T446ecYhEAe(Sdr;6KD6*d2W>X_H(TkIG#W8)6BGtz&W23FE zO0=l|(vwDy*^GtvD?A;H&M!Udxl=9?KH>3GwRzAjApTd!5M>EUy5sYKRu? zgHs)J+(U)d&xLzMD+pV3qgGcG%|iemTSJEE1`aL4e04_H1k69>aK+t%!j6@RFs%KI zpgKIDS+eMWWF5L)n=|3y2bE3NA&c$UXL7lGxm)7eqww{FI)nE#MbV$a4CxYe5{Pn~ zx(t}9wCe=&#u{uNvl?(gzS<=jft~3yx&BBM=#vVRqEMt@!)=WMVneOQbh~pk4|giM>{O^ga2lman;Jg4SyXNX8^!KIC23`SHi} zS?01eQ+m>~x5sH=GlG-1x?Qsu*^g%x;vZ5{^ZmS0&J|+#S@XJKgJP>C(Z*v(O(==S zKkxRZQH?Cww?~cc646cml&DI!=>W;iK<88ccGVrNnZoA8?Zo5H!asbHj71Iun!k)l z(!5bX30wui9%F+0b3`YxPZ>fBm&jE&xO~eWu4JikcnE#hNF9FiiJ*$`KS|IZU%yZ? zMR0w2{Zu8W?|ScTN)fbn9}x;7ap`!vT7O(N$Iv3&nwn|qeO=Rp&+5JN&3FrMJ0u3F zLM#8Q5kb2G`2WDGl*t`rI9NivXvU(PMfo>be>4XuRG%crzkK-qkD_QU)I_BYH4sc4 zHZZ^&M0~~Ylf%TjS{`J)pvm# zH=G*(eEL%(cRvp+-D-Ld*0}fUIQrZ?@Q>5Gx9%p}xZn%v@L3B^<**-LzL(O)(uOdN zmmI_8FGz)nRqv4o0R#>MWH;2}#Im5Aaga&jHVKbVV7nynFaM9C=!onsZ(m%NodA`Q z9Q~5n%PzappAD$Fv`6S0qa}<~`vdLf*^5Yq)yXlwOfYL+9$E6mA(2PFvZsfVw;}>5 z+UKOO5gwLh+NvV`cOhki=PJIlbAT=lojB%v+Vr&C?j$< z*Y38&^2@Go#px9CVDwbx9{-oP`ZJw*IR$vOj9k%|Fa;CQ*?Q3hkjDup5mq$`j}}cR z;%1V&IhVee3x|n1rg=va$|kwZH{%NCwunM6qO*+I5~D7U0R5ALG$$@^^sLQm6G!Dq z6gUeK0xWX&8Kd87R?w(DiR6xLd@$!Tl6*a5K`+@vK71MA zcYyzD%m&%!C0;=GI4LS#SR8!)g*zu+8|wem8PfLf#ocOk72;$`_S^;}iii-8Z+|LH zjR|Qt(C+Y7R-3r7#VVrO%5SsXr-LWz+$(XzdiKi!A~iO+*q`$qfwrDFFbK~spjj?! z!a6cwV!2#-J_NSBV_w*|7jS_fQ~=!vk)6{ZQ}J^~!Mm3~T~IETocjg!E^Z!_7uG-m zi>K7wfeaq81k{pMW&s#JEITUgG1qDCb+%+V zF`C^sNrLTJy*^Po@@$mvKqg?I6sjVj#^`1#LqtilRO_v0AlwdjbC&>S&y-G6*K~6$o%%*3gimV5D9gcP{pO{ zoo7tgme61RUF__E z-&AgHMNW5{BaE8dw&EVVvBGjcv=dB{yZ)0-bXMt~h14zHvR!8KV*cq3e_S_$Z$nyPqKW&ME)FmX-iP_%rW#hcQFBN1m6#kfbKZ;#!l3@^Y4R&^!XxFM z?lJN~FVWfvFtZI^cw z{`s!;h#(IvUQ$23f`a#nQe#Z|GGQei#mjeTtY7u|V34CEs)KEAvW?UPDwXx9JL5)l zdM`X24{c!Vsp{U|ZCNH>?4WTQZ6xp2S&!+hBE*Xz97=to&vgi{h9C%bWbncN+UHc!M@>6hQCU zcWT<@}*F@bUJn4wx*F$%`~~eoH&;UV(LXL0mSu?`1h&b&9?VtGB{`UUjFv zN(FQ8HPDb27vAT(9Y$(e#P&+>{=p2$FiS+WQpN;{7z33gC#!wc9+f3d)Uv(ztKBZZ zPy8idW5$^|xusCZU}kLlKp~foDB@vTbj!04t)7Un`^6__i{V)6yxEta-Zd)W0;2Dk zzhdsR$Ka`fc8qbB)byAl$Oh)d_UU$F4a4~%_mfU?kceymSZ09ZssHYmS|bW zeN{BkU>qR-%$atn5`S45iz?(mWVAtpI!%jC0c@i1^$d7DLmCzuU?~dcI$o$Dnwg$U z$4?2n@dtNsCj~TV=Y1o}JJ0FjA*FjFm!=|Spg-mFryoHVs2!9k) z8NQ3!{B}bJ#PylvK;awqefptSq(ytHH0|I9%!eN4`=yEc#>%h=8cgm+g4MTGb17E#b^ZTlVhK^)+9cqR{Jj(`h=t4 zd}pp6Zl!@l1lK>^0-5H=Z3I>A>>0>!ed0RL(@ug2CP zCOeI>@&Qksh!QuNj*b%W59G6I*nf}rn<_}`>IG!>$5s(2XBs5&)Rk-9B+#!GEsLBx zjIYGVzVSU4cY`o>Wy-03^BE(xNuKSLfjtR$5h&Io5c!gj080Li`qzM%-x+Au?k+T^ z(4IH;MkrzUaZS~FFbDy_|CS#_DKL{a{wI_NAnR2vQ@ci*pUF$^Er`i@YxCrKB@-mw znSeBMCXn+7BCHr^7vQw6$Jw13uxKCi`M59rG_fd}bOe;<`7(c;a@+Y!W9W-##5}n| z6pD@7cR!UC0tCN7K^qrw(QJ#cQ))lifqg6O!>V6sX7@t=6eJ4RB|m;#&AX6->@!uhx7c`^(gtFo;3*KZAF6_*g zwjW6T{Wh@v_pJMpg(9^jl6+&H$k}3quwtdWHUB|kfT8{b%04#9+n+-ewb^Z67#`$; z2ktMC*j~xD+$=8F$)+#reo+ZyzOT2{V-}gDnYY5M@O1++*YN}bAX0o_y)hoeK{k2p zgD&2H#izc|zx2%sS%Q>t@}KcWxu+x+=fO7w$wUlDfET z-Z_t9mDAznS=mp^%DJO7x4rA4Y__9A(|={o{`D1UYKiRSadcJGK(nsLM}8I-QhwI8 zSn?-7Ngtze;;sCfhT3Sp?9&VDr?x?=OEq!tzg1u1N|?3y8ID>^X1rk_>3L*UQn0hd zmEy={D84Z1@D@EWvQZM3u6PsJP?u16-V)Pr5=i<8)G$itPJ;YhtxdebDl+jq#6%BO z`yQ1Zf)m*7WPyoCcT)Ewm1xGzEgIX}8q&s)TSG=I78;SF9K0c)m~BnzL8G2219aHi zO?W&|2$QjyrB90q>KQveQMHy1;hM3F6MkVw(@*|KC}2%A^o;oZlk8zxmMc!qeHKKI z|Jq}$$s|^^aFvo3&iOp0LH0oU=x|PE zKoeVNtoipkj&v*J0}aePQ&3oRGbd|Z*riVrf?r?S@I@uBqu)ztIY|ODlB(lOqqxX>=(R2q*uk-jW9^g zoVh6MMS?zA*{D!riGu~*2<2k_rv88+fC_6iE&3xJ86M(u!15Ax857H99w4zaR66eG zt;b~{mdM^`(8r+}q#o?|<#a~QgIW(>Q;?c-ySjSdZQE5ge+>dI#~4NRaJcftXF=k zG4vcx5#Wj5iP);eq}xGTtOg?U^^r>Qi>C^qjm^mxwn5;$+NAdp5t}l{!?M3_i8!=w zr2|Zxat4vi(_R*L5BgSlYNjhiq<^tz>D>3_^%a?YNH(!%p(lPC0X0|pN6_Nh;ZT{| zhBuZy_>4A|Gm7Yi3I+JzT8gJXtGOfkKPoN^lxls zWb99)6vN{w%0F+XHzj4orj(^MHk7n3I3JxVwFy5K$t;QRc7ZfrQ=p4_%U@lZpdRHG zjH6|HVO;2eA|!LYLLfxb--^}r&zrE1HEEeK;ThdSfBojB@l;H^4FnNzWZfkshjda=X}yyg zW8e zT~u68T$G3uKMNJ=O8mB-KprS!k*->%)Nby0dTIjHU;v1hlHAJayU5}+{!L)lP()ZZ z{ac$|Wscb+T^POX4syYvIfY&``c!NBye%=1)2}xIQM5Bd^W=7q|h4j`s+2V{!^8v zpWL;{L8`$~IF1_)S6vCqQ|2&wbNc$mH+Ja2EB%?;JCd6hZidKJ(mvaT;O&xED+Ye8 z=BU8qOvoSZtLSy2L6^t|yy<6cgD5OOwh;3l{=R1Qb0M~>=1F}WOhD3sEkRUga)hD)V!ZLkL0eMESzvT zTqNcW+P>$^_wiMIpY0Je<89LD=~2KlOfw$FBYzyb4hqISpZ4s$k5z7IX`S=3u&^jD zn3i(jf;uG|qc%_CENVaP#yX1RC+V1R4(a&PFmR63jO@QFSYdxEv*y17nY*}M#Y>9M zpN$r^0CNBD$YQ`gL`(MIBxma?36{ZzKppvtO7`})@82X?G?NycWci0R7g z?j>#X(nO<`mh`D?TvtCn>m~YoKTu`-`oM}a6b@bsrwY){x(q{T6F)RZ5&umM`gs@+&tQuNX$08oe}OTh&NQnXaJ22H;2#<6 zAwEv-BIgHQ-~vbu&P=wtmrJuyglDafzD&ClJ?M12ox9Y-0DL#{W$|sK^A>>>OGDK$ z$CNdyvco2FZ@a9aWGXxtJJT>y+}IkWqLtmJkvuVj4{hJ9$j?ZAJ1i-pe)GgZsGBlo<${UQR!p6(Pcv**u3p{u00}^EHwXKpK~xyQ zUOYVDxKMs2U$4XxZ0^7|I83uNW)Wc#QpgitMj(O0Z!>n$Q9|Ie74@qc?>{0HVAuo3#}eBq zFWU9Z3zZ$*%N57Roha9f2K`5U-p|%U*!3-|n;ZQ-z(_0bZ&?p5-ukWj$-YsEuC&fQ zDzQ@Z7ya=TRA-Q%syf-Y#Zs^AvItq% z3n%sWeZhG)JZuSbrZU-iEg!hGdF{PxaSabuDRE$A7@l;dFidKCg73IIj^j!SsIe#4 zrBTMV-Bsi0%)~6%C5_sM6tCa*$^9dMS>jU9ijJsnbt$6&l(r~%@4<^Y|6U2b?S1WZ zhRM&jr9$4PgU^isVvje47!@C1XKa3K^DvX_I&@d_n+6-&vz53X(3fncKe+ra&3G^Z zD@_GhnQ&qKN1!?r`pRhoz8DQm7|g{Ww6bfv8c}UE6oF&K@NB=tne);6J4czB1(8fb zMq!8d#@w*Az^Pk7+%)2$vQU8FO#K>%sb1ke)xK;)rtTugcWGAAU&6}*dfV6H-#;ht zsuA*h*(6&cR)x5@cK&HEJI%J{=gkWKZpMFmUKucG=s=j7p zrk~n6AanaGW?vS9pxEm~y#X!BUv4-{b1pLWimAG_(4!Q7E#NT%d6Y#XzziZRZPDgY zo8}05Q!nY=RWwwBn_Bsc`j0ZAnbJduD4Y4RI?D@U6gTvQyd#3O8($JDi z`pxh})H$LGexw5?C70b44dKw=fOHaCQDe%?PyNriDhF@bU{f-Eq-&f|nrrc~HFC#> z1+03x41gQt3W&%sd5j+-e{Yz`iaBd;3LOQ5M-EoHL~-okW=bEXJzzCUTl9E2P*R zColhaCpO(1gJhOVWhV{^Icc`P!-U|;gn%PTynAhxmoJ?c|F}co zq~`g&CqodYFKCN%<#0Nhq9(|@R?uYw) zjGOG$T7AE^+IdZj@tlOOmmvtf>WwX)OQN`V}q_-)6>BbyWocs88g&rfM9v6u*0O!MXe2EzJUF0 z_UlTCX~6m#Cx+MStk&%RJNszQTfX+<0ip@!udt5@DbezwON{Y(=L-G`Snr0rI)Hs^ z5_Q|#gdAL8`7)?1A%3?02;exruw(4h&`E_=B7G3sXr9_$!aqThEde>-KERQW;74qp zgRCN7iZM$%D@g$eD!u1K2NKO#NuU{$5+j4SG?^}x*agtTp6oR%Kx^4J{imaD!oZjyUErqud&b6%q~!uqgXYhF+qONj`}=7oddp z!01noGX8W)c5k5+Zz8@WCHAZ79iP@@2E2WVfrkCVd9lpQpK$nGgvMP8w3(o1aYw;D zg#w60Si{ypf5v|}+=x5_EQtpSa4IX_U!%dWOKpXSM-ubp5Bbv!$_k?9^4EZc&`^MQ zFUyqG!Gomf5iYZc9pl|94Qxrg{1MMkZ5?Vp1mKV0bGaU7&cDxyD?z2|AVj(&>sb+5 z_gwEB2qCYD;yI0|yw9ugH3#s#?sFN?@(~iCBoX#kB8e5a^a08t@B1wyZct!oDjIFVH>7~(rHl!LQ$Syu| z|D)6Sc5n}XMVcq#sInfck|J?G*G$bWmSzMJ=F_@#283_>5Vd&GO7!?4Qn5sK#TD?` zV0zzD0-Qw(K56wlQkus($B10Y!_M0QMPu#PJ4e5|E`xug+%|a^bpca_8vxRfG$jM;m*T_WF0s>$QdjrYU9ZGA$2ia*ouEpRx8I@;v z$3Av5)^oXskmiZOJZdhT{P4zt>)A3vR}T>>!LK=;0A|- znpKh9BZH<%LGjX9YW7s7UQ4o8SnmbUB?_Y%03IXZZVwGZ*CgM4>)!P5shQx0GZdg# z>?U%8*E{{>tKg(HGw*I;Er0pZC2lvh)w}dA;91Cm>wXV1V zZl}hIQ(2)LqD@__@Q-xw zf69vG^&Jg8yVXjK3jh@sU5Ct;bho#twjQv#!?9mVOQx{=2h<*P>(ifRe7usgT#6Ko zBy`RnpP-npZkN4|mhoKHnU|4wI`~mF$aBeISrX@x-FF+LLkAZ86zwMwY> zav^4N@TF!yS;T2eK_9i`Kb%sJWo1mU=xwdlmKs{=K{RWpR})skTQe{B(TSed@`zUS zjgD{52H%jd@28<9L31@g_{l?*OigUtce-g_(?ZhsVh<8-1iQ%?gc&ap?Lp`p+o^lVcREN!)Cw6Ys2%BmZ!| zwZgI*&Z6p;t5yH~+4T5Fo$phCR(z6iI68p+FC08F83o3VLq?XEqT zCSrP1wCrw$EsCj!57`mxTArG}bL!GCN0&>)5irYP3i86~H}`RpqO0Egq25i1kP+`9P! z2LA2Fxh;)q@1+{!Rrdq-1~SaF2v>u{iOoE6rlkW&a!ssOyGDm#IIm##iJM;G6PO?e zW9u(oD|WOK_vh5GviLw6_b|_mdy&1GnH2Cn-dkM-&=!Y-QId_uY6tvZ^;GR%e;p=RlSL!Nf>g!F( zNcNVSYT7_$@T$I!`Hwb8&&V9JehE>48d2h3MWPLXaG{4|UgiA$!KZlGcid)v-&~mt z*8R5SINOG;!Y-@F+-Tpz16b^i%-#g!p)3T5DwhYa_vPR_qUppw*dxj)8HLZ@LMHFv zcLa_ZF)4HJw}I__BTKFTNw`V%nD(=*Q&TOfr^19wuhj;mgBAUK0D2dM3S`hT%{3Xvd4y6#MJPBVqa}TBOBeAH$LuiLq9=^c!8G zSbz{*4?nRgQZL4+Pw9CP6xtWfxMaQ#q7DA`uIMIqS`bJmb~jCf_X7Tv(T2(njYaGx zH??*ix#TxTmD7RvNDdmJYt6E=O#sInsw_mm6!2q)vVFfTWW5D$%Fr*+p8vYUu%rHg zt89o{z>5J-^;ddZ?thj}KGx@$$}ZJJo@vSW99+g+gN@(yqWw1?9ol05GqNP|jDF}= zK>F;|^egQL(sh3zvGWp9hZu@tLrfp6iq%D&k6yEq40LR;tG;j#O(`6U$QXP=S!8j|3+=NZ3eSVC|$l0ET@h})B>Kypv^ zqqU%H2kPS=D&Y^?`*wbWzucuB(Yc6k;iTHRyXp5kTTfJKQRNg@w3`#ALXiw)Ni^hon)*LNX-&SY)nlU(Y3mKGV> z*T&`z2QBB1SsySgc%7)Na~@Zh9zdUddQ@~I$ChR-Zmf~azN}dWwfh-E&U9SG+7d9$ zYHC{fqj;CyTJVS1S!$yuA;x5;gP{yVkg8&0rZdnM-?^Lm!->S5sACrS{adKR_6sgH zA)a@ZBSGi~oK&X}I=Br3G~8Tr>MJVrsDHeC$ao)wQ70=B9|BJu?|_br&nn&7pn}iEsTNRv0mKJZH1v zjledSEjp@0w`?M&jb>b*oppw(kB`0v@@*AqTN?;>iuAKW1($uv79l{ESdH9E6IAw@ zZm8OkJ>Ti4u#G6TDVK(duQ@4v;a>~4S{quSs9SxCWg*tu_vIBgiM;{~&970=4J|Ju zjZ$QPcFD4TaG8}&rJ7GkL|b!Smh*NtUN#+{v5Jm|svD~{(y*~i*2Os-Gb4X(sQ)Ccbj5%{;fw7U|5hnpHCLI|P&)b1>WI_5 zU(V)=GIjBl*&QffOpf4h7q3IGG^!H;F^)irMafzjd{V49 zn(uTaurY@rXIS5h#e(e3d6D=7PCP{SIvS1btxbxP*L@;L-V`O7h4goB zorI}HY{iF0pZ=T|y&SS%{x^x$|Foj~ZnmLSlu45ABsV;tfVTdXX&h@V$-d@Y^Lpy% zkA3-0`lx^kdt+-k;h8}Zr`U|phY8g@5}N-#H-CZ)Wfse|s&@A$EiCs9zW3t$FH!oj zn9!*zd5d*2G@8~6l!$B4i8ARo2icR%h(YaVH1=JqPKy%k_5XgYq|Ho0M@yK7?I0G| zEaBfS-W7nl4O?yf-kH6_T|0Yu6`6gxkJa9vXd6Z4a3fy}B&g@AYX4fV)+k+_M#JWQ z+z$Pa0X7DHF9RbJ>H|`l2F*09?yW@g?R@os`-s>|RE#XA>g3mva-pZ0bc=nQe)z0} z8oLwbdFp=4UHIaQmqIApmk{-IYg*}Irw_jshJ?3dlBlem-DK{MW9}(YBmx!DBn+rbecE11IF61r0_*lKE+#|G{BfyoMdvohtke{f@dbL)# z7D<<`$oreFL|px)lGO37ZjQs1eu~fRUhP5KUIf@C9@5{mM(|>)>o5EG_^(ywuH2R7 zAwR2YON7ahdw;yJIZ+C-KWfU2*IeiyPQZQvF~$$2gMMd>iaGoZtvk3|Td-)WC9H)U zh>LMZ4`yHgst|g!tAF8o-3fn^qWUb13RxBkxch%ZPR?B=K8pnt*mueN6%awI+nKh~ zo28{!Sol*P?v2((r#KCNCtrMPg_aqfv^M1#NWb?$?Ue-b&d5-$yU_=ab-nl_y0NJa zK9*Ab!~ZL;>cZP*O1~^as$@M@*z{UBPzLM`!eZzJq5x0lsc~A549etJRg& zIc!(6QI(_cT8F(fmf}^>4j;9-5@&5%D?pHbRq5OIabYE8i{o0N_B-T5P@zm3cz_dB zDy(1K5R0F=G?-$lBHg8jbA{u5mpyMd-<?s&PBbht0gYJ*j=~m8}yDvhfB`@XDCf>Gpm7G^HYLvM+1<4JMR#o|a_>bWa2 z$|9JqibvMA$*Orw@dGU$;gvWLCjB1`1pDZH=-3@gsL%ef0ndVy<*EgVvA9deoCQf zF;Z1oDV@gl%sF9x?;PexdsQYZVW*^O?|H7tOVahifJxA}iCLnn?g77HTVl1X>A_7@ zmz5IGVAt;cY|G$dw5i<}HcRU7sh$I>1T*IVjtnIC+DH8i`^yQ@Ln*h!t(5;N1y5$? z257{5-V!{~oNhF3nDru&dHi9X%BAP{7Zc|sC}0t_vV7|xVD4l-F(~|+e zB(C#?kdP$)oxx6U@@6@Ea$xjU;GI;#wCE+YZ;jftYXACJ!{a|+nSdZC!iLoOy$Uro zP`RLQ#5?M^*)S*P89$YAMrnA^GNS(^O`ZZWfAVX8 z($XsBUnIVf7&Z+&&#{g02f3Bx}R#d=m9lDqZU<}M`84R)fWUW{| z79?wGZp@1mB8ca_;x*px-m@$CJAe|;mDr#A;pg6rZHd%=V7dj$UGdlIUIob;QmVH1 zqLShtD1pCh$Ick^iTv(Q+w64S@*iqh!$Wb<>b*nc`z$OH7aem!hEmA|2#;I(I{g~T ztBgL+o?IFUm@Cj-ZwKgymtfMzb_aFsFxN0X>7 zxvm!XjvTW!WW=gN=r?mYWl_)R9=BYL8_{p`4X%R$mm3lK`J+=4^$yU1chWELQvCmi zAyi|B%y=lPs)ubu5uYl*_2G}#HU)!e$3>jD$T&+hL?trG{3SD)&0xV};5tYQt03US z8X4{uvVFU#m}B=3=Q$w)Mh?J&{P6XxV7`oTB!0Ks!{yd(;r*ti5Lp$Lhh$S-!|Dnv zzaLceBgLPGYge$>iqz?n{uB7{=f-*OKM4WEo$*xMZboG=0Zlr9ONe zK8&>%0D7)9*y4-c{bgV9b$F=gex+PmMa98jV7!?D3@w@?j(K{9C4Bs$=khG!j&HM^ zL3gOygfY?6=cD8uXb@hmWx4G-yjwz@!i7tIRg9!qh_}_#ZYuBq+(d89I)UF)5x7pH zONn`3=q6c2qc%RXYlS=6G_!XW7%QW>r3>Czg&>TXD3%p05DDLP5nK9=Ut3P{?rdr? zLV`z-ztK&(pTN~DkvdvwwnO#w&&^jJ*isxOV{$antiU_lTuLmj1WHbNIWv|ww$uj8 z!l$cIcX9VT*)1q_0F!k1(>G9wdDz;?vKQ2D{1pEi`QbTeTJG)X7x0=kB4k6Qv2RL+XZ zng%-YZu0po$L8wdfxQaAV~0ZTYv9 zi6MW61gW*&V#+^He?7q{LRD$Z8Bqb{J6>)i4hD~E*c!s&mu#Yaj*v%iI}#_K>$$!H zQqzd_jA<8DR%AkjZid#qN7$;s**~1m!5{|+V;9|_g^31|Kf^sAZ*17_|JcNz<3PI- zbB-gPF~82ue2%+MmQI&w?fYoBMdDMY#i3qJ65uGe)A$U+eByKWSwm=mP@Fa2R;@66 z(=KbJM-VCMM@P>pb$+8sMfXKr43+~$9e^M{5O1bz_XlWl^?b)`{*NJ<=$EiEPGIdB z1$XOMFQD}Ax|;)nH11XIg71HDLD$nEb)sDiN;5KAWohVAKFhsC^qH4{gWV4ioxVmS zxD}dpvD4KmjYDT7e-<;HXv(_7FMk7b1=`;afh-A{!f%i_v3$d_^w*O3SXr8@>Pj*c zr^NIUyf|?Zh-V0ooVComGds@}nQqPa2#)HAzfs@x` z>%zMfWQ|H*(k(rNYe}$9zzM0C9iB>Z%NJ+!P4ggT2RKn|mg-8X8o7wPZZ}wh<4upq zi+r8fS{|BO`XK*r4st z@j9FgQNn0NqnE5b;yPQYJEpJJ(&^itO&i!ZYpmgBtipf6#rt98Km0r(8cKqRf-Uz> zk2{<^cm2kN-DI{?v#r4-7zgU~$bM!b$MWb2@+eH4)Hr1S_; zb%4?6Y3?_IuHX=!+lx%lKpaXJ0YChP0LdGn<%My|2QR$nw4ZFHNYRf0zAp`+gJ@p6 z`$ik=2ZKO>6zmyMO7VVbXp&xFAjq}%T*N7w5T?ji&=&?V_EjFD_laq!_*AXO+TPq2 zU6@bsRZ5*P%xUn@*T$lU>Q>FIs_Mh-g~>oPUFz=pjgNSAv7Wis#O|p;=9C~Ryl6?C zLap35a*Nv*@a)>xn^T-h`Lyeo*&*HBkg$(6gs=Z7_&J0TA{#PO?qkNU50PQmvQana zyNf%D=6%te+%;*>vEQYmLVl5gY_NMA!g^sf!2ECuFvAf0**WJ{C2$oxmn$zCMo`+6 zExuUc9pVvNPcb;&YA(b`exrN?v;dC@?z0 zzIdbx6Hl#Wf=-Y0WcVba$RBz!n9)UM9)S(vdKf6ekknV)@HQc{BrjhE%-%VaY$V4 zGM?1EUkZuPmX|)IK}dWM}kH4nMH)wF29EkY3;H_y(O9glx>gx+!7fPseB#&}I|8Pzu)mQJqh~_V9ssZ3X5Xl0TLv#Kz%j zKMuxY9EuooXB({*s%R2y$hRb^0r_OYUsevN>*m^!7EGH*KIW}^d#csC2c-~E7dJ)- zd~P%uf28~KkJqOF7rY78mJ3(D#wRFM%ckVSG?!141kX*pM+3vB1DN1;0JKVTynt-q zFo+CfLfZ976?_hq-#iHp66zZ|S9kwmI9_gly}KJgVAEPJ=zvgXR9cmH6Mo0$$*Qo# zET6G15DlWikZgiU1K*-zH+b5)K86PVVwag?2gu z_LNUN7Yn~#5tF8fw$r>T*AXK~z@g7*-2RAKAyU7-7(+4JLF2G7T#_-?*p_x#md`Li zdb}&SU2C5%$T;ztVv~YVOgxv`cpABOB8bT7E2uviY;^yj>hitFh<|)l>VYg0@*cM>3 zr|MGKxL+8VmxQG^{KJV85+C^g^w^vwe@+>dX2G0QuFfBASFA4eYO+T(t+-Axo`Z}7 zmtw^2nSqedLk?9Rl{FnD3SYwkKG5awz;~A0XRX?9j0gFkKUZ$gFuF*l_*`ST#B#Oo zi4=>X11o)PGTDutap~vM#)sl5zfxF|6!}qc@h=rWFqC1(@5Gud@ane`7vKZ*5sg0d zZxcCtXoiY4W@*58ntvG~`HOOy{llAjd98sFB4JVt8FqNzn z%?r0h`Z0~qEzUe9AEC3~R%Y+E6kJd(!}!c>yQnG1v7`^KXSpmpX2;+~-zre?i}CA* zg|B~N)W7`rU+nY<6ymqt%s=#R3agy)x@+p>S3ITg-s9S%L7b5qcsJw;mcw_+B+i%n zSHtA)t6jw?7V~4nI5N{jXZm9|(G{V)e>me)m*rJk{6nB8?)2F*_Z3Pvd9gf#i`VY8Fi}V^+vvivblF#ElEM*kRZ-`fDOTPp#CO0r=%BDbt-9$@e*%K2g4b^}N`z-kIG>uJh)AhHBfT)49tyP^8=g zWJV~4$YFCWPRcuVW90*h_r=C;yWI<@jbhb-hl~z?eSnM9n6t=8^7ELbOcl2#o;vCaul$}3pnr2tZ*&@$eqCXQn~duavlYjUuznYq zf#BRU=pWZV>jqJ=qfP^wLme-TIB7jZ)yIQ= zCAlcpnRJS5_6)^o*8_THj8Q^`pyg2*d%En!-3d91n&=1X-` zlMT&Tka!^*vVx6J%GEv#XHxNB^UFb0!51JKT(p4&UV)ELmOkgalVa$(Hqqmn zY?8P7wq8s{o`>)UfqICt{u7TQdBmbwrBQbV@kQTGRm>D^lzeLr_x!L8<9|be0gDbu z2lt?|_gvGLYL;YU*qPkV68oJ&PPa?erjG0a?5!p@s|g{s|=> zHAZFm3bQ{uv=mwrL>$=Ek857_Zr|O+g4Y|Esp`{r!N36v)I~oU=+$St&K;*5+7y_C z#%HB-;QS_8uHJ8ssUp+hGLJ=lYn&GIV`nnkU4v)L)UUIQjkdK_(EZ57S2*26jn>PK zb&5}7)_5f!aoRuX!iRg#!t)A%2Drxx>O_RR=lk)pOd z18>Gt<;PKqJS-9`?d5}tfqG~_Pt^l7SnJ;*WLOqdSP%W#0FTQ{8S%2EHM8a~m$7QJ zo?eurEc%@>=N|jzWgor%;TTHPyrs31(}g z;+0RPCf?pOWiLKB3Xgkq0O9d1+AOWDSW&T^ZU~XaOb8n)@)mEQid!zST820}=Mjx+ zhkj|kq4^zc1^eTh0w^xdW4`sHXg-W064o<2EuVx`tn88b5hV7?bZ@bPrXPYZ{J&^1 zA-?lCFvz{8!HVU8UaTze%N{O)_OfE~=_WkXV(W~Fy&#XjR_c4`J9nyRg^=9G@w)yA zeT!XRW-lusn-jnY^^qgRuM_`lULBHSqK@YG8Q$AFQG6r6c^nXz4sW?N4el5LREFQj zUHPgAi0$DoJBEI5#dagk;u>L@@tdPl1HM=2pk;p9E>pBYyb~Ppk+WyNIzLEw!!D{c z1n*t_p|P%tWDk2$x_sP~qy%gy@p^B@1n?Eam^{&HaH2?_xoU2D#CEZS*=$V{&!<3n z5{oybUu0c+XHjg(%=fNDyySZS>f))OHRp5Fhw|O9>S2^v1P4Wd@D$(uP|_lisc|j!&$k4&=hbcsLK3iH*?;PQZfGLV zt!s8~s!9%jp>e1FKfr}RQKD(Gjmo`jKicwSM*7M7a^bd#1vQJ>~4b&-aq^RIiN^F~oio_wY)_KrR51yee zenTT@uc9BF9v+{GYL1Nch~Q#>0owM5EY8EG!l*>4M1iXS+P3rh6uX1Rkr?Xlvf2w* zL=$1gb4hi)9BM8~1T+D5L>bYfTM3yHSA#iNq9BCBDg7#XFkG zMd(^;lKRGQ{UTuR%3?Yci6p^BdJ$MhrI79==nrGrwWSRX3XWsfPsDru%R&O((JCnB zAq_yw7u9Gz#piXjB0|ueFG>!?Nl?eIPA+F>W~WHdF@JU?G5>hr@lk0E0kpHDp%kmO=$c5 z;htZRXe$Wfau^RGgZ5|!I#u?N%q(6SJB_svxhOa(rKQorvU&&3TN!blFvgG1c4`b^ z37L@eK~>o`SrS9V??|C5{#Z6Fm!mM|0}6x)+rsaMkonP<7Fty=jJZPzdv7CXxC4vSTM@hYRAk{8L13ac9Yjw+us1_hL3Na~xR5s~O|q)h=;sX4kB;=09)YBk@q2CUfB_kyfKi*c0Ek z94GZ^=`61%I7ix}usCyN_5}@W{`Lz&>t|%YC~46m**nRXN6c087;b7a9!So`^DV^9 z5(3;I@ejuh_KZ73EY{I|#as(>VT{1887B=bib!ap>w!J-xDmtMgVx%Q{%DAip-3S3 z&v$E}$-I+7x`E{wVZ$<~7t2xq z<$UTjlI(rUor_5)Z-Uf^MomAo^8`D3eB+EfP<4t*FUzuVwjp5sSn^54(OZ1ZT3#CT zFYc}it;!21#9i}nZ4M)O|MxZ8(*6zhLbdHt*Mb#z!^FFwNg$MrhFTm6FfOf}gEb+& ztk9lUSk{9GLssO(fIUgehgC;kIcKV!5LLb+=dEun6uz+XU`FgRq>-tZzAO@>x>*@y ze4#kAR~r!h>B#G1qgT^~mDh>ZAi&RxpJskE z=Zsc^bl$3Ach}r}g9i>>%@<~g$JnLoMwEjj5nDzw<^4WzF6^_-E<+n`dJi&UZ)xuL ztwCr$=<`L$$pP{lzkf(M(~6}rjJP1E`C+>>2*m{%q(xqz2qovWi#(y}l7Ho&XW@1Dsc>iwTYu05x7+GxsjWT|h%YIcmVZjT<=s`LB z!6$p`D~?CUZFW&uCI}q2x-8Dw+M>Yj&47P?0s5_@aouL`SYLBwjf;$C@yO7hVW4OC zn}kAqgWeXX3g0Cq4*o|iXV&kAJ±R>MFOp7JM4pD#r*Z9T}X!IUIE8D;^=LFcP@ zZk>W}tyGO}0FtfP@UbpX0!d-T)*x;i_!+v^zKs1EAXPB>x_hWN@!$?j^*jFJVZddj z)xgxChY(pQxCAN)2>2T9V!ugqAPnO9hX3K@+t(#x!ax2kg*VwnHB4k*C?a>h0d?B2 z*!4T;THQ=5H zcY}A8FX{7TKG3k8;#ce|8f!AQ+wtAbtq){ip2-D7rEf0v`^zBVO8o&E5{HZi>Q?Ar z(_ahfuN8s$Tir4?MdxdVrCgz0JQTuu!-=KTBdbt++RYqLzZ=`rV@cR( z6x8YH7P?FJ2s$TSbg$p|{J!d0;$=1Y5V{$dUWim`6nHR`e%}uUaq5J;{{0>Y;OktU1d&;jpsigIIW2TCsn#*|E?12KQsyGzrH2I{^DvBuV>$|Z3|XD zBE#@9aj|@$)9~v7jYf5`&J+9Pk;xSpV}2%Hmm^*|3z^qI53&ok|5_ehx1&4(_i}Sb z&sFvguq3lQTWYu7ZPx`Oj&!!`(}j9Ti$ia)-t;C%Jm&}t<0U68R?i>AgfiCaj|pkB zdX$X~#=HdXnGYy&n~glkAOs{*2_v;%eD7!SewtowFoqo`jJ=5emQ-U|VIX?Hw5z-R zz5+{eD3)|c?+p`QI4x5B?oe$Lp^(Dm#mDgQeUhKH2lq1zzW9>R>c>8mSMq^c8+5)z zbaI(=m9NbZPEAD0xz_Fj!R98|sRCl_TWHfW%4xy>Z$BpQv40?>IS)jKmHZ!dK#v=w zUh)lp`oXt3F>TX{_!_q3>sOH`Bg{2Q>yEtv?BC#GE?5~9kf7!?8wR?Z2K~}M2GL{K zM(Jf8r?LNV1W+?*(0|(*h6Ue=O7}h7X z)a+H+K1uU&fjvJElooC1W zguCF#Y_4#gQMp;ip?%iadmty;+@WXkby3qxlIpMG55sptDTI-D z4P1Y|m#bFHD`M;PsC2Lte6);oGuk^JCL2Hd|Mi>l08fsFo$`o5$?dNXjrPp(e5(lL zSnLH;=wChA!p#rP)p_q`F~4tk#J%=nQ2F*wr<(mQeNc1MkIeNN|9cOoWDvzCxefS3 zlDBYjjNFPE*=U0Dyrf3DNxV5{ceqiIyy)A2quW&Lbm{v0;{w3<6uA~zA|2REDkLO@ z4szHUVrFuEGjv{JOD%cwTC=fp^GvzX6T1wklYZ$FAOzObLzL!6iE_GcYKn9$64k6f?4)$`M6;KUJHX=lPaE+ zj9~MHF);7i;Qgbi`VZ$dz_umO2ZSTCL)#8-#rNNuW$k+U@+iVJFUKhc0|6ejngqk` zkZDsr8XU-seC9$EB|}hX&a>r{Q@WJmKD^B$Lw^H7y={0s1p(-bMJkV^CwAT+tQ8hJ ziZ&#M1_l8=-~N3Z#;?%Pm~XDHQ&=HKFLpHjAC5|h^J%0utx6bfsOoLV8DtE60tcS^ z8`TFqUSvR!YklH%f8`jR7S(4{q1EQfGAZ&_pB|3exl^_FMt^-&TV%hN%*rsC=7f%P zqjLB{)#GMmy4#2!-l0=s<_k4$iZ}(TmWa*S4Qdse_(3`*+NYz+@10UgjWmo0#q9KC ztTb=3VMkV&u`c33eUzx{qFtXuhoTE!^^YT;hf{1ukJMy7XDU4X_UNVhH@h>j$<(=v z_I?NrP(2rQ-|fwx2*~Jc#&*61%;hfY)QBXii-pu^+x?oBO_vE)3X^VKnjXhLs~jAK z)@Y)*Z!i?oz;)Fz6~h}jk4HAYhN5k?7F5ON~p`ORTqvIAUc_BNe=^Y3Oe`ZcddmQ{qU zQG7@A_V3DC1gUbRga6t8DEkDXj3i(1l|Ye3UIf1^XS@;e&#(t+`3QjYH@bXn{N zq6=Z67DZ>z9M++)!eT5p5rmxoS_Vi$!S%nl06M0poa9-KXHxmMBha*BU zPR*0mp8$sEQFeUpACu*wy#eowRNnS_xe zsg1x>pbQAI!M2+DIDDl<2PHCCOP$3_^%inv|(1;Xv@S(nI?EF>ikkP)? zl5%*rI!nOO(c(1cu$6?Vd!eKrT<$A=y><`mC?D2Bf}f#ekqiUbrgG2!TrPRdTtW#J zhHlMJTT`$YDSPn%UChhB$k>u zX$>(r61X^dBO7igM%dgtEUf%EfhA;2#Pv9r5UUAwzIWj7FbE2+YcIyKLTk*SC8SaI|2Fb#BlQxne^zaI4fF}3wR zN%~tmlD~+m%Fcn+!{i|JYJxQ_-7s-02`nVX3GHzMuNN{)eO=t|dRdPs=IygYxxHX4Cf{gOJ(erPP^4a*0TrI88OZ>JbfgUHVqO&>3c z1}Em-3BLT#SKS!EtYVMst3}bD!6qlI{ls^uaI|6YbOBXy`Wb+}3s5?-&+VyRRc<`X z@%ZSnna$%?^Bm{$MaOIT=BC&o`o9C;m&o1R-Eh)ZpA_;A;-_2EJ(V0G%KN3^2Qb|h z!M)P4Iai4~ZI1YNBDa3L+r&hFRGNEE%l!N_w!cOW!2_Zi{amzEEkus z$4KkBMdn1Ax#t`?%J&5wTB0*aBYV&NuDGt#l0rI7`*$FZKGJo=rV>$Xdl53=jkN{P zrnLPX_kG&wXx12)u3?p4%rm}SVH}k9w;Byn!HID==|3D>NL-gNim4jK&=XAjSD-@~ zd_1sm!l2m{GixDpb2DX5_wC*1l0vA!FQDSK!Fq@jV$Ov7mGp8hAPJH6N{t(~fk9py zCu;AJ2FK6W!zin!96*kJ0xUgNZqI42sgOP=4S*wyW~?0R(V|!V4^+kgrO_aSP^MGd zCYmnz$xG{gX8hj(t7j%M8b}3Lmxdv0H%orV#}yC-z2i(^L-6%wbl8o zSh5Z8v(#`?_nB-Iw6_4E3{O~Vw9QywaaH$uGbM83ra9v!&pUW{Y9XW3pMhuSV&UGo zs?c`>=lXqY{b=l~?aYR;aE9XT2>e{En%|hB{v6_SYl>Ar4kq>;-3XoVva=8I4q@vn zWV#MZ)M%yBxL9v&prKT)aGFg~5&J&i>QkQ^_gS@jYY|=}5DP^p@Ck2#LpmH_M_@`m zFB0Xxe9Bhj!qKV07XaJ%iDu6rVVFccG5f?EX5^$*n2CfSp~ z4>|hzQ)^1_&iaU6x7zZSkniLfDH5(A$6QPn;q7fSE!Byl;FWZ zd>^j&^#s+G-LX7cB2Wy~idOPf+we(nG>i+kve={C61 z0`)=WUvI(&$(~_<%h94BPDQ}ke61REU&-`EOO;_^IMKD~M*fWdVI)C|csiX>aZ~V?sNEKwfky0JK+#4zO>M!avd4l6LY8SNH1;n;7Lgna?fou1bvAq3peL z(D~d&F_{!H?P-j+?T^{w6g_|-bW(w

    wcVd9TWT)t}<5p825`(7@t>InCF68vSmf zMEG70(&Lpc`X#zXZ?sD{Ul80D*2audKcX9>e1Y&C^xK3xtluT40TPDXL}cwb<7)y> zh3u7)VEO_xXbm41YB;Hkk;E;%nWf;$D+2p*)Pt_hiH&-`n}L8WmOYn^q1OeHPnf`MWsSk2 zxgtofMQjsTX$&4l3EHylWDfa<^MpB8Zl-zW)b_I=mYlBxMh8%oC!u+PX=tm7`!qxo zn56D=lGAlFxxgz5CzH@o&3E|3${Xf$Xfva+fDN(-D?K;Wt|zu6(|D4sBym@xDjKpp zgJ8ExRThMKynoC4o7hLln=kHa&0zIN@ELta%Iae3#l6a}XJ6U(gB&)>qEL2y)Ky2j zXHnr>>=d*;L*;$!zRH6n!C;gMf3@Z4Z7_R%b5a_9mG>N%@En7!#abB^AY9SO-|NlC zX=&2Jrn$Hto1~N9XUpYb&nqNPW;@_pCn*eh=1zgPO<0a8c6QH+JgNpGxej+tBC<6= zj0f}G&2c0FY;c)rDi=5k5KU)VP0H!yo?;aqKm3)M%j-UnhHVcL+#$1XITdWwH79ug zV@t}vyj0|z;nlM>QjW28#GQWp?@)s$v zrH27Om6IdD2yTo;%b<=Qp3KyI_iS-BFg1QoyAzUue>&I;FaL)VvR0qbbGES7tDjGd z@+>hqFb*o8NP8+>9O!Z0ZnKk=uhz<|$u^l-Rm1_Sm<$iA19O5c;V4$OkgjJ$0!$ct z!w$_&34pfkQS)g@^8MbYr^CX$G5%@-?q5~z3>E;?N;6E31_?xzA|JhKZW8b*b|`~1 z5DJ~~XUc3bAAhXt+kMmR*%(C&`v$jPTfA9^9Z#;;Z?47M%^2&|+wiTww{B|-o?J31 zHCMXoUc^&nA;hY|T@q0|i34kk9-CW0k<&Mj)7$m5jf0MFJ(KTbGkxezZ9c6T2pvzA3iov0oD^A0}3z9Udg{C8mHq_*nc&?&_;OmwobtepT@qtG!fKTGH2L zaXZFOzoil!eSlCd`LwfqPu=I}yu-#UC&8C+)ekp71wH8XjZ(tE|v#~(cQ@sV?y>ENN{4%0`i+CQOBeoN0j zt{LC>A4zB7*W~-YeG~;j5J9>nrKM{yQE6$(0aF_39yz5u1*8R}W7O#GMnXDANy$bI z82dc?{+@qeuY0fiy07cJ&ht3l$1iSY2F^F!NkfmmVWGs9Tvo=f2}FYfW#}ihk7-(F z)T`Fbzzj21zQr2J6M%4g#?+PO`tvTPk*UkOr(2r&Zl&fE<*TB;nOCVlj~sInR}ZF_ zn{RK@G?M06ssar8YYQryq(3n0E2&=ZC+vei1-xvnlaUPb%4e7En!Y5Jr2X6a3E^d6?7v{c&Lrcg%%FR+VT@~!3`Qu*dmd1C_X~zLy|s7|$^iOV9sk7h zE{?OrAy4p(hw43vRI+G~m-B$uI+O5BbA>BNgrehPFu z0{`{@bz%1(9>5-KuPxdJ{KkYz(YyTo*y+!kKq9-t~U&9c?Gb-4{ID;6{a)Kwz~$v-ISsXmd5K-( z7Xxk6es`5L4p*|@A(y{C4Gilvr~HOqR_Jm(iKa<9TESdbQPlD}IZkNMY*A;G+D##x zfIUgz#UB1d0P=v(gLsV6!k9uin(K)!4MmN`>pbAvqeyXZD7Bw{!*ymvi0&T&S1w;q z7fv=VFspCu{Fe63M(a)F{a@jG&R%-@SOVb3;F3xsOaS;}yl zzwxdYIHSvlLq!WHNFbbf*M}umEEqySm-q(#0GZM7y`=lpY7M)0Ln13HUy@X~64f3E zi+zh%M%^Dj*YG_}&(kkE98A$k$Vu2USqDw9jVpX+Y$P8JE3m@{RXjLLdz+=OyvkG( z{N#|2ZDmkiG$gY9T~*J2c&6|`CE?i_*)aSfKdsmgLz@f1a6VP4_@pvOiE<)^kMF|y z;?eWs^=xIaU;ZBE>_m<(Srv@g(1`gC03*Fdu9D!dxhjvDlOW!Jj|~?5?e>ULb<39k z#mZORx8`KMZ6`EW@%O*PeiLNj;?<)G6$HB~G=`e8JTK3S5awf+;+>gT{jmYIUd;1k zk;IZm9^pMWyUkhxId+1jt{4ZWz4C8HUWfjS=mS4@_S`Nj%3fY{7;`dwp9y)oIub)W zwW4DzKLyOz{NqKeA{u%1I_OrSS7z4y2nej~a_m~6m|q$@ zPC;(iwXP#4)Eygkva4RH7U_IGAmg+V)sRPXGy`!k zS*b8v%mC@PG-auF#H*+Z!*f#FMo2zWZ||McQW12CciAxs^|9bwn&_jxAo7|0-wg?* zMSrEhqlGjtMt$*mLIMaB10{y?`Y$A#cB8rH@!v-;@em9-YMRB zW0yr_`12@SxLNnFm$kxo2=fpdg}FfbV-U_%aQBhlJaDh<=ND%JyiVkN42L6h*@%CW z8_Cw0jaK|WeZO=k7urxA9he{BISWsSY;EUd59HHtNTNO{T>l*0t2jO!!Tu~@p{K_j z@4{t;@aoO)cKtixIxg7AdP_sJZykts-4miZ@S`e8dRFLI%QxcYLSigpBaog}Lb4|$ zvepH8wr-~sn#ZpR=bcUvwe6k4b&v7TcVZQ8KKU4#mITHjkIgY}y|Zg_vv)mm@|{an zOzKys=)BJ!#9hHb)RRpHuBN!_`IDS+$hlr3Ajg6~pnH2Z8vPa&DiIt|X3%3m$g8Za zz@)$!%nPMbIT8p<)F$oBvS+X?wTT^8xOI8hYWX#^p|(d)q`WoH-#)J?FY+^72!@eH z%Js*}8}mC|#^4{F-T1ZVjn7;Ehj&uzR(T9YE1Vp!aQv%5DMwZ=;>I9ef*jkOqEl*^ zTTs+X9U4w$g;^NjBXWI=ar&53<#X(d+|G^pvfUc3kMHYw6UuH?x4Kq<{kb%AY|S{$ zp8J1zhV@L1nl60As@Zs)-Wwx6*QsjDCz`r5+yZp#zWeSH4)@t(5*E^+h(Uut)=nL#J|+r z>^dbwc{eL>x$<6a$672H4iY+AMj!8>B*SpSHu3}Plh*cNQbX-5IpozZ$jHwXECRs z*^A`GBy$u3NPCb=ioD;5ZZ|9|&M96Tv}tZ_PW+{#^yG0)R5v~#b9x3~Y*}TxVRS$r zyrxk!DF9=Semn7KQ2e_xE0$WgRf@2@M(#;vQR2In8FaWoYe~uF4y2!@0UVRxn@1Y} z$Y{l01!`{mho@v>7+8YwLWvcT;DUf{CEW6a`UU9rXD6E8-5UB^B3_B}oC-LWh>Vm> zT{(p9@1&2ZN@T~fB+a3cCT0HM3Ww$uwwF`aNm}PrDO;B_;0O#wVZYn5HU_#$b@3lw z{B7zF!jmAfX5hsELfse0Y{?SlCm)A8?N28uSfA4P4#OZ9920iaO}6rzW|@?8Y#o;_ z!$mRkaHk6x$z{riI@V`ZE;Q$S#!w4)$A5P9nN9&LxOygB{@d?PAmnhB06W(F2D%?# z;=qa#7WbP>y;BKzC%ngJreRp};{Eo;_k|%hJ9A=poC|_NS?3CZ#^52U@<`DFQQ?Z&whw-bDEVH$ym9m&Qi?QMNy zdsUUGEUTnRshsj{WV7LIWoUB$- zQojJGvky%3R2DCsCtTII)4=H28fB7#_jU+pxqx~997J4jU#e-zn11UznX2dB|DT>B zp5{G4TSFqvd;74y8)iz%vyO#SlUkc=z;PS++~tbp{a>#RCDGGsTgrEw)mZ8-3hRu| zGDAq^zpVGaf?jn~6^BzWCIW^n-X%>*dkxh}O??^bysr~qBZhJtC-+hxoO3BNAH2j> zrexe9g1cXTqHJTeEm^pu#N`QHIz)r0%mCa7vF?zeb%_r+AK=To5*$nG+6L|`!PhF9 zW*u^ZX8Ae4(Ik+UdKD9OF~#qev#X?~bz?uD!GfV==~m@Vbt|{aZ}sq|-0w1g1%vvS zrBapCQGA1LRGTa(Pi(eluji+XnsANuPA>DI9ic%M`rgoeJUjPGTGi-j0`*tM_)a##m7wwDZ^{O-2)#xuLP}h61P~e=k_H0oYT&m!v`l0 zZ8r5Qk;I@92CQBWa?D_O1m(_dU%D(%<@w*qn+@Qb9d3}j>}pctvcxd_+x)JgaU3{e zqHf(P$lDDQ1!;eFfQ9Y^t=Qwn?TulOa^yS8uh;Qs68FMp{45RYF~Z$-DLxI;O=!c- zV{n~whWp@0lw4{LX_^QG)K^Clh-ouI-5Qh!jlJkQTZW{30KX03D~3r8LcOQYPeHhb zkZp8Ze!S#{eo1Tj#fN~$buHYBF!aKvY|zBIoZ`oscH5$r z8tluh;koTu;q@ZRLtwq+3IDtZETWUguJOFC>AMZ`WW9Uw#>bbwRYG*Gnyg6q%FB5W zYSLrAx{+~D0m1~%JUvMpJ$o&aOoMUwfbl{eL;d*j|HH#$!6_hKbdh(;VOR1V1o0f^ z;-eNKSKiOJ10NSxkj|&bZ7ezSryWwJ+0C5o?a}4uuB(RdC;p2|{8sy0-2YKtlgkOz z9G}31k}^7@>AghT|;_+0K=Kp6ZhCcz-eMTIzT?-^ z3!Omk5In=WruLJP?_CW{>iU0?cAK3W&)adxsV!g+ENX*%KYaHhP7@b@p;~n^FHO&+ zu0_+!zMJra?l|%4V4=$2RDILgA!Vzp!Hps$*1WxH10;}bXwaIgOahtuZu2ATYadUE z(4M*{Y`SwC>nyhBJ=NR!LOn-R&0)<__ZeFY-Fk$)N$F~37@5Ej_Z&HBe)&44s;aQ5 zsWbQ0wsv{&X24I92iJrO10b}U1Jh`aB|=(|ga)D_=)}yKyjuTSf#03%(yB0|Rvk|P z$TNHu1DYaLaAJHe|BIZG_qb;E;U)~)yLY|?*o_qH)T z2J6DJz%5)<92e4Pxe6DsVL-p5LDbPoZW{SMdK}%H;(Pav2A_9yua%7YU6nmE#~ciI z?vg>mZMs_O=l61Z(W*~ZjZAnzM%z}OYSk>s0d^89H#Wnby%hjTXAB zGb^I9v4~H%f14vGr1!v}{TrA6Y*yHMJ$4Y9kCL1aF;2nLk))H?-bbakA#@ z%C#|aT2+B@Cwp*pABsH3&u0E3VCts1oR@%=or7JtaTQSz0pbMhEjepMnFhA~n15_9 z%o(Bjh+h2sOnY54iU^oN!W(wRd7b=3k^i4nG3 z#ZPxCgbb}DZkEDhPw%iB)e#aRyc42lC5q^GDBkV9bSQbHCqrbrpz~Hu-p8l(D??=r zI>5w1RSJy>=U|OqQD(|ASG38Uat|&6#U)y@3-`|ZU|;hnT?8&v+kK0cj(EhZ*Qx}B z*fO=bRnwLL=&-gZc4M`(HY>-?Ah=yuz3FWi=Ee5bMqi-8qVeJFb%JLgNGD#m_J@Fw z3s?Q8GrG4wseccPY$*(l8X-EKUPYpqzu_#ej}7m$0fAfMQJx)dm;H_C*$PA-$Nky; z%KIDBrji~`6w9peh#cvG@Ph{)$~xf0>HlOtKc<{(T0nxb6GDKS$>3VUUJaA$!3}zV zwHLzWp=Rb=d!Mvf1`qL*`?um#O2=ZE7qCxVtf@|WVPuB_tQr5r zCoDDHT8vU#pPRmtGFr{^VIsn>f}l;8+fh1tW&RiEN7wXf>Fo`tH(Xu7?mJuTlk3kV z3U_Q8V)Q1)_iY0SZnPg&#zqAU8N6wWZItjiUc`FDr=H%joTzVgMPkKVA~JW^q66N- zYg?nLbXWqs!~0Ep?_d;G*5`9U$CE*h6kjiKQr@M!fo1OF`a3eT1vG{&P=X32)gG-B zwiE6E%7`l%jc`obc4J7*P%E{ye$rNvkK{hiLB{k#;f~OTg}-ja3lH`}9ESb9lZTO;#AU*M7KA1xAsMbRYwq(;;ZtFm zNv&-t=WkmAribYdXJq}gg!F2OMzx4U3TKO`}&|2AbcZqvq>LHj@GZ1GK>|bep1n1 zngG+`W_Dl|l58RASx5ss!S76G+qd_z9>-wUs1Be{gyvKbZ>h0KZc($=*!Q+lCJAr)@zb1;=pb7S3Jn3a#x}h6r8V zP4jOqku9}@Ilo#{IFk|-aRAqn4D)q*7|DZ09B$Llws)@sRFHWXO7$UV1JkWh0tq_d zg9LTHZIgczdlBwV_$S|!0paTBEvx0SD>x&H+{Y5LSA1xDaSVR$VoF6GjEfyeVI@o` zm4ggfPC)f)0zRWtafR^Xl!(pT3IwS}fUw8bU)blF-CQ@T}_WIdr7}r=DVowd?~~PV^D#Ejk133+XXWpR1+CA6mK6?oc#q zzd1>nDM>BLz-f-~)>A<*sWnzMJ0 z@+?q-#a71pR*~C!-w|&ll1mB+1`XL`GtZz==Cps>g$wQGTTem`QW}=^r<-2W5+=Qj z*SGt95j)sjqEpY93%_UYp40zOUYU2slIteOIXgHLjkUdDv4Qr;1`uw$p!Ln!@l}4L zz|_XRc2pLa6=qY2F6M@Jh;DI*1ekYGI&;ML+B%LC$681I*zXh_62Ha2!#lV#U?J{5 z%r*7FzMNy=3_7cdj(3+K!S$?<^3e=i*C_~rxs%|UsHR*I5B{&rxdmM$L)$PDI3{7* zRUGPpe-?9;JX5 zxj#5NadIhqpkE_U^UoDBHM}%c4m0__vx!KAqLWG4XHWYo!O7H5b|`PdHs(T@~! zQ_OO(XZtkv`jup(YsPYyy!Snq8U2q~wKyst*qX;cS#)&RFUa*V?2bG@9bLP%WsiEy zh3w1|KVMb+v2gbmvMkM(lphtt|LXW-_EmE%l- zR=$B3qJYYZuav{9^_Fxt-0Q6_E9}^(hRB#JL*q^sh>gS_FVKg#^M0;Rnc7~28t>oK z9Iw2I!yik#YjgOwR~Q}=E6?RRpjO}Yu5k|j1H(shb`y%W_=TFWbTzebcoqbYfT) zG%qjG(tckapy;wiMmoXTrbTFfwi;=D{y-MaHxS4CSCsnmb0XT!*A}8U)7&DxPY+J; zwylp=hk;g?77r?{nX`&h)$MYDQl}2y#2>?6wZthsdusKGOa^kbKO&x=0@D=yZM#3z zPZpg=-et!UX^%*V&RiRWl^yC1kSwHspzD<_CC-0apcJ}msrZq}J6KiT8X+KlA!mO6 z-e=W`JB?(UAy!w!mif*@-?O4PL_7Q>;KZ+*i3~k^|-(8uAVfL_vRC zip&=KuROZa$gNr$!Gh8cbnyuHJ`u7SW?)3nF8*a2E{Ggm{^fi!iq}(_qY#cym=?x| z@{WF9x9Qq5GXW zC-CuLh1`X=cN)RwO`OwbJUINVzv2^H@)Fm!1b5X554PI_k*x1Z1pj1i4VLs@7QSU5 zB>uRcxtB?sk-+|F9|NWT7b?RX=qsD`+FaAhs#zx~)-sj_iG>%WTNUFiuW5Zg7=%`N zL_ODj_}pEJ6^YY75_i};aSoahY{lkce5Pn`XTLkzo>;H0gXZ;DiRgxVv2andm2V>) zk~arNhjn~EX21G9xR=$-dOYr|OvsW@M6O=eP~2$y&Nje;LgcyOSC829zrY+#7Yfg9 zZ!J?lXqd;{_@@fXm3T;1>Q~m~fg~iYtMX_dG{5MT7n4M*uvN3wgQvNRbW^j@w=0`z zg^w5dm}DHn2%KaG{Ni&S;O`m1Ntsu)KWUkYr8)aQd~@iqli}#X&g`l7PbThXBcVt4 z@SyY+tPn>ziP_2P$>mcoIVZ@ffavLb^;*7el5BlHg&uN^_C2_S)g#a8E(1=9O#Z`j z<~#Mi*UH!qs6R565Dfk^nq75d>(YNmEa6nh#Jl6(>;^^!6C1}&uDD1`*jQx;) z7_@K^IOP9~vxwj#+nNQF+BLy`J}5nJ6dLJX(!7^!Xss7t+-Fn0to#X_Sf&eXhxATrd(vmjcV*2#qm4#W zBZXoC>bS~ffZiv*oz9;ttHR!g$j91;=%EqUTh~J)@^1bj72e_TSmIj3Qy@;-(W4~i(EeSahgA${mdZ@<@X@1phg$GVfrDpF$C{wj>#%t>L)5k+ePKZ^k&v~cw03z=`rQG-^&jCbe1qi;{QpvS7X znkjnYiKkFhCw)tr0(7&=>l9xji6;8uF1@LaSDI~pXXurKt1CT$c6aSme`^r@3QFvN zWvFY?s)vLNh)5eH)4wP(uR10GxW#Q1vZ87ypL`N++MG%NGIrA1CqZnxIo8Vg53rVbSx6ISv$48y)NoisnQe z6*GVpooR<6NDWp_Zb=7D)+)UlsngO5PIaO-JKJ!QKg)Q8e`$8*%s68c@?>8Ed5Hrq z58n z7dg4Zie-zPLI|GHTHqlt;wT0cwAP&x`o&f0pJyf89WTr}{&+>5z?+X3OmYv$r-}~K z(!-wACL^9^6eRNuF77Is7Sz$WLNDE;;AkFGx~A{16Tqta1Oio00X-Gyk~0 zV`j9NACB=^@9XQll$y}MK|?lT<@pY&>0!~9Gbhmcg68mi9s^>q;qvHpQrtk zWQ3!tYQFKAkureppo{ z00{8lI{sBFv-VKQkXPvmd%T0*l?!TNAR(5eDLn?ud4wx90S^k6(6XAdr(#v!95jY_ zYnoRtCbiq8bzM}*+aAXRt6ID`qN<*+lPAOtW9Z58CeH8ggA2zY%yr66M&ScDn62l=%0#wVcszm4Y(7pfyaAM zHy)8TLuG{OjN_8tC*IiTnl>7*w{V81_yuWAFqp zewfR$+s>9wp{Bn=vYQr`aIlBb!a^4W)Jm7C%X zim`(G5zW*Cm6!Dm!M{QV(Y(e>0m`2pKaP29Rhd~B?0fzmOm|DDcA9WE=SR+U%Flk9 zT}Pcb&MU~4lQe_{opOBo#4K|@^`$pke?el%vdr4!YU4`bzDjIkMbo}vY`Aa+0J4c* z@CKjtoD4lg{KjQ1T4ua_H1Z<(nRa2*p;BIf@d35lLF3a%1k-J;oN+?g5qK0BR#}Om zBF%)nmkTkf8zZS19ufIK0NCP9M11%Uk5+o0iSJT&6NaJm7&H;jmH`e50I?KCdb@XC zW$_!@#LalaagFO93j#lkZeN%QF)%xW>^wg9dhqpN5;}ukEvc6T*r4?hpNNO<%S!D< zY7QE22i6|kjy%EhTVO(+56a6Tm0Bub5tp)UcAt>Wh1Di~N&&xH;w1C zYedT*t?*VCJhnEL{jUtruwv!n4TpJc-(;L7+H!&2L6V}sr_lQR>)XGZA~HCGH|xUh zItbs^M*OyVOXbCh6KUm@+UAfuDSRG)_TiJT%)%enbwxAOf73IG$qcA$rOmTJ>@)nz z#DJ8i@)$3Lm=+x}b3;urF?DB*0p|o8m zH@fBB;n_w^me7d{A-Hc(;Q>zxBv>pM!6|RV%D=nB81R?KYybkQ7nEoEYq+fiI^pD` zH#n^&z&*P18u_>OcE)N8OJ-=Z%3p^k0hDM5ri82aLClTutDvQ&$W*hBpo2-P`bfOK zohEmaml(n#s@G>J9b@tGIp3|Bx~4D<@*o##j9QET6p5Lc0_6HRy0_1I;+GI@+w`6) ze+<{}N_yPSFuX*w@|2tS^asA{!*X|_yt8#GFUK|r!0SrvN)&yt{#HvF;k$4i9Y)Jw zf|)1mET8hi<%wm|ug2`71+jlT{P!ZhOD+qsoe6T@q1X7q?B48ft7QxcTHo5m!QP>8 zh|$2+e!iB~S0Yj@DihJm_LOPNNt7m*IigybD*Nx`2)Owjozg7~+LhhiSUCYhZD&QaU$=)t_S3iwH4yZ<>QWl&Q%6LGN-+WIV~#GYQP zX<;EPlVhf%(ojU1)rhmnU+;^`n-6R}v?Mt2JVf)45Zs9MY@7F4!B5k-;8RM03`%5AZT7bi z=D~t`m)lt^k#4_UeBJ^WO~4Y`$#LMeWY?$K)1x_#<)8<6_%24-A zl7W5D{mVuemd_5$KU*#S6eRl{(%>KHEk(ez*U<99ktmi-3_uc_^8>~~ZwB0gUJHorO=?bJ=biBwo3lp$FK|-?okoo5npzQU(-D zZHlV;dVDI{v7iR5g2X<9_PA7 z;pd-wE8Z{NWU)KXgnevyKU(y3`4-v(jbB$4F=xqhTs3KzcPrXScG;HiGRK{JG zK&C4zW`L|;2IB;Kl3v=H69evsRQo}X&}}r~09k?rl#>5lhXO{u(r&}?PF9tk!{qEB zEhwNgp9bgv*C*T)-qXs^S=2}OAw`W*`w;=+NaX73deLb(yo=zlb!?ym(KL5~wvbFN zPdXQy|NAy1?pWk)utPBlh8u&hP|3GYCn0{-HT;3gc4*2P3osjfPJ=i;5=ng_cyscP zKVUBXE48n-;ISOf-TUQe`YZAhh7NNacomKgM1gwq$S;W+ItUnsZNglh2^JXj<;ZGh zskiC()s9PQi)4SLGiFjXnDA?chUea%kpmi z_qp6j$L!x`eJ~uEag8O|nijgITpm|%48rnS4YPi?`&{ZMWEQriuQ9rg-RCsc^MK36 zGxTNpPFr->X(_WG742S9nAwt7tIKNg4`|a z!S*~{F$<;>a%%2(D_G&=@GQczxJNvvy{pZ(Gfm>7*#Ob*(i9+A`R`*N6YGh_Z(CzI z%Ke>6DJ2ITV2CVhmvPnWB2GbUwN;x>>5Q_of$m<5r~Qmo

    v4oLeD|uyN41evsX-b8Td)J^9v_hclwJ# zzkzVCy#6@SC4kV+Dcj<|N3WNstf@xf10%YU>}H~}Cx9CV>NlT80ZrW!Cj|$|5P|c0 zg^rGy#Ebj2xbZX;3X9;uINXx`J^2BvvT(hpkGZSv`WVD=5jh52bcNpzWdL(B?<#$? zr9oe5(9Hw>Kn&%qmJ1c`1}oVxMY(buzpXacE+_H zYL|{|Qfa#8!r5bQ7J4gtbP$Yk|KVl+Uq@pvcWeun!Ub~Zif}umk53Vp>2r`M7dUa| zCNCEim>i;xwEomXfE=SU`wveZWo}s=;E0A5IT&V|-hTWo*KqcJx_mA5ZS2QV9&%lR z*TkrUfj|$M<28hFHN1nn|CXcmd!m@Tdhr*@G6xPN#IkHD=bel?{V4sq(V7UYV@k0* zVd~J&)pez&q^D5^+Ke)4-;5+#zpAh@|73Q+)Q;y!YhEIX4xxS)JbK?(YXAFl&rc6b z`ttP)RxGYC{X=>nEW+g)+TSP=&bZXk%P$%%8OBh5ZdJPmHc&;4b%*a5SDLdniljd6 z>T5-?u8Yt>7rh^fh9tlCTbL}t-Q}mR_!i+OLft|YcFR&7b0nS24XQ6S43uRw=1`Fo zD%&fR(FYBLURXwtqQU@j+T$RfD08EQ4`X(V1=LI~VqMk7_C7jYuG@ zu_`PK^=Fs5J~CV>^55FgyU6c6x##__mqXu}t|@pqek403I+?|@2l9YNi1J~v+zs_kG%ia1V`Mp4!QA<#Bw55!+vN3_~ac@`ARi+qlbmMdrrLS zz{_K+ix3iGKwqacKl5bglh-T7N-f^VxyipoBTu}YVIyl~SmKv=N&)Zhi!L+>x2_7y z0|39_S%J3db#Ux@=fbbxD>IR^ea$)UJpJ?3qUgPKN+Sx+rt!*HuE!c)Gd-F*dn!?X zVtwS(@9SA~kR^RBo>S!P_6xU-ImMJUEqqM#E|+A0!D(B!GqHRTosjnSde5et@<5D*BsB0^v1}-2%#An1OB;z_bFl^ufZoi z;9*ijRaF2fs^Q(We`uU*t!e{Fg_Uo>HV27YG!k9-_{r8TU0W4!d|*L0x#c$O?jv^E zoanv=`vT*$5I{z=j1etdMw2L#T-6PJOEGMw`PBn3I3~>DtKN%BdsCp8^yhm*DwYqO zd$+aG4PF8vgud6RPHSA?ED;(bZMxsQWBXhDln&zG*Hyc4e6k&AafJ^I2ROk- zI25+db#d4Xmu(j=o4CQPXXF`;&V%!KRzX(C+)2&XaevmZM=Pf*!;u~H?e`th#;!by1DUTv%_8+~~&-#UeRc|C8saH*XXNNk7I zx)|;%XV@=&d7?Z(sNqnhe!Q(4O_lZ}d1k?*qQPG)#ob)AWjyrLLM9{yOMHJvwtlco zkb&zL&+4HDBg&7c-}NP$85=7zWrCJ_oER5yd1s<^YUPUpj3O$}zrL{;Gq<6692e)k zrO~jl>wkf*eC5u^xrS9go4Za}p6%5`4_(Qi4UzGO2mEAF1r|*Y=vB7j?{u|zuy56$ zGgy^VlDr5XRJ{T(8FsI8pbZf&(dMKmMt6V#kfMRBzRlk|o*}Yx!pW&~RaWW4=ej3R ztN4TNZr~hX)BXw3HZBP5^c$8Ft*3|`4N;j@97xRx#Z84E8ta9WX{Do$HNV_>2D`K7 zQb$kl@XyoxyU@I+7)rivvcXzp#GBa$K3OuHf@NdaUltU_-O?QSDqPyCb&e}qd$v|t z`KyvC;d1^1nT3&Zgp+l_0&;F%ifJTvz^Zk?7N z4Y+=xQA_MASyrY@>94q=Y4rsRzKLQem(BM{*p2!Fr32cNt;Ar7S#WrwEsjn~bSeV9 zpxDwm_c?b+3tkgEdbq9GeioeZvNqn3I)#-ORYx&)PA&cPrXC@uca`4KK3iQK04iHq zJxJ5GpVwPi*CLrulNi9n7;#0-7=6+>t&>_J#}_Gm5Gg;8AI2-=H#%|YkEM6|j1ZO5 zE6q_3YIWM}vh}#zMhSJ3+V+B*B*Sr2Jkxlcc|Ne}CU4I0 zN$FQ>lPMFG^8dQFld@ZPS`?R zu2%1}6ouT(8Fg9&8whbUa%s_w5l4?cPtBW{ephX9{=in(nGUd;;6k zT-l`R7)$%(QvEA|`zwv~6q7>F^(i?2KfKz!o;IOp*xx}^sGR6A*ED9@h0vOY*qO)^ z$L%*g1b=j&?mQ$)r1%*3L)LKXR``CW$h&JZMOiZRelZ9rB*eZ6MDwm;OWaU}W`FWD znx{`L*KDp$;7x7GFN7P@F2yZ$rsdrx$Ka@vp1( z#_X%iP)5J1Bln?Rj>$_^!aIH($m4YJd24B@)0-XN z!@8MH{K^1+CkMe-tZQnS5%UN67kkC3Qz}@|=|8fSzCEAsve{bo0&p3dN1K%X3JS~_ zJEFZ6F=LRgxeo=1Iu!;ynsIWpcz$1@Grvd6@pX)m+*Ng|NiML}umC&Z!V)RYaQXuD z^>f#3VVkCC!|<6j^Ww{hEfBbNAspruL}VA2>J<(quYbNMB{^M?>z3`fkKw~D#b7Vf z#xi7yuHP1~_#=j}pS`1_)Nb_syfq$~V7h*9$1en)Xz+HD7f)18N*Okny@oAIN&CMl zGnrVu8TZuBY>c?lx#PyJ;e#U|X`nA(%! zZ66-!h;{LBT0Y|l01o3K3S5@;`Znre{VQf%M}5=Aihl98@h}p$y{q@%)KfYYT0Sy9 znGvD1r8@=JOMsEaT@mz>Q9HBF^3=-J5D(pWb&a=R%8hh;fg)zpZzqn0$s%D-1FGDH z2%DJKMTzHDPjNO|mCqQ1R>lpA`lsk=}-3M&TSCH%0hxpU;+Ve&sMh*MXLk7qRS5 z!1pPou!2JBvWBLn%bVQFjrIh^S&T!82@BVPaVtJ8ZB!Ep`E2YJQy1^w0(1sHXAgu6BnW7(I{W`dN*2z{GoNMN!wi z7C!8es3xMW!y}u0wCR6UJ~VXo>6pIV>3(&&?tC%fd%&-t4u{`Up*Zc}`m)Ih5%>Bc zk!jBA72sZpCqfNH7pvgpOxcs2L0o$=MlfdCjNhf8!>A~mUEg2S4qkUH9BTX(Iay`X z=1zS7qjV^rJ84QY_Y#H!k`VNqus1n$h%+{#+;&AWXcz)Y9^C}6WVteY>z*X_k=(#} zYCI6M4O$c$E`?*FtSd6U(cvnXev9AXW_1srZRO2ZDUf73q!Py(P zYI|u$4|u`_1_c&C$M>7?zfk1uyhpuWJKqy|t#*l5fkzfVzPM0~wp2m(XL_gHJ4!o%cznN=v=IZMGe-<*q1)nb8^h zz($4tFyfzw+!(U3eQz-d!ZGE7UHO+&{!X4PAjH?xy_oY09a=dnrx^#4Q@eGyN$_vF z%5)dixZ-3Z76UmcUxDafRH@B47*$^;S#?@fSQo9o3tD)bnl<)ZhCeKFn-dz{sR|8G zLZ{*`x1ruF7lSrdQ4o!gvPa0Do+F#C(&ASo$I6=^KB4Hu0Eq<08OWF->RFhN5Ifts zQhU-{AN+9~A4J4=>dS?_emuQS6-~X?KU*_N^%okmhVy^#IecG0-n{<#iR4+1tWFs4 zHB~=E(%6L@VyV6ml0k7by1r#}$!3%~7&!UQp*ao|&v&m@s4q3BUJe{RHmBFFkW&4U z(}{S`3RSB@i9G%Tv>}UbH7(_kSf-?J_#E!KY>m)p_OCvkyQ3vOY7pSYQn)-tPxUOY zc$nZku2ycV?GJEftv9e_6g%5X@;@a2J7P>fgST;Hp)_bZT#BP_JYcQU3NYJY$PORenp*FiVFkb2Y0^%yfg=<}Gx zt!3~z>^!=NZ%y=`Cv@$f*WI_#JGY6CnaYox@czA&{gft!&++xa@ZlRK)rUnC&c{kY z2bF8@Yoj?i60JX=V&kFJd@)HEGS;%re(!T>kl($X*-_>2(=}X<0}j-p=(QEy_A^4wFE8Y~Ty}@+gh?lR3Blm8^*YRO z;hV1>i+;I(4s-_vLCx7-_F^X<0|EeRgt{_|wP-*4W^1U66@D&9E_JtQ&pznG{V&So3X+EKEuFyxc=s)D@OB6O`S=u zfXlX-vn%M1>n>RSvW+BI2Dw-rJT%~!rCG4AJon^X$nN0JeU_7E7FZDc(7=1DdAs^e z&q1E459Z6Q!rj!%=fn4@lqtDrovDRrHEoA2vCy3A$+tq!!BbAo0u3wk?nWaF@5^?- zZU~KA_5IUni**9>TvlH#_d;n7uWw_UGBv}KHD_4o;j#{-qsJ=v;}&FuOn#SDIilU` zynp7@txJaW>+oL_KLduom`hMdF_B6C3J-jt?tgEw$7d^?uA(0!%iO)W`QjisutE^R zUgjb7*Hs1^Q;B}3>%`J;P`vELY(dW9p~$as%^7ZIqEZxh2XO4G?R!{2Dx}TjM(KM~ zL$=2w?*GtJgzYh#D#>&yt@c^c-g8-+L$^QST7Wro`q|w~J)X%ImlJ$oUCK)TlAbom zsXRYAXmIm5_-YR%9jLYr(sGKu{rBB43?e(wDX8_#Nba0>H474YI4qT7ak?G*xqha@ zr>FQx1(g<7spOqyX3)FUk<3?`b94Ph$swy1>2;D93%_SR0B(;N&z%e^P4D&vin&2| z#KAC=qrT0S*}b!SW!>t?_?5vRo)pdu;T6wMSY=?b-$Fjxh9%mhI^U_pZr;fk>W7b; z`z^O$Q}8@!dQ$l8&Q%#eX6ov|eJ9vE@lg8jgQFXLzEg5DuB!XE60;9U3{t7Vwc4Y` zKgzUy@xFa^mtwS~R3|Q+)zvqa2vnyD#>yTTSe{@BP!#FIPRq;%%FOwn*zp^+a5zw5B5s<3oVbdkPwE6!ah;7bdi7UPLZ)Djd(C4`GCMdiu@ezj7|rfbrjAD}1)gI{ zZolOQT=GtB`+erZ;6v}`Gr@;)?J2T@+l3E{YKZWX5-jK2mzzTylI1=C%&z4`Ki*ft z1BnV-kV7&1O--rzPbLffUkt82u{NG%ypW=+hN<4Sw=2y{%u4nfZU*>jzaXuQ_FA<{ZPuZeM z+?C4ql5h7?_Ph6$^q~7=h!DfmIQ6e$a2s0ta`k=+Kj#l_p)(ZcA4Ohg*Ns@wRuxIRJo3jDUIc{HtR~ z{{VuFe$vy(7{{TLugIjig@KPU-(?u))0K#I+dvIQ^wRXoP|-zBbijP^EB}3fr(w3o9dY z+d0Mn=z8J!qvFrSKZ!Bg=zkDAMR}{*q@c!^A_nrAjyIuLk%N6(2cgK~p}LFhKfHE_ z@~^ocbuauBi}r^W+ z5M{)?e8hG*ugxj-CY581!xB#lc~>p>RpnPJy8{7R*mtIBo-a)gQnb~x&4t7_CGrQ$ z1cBS1P!}HJvi7xa%go4hVD)Kz$LJb=!BIXu+(W#klN)yu>4SrwN6B;4au2;aPxvZF z$J=67D}4^(RDrl@t~2eAwW-a1dVE6DPJ!_s#QGa3@~ri}MF3I;)O&`OJdBgfZo5yR zu0RC3k|M+fED#O==fBdrooOzw?-#R=W%nPYZT|oTZur$|!W)}C0c33LU$D3*Z(IX@ zGux5HXs`Sg*W+v|vVUY~WFF07Hh&ynaq0dw`N#10#`n;8I`6~UXV@T{QfVWRFKle) zhIRAHtg_t88_pUyRH8<#s5dvtSgEf!)jTudWW1Jpt34|GOv5Q_2}o3bbY)bJz#Mwk zZy8oCrzR&#FLNu}_{ ziRC*ghc?$6M(^(*wVk8f@$|3E{{V+R0Qd>0Sv8-Cbo~m+jlr4jH3oHdw~=^QQ|9uQZIc!R*+1btTO+efmuic49(Q)EnVO%!f$%%Olgmj`JdF!UpgKec4vDw7Xm zPx(>%9WVSAgW}D*7~8{o6Eczr`!&uw{{VPh*T1-MB|`qyGR( zzpZ{k=pGIDN2F`%ta!J>{{U}mxDxW&16?J%rU{lGE^VS*#AmpNvjE^gQFTvV} zh?i5l(CuTjEXA!Y-dOFnvXB5paCqSI+@964#!24NdJ*iY+RiBb?X~{^g3EkRTiC3x zd@-O}qv!YXt=Ez;G6{9LI0vBj>slKB0Q?p=;|75Qa^CnuLv@&Zj-uypK-tK-IRqSn zGBIC+UlV*K;e8jyvuWCPoVG~O!#TG}?j%U0njrEfKd2~Il_S?Q%S~3?42~KbsNC}0;1Ca9yw-0MQKdCEVtth>+m#=+7k}_ue~Y39 z8h?ZIIOQXUbh~h*^!W|K=jpn>8~FbK{{RI9_|yAG#TJk8Ust+qA_rLpk*8ZFmYiJ) zD=R>fyUxQS9(=L@Lb9r`&3x~5@hef8WQya#UkjdPa0jN@9eZ$n>qcm`W*X#6h>H%9(DuLWouZkZl7 zo?9_W=G2e$kU2$-5M&kI4BniU z>Hb>&hw_V}{8_j0h0c|({6f~^y}Y>6ts3>O-8aEBP(ZK%Ta}5R!mfB56fQZh8`ZQu zQcY6kOATvK5Hzl1@~pK6k6~lCVMW?k9SZPAPAm4a;P?CzaAaQ*ZZ-mdhk<^P|S`x9Gf|@NNV)@-@Dl@wZ+} zbR}Y6?0r1p2MRJUI39oxYX1Nyv3Z>&{hZa>KhtRN>#O_4eNX?^`wzw+75@Ne?*x1s z*ZwYems!4+-%Fa>1-3VKer?2Z&lEeuPo&%es?U%ga5&=?_>22r{{X>j{yAuxt9&Q; z1Fv0KrNx_R+QzeUZKb{1$omhIqutrs*?B%ntdTs=6qzJ>A~r(x_1Ep;@pAtF;RozJ z;@fK*=_Y>>-f6lr#pf|AE!Es*T~^ub zAW}@17a`OnG4u?~4%3l^4Y|swBz?4>@JkPjf3*k3y(DNa7lm|fZg}l%ZMAr0ONi8| zV1m_ME@Y9gPCTg3Kzba1K|ix+>_y-Y+55uQ(|iH&qFfuBba&N5K|ZH(8=z%*A9-|K zF+NNxsDzLfyYX3;wt_jKLd)Ji7`_C4!9G3xk-Sx)YQ8gNJ<+U(4d!Hzt$%9y^^Gs$$AWa7M#ka=8V8B4r1RmDBCZ=whBYEZTy6~b z&j$w`4SdVtX%Tg+n@F$~&Yq~ljBK1a{P_CUhh84hd)ppU8)(cR7P(BJ7dF@>B92E@gK^#<3b7DBZ=m9 zrtY1Om_9Z97t_8D{06twbd~XI0Vv0B4Vez8C(`xq+@U%?LXoQRIm(VpQ4(C4**BxD$jpJP>>n;_rhz6ZY>L2aW(kRTpxlJ4^3j2z&3hF>i}9G7F-zDNH6g1UTMwzl|rci}w_Upq_q zWY(5y@!%!apl{=wQ=dHK2|$i8c^*avas_3P(u~|=Ew6S?VO_<>D|5r+wby0%CE%?; z!~$f7!%5j_Cu1YD4>QQp?q*`fX$vu9^EXq?dDfTU-78nWmsQr8VX?DAad#^pl_7|3 zZQZaG9R5A)-aJjHCa0zNXTUMX<=pst!oDB3yI<9sHPI)A;$WCXC4tBA@#qKB{{Yusg8DNwfitHsAEb<^DVX|k^vBWMF2pGwAaw&xR`w>)8dH1eFPeEqTxYwf?;W5UyEelN7wORzS+ z74b#LP^KWe4}>K6PveHwHtz7%`L~XBjaZF7=zu)YjN;aB zlrR_&$@3hmlAod4-h~O0*3qL@^R7@1hX-;K`Hm}))pRH?^}%m(3eOz=R5HfO8aIu? ztE&USQVs|;+iKQL@Y}~)4~2C`d9+PZ_$HTgBW^Iuy+6>VC%73fG5hP4KQiR~R$pEH zPO6uY@yLbdSbh;*;>!+-v_6+5ry4tB!CWiy1u$){79#K7S-m1 z!~Q(HlMKtPUPl@2h?!6^_5kG9o@3 zwuTfwo@23YzM%z4uUUk$c*ZgJao3D~6>H(V$p?q8%)c`{(DnZSWg8!sY5Mc;wvZ4{ z$bTLy=rErOJiJ^|n@H$BDO&Ei)DVIsxbVF0bDWimXh_G?J*(hfiTahsh2yK&vVuAM z`x{w`$O{mBgkFG*=N$VCSLk=e8*likZDYpoKf$`z2T_GjMRi^wCg;Q2bm|Er+9b&Jjpaf= zTIRg4C))Tq+IaUF$F+SO;=K<~vG{M`U1rK9j!T<8O($SK);+$dBB4H|W06PD0bY_( z=H-1)Mx%C8N09tBdx(5rV<%~?}a*in#YG5Ow(-( zUq_aWWq8%5=)r*m{MgPw!RT>bY4C!^U3cP-hxC2N{U-6D+@yy2t>#n6yNhiH$d~RVGBsO~$RU{Gh>BV@>>8Z(5cUm2dw7wRx@r9M`&YHFskupe@ z@=RL?%E~*-B9am2D>Q>?0U41&7_9w4v_-VJw36*^red*xh{}wKy_!U3360MDCNs5i za4-&)qIfev)?vD{vyV}=iGO$}i|pQDDYftzz8^e^0M7560D59-`o*-?%^sO=3$Y&x-45#@;sw1#3x z1b_!M_b0)tsINQ^ZzC{R<8Lewa9e5T0QJZD#e4YdY@-B{JL_SSrlT#70)N@l#W-7u zCAG3xvPdW#w@`DEI`P#0b#F}g8zSArFGB5*5Z+PyjkN8;fN(N0aB>D~?5QsFX19`5 zibV^YU<02_`uo&2*Gn{E-2#Ki+y+j2{*~l^XjOV#;&=*a-5dvn`~jkPXG4=ugaahl zGEB+=W6*kGM{msYTtDoqs4s;-YA=Sm%-fl5{8gsfI)Dck(|=|*LFxdyVtt3_?H95U za1;0fs~*GD*UJ9@+RxxGi5C7Tn21+E*R1t7C!)t;e-+s$8U6^fT45?me97*5*lKZ$ zRzB(YW2BD__&&qJ7ZQ1r=!n`=x#Kcv(lwjs-*hKFhP^^K0UT8?6=+g;bKWO z`zMRF_CPuWxzwk-h=1R?l-7l;i-FG-{-yAaBiiM7da3USzxgz(0nfXO^kXy%abLDHj)rF zlJGH!xaSs?$nqSql$EZIMR1Nql)@heJ?!(SLYYvJIbO|OY{g;gB_8~NQw;H(GX zT-WZ|enH4Tt$&x5B`CWy{Ya8c-E}M@$f@%Z2N%wuR*-JmbF^{D@0|3hBSKe! zgYEu*r9I=ykU+@?f%?`;N<9b4+1Xo7Y?i3;qhY|t>33xR0N*36Z9%E%@QBHlhot2U{Ty#YQ7u2ji9)@k~5<;}PAA;)Y9k+cOm^FkrygcGKDe$%M`_r}I~I0r?8Nd(&QGp; z*4~wW9CC;+A`?aq(qh>JqSHPH2E*7oTq1F(xTNq8|pUir|J{kLmQ4HlEOJ0 z5<3{=Zim(R$fWqoVXbE$jy0~wt`7sXwb&4#g$L+ zf^q=%9ji{l(lLP>90QJhd-ScT;rW%W(lMNs&s5O#AA`C(TuF1P-D)n%petB9gd-%8 zxQ?fT?N&7_e}nffvMkrg6cMu8(P9MSzV{3Ky*=y9WrY>@7CaiOGblSj{HvxodurP= z=JGu*(^U9dr(1b3=$997lHP61sF^?RsbB}-O=wB+UKW8vMb1<_QQJt2<6b`tvw>tBfEJ7fNkIwRcz#SbXBYYzi_Hq$&0aSY8g*E(rZ^Cy(aO%31ou?g0#z()cMc@w;NozE=agZaH z77x1)tT+q^KBKRG{cF^v2MAc=oEy;^dM=%(*he(i4Y(vyG@Rq*3Vkz*%J|c-#Sg}B z6-8-8-QTJdI?WvyxUR(fm^+aldu z1{Uy_2jzDR&6!wr^4BbRBCz~FrT9ll@o=@(B|44Q*~7&mAy`8rx|rmOZe2-b!vGj{ z+C^<$`0r5g?Yy23@jjMb&80WGbc*6PQM4xY+!#o>z&@VYuMF`NaLcLb`mUB8H@wOe z;kNLyE)QPDxMz=)(~Zwsju|b_tu+seUk~K9j>}N^bE0VyCO}OKON&j4VsVKiTXsHl zyaDECIO7AF@Shp$QLfvFwCU_^-NUL$8zL@7G6@*(QEC1^@fMXCX(LOJqX4;d<0Ot# zuU>elwC^8W*|TShNY zBYaAax;I7HDsWVF+Ii{@MS8pZNQzcAuvEjK3O$5wo)G<6;>D;~Bl^uA9^vxw4W(5=fH~&_gU3@*-DTuNFe8rT9-~m9nQ1jn{9JdzLF@J5=ojw^PH(fkSm|v-~-7d z5_{J@e{l@fa={z1c@g6qa0m{iaxx!C?!@}$xJcnb!KRs22;G(B@J3GFyc+2~ zBx%TF@F$3^2wQuf25H)ICzxbA^n1(eNe1EpatD?P$E9)eD1z60+LYh4p&d!;I&=s1 zG)_wB9l9BQ8y5*}HIf4&!z|mk9#EvLqaMc~06DIf8(k12^Iq?YWg;l!XDa2+a!UDZ zHph%GE~k-<^ImpD?!Rkotx1KHV<&;*o-Wu!Z0zN@ zjy-*&nIR4(ZzL*hXvimP%F3+S9TYYVN22(mQ+9&?08Te3EhM!;!R89 z2Cn`p)MFOL=xt&$QJydrm}e)hGNXWc3|Bv<+g|9m>~x(%A{iPJHM6pV<_s`WS3UNV z!Ov`ST<`X++>*7*f~<^LQ}{vP6O4O)KJ|X;^HH~UxxSg^lZIz1smKG6r_-lT&b3sz zVxlQcJy_e_PgaqNyz(qy>;rJ>J09fvoRWR(kMSMV^Xv9kSF=b^D2?|?xP0iq93FmR zFiv>D6{o1`Uun9Q?^2me&gMrfLgcqO;~4xaj@R|A6k9EXmryOk&l19hRP!I_0PS3o ze(~UQ*NW=HQ+LrE?X#qU;l9hcTlZnHv|~BOM;XsS>Ds>3@D8(U2ZBBt>RNJ2f;c=w zr`!qKb3E4ijCVklOB-2jWd#^WNCSbK=dVohj->r->purcV15tj zQP{MSOJm~m9PJ?56kq8Zh(J|N()LO+OJwAOj0*i9!t7VF&v5PaZGG`;^*%eqOh2{B zaS>e={^ptYJ&n>ThE@enPr|;|{gf^~)#D4z8X{C`T1Dhp9YZSReR%{NSLf!Da$ek= zBwrjnKWKPMsan*I-@J_T{{W8kukB6c+aPH$@d5M~EirBt;BzSPJ|gi~b8G@Rrgwwby@T ztx_xKfJ=mn##c=m%Dgy6@=jDXKt08Ok=$99(8K1KiVfLDa!YQKeb4ouhqEVFFQHZM zC`JA0AOF|f)7ol)`$GHz_VbJp*mG+i7AA4yB zf)C>7#b1irpTUn9*lJ%3bvdoIXuV^aD1s-pwg0!@0@Dl&E5`WEVP;i8(<_AM9o$o;0gJ>q*`6!>$;8lIPbWis4b z+*rC>%M_`|bY)V(f$yGc3rGE}ziO=#?I7^)#IF|Gpu$HKI@S8G-T7BO2<=(fEqq?pPG9+7*S|4XRZ$y-!T3TpvJAde^JQ`4&-3GdEHKv|KwsuU% z129DX6&S7m01o_C_+M?}&1TwNe$>6Iz|0Z+#zpz|{Hx9fARhk!TKHS`Oo9AA@Ymu^ z#lFEB=r+ufLUM=glU+%)9mhOi9&w(S0=(0}Wk2B}@eY1f3vUvE#}WC!ab7IxMe`-H zb~r1+PIhPN`}}_RL2VzKF0u&j-b}xqLjM3Nttagj@NVQ!r^l~EWtJCs5XCaH1M-jt z%#a;`&rWe)nyuuB%&3_NqnzV8;C(4HEfV8j@xO+l(+1nijeAJ4P=4!uvi2BuvBAJ4 zz$5}jO9gCT#Aroo#SAoCvHLmue|XQp`p3hs5qKj@)!{mt_=Y<{Zkw{_PqI~(FiMUP z43pCrMdhX4 z!Los_u39**BbcH>hjWt4w+I>WovO`%es?rZF;_dG6&po9r@8+C!AO29cvHZiwKs~s zF~m|<_-?u`k!d9EtqS;yRaLjsfk$wI>@Z6$?BrpB08asH@RRnw@eYOJ&)M(9o)ywH zYb|Q`Q)@_JSZ*VlN0w{oqDcJ~`AL6IRAB=t=hHJ|!eSXVD z(QJq+w>LU{g|(Cr!ginCw8X2p$|lxk!B@vu;NJ&o8V-y`zjC*_we*d7sNAmLCcB%N zSyhV_j1jgZ&Js0L906Y(_?!0G_*vo)iI3v{02OIEgIHPL>KB?OkzgXqUFsJOX1ivZ zWLFItCKlkvCXsMU5Hht-_$hyZE$-gOL+~!CJgUSWw%^*qxgNexo<}`#oK`e&wVYIK z&{(I>IWzQb%SE?WSpXS0&N}hwU4^xj7%WFl0sjC#_4y~M{{X>BynL3hOQZN7N3$0( zmsgth>hEq2ItZW#^8&iB2Y%7t@K7I$nk3ry!;J$>coF{qbS(6RV;7bMkn4d zFsE=e)_gtqx$$D_;3w@G{w(okwSRGAW#OGEeB0^6MJ?v7G)`4iqejf3GB&9yMtH?@ z*1~(KsV!~!o{k?cs-)9Re2?2Jtu5_5S)0PJD7cApDOkY9(0O7y8l(F~d`$RJWgH$E z*L+W-$1U#tkUj0Uobp8~Iy6AOe8}BHh8(Up0tm0=uH#Cd#NQqu{?-2gO^)YW^5ZuQ zW+9D8ovZF?WRY2P>N#~s z%g(b{$Wu$X{Wkv3_BZ-R?C);!TrQ(=3V3BwTX!KRmJ2n!Vyt-!BbNH-J?gK(PabJH zr^5Y4;_pg{Enx8-@<_@@`by7yt(h~~Lv15(J9*A)xcF0Mx=+F=beI$<7rJ5&yc>Nc z5J(=uv5&^SS^b|i>lyw9Ug;Jme68ZE>uZ9%?Pt_P%2kF#28ELZcgX4uejST#!fkbz z`Jbj?*YA?@I?sxKwMB=Ae``Gxz;-?ux0RCKH#0P$cH%3kM+*_-<^J`2vHt)CXZY!< zc;nzsh2dMBF5ceXQrB%RJm}?PBK@8TrN%t5!!%n@BLMo>BjZhG%fuhIjl9sGHEm#y z(oaD!vYIyU*`{7A%Rk_yS44a@@KV1dYm-8A#tKx|YdlaY0X<12tq>swZjjb0PRLk#xq*#19_ ze!S0;J^SJD-KX6~aCS6qdEn$Q&1m?7;s&*uRB))-Zv72#9vRkQ({85o%K~}_iQn-HNw$n-f8iX~?T@zTY~%`0 z)DkQ6Bjd;?#2P&E43^OBuumMRoOADAr2Z0h0n z9Be%6&kju~`CmnY2alPflHhan{{RXwa{cnZ^||5FmcQ3?%V}|rJN)LnUstqvWPw}&3}9q)oORE=dhVSA{{X_6wV6|k ze-K{J!9f;!_5vAy}a=1N~0T#Bn-pUjDmAq zoPV_E!w7+b*TRNA{{Seq9sNaje-nNW=sG8cEzFV`lHr{Jke%ZS8w8Gruf2SPJ{|ab zPVlwe-Qn|ZL{dnAF#)po$#c8wVzIe3C`uv5ShjLO;XvpB{7E(Ubog%#{J)DnZnA=lasIy(=sk1Cx(|%?`L&M^ z*e;I*R`J5{DN-5Lv%lmDFhR#m``6VU2L3DAX#NvACH0xS+cOe(g~m^*1ob_u;13CH zYrDHEhGyRuLm&1*#(jDYde_sQ1QypYI?EQ~oGSn_ILA(y_pU5%RZUOWwVRDFUf~rQz7!|{eXFEqA^IizH zP&9y;l$>=cGmlK-yKN%g*K40CK^Q-DaqEsN&Bo<4X;W=2OsHa%npBFT{ zLGcp|fl_OGR$wv6!9)K5px29mQ0Hm&JzL5y@jpj?BWp72pB#K`uZ`YTuXUyBap!t5aaYH3h6?F%-sGG+CT4`@1(ZiU`UQ*PZl zpY&{ZCcbvI(Uw1+DP0`kec(spG5J^djl>ugOC4I1`!bUIn@9SAk>mZo28D0tgkRqj z&bBzmNXX;3>6}%URshI=ouIcI9y)M%tQc)I2-D@c$j?GC$@+f3(z+`hGg_UN5h@m7 zLV~26o}Rp)Ok%ueNwd~fdmjG);r{@HdOo$GuZZn@VQRK7e`lt7vS}L8D|>z$?AGt( z+02Uam0-AbMk4{vMtWUK;J1aeJ1e{GZ^u?PvD#|$XcIH&`ud3VOL&a(*}in{B}m5d zr=pIgzC^t6Hm#~ds0r_85$X*HnFD~092|&9Bbdn~k=&DA){EiW{WikqQn|jG@@u)x z%ae{xc_0>FkHl7L1 zSYHSDJya}SG}7hcf%Xkte!pP<0QFZ3rdiwF?vu^gx3S0L-mVQfhbloU?@d!n`u_lc zWa`EAI>|ga;mcV#@jjgDG52kCFns71IP6KsHC(HqlWU?n$ow~;OND^;wP*0> z!PiVSc<)Lbat(&HkUR9S#dkVy!tVjXpXq-Pw54Kr15MW(uhUQC>s&h7L2Jq?{c%vv z>keEVM?dHP0Iywd3m2}rJU_CR`*MU!Pi`;MzYT^7%3|gYLn{wx4 z;79{~@CZ8yIr&dU801yLgd+9*Kgfkwx<1p?{s-D=S623I;^-xo>rvEn$RlkNUX06m zq^Xkf01bf)BnX9=6M_fIO?;iJKA>c2nXz@f;0tD?5FH1L7HJ{D<&@_jd;0^^nnhGR zf-G-oB~4=b`%x|fO#XPYsG#i_@2Pr z!48e#Uko+6#;I&?tZ%M^62r_ylwTsB?`M}yN2RP%Nm^G4q#$47mR(f3d z=06$h_PRv3-|&KXO5zI{79n+QrQi85`HEc;ifTk|Dj499cJqJ%tPM-X{u;W}oBJog zeh`8;MPx~|+sRk~pW_;eZUl7sMmZeU?0@W~`yuOpwEqCY{{WAF4Xmu%<502Ed@-%) zM4u`-wOcEj`NSzAVU_M-FKsIWg07<+5nq)4EAXDX2iWynI|=nm0lB=JgnzW!5`JWI zF)I2TfcdK3u_)+738hDQ9z#bg2mQ6<-vjsol&*049r64*);jj-QA6=Y zNm1^k_~+dEnVRLush^ zkHY#UlF%!Nj)!F}jgq?MgFU-TcFiefCFJumc;RqKq47t<15DK8)in78*0UgNkl~fN zz#G&t3IWOK*l}F$w{3r>cxy_xy0MzkkuHgLQl?2KaCVKuB!yglHTEdhG(BF@-%PZ+ zv>@5Rb8!sO$m;`mG|f`t!pd~Gg-_oMB*Eh&a)1v{ z$FF+yDWxr0g-LSkbm`)F^l2uukHWqZ)`YGIlf=3*>enfS+C*~;m{K^-0SE!-ob!R2 z{ymO%+b@8=8%Klx04)3>nfB-HhxM*rS)ye|h_>=Ra85@A;~(Qu=WtYzu_NWiK<}PC z{rVZ0%3=bug2U48Ta0M~q95h3#P{{RRt!;Rba z>>dxa-M1OsS)_IL>zwn9S1PJqNKjiG4y5~Z>rweqZYWiXqVbXUK<$%RwHY^bzT*X6 zPjk7l@y+eU%g1Hl4~LR$LgyY3)0ikx^Dzf@037EPJ+H*6VvXki0E9!~^}9p_h=;+N zS$QzqSVqPcRVqGzpBY{hlTY}428A}Y{h2nE{k5p-LQ89FDdZ5LEfHY;V@VPtuF}fR z=NxTP_^xe}U-7;6blWwR?JWRU;Y5l2n0Ve$kX_GLBbFyPsi!!pS}Mi4O2=5AA3RxP zkv^5-?+IE;H*fO%FQRRHpOl3*e=Zk;lG!|hI#u0A_KEnHG-~2M4S}&7o({MY2zewT=`JA-q{V*bQnJW z0O4A+o~)NvOGbNz-^cHbx_yPM{mbe0_WF!ob)>_?o*z|_1_3d%>1+hZ48iZ?%0MhCgwi2-9o>FuN zwg*99J3}~?N}b{eQ{*;d&J)`Zgb*Qy_#!K)%{{Zl{=#ttM$+0Cfx+JuW8ovpHOnt49<5qslq<~a(g3o%s$kMxfNI%=C$9hIH$+Q<2? zn$fB4`Jk@TR!hClvA^J9aIKee>Pa; z@>KC2^hVo_%BLWHTYtf4zieOGZ&2~ChqO-!Ur*xi82CCH>npU=8*Z5l*WY9_!8PzD zWiZ@YI?659Og;wThOg%`>-LEFpFPZzMI=!xv0#d_5TKlZ36PQpPI<5MGmf%~c+A?p zdRB36>8`g)zsBeKdBD|b(aEsXaWQIYHfgIhtGD4}|Iq$>zu>O_00g`-`#XQZKzvW| z_u=$5R{kGNCquf^zq9Vr^4e&pv(K3nzGJ@EWNa*f7-N-HDo^7Vhzd5hbnE*g28yk!^gkyP#+Qat4uabljzzQcGISg<|1RZc+Orh7jOUu1317H_|4*&Wd7W{ z+B3FNMhCFx{A=hk=``D9W(ip|taEpH0hPx%CjeKv_*i&HTD7>K9jXPb4RKT^MEO&-F>_FD0_v1croHpcTw(W9NAFqtCz zFqHo7i)}k(;BF)ka%<*~4(n-Wt!j6#G-|WzFrGeVgE0HPHV6 zV<=&SDod;Q$>e56&SJ8(ipWL=IYP+J4mSgyalribpTk=8_LsJrc=Ke`H4!WrE1jm- zBhv+W`rw{8ubyor=VR|_%0K(g`B=k^DdsmKFU4L!pmb%h1I$gw)4UA9TIQkxP zex8-={{XWcjm?k8{U5|d{>&^i{Z~;BfX8Gyb;>J%0U)=U$^QTX&$zi?*}I(fw7FTr z{@0rAhm5`<{4AOqi6ok0_q)Q4qwN>TB9MBp20k)5!RStF_S3_@J@6Kt;Xf4ki{jsh zKjAU(zLRQ_K9PjqG+t5?6iDczNM=zg<-)LzFX6X_{w(;aRQ$|`0C2hFZG^?9^$iwts>ywEb9#};LX}dep|=Kd z%y52FoDSd$$IyHculTdXQt93uwl_1g%`3AUENach_5k2>&;n0jabI@-0KrCn5d1Fq zE&F8XUj}{{eWJ@s(k*mri~lS1q{YszL%Hga;oc3D3me8a^!e+rcP2 zG2qQj^s8?*=9Fpst=eXlo6c!WTU!oJalqvKpx0gwwN*uP+nL|ZbhgmHW&OQfAaxk-GC8Z|wJOH*k>7-?hr>QvYS%w${9pT7{78cO?(4_j z6E%MhY5GO=)sOaEdW84H%yJ`XlHA7;$v~@dI*thn>z5V#eftA^aQ%h9Z9jp{@K5%k z(DZAI%c&xS{a$vNSK0fNNWBf{Cne_d*VK?KBcbBB)8X+ zJ;b*XIVMvf-o?oqvRjf#JC9tP8ulLz{A2Mq!EFynx9~;eVt3g)31eA7X zdj2)%<{3kAQKanA=-}~il%?&KhxK87{{RFa_;aoNVbm{v6nt2R!nay3tlEXPiQ+&n zE+C5MbW&PLlWlnHrSlZ-&y-=m%win=a(>#su$RVf**{;K#U48rmtGsaTb&leR<)US zOQ>4e-OkYni7y#woHB+aFwQfIt?^_23hU#~+V{hr8rOVX;oUPp@i&CyTX^*iC`crj z&Z)jh4%ESr#tWca21Q_N(!MSJ(H<@RsXhuXfgxAblS`XQzPM0X-ZA#XfX^y7c*Kpl z*CZjq$i;Ke;vB+?`kddm-nZY@;>Pf%2CROy6=@`W=kZ75KBM7phj)Gt@bh_h*IM=E zshvUH1TblEqpFdRCEN<+jui3pV!S{05b(~a;r{^HyFl=EryeeBE;MU-kxv2AOM@vK zXCMx9&&oIzgYk<}w6eRiMwj>6rmy17MN|)*rJT0b%tsg@O8{~B^P2bX*?uc%be$el z8)DQoUCo~7>`dc6pEGCbYsAc;p@sKW@;n?r@wM!H9pOE0PY{0CejwLEEM+e>Q~?QL z{(~~x2FV>;W>59&NBk82);Rn#;dmm+5o*^r1E3jrBv5|^kPpVG`~$H%kL@4gCAi$P ztez#D=dM>(0hjOx6`}tC1wV57H-)5(U`S>@yoE^5^y$+z!^2L%f>(pMm68*roCpW6+&_<6>%JaceYaJ&gYJfrI31fKjyUc`eGVRn*2jtVIQI0uT++cL|$&Gqg{1G$_;<%p9Vu-fF0Ub0>7EGN$^7fkydQln_rX0%-c7_%6a^i-3D(Z~pYZ&|ohW&(}Cf-^`EZ7e956npBG%50sH2u}o&2TV5HB{v%%T(A*FPu&o(?Dlmy90j-urZTr3Q zO*`?VcQ49fTA+=PV>`#N+8q|8cAMoUfY72>DgWgyrLV5%^7j40v;}O$E!^+11b|mS z?{v|gu}9Ej#%mg7C^4W4OMx-8uw#GgqoEg5nMqzUWvSlGYc`NCF$4XHqqRftuH>G^ zryI17yG(oi?Ak%Vq}pzKWDV}e%n9=RM;8Hy=kY@Q9-f|Nw>eQ!4i6ddvaI{ zzGc`S+}km#sGzz~f4`I)Hu^~(#aGne>{g#E8!y-|n=lJ=ocL{15JzE<>V$~E{lR>b zMbkg72I^B~xvfn^Wnv1VMP?lXVaH5MwOdJ@;gtMdy-1$Yi^b0qTTbt6Fq@Y>I&V?Y2?^wLj!xAS>=r8=!5DrzRdtN^a z#H*$tPG8dPH~Yl{x`_2%s2oGG3-0JNTpM&-ZZ+4wI)6OlHG>DJQmk}B zBO1b1rFM+BevuusL)Un7pm1rf`CDQ0D)Jz-@U8_A$K~IOG6oUdUt){MUgwj6e!fiD zHBNVusY!wVMM3OkcyB4t0@RzGKdsI^JT0z-!G$=1^_Kf@)+CcSF0vW0CTFj?Z{!iK z4BOk~MS@vKgjuv&I$uan@fncezoa8V;c#;tWQfI4lx0)Tw9u=|YLR;n-V{_yo{+4D zd^{O$Zd4Nzgc{%cz8D(IX+c9fHNb-`gl@9IJ9bez<%yVwz{Dr71BxJ962%t34MM0a z@RqQtE!(8j5%~I&fuwrd{g|*YHwvdLzA=q_Acl*#@T}cYcef(D7uCm!8EmqLv|5&}Ot_n$L7o>ufu5Vwzb=|jqS!7u zg>3EPuf8n27Ha8IPIeWVt0^+)wb}B%$hY!M&!YE8puQ@1A-{8B%I$CFr)eV}pz>sw zy{n+&3Z!?8x$V=qEM-=2pxVlWNan{Jl0OH)!m>0OL53vL`+JgK&xTzY-+mtW`(aC@ ze_WT7)1$o%saYAj`I<^91Qu=-I=(DeJE$w0^!kS!BQYa;(wsWgDnPJ1^E{c1h^|0oOdqrwuA2v?qH4r8z10U54K zJF3j0+fNVMj)IGy`_p9mKO!O(-M$VVtp06mC(d?bAPR~VPUXzF_Tg?lDdU+UfXc^Nst_5y|;4*w=h!~RjOt)DQymvO#7tgDqmSH>R%ln&`$37^rLbX`f?^M;*mu+GE=DSK?rnpv{7I9Wo?N`T3{^-~;8 zX+52N*8hmuqhc2~jUrFsl9=$=9dyr4(NK<_fIF^krrQyg7y|m*n|IwXq zGE!lYQV`nHYy^MSIHB3Fr~&YmeyTKkL`E2d)JMCN zSSL-->oz_h8_=YZrlsH%-V-eA*gNbU?vwVu5bg2y$}UzxF7~Z+$aqSzPrZ!(h!zgR z(?_}%nRVrIN4+7&N<2*u0qW?n15{3KaSe59fQAnSNo@7Y>OaNM#! z%}~s04H0jq>RFLKbH;bMWJ^X?)^(U>$j`LiXjf_A-xcS2+TXlJWjb;jzo_eaTa*C?LZZDeRK_sf8mbrQG`Gy+{Mlbnhiz(^KK9DQ zX#fq==U8S!g3rw1aMy=4qHk-Udusyv=uLeL2rh0N4Cy8||E+ z@}D*^Z{@48Y#3VjLK$nZTFUq+kd0dfT>~XMc(O6Su+Ck!{%XIUd%7tM|M2^b>;irq zP{9BR60>%)pOF@&#bztceSOtDE|-c@dV0v9zwA>5J5o^ur=&BjEd>cgiB=gSFB#Jk z@+Nj!=Be+q_q;MMs>( zE^GA@6n&&d>gMTltbQRs&>9eD3dYoW(3-x|o5-&r6`8nKP;02^`$I@eo{AIJIo|Le z?d*23&T>y=r04_pkbAgy<3A%b1hmnyxL`R7ui(J^0k2G1RRhNJGD^n9_kU>Lh(F!% zIv)Xkmv1kU^8mGfIob#^Je)4Vz^f{lEvgzU<5%UP5p60{2{J=MB7C9m+O^|d5AnD=l z2Nrh)rFlndEx|{3DXH8%;v&;$W(ip3+5_+!V1c7MjesIL!0BdEKou&hTjKoBOq#6^ zBi0b_5Xc9(XAO}$9twZKKLkzW}Dv7IuqXFF#wh0xd*o7Ifg}KnYW6SyED1gXB+Aih3iJ_KlvN;#@A} zwH*z^e#JVsUWH7G5+BM#u(ku z5?0br-eT!M(B#EiLtmV#I?`KJkF7<2j0QgEDIg`f)9qE;iq<=3HCNz7uHN(;E1y0{ zT)W>oNOYe`cSx<2SASFf{@Lg2ZEzv!e00ZZ)K`p2rXAqDeynE%lZ{B_*RILxFKK>%Wzap4dPfp7( zW@Fwin%wgg1zz8eKaz2FVocRdC?>T-u;dSC%a&m|g2kfNsw*d~WnCv7teI|lK8W86 z1%Kg2SmVb4)!R{L?vI>WAGNSAwxnbYvZjS(d9mwm8_BD_9dG!uoA1WtZ1dFg&hH5C z7d)FGM5a!7N_0dD==3%rm}i-+j8ocGCHutA^mOphh8R90!Wev9`om!9GfBQtYk zaThT2K7@O1z$-2GF17r9UOb{nSYjk1BJ%jc5DxHBdQ48l8!VDzL*8OX_KzqNdn?#G zUVHxNBO*rNm8UB3tum2yjiwi@qkh-T)`&@WZuagwsYuy#Eb$PxjLt1JS``?m_iqeG zxCMlwb|sTi4x1fiE+hGyUSBSgk8wZo;~Es|6~%FlN_%8{%NxB*ZW&h(Zzm*AzOUFf z_>hxq&v}pii)A8gq_qf&6+cA*!kVNoQmZrFD`ZY$iTTme97PITnYj+re#wVxvhvW*p%`VA```xgJR{K#mG*`8?tshM!g9O04sx|1A-yb(wMpIZ0Qd9#0&4u zp%fFt)gwA_!Szh>bKrP0Py=%r#k|+65y9fZTS940@8!+N_}GjUkA3YnkR4aQu?iJe z$xm2gv{q=&F)Na_Qk5nmlGtW!BhYR&q}oHCm$!zQCUFFsIMS{;K1-0edu1Q^>fs!J zI2cq!**-Zl`RPA@t|5@;SoTG07juv-%WZ-zUDv^X`^hK!k%=cP)pe;AD|f!M!NYKX zQWKeo46bTk`kwUKd#3|Tv~;w6q_~uF_r@bYd^j#NAuOCiH>o8 zu6Ii0G2gH$Q8lxVM#^r)e2^uX~RC^B;c*jcPy1o%jUaZKwIY1u4AC!s~>O zZn$A+B>StTx(b*a2qmlcy5hcGY^62iE?FnEQ}isQ?fXI_lm+w^rJeG`oDxIKlbs~M z@A}E`1pF=avq51S{Cg=!13IqWxv*lzWqUAb6qaO2?SHQHaH05EYp&yB!#RXkmG5uz z{INz&mC=jOoN>;Bv-BP7oFx$=$W{(GrPpm2yg9C95Aw-OjYUQ^$lp0|jerr<#s)qt z8_*q{{JzzS7gWl9=jk1JR#03n<4iQ(|sntI@jV<&c9)kxJY;r*LA zWFgT(SBgjTqYCK+t$_0t?6V`Nm+OrV?tKInoC|&MJF^273d{*NC;QK*3MYm8~xm4H~kX+&1X_W(LV9N7*)7cKW!mZ1>4A|%0_*U6rOdv z6eISXDh@9+y#9-E+jK_2huU!cQDDHyvyFd59^LO6ETOuvcgqz&T~f4%kf*j@yNUZ@ zS2H;?oK{E!QhmBo@iHiSM|V_O)VT~~J|TyZL3F*B{Iwaye@->SQkfh4E3B6^=Jpx( z72z*zXiWC$&h+)>d1t5VXR#7EBAvj1xcfzTViR{O4MV|0vs1d}l_R{PHYWM`Ip0;B zwkTQmD1mqg`38w?@Ev4Z$i2xRz$%DAH}ri1fmhR7NJqVqm5!8&P*?De5 z?MxEA>^(SbO&qjQ5mH`pouhdA8`U-Fyubx`2BAEjHSNav>e-yM4vaH_Y$Khm`Lz1_ ztA%OE;7XNPC!Ap~EhQFb0-v*(br{VnC84%h7^pP{@gP0ils4;M<|IA*{Midh+%{PE z{Ykc;-m&a9po73B$vOdY;#mlj6y_GuPISWY8a?d0Nb#e?x7`Sn;TL=J@6d)yB@4JS zUmXsmM=rem;){|g1YqSD5yS69fSd}0z&e1v`VzD77{r% zP~?TZ=oH;dYUq4*)Bn2XY8Ifemo0vF4j%=F8Rr$RY0bgprj3bh3zl~0(V*X?13%z% z_X913Fy_ghm|oMrxULDYmlp&@n;=@@P1wr|)6Cv30CQQBM(&VX>9Omvo4(#ZB0lTp zMtwU1eU1Ss1AaJ6IG5jdFJ(Dl9W5*?h^)wuNrB*kIF{^xM1P~!r&BJTjM8=l-pUS> zYdbRgBvtch9u{*%`?4m0dhT$)XePbLDTj8guu0SBd=43NEg`24Ihc0&bG=SFf%uew zAon)j`Hf@RvGd#ty#mDOgW`4N1uwM#8ICp6BtHx|(!Fr|q;je~v37|YeO3^{rODY6 zNxU*%3vrR_W5fI-nubs1)}Kt9w%Fgpv?w9Qy$3`6)uTyUho8K|d31XNNkut-TTJ|2 zlrJ?>mf0IAISKQ`+;G$wz$*xv#p7?fd{C(jJ0{ zALPs6Gxm4N_pt9lN$WT3djgcpMn=v$Tvd@Y*n};MpBqrgBcr?Vy<9J-_N&AC%Cs&Z zh>nG*i-l8O^18x-$t%CHa}D$ak$hsE>dCnJlO8^TPc`c%)Z9S zec_2cwDa2GOC_;CsJnswD$7!Mw|^VqFI|~oXf(e~Z_<$+Bg=r%3b&f@mMc*3+NP?G zn!FQ7ZnMp_r-rBB0}}JQabn#u9LnFHMZ|w9fSmDuDmE6zs|!B=o6;efgzPXgFq-LY30SMA~tb-vz8C=Kj-!qX_hplq7OScS}D62)M1prc*2qL(9ef7 ze>4t1g-nxE^isE;Ld^w^q-*J7gT=a}mcWOZM2>L&8Jeqfw)QA{vjr{lUSF@#FpCf) zvyf3{zwgyxS}a_%2~k@~(@(rxE3{zRFD$R-G>E}kBT`Mscu(Epy%V$h}gMyl5zv^pe!j^fQsH2LQhJeY>Zy@m62p9Uq!C zFe2s(b|*+e^1K!^G?oZMHH_xC1Pi-S5&XXkf1ydB_9HKgK>XNfug{Ix-h^6KYn8Ne z)>7{eP+&EIYZm8Edk1^k9rVcIP$*lVwsq!g*P;vm29+WEwA8Papa}Ns+_tZ7aeYMX zQF#A`VSZw9JwLB~=Af6V>5w@83(@HNsfEF<)=ETdmwtz4wz*?D#)T7iJdH=<3siQ-3apy_i7bNy@uFH0WEghRmsxpJ&X78h=DlrkgZK2)u4%D3`naK5y`0_1ig(X#h^pf{6*P~k(u5&|t}6#PExW7^wR1vyq`R_H5GZ1hbA zYYstNn@7RMEQ23)mgYx%Kb#?lLi1>+gdK{rksIiw;|R6a5f487Oi?|I^8NwWW+4id z3X7>?joaYx?w2UjLJ344Zcgx(h;G`IPkxFfV3^1W*58lFOFyqenDN0;Dd)sdUPYY* zh|^&~xZz#?qp`x~0E7^!K0jJg~(;l9EN-;zwOom&;*8jrg)P59sNv zfyh`jQ^@qY$|u|&y)4ZErxx-dLjdB$i$v_8En0S>Tc4e7+6Vn?jC<;EGp*y|)~|Ke zKJ7l0J?BpA&grkb*qr;^AML(_kx%k3QBb*++WgV&@iLP|=j)*20<7jI=i-IF6lR~1 z&z4PJztto{!iI!%JSnMoN6+BEH{p)j>7P$Fe`^jG=Ul&SDBHGUS5JNA64Ge_ZYL$E z<~jN&{TF6{_7rQ*i0@qojnMK$4TZBldW`a+;LV+oDPR>aG7owYjpo{ptakkn{MDz9 z{m~&`UW3+4?gc)xuJYmnZboOkQ*)&wO3G5FE(`KQFa_ zHuxP3X5mD!A2DJ02Re@a;%Gv1NdbbIVgtFlVotf@{yyAm&~1F;$T{x56=66x>Q>YE zEd;ZkRJ>1xeF5ve0z10Trl9YxAMus0F)|>>}!skpb=+SeAB_X_f znXIEeWCmZB+0jdX_n5!kyHBk6xhC3`2k^7!fbq=$Y(c_}ZaD1>R}r3|u=Ds8@CU2G zsq@V<-1~~#973)jY>v3c{<0ivK^TY7HdS^Wna(<`f8aYm=~%s{u_y-;{F(Fj7cR_h zA+pbK){Dgja=GgH4w$!KaIsU^fj%_^9N;KtJ@(Nknuu1WOa>LCHvE~1g0a z!>b0o{_yFNwkZGp2J&M7=&+ zC6E{fH^sA`-LOfnD37DYO4S(;v*MP8R!&Da4QFJ8d<*(ZrF0ONwG!vjA@ukby)h#` zDoFZoJJFF0xN?JHnuz)1umn$K?o3_@@0)efB#)<7_X84V;4c~i>&fF$4fZnPC4s4_ zRu?k8yT%=2fb=_lN{y4A9E?iC9C5)MQG~e0?U<;YBs6t%Ex`eQR(vCVVd*<^)BO&XR2~RII za`}_kYcIa}>Qdo8h|CTUEnN1HF*3n{^f4D+V{EfQ96tp(u#)J=b}9fUUk(!)b!NCt z+|KNiT?s39q@j;>X)z9< z#V;oO6^plJt?X6JOOWCS%gY$UsRUVJrPc+$U0>u`Xf=b$hSyvJ6~=s~5%rN;lX2ez zMJSUm83cQ`h95qqE$mD-V!Z!wNLsG!@MpY~!1C;WKk|V~gl1;GH5ZKKNr8ks#x7hC z^bHEHk{otUY~cEmL8mrIe;%|tsiz-iGHpF60Dr1I{u($(*Y4-Ydl1`=G)Qphz%#X@ z7re*KjrUWSZlsK%2t~TuA1eX019eYXPYl3WBfM2q(VAlM+iP!dl?}2^LN66$hI*~g zo+?B)U>yyIaqYLKvw+gTUL0?#h=i}>rR0aLCv>l?OxzkEaZ22YoAYFxywA4NV^9dH zNPBoLT(Hs=(}_yY?N3e+K*v_1QeL@sS~r5!}z=Ds_z${Ie!n|=lhcY_SN&O z5x?n;&y>`~3U@SYe@6_OQFUDSF@GDE3^^jd`(HWf7U#=8aq?c`r)b`a!1ACT)tW=P zSrKIDWj0DaNS}E_&~%V^Svjw#@rb=mtz6xs-sav%_01XgM?HS528kM;4Z36^(W+9O z!?ku|Z#X|y?anN>)HGm)Fl@?wh<;u(L-ZB@r}TAP91KJ ze#@KxZr4DtdHePj8Z@#ySV|M?k&_!9ejHiNvQx@u-K8PA*~mnBhbvQGdqgV1q)>DN zg<&1{aM^*&^}Nb%JEP$FM`SX!Y64>Z#8F_WdKE3vqq+%2$KjLqX8_dv%H3KdMFUWK z)M21}#PHKECW@?2t}}}3AB7%_3stF|2urZUQWX#zU8HpJNHzz>qqX8rZvRt zW;Q?kn-+c68ZEkS_Uar-ngdDbU!&0RJw*Mfm@Knub5jZ$ZUXzUBTieRy;Dn5HS(27 zsJ(i(dpVX{@(F=O8pV4?D^5;3AI_0zp}rPuJTa6NRdCESk+;4(&}x#I65eXyZ)W`8$8@Jj-ScgN!kKpN zs2TL5kguyGz9*}qIUQFd#_H3*O&qGl8VS3DU5a)wf}Dndo&WCx8j~f*0>rw8)m6~; zU%d+vt&c&;DDTp@RU5Z*Vf**!+Z4$V+5Fg#V_0-vefuPrH}B`(=Z%8 z;fjZiyx^|EMkBVsRM>3IG}UB@Hx(N8rBS<7Hm4AZXRgDDEKow2l$Iw&D0N~czyL+O*&OSoh%&TQsK98Kv{NL=YO z^%3oC`W6S@5eFD!o{2XHGF!eBd(re=mU}AsTB7vZ^EU$${GN|21>1;xWtaB%k7qkg z!t|!L@S_wpQn621LW@+vyxNR5Bct7u5U(#?Gd%&J!c1wzHCEA8+$7W`o~mq=6oFa? zE56de^+H5r#4ke=EteN*kFDN?C$CFyCnY++WW8j{)iV^&jQcdO0`mz`Vf9 z>KR>7nC^@yt@O>{g31w_Cw**pmrx6psZ@f$%&qhF_uJn-jM9RrV4!|$s#R#ugyCdf ze4Tbh`*XMLJd*V7S%X0j$(fYC69>_eRO}~AWS0`2ifvz5@Fo6jjdpL@V65(4Wi3VC zg|E}i_V@>>>nIfXLC6%C-I~079&4hVKtJ-?%6=g(V@}z8MGgCXy{w)K+D=8gILy)O z5x7>YTMUJHgVJk+$l8e~nBaN;h(49lp6U=zKoIT|dIa_?X1lv)WfmhDJN&y@dC0rGy1PU=K@@?eZlXY(sNGSTYaza{BROFlWag#ng3p3_pOVVfg5_j6= zw$b`iZC>=o%RA*%>lW}@+Mr&~)~qLoWS0yFGR;NnwiglLmUg4}Q}{rg$I8g2F~ zA7I=uHP)mn#r(~USwt#V_J^CAu7fW7mHTuV9=Eu7eRw48_PHy8@iXc6b~nN8D~4)GT)PQ`QyNN| zIne=l<{#v#gt1n~S?LlH*_8L`h9C%@jyCsshPGCc^FSkMrlQ528Clv02_V9KqqYVS zs$vlM{*$A=Z?rG2tGnXsm1?PA>Nkw`H&btu`AZzqT43-M>T1%~p7$sz@gI@E5T>&_RSW~&q@)R_K~ zb>a*e1-mQlkC{ILP=nyznLvzh*qWJQ^-CWP&H#gmwNy8ox7R*ho12;ADx=`PMCHl| zrnlvTV0FU#aBq1`n4Ho10Hc=gj*655y5IC$N!$8SG&)WU`iQ*x%t!9TXfEMPlJGhbqVJGUr$E?4p)ki zYg7yN@6d-^>uiXTFfwg_{pixA9x3V+l8y7>kd56Z0ZD|?T<k(NfSM^Tg(h+D;=LV9zELTPRDh^Y-;C#1bD#hhi z%nf(*W@claI}6ZZ1IFcjIKOVZ4&Tn07?=1Kg6>|zk^bWQEI_Ig|UJShuS$tBkb}{CvvE#qeBL@h_ zKYhQcE3qA_#ASjv%FRo!;8y{7eEa4Nc*}dhD{u$o*Cn|Xy>=Y+CYn#=YIwN0Dce(O zh+}rVaPM*1N0t3k_R!|mHDEi{-C3N8nU`KU;%6@bB?h5g9ge=61Aj%z2lz>(&A>SF z=AP&Bb7sw|wZLF<i1fr;xCz*p2gX*^(x|=*PwGqEjpaR#DSZNH6eB45zXXPn%UlJ z;;}ho{6a&$5cB}yp4#6@QJt0=^A@BvMs^qz=l>Q_t0c3r`Ss(LUVVKOu-|B;9L_9H1d>u5*1(rvODD=T3UeQRxRMgYdH7Gw{U2D|Ui728<%V1UtP$EB1v}`|(`wYJMdCDNZ7Jje>vQV4|nh-JcDyJd??-ZuF_nA!Lft zq~`t0DzZh1#nN_ocWVrcta`zM&L4*Uv2f4tiq;m?W4ir!gQAmo3jh_pnxR1J8$o|o zu#f9%v?Sw1amWQPbKc?dpX@+ZxTP|wJK&>@l+)*R>`__Kh zF3J1q_>nJn3+j+*eO+M)O-djXIcJT3FqMlRgOMOwqiRo^m`iI)rj7447lfA{aUo*O zI_UtvhCO6mXGmP1Qj0NPD_nToM(d$c4jHm>!lO<9i2_;77QjyX4VkGFOX-;uT)wkUKi(Cudoj`*H1N z_KEDP{}-GfC$!d~GN!Yum8D5abU3#wZ5zgyoNIp}m8_n{s?x^9vNgxt6m{nn>{sDh zi^=F!OD)o@;)brxLKA!IT!~#k^;=_oNMjMR#u^4)#^3h=&W+KrbCs#{EDkx1NpnZ^ zUuY}Z?zLH392;<>3fj|?;}pE$}bCCO))SSegN-h*toRL(dgNFkU- zgFsaOgL=UiWIS4$LV~+y^*`MsQ?gFHE%+3z=bHdRk0Rdri%VQHAB9NI-BzvQ#+8Up zxFa;Byb>o`l($V&!rxK;2bUnp#LeX3K2(_y-c3N4%_*xK8r<|?;ri4fQ;sVt>{K>J zs7WhHmZnG*1qJNts8;${X8=AjFIG~2VN_NO3k!`DHMmB%%xJb zxKZ0NcjGhJ>8lz)uoF0;iZ5E_N~}~@RjrPabE=|s?GhD|Sss~z?h!($DKQFy;CMQ>4u3oPSSMnHd{cCyy82MS?CmW2t%pDXs z*k9Y1|D9SU@&GOI)MRfo+5L~Q1UyWHLg-1Y(XUTYBZ7q4lU9p>VXr_t^vN@(o=h&{ zWvO3`U>@AuM6O}hBZv=Rn;sXtp37MUnyf)XSLbi34lM2#2^=V^2B!{Ubijqh%wI=@ zM+m;T=Li@1_f)^+BaSqI&rHu!1{vvSl19Y$z^v06Tb18aIW51$`LTcT>EDgPnGI%L z<5G8-Bj7Hqio|Ec1b=ZFe|vz4+3l#2v^kE$@tNk@@B=S%`hH!Z6mKZ z!T7iwN<^PYHN$1?C}Q!+$|s|^UBd$3sKb|$tW~habQ=Tdy#?I@U9I=AH>E1pPUYGj znSZ89@XwM;r(Y6=mO_tDk##bdu|E(S`$&QU3Bc}~bdVqm+1#hZc<6HOFELzFRcVruV zHrC7`dGRkK6DN{)fi3@HEhLq9Xo|+N?0=e+nJh3S ztzZ7UQivCEU4GlgWZf=J%VV3ZUZ2ma|6yo+3vqK-7OyFXqZG&SbS}xU(B`mb-18zt zo>V8QF0eqdlVs%BdgMxt-s|>^L~@Ya^%OowIt@3Q4J|U|q*zS{25yXSq>1%bmdnWS zm=wsHAsLCj9La`x;EK3umgZ_neMgtCE^{X<_!bQo+MR#t%D-EP*rcjmR?uAkCIO+) z3fN=mK$*#{TH1I_%oEzHZ_JYcq&*f7Ef#NkX1x0-gZay{Yuwvj_sULn?}-Ur?WAz~ z4Tj6y7tUPN4>E2WJ#XZ5{iRHq;pZ4MGTZi~s#jJM1lU8$G)#HsXTObzWeqZChAN4f zv)7Wt<_yG`0}}lI5y_{ieUU z4=udz)UWp;NjCJW3UOVkJ$%{QVM3Xv)MPl>Bx$h+Jg(4V@(osYK|HAR1{P^SUD{8o z<_BC3Uv~)(`2_7v>xC*}=u1};`7=Hzz{&HtIiHZM6R~G=23!=R2)xtNvg$6dZYu0Y z=GUH=QpqG;z7Md(n2uTSTZOAt3J#pSQ90xE(o%R%yU<5kum|K%*Y}Ja{#jaoTMur3 z*aRl+LSnfQt(_(d9VxO8rhPQ-EVGi<)YN$tINsbRy3gWV(D7MGk4buF2i^vlr&Gc< z7h5Wv^wct}#mbV&Z*>@wXu0ygZ7rr~nJyT$`a2ZnxyHX^SWcrZl zYx_3Xe8kNvIPNH6rjtMswydqL&6MYeVG9_Fw{AM42!0H8u8(3_50y1)gD=CdFX0Ea znD1+VsA}MX)CFI2q8t{r%3@!wRVDIy5bkg#B%8{iev`_n)E~k7!!m`BjxoK{gY?Q| zojY>Y1;}iLX1oe~X=PEJtApdwohk%-45kT`1kX9a!3`Z&^@U3I6Rouj9q=f^`Uh$M zI^YYEt+g8v$)M2P@+ebrG5^2v7{!Ef#lEHcS&p33Ui?ZMDWQyaf%M?j#MT;kht2I@ z+2=TBG>2>|${pgH0;Xva%rz6Fb69?wHoQ3_Lb|-z=;GWc$9xFVL4Fj~Lb>Buy_{G5 zl?mblI70Fp`p;)}OVZTUg?DV@%xPVQxqj ziaRv5Y7i3y>|zWtROQzE>ygk9G-w~_WvnyiE}Adc9W#{8^hyo~tpTrol@*^VYjs)) z2T<_m$mQ>b+{c*A3Dec77L}z2d(_XaMkGjZvb}i};1Nsk<`WEPq2Y!hvtUM7+^baz zc`mHks&nmk#q@@ffR^m%j4!4X1Ur=mknUFZg&+7UVI*B}Ygi48Ul-tBlYtl^A?(C# zFne!a_Uy$P*CkLN*(q9;w~EO$UD?;Z@JL274}~?C z_x?qmFXg;7PrXu#HMllIu03_S1J#1QZ-p>n2^}4w-ad%L(S{NFTish=x1MbF>Y>xg z6i%cD{oQUtWU%hwXwx}14~$5*OMA+wuz4@`hlEgE>&4}56wnSl3trXg9A@ra>tYwj z&aFv(n>=p@XuSPLWLY!n=8`e)@JHVt^}e3^uZDEl<-HXbM@Dvob07bk`$3dgzZ+is zD4?RY(@xUaym){~ApcN#DpM}tCAI_R2Wb+4aPS2c_t9c2Ad_H$?NOQZktytq7m8pUq7X_gal zGxbaTw?S4;`DbS&p79@%WGp?bD{U(IYt|s~%3d0TS*A#&O=&)MvXETAN0FTVvM=u) zv4~^JtFOo%i^Is9``F`)ySLegvUh_VC#w&A7k50cKS7}#BS%uCRTP{C?4FH-8;_j7 z(WspOe@geUc%~)`-g<@1Ss+q6;8?Deb}(fS3mVww>es!@fJTNdm`(7D#0qku@zC3E zm|q){WeE~?2p>ysu}6>N9xThTMBNfzVtAN)3C?p&_AxSl0qIliO%LjvZkN-Jtk0o#dq|2HFW_y!SX~2Hb|1z`5T534y0%x1qB4f^d2x>wsv) z1U#C2fq8FU`zZ3BVfnEzv{=&j-%JU-rkiE(|7y*&?)6fyXY%7CUqhtbu8dzmh!>3Y2(&#ykL+iJ5%VghT6W~ z1i}PVW*6vSo4Kx7UCZt=rp)`d%9whjqOTL+y-vR_`*5at}?F4w~eBtf`A~M z0)kS~4HJ=;?woXtMmi?lEg%ij(%p>iP8r?O8#!R?|L*;?kNe%*b3fO0opYUYocn;J zsQ3QB=Gr<)H$1hw!lm7EQZm23JwdtAfJ9OA17)O}rH!ol_7smS7}K?d;^4Z$e;Qw& zR0?cI_@(4DUBFNyK{cxJ%#o}7UtcV>N?x8DY7|iKe0ubVgJeTop)KG6^EZyl+m77{ z)rjT;XfHRnGdi!ASvUDu2bT`ce?MPR}n zl~aZ`sdwW)K3j(#={|hdrAX?@{IT${I+^FT`F5#e|Cgg@lFXOa>%qcH=wEFrCEwo* zmM{eQdwwZ{%U52+d7`eH*T$YJY3ADbf=I5K>@$U4ndsK7wa~F4; z;;#G-T~CG0p$L6?nZ{r8*FcCZXG zmv%(^#$S!Z__2Cb)-j8iHRdB~wz{kKyuCE%$kv~m6h&Zdg~z@}qa9w5(rw`1VI-}` z_Q@s@8mbg^6o^wg?0>MT@J8>P=k|>b9IAJaD7su`$)&0M)+Uiy7AN^4H2xl2#tFE4 zcx#`&wZD6u$u^h;AT}Cg9%MQRq-zh}0XZNmXxn8^&GE~gy<&-bwb-@7&=H#w1pF6I zK{_qnb}gmb^o}|vz5LkFIjZSQN`o~IEP<^WXpoJWr%p(;!@g8(Q;3*5=8_q_{rzC; znBSl%O!-&ZzW8mdLr>p_o)Pq_-UZU;Q5=B=!xKtRsJTmjd-wNmysLMV`LcL@RN5G# zULS8AR2Ju5)RKHDkm%#(Jmaaiy(%OgsL%#P5l%?d4y*@AI2EHrJt zMlft+)oiuBRU^)p$CpqP?+3mA7^B0H!Zh;CwW-Y^Q4ZVom}ylDX0_B+vOef)MxtB@roC8T3|Z6UfG3}lSq>dJ-cBB8{aBYlaPsB|Q?X<{>$D4Wv)~_BJg}rbIZbO-`Ns@<1%!mXK`)&g=-Oi zSXyfTKrh~>GLCO>#;&f6S~sqN%j;oSQAz!8PI=+3L9iUoCuU~miU1(2B`{U0L&IpFk>XW4YV3Xaz~A{-b>ZDKzQ_!kbTn7VZ$ZtD?IC4HHmg*yQfDK!vc;n6=2$nE&W_ri$Rl{aHWwMxDhWw5TlK|IemhCdvS8cSdo`JJbE% z7|949%Gn`$wP9C7+W*Hk79jmb{JZQ&)D2meFdAMrwOYDrT<44adeP%1}H`a9zsi)r*)e^SrAYX%r_{Uy*2R?a2< zB5-}Uwy>?laO*tVTn5he<<8OS!9}Wr-(mFQ>MapW7S;A>j9}B~P$*5C)@*Ih-Pcz* z;3XUXT*0^(a+&?@Sz~T%%}9P9+pCs@{L%j~PL@xnkt7U#u>kux(_{W$*Q<7PK)ZgP zcI-7Y;a&5+?yrRBIjbui`{r|0blN@EjlL4a1Ip;`P}TpuUl zaOms8K61)$!Zxnc<4wMr>Y7m})=C`ffpUkTjegG0y(3hGxL!9eA!UkXvA%6Zb}ssV zWELlM!G#4425$MAz)28lw`vQO$H~jc2wD1C9?46*dsLg z#%>i}_aqWH1jgv3D)i@=MTsJYRSb|CI|v#*A7`_-jsMPBlD4Apim|>NCu3a3Qi;Jj zw0(rnVs=clZheSBRRwEk3hZfs7bsXgFQKV~xU!7@!uxBUF&&GzBi_6B27+K?7&tT9 zft)I$J%jbE$Qn`fVMvKNlDXmU?OFjjPM?zASl#X=WXQNs-qg4u_P6w<7!h{lm;AzM z^(=K;X;gA}t7L6Z)w4EHI?yHOIq0=cA4D#2y-y@8eNY+yH|PR@(+P&ZmXL*)%w4EW zu!3kb|0s|=kL@Wmizl3t);+9Jdld8!nDu{|Io!WV)?fs+^DW*Am$zWzbW=WfzacU_ zAuY+DiAcDuos$4Re(+a|zI*`1B7MOA7TZW=ZjmHp!VGGNL1hZ*CHk?@(Mq9m`W`~&2JhDLM5%5)?}le?PMu`~2; z2h|1V*!?a=0Xsm;Fz_xS9M8@iOCZ`rEJNVDybw?vDL_unD0 z)byogrsIwt*lQI0_J#qg;h|MS1nh@wK}l&)U;n?%3t)?BI)BmS^BcTQ8T7Uvsm%Wg zxK$3!XKbUPhc64AFo0QX5W&;H=TAidTeYCPrkwQtniai1D0u-O=A5Z98n3ZJd4+BD zgY`xVM?Phnfg`G*Qv{g?F2k~bYdNd0{3$N zhZfQVZ%C#Ow4*{in2tC9mf!v*Gv`^w7cKrqQ1|`{UtBTx6quKV1Id=8zSBiKJ~|`S z7gE%-CNeyL?Ds5j8>|{;lpmO0#no%B>Jti`iN1|OMT6~$BIl7p^MVYKhRY!iNUq&Y zQd^i^%goBEfx)8i^s#b;InOod;p0<_8^z=u}4x zLz+I`hIgRR0<4ZD108PWWfD;fOl%u;W1M0(#aFe@|6xkp1@yoPryJ1y52JQ7jtv&b zxD4!VZa%PG$XJ+mpvG2zCc)2ZQdpzzU31WX8wt1inb)*A0H8*{Ms?sgB^v6M_i43) zW$J!(vn?|_klzfExkA8D^jG@Z)C@BXK?BoELaq1lWoh-}A_4|`=n*x)cQRGAYi9#U zo&*5=qs8NzY7+=?)Qj9Zv9ubmfZH(KCnnAF!IjSOX2*Vs?ANh2v9}l3E%DcoroaVL z#;*8ndO=vxs*dys$tZ1q+vx;4HV$18v2N#oFI=0bX@*NS3}P+wd~nXOdyWs3^QvK8v#_+lrVyW;petk&g0_a}vA4s;w#s)ck zWo;7$ww{ha_uqGC*gFt>f8}|z1&92Z@BCP!9INX_#$$6u(*%EBeEwYGp6Ytp+H(lU zRiEt^K=LnqL@Q8N%p8D7)py8CX?-=u7ub9T_FN}yi(?K8|#As>lcFH4J* z$$(8P?VoK&E%ouaW%sJgU4s zi6m4R(T=p(yTunP7q@Y9R*0*@Rqx+@AYQNPPj!k;SjP#R2gIe=K!T~RH(M!F9Hn!e zR;AvM9jR=nzm!#2Q-{1G?Ma^C^!eQzQE^3oWRDAuYvy4$HG-knl5NuBE^9=@mIl zP&)E|w&RSUnwb~gO?<>N=uy?#UR_+iamF`QuVj72$IBe*(?H9}Uah#xvRsDbZka`@ z`Q{R}FU*NtRR3=DOW?AyPBS**!f7nfNyrp zCaRo?mN~;OhSsIjXc3@+%(Ev*V!Lx_lL47m%Hv>LJ#Tgx<}=|v`tF=zw0(brLk!U{ zgz$Irmu0tsfEOU;P{0F4ao~L5%qHfU6sPGg` z+dqRiIW1jQjBFM5JT4dZzCH0?0GB9`B&5T+w2Kg%8lr#njEl=^i%4Np|sD2orS z#aWjv#F2Ye4l;~$H6wyp`4u6QVbGuOiS;u!%?fzN8_KGi{cZw4Rl|Fd_ zDyrOjrCuY_x5TF-y7}v4v}c+?&JAi#_b)gJo@r7ku*(xv7LhR$OV^Cnpr=fjGSN!K z*M-Up0m~(;G&?uhjVgBmB?<=bmJ7Tiq-E{_C0xeb7=Fa2Jvu3}12%gE|j z8JQ(?U;mtaH))TW(NxCnYV;IyT&nYk9k#RnmpnTC)=*AI(|a!yr4-IglWOs2t9;RZ z&TeHzT-+G7(x=;REh45rDlO$*T9erZp9+^E^k(R}-Nfl6^7%M{2+q-Vc0OTHRU<_&y(0~OY06Q~~+5sA!`*Zj;An>X@=oXyoCX_n)SQtb- z&fHsmFKbPTW#f?;CCq(b8VhEY;sl9h%zaxt_h-tKtB!gb4c({f;}F8RkBKZ|V-UgX zmw5S$zJX$T|3bI_8Y*MM0*^1mUFz<7YLt?y8NP^? z`iPh=SEOo31XZq|)D8Wp;QD!)!8!0FQD?9=nDy0^_SQGO5o+roib#PDk#n3m$8p?a zQT#>*bN68l;Ie_xGqZZAz@IAf- z177+|le$4Hu5bd4iML#@*E3-Nf-joeZ|KEBmXRp3>!nDz3VQu;Nv>DS|1fEuQsVLM zwr27~R?aT(OR3d&f4fJ3-DEk^a0bc6huZ=tYpyGrBKn-}`wlTAxu=cOJ%(`gZm$Xc zZlaDH3Xobd*}UkBRXYJPp{5Mu($e9pJuO#cz>lW$XT8owZL+z5tWA@d`V7J# z*oo{+(0>?-j=%LUeQCb-NIy9A-jO}|U3*rH1IbiwVu5S>C|i`Yz(iN%Q?ZR~lr&s@<^Da4^Ts;6Z{$OZ&XlzLO*OHoGs~?OYiyoC!jR6s;Kb zLECJO45le04VQBkbdZKjf_c1eAa;D>M3;M&|M z1U&I+2rwmDowwaM2^f&%7LQBb-+Z?0vco13A5r208kH-2>lT-$+D|F9`Q&>I2=j_X z0h%lw_=@85Ey~n80|~%lDBpqpJBKH9H0>mSBFbnGx*7GoS>Zp7dO`evKV?GCr!;pCfsFc!-s9BA?Z)Xe`=7=sGe1yKMZ9hHG5E)i&}%U9=IHhG)oqe0 zVNq6*PV+0_Nnc_F~+I5a(z`yotL>v1FKdK&&{r%e~JWAFYHB+)8 zB3@hBLst}=O?!Qr3bt({5p((bYv|S}*Y3BSW4U+9s@$yLd%+hhQTs-%1VO?q+^2jx zMt~1fIHHtN$^WG2W<3lf*uZ}jL*cJZXN_s;W{dcW9JbrUvqeRR>5iT9^{KYEr55 zn*4^1o;&=ME#8HhcAdNo5zNgH=FtRG$IHD4kd=bW?`Hm-j**eaVaD&36%{6w8=FFr z=igUY6QMrwMs#=t>#Nq!Bz>*hh2Rmnk8fM%tL_x8FcJ%%cAxHO?))c2*kILq1DRb< zQ#n{h>0=R6nw7TE(SO&&)C+5;!M=lB4(}4;51wjr7=jBFSualymhv;-GGkPUL=Lm^ zFQh_ShbQ{!+||8@rRTpVkROwax%mje$8-g>dPb%wBym)ESM#eQ`ntse=<&ZSIGK^x zh2FEQH1mlE`||Bwa*QK^l}7eb9~YXqq_kUGGSz209aF!(Az1o(q;yIy#C5DJSro&o z;WA7wCn3L!FPp3|6 z%Dud~Ib>YAi%p1F?eUdsv1f_~1$@3zYPH?vI1s2C_H%B%wtjI?Mw?hjwnuGU$ygg8 z#G+}bS=^lcC&7Q0?XSy+*34bCg~mPXUjr?XxNr%qa~9uwhaLts!>Knwq2C1}>vD3j zS5T8iCLsbBX$N|76yser^N>)oi8n~AAr?8eVmu`Ft>Mcy_*rh@e;8GI4mEEL=qDSx zd??vyAABE|)k^<0XAV@onusm?i%aA4DiMsne)H++?hC1uvc|VW@w)S-fpdW$7r88T zC^F;1pl))qQyFFeT4G@ewqwx0&6oCb>qqT(Vfp-Z3)i5uNRA)m2jh-=1gpPX2)>H! z*#tqm%@L{9hVpQ6#YJaFw5pQ`58-8vumHI1>Op~FmGEg(GilfsJ z%db%j-MV}DCOJN=8=htxb2wK)rDHx?+?pA6dct?OTUOemX_vXgVbXuQq5mgL=%VtXeFB)KnfE)C}I|X6N z0}M?bNRVpkdEz*eV4#qs_@FcGx2K z5z3GH{^E5AE$q3o$2W$Y?#8BlzusvL=rQe{C6b1tS3|s&U@XJ$!Hl^}ZeD*Hc5^Y% z?ki8%FbMMX3F>9xqw=~P47DI7CdB}IdV+46)I|F$mm$&~rc|oGMit61Lpe8jKh>EI z{GkzL?;tuMihyk8LSUcKkdA4bMOoldE<0L|C?U;wm3+8kTIwtie>4Jee94nmn@amU zt$1YU&|DEPw?Pe8m8a!&>#VN&pqhDCsHCS{ytwLlf!K-=b9OqNBEob7uX&`+dmcJ|< z?N3EwDpl<89fD`yFj>03##9BB?3yfcSu}rRg@=ESq=_Yy!YgU<3=GPnkd8 zUljiC$^aTfYtc_nybzY5E^=8MJx7^?YhEeqc8DT0ME8=8ihRRQ1-o-Edcg>}n&#bQ zng+B5Z(v;Xz}WAGD1BoAJ4q_o^bi=qC3tL?N74BXO-&XK=f0lz*V$HR1Q3~++NK=w z%a--it+#b8ERX0H23h2iI&o$C{b1_P$8xyx`ws&lI{Mu?*m)~2a+BaXW;!}VDL^Vf z=|Zo*VYbwcnYU|TsR3uf{7O5+a8hTNk1jW`&yt}klMP8LjUL}emJBRf;px$p!o)@E z2tDJ!{7(n*8|t{_lGwgKfiQhF1dCTJ@YHv6NDZfOOOi zeLx#T7TCFBatj#RUc4r)iyvb%uWN}nm_F`ZqH9vANTbkukX+f}jvG#K~-X~ho;KMJ@ za?sFA#uFrv6=ay+GrZiGKwyLb48ZJpj{|AvGv_th+v+_a^~pX?+}vibhc1Vi2j8%# zh++JP(PoWCZOqX&7rjD|tt=_V=BMe<#wK}9>4s&e-zS@QUO7*oeL&0=m=S&mZg)#C2Ub>MO1|P1-UW#g*A&=qEA)S(k=^P*(zyR)b zL?<@`$*%7mJ!+_r#3X~#m0NlKwF?M+`ykh5qHb`iF2^NTF$jO_Q z5Pl3qE&qo>)uhJo&y*j&zb6DC@t`3h^-kq{8$4*UAkf?#yi#Qu_GPJ#MYp-`S78dM z2(Kn@g9=avszC_vqF#h=#W)HN>Wt`;^eZfms7}$FL8%?0Z&5tB_p`q^dLZF>C8%bwk7UmjnUJArw+d7l0Riu-FV+<;#nONlOU zmn@m5$Ye{N)+$OR;8X52w|e}w3fet+6Fa8p@I#R;2{xU88?<0&RSOM?%a*LL;P0$-FFlUB{n>K-(U`YM`^dOxI)8+xtR{cwdHt9qz zbB7`&0qt2_-J0$K?3yvXz9b#Q;aHN#^~z2Tnis^-I8_Bp(d(S)WQO&t!`Y$)uiW4= zHWemD$0@_sWOa0*LXNI31^YS^3gkRVc`59?ci>aB5)~`$sXUO)pA8Ne+>ELP_hrGl zvV&!I7#Ix3i|tPA-h3H#+1Ua4WpkuG2QWJ8tkq+iC3wP@k+gAeqds3{Z;M+t1jm+I z$SrYa;;{H9LGi{YVRoX1RoPM_S+>uCKC>>`xKqc-E(BTvg-wYz{#P9(ta=1`Lk0lE zf__H39?#bVn1--1d_dUQpYd%CD4h(jq`t8|nPI%V+a^$}zeRJkY@DX#IyE2kpM(&p z+u$(rC3L(k;86lms0P;y4`i@=XcTI1I$JOdEdFzx%ea73T(zF{0tsm_$oSn7KSX!I z)E8E4?KQeX(}RX%UU&o)tyL0uHb#c)kL5x-BirdEPp+0_p9%wMl*Po2?1f2K3Yrz2 zUp$vA))l5=KWR)o|D9KQ;_K$6OjL7Ss0y=62y<}D2z_7wMYthMmzHd%wNw8|h5zx#t6mop>-nWd?*f@pyt`s(6ymyP6@+jofUq9rsL`0!ts(qi*a(Sf)+_wzWNIpEl9q_Ic zGP9sr9b4Vm)wfz7M@z}jmdFM7spH)=gDQb<= zN1EO%k+Zg3torf9)wzKgAFH-z`C7_iL4s~4PHeE|hED2$l6-?Egt?cgG{qfNqB8jT zGzDeQ?FoUA*Q}!#ubw)WP=fH5=o@ka`i-^wFbexCx{hx|CDJ#8fl?<7O>DzYell=C zM5p{t)|u+^;AkmpS$c9n;gkxiZswr0%U6)Y)Q0AO2AO{K8ub$zQ3+O3dT{Q|i`rnz zptuv-P!e))S7iR_A(2x+@z34l*PyWKm5D}Zrn1Z)5tJG~;k9@Bu40QjZT-5;OOaki zJd1H+->qO3*JU`TZtz+hO8v!r^&%$oNi0h6ABuIMU{UI=$%v!*tJ^j!qgYZVAK7{P zY#60Qtoxvg;e7qt8|DKmuH06Z+mj<>eLAvu-`eKGiFBysVo6Kcm;6Cz^aXpA_{OXK z)hA1O_g(Z4A}S~EgD&|#!`qZUNYQ1d$}_mDS;1FYB}Ms1hqR@C&(n4Zldb$XToiU% zFQUXe8rzLbx18nT1-D2ahkEzm*?~F-fzK8^R6aC0V+!PI`|iCiObO{2ap$zhJH(E# zSjFl3)0k51o-AlR-vLk$q%s`#fRpw{`SBHxByZU6m}4aiXq5i?oEs>Mm2I;Dk%u@d z#`u$l3w<-#pEr(ojiTLc@puAVp7hT31J1%=?NAabMo_sh&WNR-0Ze|I0XPOx20LZw zs)f1^et?1-1v)%%?kv^m^;Ojz_W!fu6R5=Y-$ltUOm>Az>;2ZFpw+ypj6{Zyd-c?j`t@?f=n#h`Nak; zQijk<(I023wh^8I)Z@&Pc1`L-xv9eSUB(mAao@{=-$KX$)(JHJtnk#~zQvzagRz$; zcJ)eM%nzVijj5KD<1UoE_eSxd)Tk}%&Tu2YDh`8qmbxUu{hxcmy95)@j`D^D@ADqD z11CUmrMV-A0`0Drl*xu%Yy&E5D{J-h&q??$lppqXMV@!3uur@j*5|W=jG(Av(|iWSA&SOAVp5orfony^){(&~;h_o!fSgp z`g@Gxj+ut(c9qeI(SdwNZOV>hcV$~Mm|rrrHjJ%})3E++U>e#tK;yGAK$r>ystb69 z@Kc@LwcskgMw407tqw|;Ydo0-5?hu3>WR`pyisp3S~2u4fM;(XIgwcC_gqBaGz9=p zN=Vwdyk}%y{}`V{a4~G4E>$_pa~Bk9p8V`CvHlRJqt!W*Orcc~wCIJ-`8`71`+L#3 zT=p)1KL+789CxCeJysnxPzvp+F0&m#0{!~{DXaFDWq%b9SCBio3AK2Y&hmuZKb^uP zOD&}G%<{F#qc+s! zPeB@MkfiAYfV$zcm|}lCcwV>wMC62=R39CyDTAeVtL8<&+N$S2$6l+8Z7|MJen`o7 zbg??$PYps%`Ie-*T9XL^->h_Ssx;c%0UIRfGq~7DNPmWu8ijk?98^xJFRTknS_c#F_sKi-z6J!7jOf z44n39o{t>@=Djf%t^MhkUEmLWP}$CCl<2MMQj*eeDodlngcl(aep7P{-bS@Ack?0E z1AE>#FYZH!AxR|zs}VB|L_Nz_AI;1_lAVM&Lqaaxs_0tEdwn)~SR9c4Tqdna_fZX0%EL_m0ZLa-YtH5NW(lb zt$Ad!g)71-)EBE+G@cT+&yh{}7inNL_{)b`snB6<5k<(stB?Wph{$WU0 zVhlj#-O+nhl}*5uJS7;F>;|-p7yL?0NdOP;9dbAA-6Dck>=1>YGA&dKj2yHjyVHf% zk~is3*cT(Saj;XoCbZAh``=1q-Rniqf1UT>(lS{f_BnGE?`xah@O<`*UUa7+eW!Fl zjTm9Nx_u1|o3}mlp_{3*!C5b9{+u+yJcRWp!Ys*Us#TAh?2}J8PCPfSd$7$d-*6fJdA6b@?Co6bJ(wEek**H{RM>pr#UfGgD&(>M_n(%bne+u|8FG z9zee)Yx|dCkJSPvAz|r63wn?7y> z3soAbg&l2B5P7<8Ajcw?xyEDG+jGZXMk6L7YjFY!<^4?Bx`X%XiQWk095iZ zLcg{td~d^tYr`wfoEvbK`9s{}rp7wt=T1>hf|ThvRAfq6577J(!L~U-^vvJzDQ^ev z)nCOPK%v~)`HNFn`1A3$&CB5ZVvl!ZvH8fTFbqN*&`|=3qK8!()%o6~wOT66zoL*t z+=7Qpls07RCqqkW-f2Ia6&L{|IS-Y>gc~1QXP^!;{5^l0kOc0L5GC)H8MEZQC!t0) z-*l95-kGco)%P-;x%@S2YUhy%CMw&3B>Kya!bQGr6rI?YoaccNlGA6-gjfDjA3qdR zQ@e2puA-j7yoNzWtM@pKE#Jn7^GTB7FdsIy_|EL_e}K*1VY>_~YG_kHhPdw;2Vx1s zT!x!{4~xj8aZ&>W`1Hzn+>sFeQ~5BA6DkutE_^;>9^73HOU;YW+EI(}sM4HUFfu$| zsux1^%1QGb`sSt9O3DVHa{#ct7CK4c{X2TWV2h8G$6Pi={tB?tXcjwWop-Dx`Z6}0 zmLX9Ej&p;TXa&wK*=DcKLS5sx8{=`zurM^kRUYf9m^mM)buxcLIbw;z>sdC1ti0c8ukWo z((J94pLJ~vN7+?sTeDAbtOOr79wuk#Pk$c4U9@kYDa^rf`+{T@UwqH}(#WUo>r6O+ zz2oy`zB%DpK@>*p796JnLi?BA zO>piQUP%n%z!-x+8CVNSJP#J- zR?<8clRe~x1iWQI2kd;%iH80L`dgvoW!x)xUn&QZeFEAP9JFS|DcRPJ$+;u6-Y#mR z*SSuXAT`~8z%-R^U{XopemzF-bhR}E&i0$UyDTTkhaCu!Ba@g!vK`B_Tir|Ftssi= zSdXn>j$5Gg(pwX!K53+|?p~f5`|>Vs99#78j$RZeT?1x$@9j^&EL@;KOW?%^#p67U*vAc$4 zzz$?i-6HKdETGj(eCm>ya>2wPR@m|+Tktm0XlYr#zUy?Ws|=Ztl=@6lPPz3TMz-D+ zIV;xyDtrIVAt4`W11B0ny`6R9;%?M3vyUw}z%HViUI)C#EZxpC1r2;;)+)-dq@yGj z^BMxpBc0(g%8QNV=)lyLcP=q38GY7 zy*P}0*t)w=X>q;|lOQIdzrTC%n)FpBDqfjBOZKcgQQoB-nvu-^q+DhR|#b{Pn5D)tk{zKPC}s2tv;GL-lSZ-y?FVn zO22UqM=_KUNYCaA#}yA$RokYN)`pHlZZX>MvyF`wi>m^L$cR}k?=(FswP(Y=<<>W} z(1(ThaoAgA*!X65quoyPXKGTmeaTc7SBsOpYtY5hD|EW)OFd%A3j&XYpR@B3-I%o0?) zI67e-=UI+Bexe>>u|4%~62HEXQ+!jPDKaJF3v)GfxDfd9Ufs(g4^?|}WO7ixweIA| zYpI)XH=D-hy&G%8cr*P;bc)>yKOO5%;Wl0l4fecB=8dcYj2+By07<~W{BCtUn7OkBw=*oNw5VWCIwA#RiZ zL~`7Kg%4K9un1c$SgDhXWqt5$PUO;F)ble;C$)`Z*CB5}s=Xn|We7gXibc6L zIP#dk7m~EvRxN0vpo8m)JK=gV<42wRsI(xVSge?DJEQ1YW^cPhUduSH=EE`%8~a^1KoXJ3IoxT$yQq4iyO;%R>*>*1inQ@b8bG% zoo{>r12lOJmtA5tCSwWkD=2L*C|R87uh%WtEWpYHS053!YaL>W=!fHYE&99ed^6N* zgS1<4HhXF+NsKhE>ROO>$~bAr@Qm)B05B1%(>KJzV1q+_HmS`2=nl(;R@RZd6K(2D=ePejcGle9;VJ(Q9cAkf(l?q-#&2DMrzebH|eBdjUu$=I>ne$R0P%Z*PCOGC#DA`gzsfF9cp$! zZqfB)mdQPN;^R$vrtLk!9sRnh!nFVry97xO$0-&?jP9%}_j@i)gyCf5D_5CK{rNR zk#5E=)l1q0)nC)wOKtOYS(t~IB5WBzHF%4)!K&{VFLR(h%$43)9+)P8G= ziu7lDe2yBOK{Kk>wvZP2o->t_^a&ZaIm3|^O6ZsNpAr8g`FN+$v=e%13(FEVoFMTg z5ka#n+yi-iTzhZCmS+^d^g+XNtvAMKEftIO$1}`QUzD3e&7R-Ck2O@)BrlTXqvbd& z%X)tis}g?d9ob`WH%)oUXItK%<@()}*00fO8&)~Pa*HyaZe%a~NU7U*#!NZrlj=4) zYzk^v>v!es$}G8EMbSQ~ccX`MEYuuF`fL+JPGkC!PHtGos@lby3cg$axQ*0P3~Ya35G&%aoyQdj~W7fyJfXv zrnObUuu2EE=<|R4^`Vbbx%zApKSV_e@k6QtsOcOWEU;Oxr52X}Te%F45xrf8n}h#h zkW0N@vlFBL<^R|*oFdyAjvY%*I5c;=9Uab?{oycAOT*i_4}vG?Of2ub(?y{Ia;N=M z<6-A?L|YWj{X!;$QKcxi$9H)MYTC5bC3G(c#zQD8&9j9Q`^dH>D*QN4W#Q?YB^SAW zL)?Y=+I030Vqo<|7b+CV+}3Itr5t*Nxh_`06Q>T#%Ca4u#$~M^Gy^F<9$FJg_RFQj zW_6t0)4Rf*dp3z2I$gapS;I=Ct&;ZT>9SuID~d4R1!mt=ZoV4a&JkM?=win^wF(%L z!BWJ-a!=O&n2)*9)xZ0OS}p9X@k|fRSZ3+8HG{=pi>kn%#g$nO@%=ql#F|HOdE4}u zzJQ~{z+g}HV`moF3*&s1l>}kEjNgb`)p03lFV$2hBuJul7p_1DGpZx-E}$v-En4?45-7NQBhQj$$UIn+ zZM)#bb6!;#kK5kgrh|o193?3#RZ@QB>2*gTPO@^@@2R7IyPL>ApJepV5;^%(k)yLX zIQDmk6Q`=UC*8Et{&&c0`;IFJu`c`9De;l_E6O^azT9E>TUY7U^%t|Ql(!`W~hrd?X5KP`VP~#@Erh1l_k}TST zD_Uc#79z!JXA^hhNM|T8;ozjqSq+YOE1xEIZca!9%WVohB;(e-krWel{d*r{QvWC% z)j2XeF7eHy*OZ6Pb%e!LuMi#!uri`^yYc_m?BGLa@FlQynvzoVFeqAzO}YYMqtz1r zugn`c_|AZeMPY=c91AABD{_*pH{M>|;a6kdBG!=~%l#5Fmi?wzl88>l_m@9)1A@k=LXT@+ZX&?sFI6dD$ntESsXSfoXOLGK^H)?^I*j?>=4Pp@M^-s z?*Q~9n}yhpHkpwLO1f(0%gwl4t`of4>`9;<+_tS|g|GL{pB5w)hqfnAT;hdrYLs#B zMfMXs7k`-DU6U*F6= z28=15{E1tG&=en32fBxELlM>QbNLz_m0qhz#d|9Hu9!R&`TJQsL0E!8-}Z#5hR5Ur z0=rW?1@p)UB#KAyhY5IxcTMNLtX}mAHV|OALogW=dV={^qj#ab1~CfEYigpZ?iZ7R ze$=o1MxIm~8XA)U|1CZ`-})>$djLsZAQgVwaS6nk%M(UD{)Wo#n2Fp=V`6dhPl83f z@?grqki15n@N{_L0P5|MLlc*?@_eSBvPYA`?Ahtgk1+mzj)WT@@xPBQvVmK6^zWCE zZ0ML~BY0qf&%2y!L;Bz0RxeleS0<|Z!?9AWY2!nmKs}xK-2TkJn<67ui(|i*I_q5a zNGEiP47n$Z`7Rg4#r+u^T>aD|KI3`?U^_>9Yyul@IuBMlwRT>IVFr$qYb6qDN4_}> z>1Eh8je_NE)r3Np#CejQ?fvsB3p~RsD5Ad>;XHhFupVMNu;&Q zz-*laZ<9(FAarpX0G>8Pt|L+^8oN0WNgf^Fy?i4Z&F1&RmA!o*1-@e3ofzM+Pp$~b zeR!v`h7ebJ%0)V&*SJ7!PL5nq4VDgroWHo9jL5=l9E>YNip_fYSm$VprOIz2j5{y# z*h*dyv@)RnJoNXr2agA^7QeUBj8BP}{8-yO-4Nk=ERjb4bc zPI%?5bR=N~f5vr_W4_Yb z@THp5y*``Bp5AB2eTMBA>%S>SMLxg)E^ESY;X>mO*Ez5IV>1!7H7<$y_4#d(} zFg}qR!F!a|uRfjcM+FZ<@`-L*afXoBqu!7~8>J}jbF_J!M%yUkpXci%#|pH5%Tr=U zt#A^FS{0_TXC5q=EmTwPy*)!N0K=OEdZ>ZDo|@1l)2HL=AU-`$jM33&?w8kxg4>yC z34TR=%gy~~#1WsFMoBQlcuWeY+=pFMeRH#O7bk)4M+Iu>+Gch@V#|gFOEiANEVQf< zJV)%_&4;rj-4^5WOlk$gCc10)jBwWg?Zh{Cz%vzZW%JS;z$1dKCUWmqwB7JmPxz0a zZ62|}-TVdB;CdPBizS|t7m)-5wA@Ct7D=nI(Nllg)d6mEoVV+`y&O+S`#Nb4&xwuaCJQ7+t3%dJg;w{Pz8!{0FM| zd&C-l#V-TNEw$i%{(MYZX2Z0QLhZt~0Xf^W;EZ!$Rs0nA<0p=^TWcQ}!}bkYILvI= zA7{GR_n8RK&D^g&_LJ7Wc8)LD%axv_==(_CJx|gtclI>C@xQ^v_?_@KRP%q|YuUIpc&#uyG55zq7O`!D|0{v7zN`*M6x_&?#+xzs#2eJQfhuC62x zEUBi(EiP`FN05z^$_qynY80VT0Kq5veEo*LE?)QpURX7&`-aj8TX7VrBgG3yK?=O8 z0(!13%XM z8~Ef>kX>zw*-m$aewbXA1Evl;X1|&5fIkL2H+B0Nl?Q;kyBh zkSHn{VkG_M9Fj0ie@ovA{ujfhX||ewg}h&;c#bA4rGQE^tU391s){-`2k_Kj5lgu-ApZY>(O3SMg4a z(CPj)@U^^}mAtuv7&QYNXLY^Ij#CF=AtYxT4l|X=KcVFrk0vTIZ$$q9ue+z>F;IW?PA(j408!mdIJ(lIrQyb75h4~YrZem{6~EV2Ip1N ziHke7H{WIa2t42%SJA(*-j8!>;QdP51)diX$Xg(1%VK);`_0=fP0Q>@GIg!hrh7(ht~ACe3)l)CXHJw8-_V5I)MFg$Ope7 zz1|z9={nPc>X+P(9P1tMLHVC7>;4<@K8DjvIEq;2BpHDva7S_2pMF0o_OID%Oj}JO z;!lb%QAM_!;k34W*=7F#O~1DT-~Lz;$EmIp;{=~385%3gf4arZ*=l7A2Wy?STt z{jF)bf9(GN@osC^%gbe>#-MUp)_ds&G0xq{xjly`fnQyToTY|N+qAzE%ECoPtL&3L zI@T{W8>?2i)PpaWs>I}yNj&E~0&~!Q6}RCFRDDL(VquiEc?c|WcfQeqjtIx(b66fE zh2d4VhiOg2jDyJ;>JB>oRo!T4E%jMsMLD;Q8)e2v2$^o4rN27*Oh+n(;wmz=IX>s> z&+Mt<3qK2Z7fkSep9I#g<1Z6x5xW*vlIFuo@TQ<6SwQZWdW?<~5ECOR4=3@D!&-zo zUEYzXN=kWiSkC8+6-J2n_FVoI`dRP`TCvlx?_$pk3m^41Il(5*jS8XJQ4U;y@#jCq0NY^89St7Tj39s7~lcB z2eCNhbjNHSyo&wv{e=Gj;G}wniSY8@_I&uxZ#5Wn==NzBv8S1EmWhG(c|l;(d3_@% z=G%qjjGx0D7eUwWwFR`&V@V_AlP}2{1sk`!^cepD^$Pli`%w5@@Z-aN62I^ZT}k5f z)NUr!uVk8EB1=%1g=4pGmK7{;#DgPkCnOwK%JHuc(#)`~l-1tp_Gjw85phg%?AnXO zKixKzmzDKDs9FC2X+MJcpNH+V`8Azd%(AN%T@vnAMj+sD${6RN2N}mT?%%ba#GPlx zx{tved8~Np8!AL zqJIYLyd&{bOt-tguz4QZUoB+0vbsP~C%N9ybcFmS2+AYhYC50LlhA%AU2>&!Xu*F4V5P1thmINvX#3s#spj zrrpRPWhJcdVP!GR9syCEpTi(Av*Y?bgW*TQzuJpa@UM@)7qph%1=FmPG0Zb?mzKb! z_IEJOU6NFAM1b+#Nm48NW;m%+()u&}bj9G~Jz77EU)m@3B>4C6OH0!)?({o-UqiC7 zNUn9S4-1>MIA(EkePYG#tz=-~AIpwNLZEhaC9Ct&ZC-201optq6Aj2y=Te7|*&Jbp zFni=z_6hq=TzJFwZ1|sZy z13%!Z9|E+Gg8u*&tv(|BKGNF9!yZ4k^B>BLEvy>Vxj)(wDPNW|aD{FXA%M;2FzDFy zuvorjsq=XJv+cnA(;Ah-WtJvFGxxfI@9kBg@dl$6t=*eTh;PIKWh#xIv&rU0Rhdgh zLovxlUFu4@)*00mD2zDV{J%Zsg9^yxK1%GTLbXD*q` zat6)fPC(#=+B=-rvkAAcJfkr>sx>@FmhsH)8D0j()gQIIz8PxLg*o0l#_g2;Ov^7It1EH-%LB*dUz495pc-$- zzZYr5soSjIzX0@>>S+My{gwp%YxO!ODx|6B2l-d#AMI$#XZuii#UR3@*QqEZWZ~^? z+o-H+mAGBpDjV{&mHNJ+$+qC zrI2pjfyY6dkEtK2u5?J)%MMRm9x70im-&09nI!`rj7d;b8ne9fG8 z+IIBn0sjCVD*STq@U+s%HjvpI^VDNC$^tiUL%4oDy7BK;y!i)&+FOsAfd?CMKK2g- zo;!Qo4;wwER;15R@o<2fXbao^L{x#hVB0y1zg zc941#*FFCLr6XJ%U@;AY-y`}Qf1i5n_I=J5d!1Z&t1ZclU;=(ojAxE|^*`iSX4=KQ z&w%apshlmvz3ib-wpgnnJHYF=Jbi1&{MC_w)?o&oEQ zxhK>0tm;us7Nuj?$B49%%x3_4^#1@o zs-?Z!%Nj^<0l+yNan$ksD=kdc`o882Vvpnl*?1j$cfiGYQHMr*4fQ=0E*EGUv7Y>P z(ndv{Z^Xh>UT$0meG|bKf=MvEKy;VakFt-~9go_3O~QHLUKHw9ykt@@1D| zZfWOhwpP__G%HgmiEPtQP+Kg-PjMWfKmg~TE$ps*iwG31UH)U@p%PnOmZd8xp~?G4=5Oayk;(g8UUq>?<# z76Ph1?})AS>~DnR9OEi@_2-T$^XoS*-#o9m#xeBZW9eKuwo^|Vhn^O-`DU7SZ96^n zTCb7OLmSC1WRL5Q!{6|7{k84X>*9Zcaz+H7C)m73lFI6O78e#UBDp=GuHQhIMdRC|6U1P+$<@bvGO{m;zTCT4<-(KHcv6kZM=5xAPrjYW| zIqG--VN@!GQ3$>_5iD*&Ja)(B&3W~%wF}uoWN7yl0Dyh5$n9F%J)XDXtJbja%nf+s z<{=7&MH%ItimLQD$pyP+zk66X#x~g_#hxLzc1;q9?=BgN{{X6xka3PjO#c9p>s^fETzuH+qJ3}`B`wVX5xW`jpJn7p10F|hOb#Ex10mmfc7!~z*!dY}r z8EHNt@C2ny+SQuNY8aK>EE~Q>1mkxhvD_*2uOk;h!&x18d8s`QNBI4w+cm5{CV?Gp z5mq^skE(P(q{^F{+-xPG18b@0$CYz&i9^H~4tE zezr{S9DiZINeTI+PyzP^h8wTSbI*GDhvWBy^uG`4+BLS6UMqQ$;y|oRY%3xH19id3 z;O4Nw$|>?a&fHDq9SiwSH@UIXOwt{u zMTzHRP@zFXy+9zGjAZd%ZSZfxW5mA^G|MpwxU;sAZ!XB;L{Ng`aq06(u|WPT@H*qu zej4h~>t7OlU*cCgjIzfNZoGMt1GhfWjE?x?vc*(#a!AgcU9Qf1;U{10&A zQF8Xtks6i4OCf0wR{sE&YDhW99@X}-zrVH&ZEois0c^w@131YMWZ-)7UmzrdQvI#8 zWU*vp02{#Ju^p7eft+OJyJwEo_3VudM|J}f$j5wlt~^?_VHeowryJd$Jbu)^E`v+> zQzoBtcQ4vCE6Zr2jf%gRk+_;+_Y^J>NzO;0JlE$P-l-;@!gyrcEAAj3pmUb`*W16g zO~`E{!#Z-NUQ4T~TL&3ciC6i(dqsgGXlDXt&Q)+gJUh`OF zw%EhWY!W~}d4c|Bx;;AcZl2c@9jZt?V;?93Iriu2kH)zK(^_Vgyst6$gago?{B!MI z!{HwTUHG?M(!3oSbALL;F$7^_AH0~5f9aaGJ@H8F ze+u@MSQcH1yJL@qQgRdy03A9Gp4Gwl{{X^Po+r`nA)jIbj@e@iuhR9 z=B@22cRrp}Wg2#ljUSc%GrQFFeHQasyFY1@Yc!6>E}_2jdY(>u;=CzuCu?}FtQ^NA z8#jOkHz~@o>z;$C_OGfuN8#9J(rzrFV5U)ynH+PI`2M}C=8Z2xy}s41bn9>2x&h|N z)e%AYnb>i+(0>u&SLj$ev6LG}i$b2Zd!B{hn^`rvX7M(Rcge#$V;mgx9RRGzVz;o~eV*A{%Q7w>FY`#pJqsTA z>Bj(7!M;QNq`(GTD`(JW_56C&%59##I%+D&gI<+1y&mUKjYOt3+{#J$jxaOy>&1B5 zc%4}TJ;?-&oWiG{uX^@fbS|Oc>xklPg-|eg=O>H;I_IT)&?nSTYyjYK(0_$?VD94X zis!Na*6Cz}SGD*X;yGlQ9d7h(LRnKIb04uv0pNE7u4~JDEvSgRBc^HafG3vP+$-SY zX^AkqNI2WhNdOVgabBei_S1YW@ivzMd18-5)W%5KNLv}sJM`^eHuw)wl0OaT0_EOY zn|nxu2)}h4iqL_`AAIA0eR(4|uIzm6QD3onTyII+x$Ab&A|yucNV2nth`}I+#&QV8 z)6@Ca=9i4TH9fb6wR`z)?d1Dq?0Ty-dz<%nx6?}24BHj!IuE?ee1NMrK%>0g@{_ZNC+?ET>OzQRkZYf{}$oE^y&P_{iV3%NMy&MSs< z(8Dx^lDplO?1V7ra$MVuk+i!IjxrFFjF0!Lcfq&v-slkB5?xEMxt0R;XM^&&CMA9HM%%}q8+U6c~3j+*o_g2;iQ^Hjv!8c=w`_SoOG{Y{{VtlTzKQeKer4J_?udi z`VBk7+LofxFj%7A?-UV)h+zDooQ!f5^VC;edJ_7TTvB#XPv>MTzN}@ArH8fon*7h{ zBK}CPu3F+kQq_Lyu5$kX-2)iF#d-dzs_FLkEF+0`%^NE)4I}N(M*bWF+r4#OCTZ0+ zzc}J9#d0~@?ibV6ydPfDmP@}j`+wgOG;#5}D#}4Q$pGVMBms<%f9JVo(oWGor)l8R zTAA9d)}N^Pjc}>k#{7=)aCvEU*_AUvIWJ1m|H=?-!fOhR{ z?#@9N$TjRvyd=3_Q;l6p=)v%ov!Q%R@XA_hw)=eG)>rYB^2mL-bz$ai9$bK~K>z{H zax?QDk7*~v{{R);co$!dB3p7}jj&tHg^1X4Bp6UW_TEV+HS2yA)GvG^@g7KS8_9=W z^I(-Hj3A2s4XjnN0Ul&PZpazh2sP6F&|VOIOF~Z+SzFw|bgj}bkqa>lM&%N>R6S!+ z^8x@P74bQq6M}ja>tDM+8$1#4r~V2V@M3=n++D4u)r`?zXt%17$u^&Oh*gFZ=V?+_L?jZ8o}gFq zqx&j&u{Di;TPG@BdwDWYf^!iEoZyUuf;!jfcfs$BULp8T@oP`kZD$7FKbA{xG4RPC zHbDqoK?Zy6=;(ap5PTc$M6LN+QxB&h1P{oT5#1KaW9+knBW$J>B9qo1U zySL$E^iDhC@9lr~`&rI0ZFEwyQvU$Su71J%H2A0DX?!#X_M+=c3_Bh${46>7l zjn{x!1}by7aadoq=Y+g>@#FS9@xQ}Qg1T*`{j(0@m7bOYD z%m+2(ntjZgHh}&lj@sJRXnB$C=2umXmw7v4!zzM0Ge%b<8$cNFUxMGX?z!Q=6zW=5 zsj1C1wDQRc-6xqYLbmM2yJlcUcD7ishWtsUUMYo+rK3T>^}LNA2fhoO{VVbF!q+j|_^!g{ zLD7}__49rG>-3Hpr)brE9KS?}=zKrp4}iZKG|LYX_~%r!`(~NptMR7Z-9|>( z*_X_T_VfFDo9aH76RZwmOI!C$k+tKhE^ z+1%;Z?XSYK+TKAmwZf>fu#z&-PO-?LmQc!BKyX1^f(?CbJXL8WPPMJft!?bP{LcJW z)a61IaJN$B_wUkI>EzM!>P=yFBzAXEZ)xRFt};w`>V3{SbjMz6*gPxYokLrw{lse#zgkcgKH^TD1Dd!v6qZ6wCXvh7nUM$iV9y&Ps|2Z&T6pRShl?ig&QFE3b^QFAwC9eJAXwUYH|zKHl= z#a=P~+=j!$_SUGDI!>8yrKF4l$vklGCESsLxtx%SF^;5@#|dNMO=rYfwYG)f=)Ti; ze>^s@Mlczsxs@S}7bGrPMgSHdWQ>qGuCQp2sp^TQ>8m7{w;wDvkVf*&C$E&r!kRBiD(%{&Pjx;lnTpS%Tk)WyP_ zIbhO#E<7#*RT@%@MMA> zOQf<7-Z{0jMT+*+47TVO&OkU>_X58Sm3V_spX#{y@>E;)erw44eD}i1!arNf<;_X$ z-FZLBdFX#TJ{0iEc$>o7rl$m?-RLokwSbM@b-Or8Spdl|4&dE6LV6G@l)07C=&qu1 zG;C3W=X&iJ!TJy3?c7&)@bATvd?@&hr1;Q{(Avwk9 z_{L3dz*gyQ_>vR@ukj}tAoS!{?VrTo7e%ao#@3!B3+0Hln-|Rq z_S)Wf_eu8nQsNaWz)50>kSe~=P=Xi^pU*~(@hV>wc;*ibX;L%Y>JzP`Y=uS@_?3vr zAS!Nbj+n1(_~oH#{ww%3@v8p-O~j)~@ivL6S#yuvK?F84$fdD`5$?`=SMHL-EB^6l zf0LDKJG76`U)u}*3Qh2n_Sf<6g#0t`eCiEp;XQ5yv$wg8trlxipKE4Vn1)gIkf_2< zrz#i%xF@;&s4e_a@zeGg@m`3d`)gFt-rHWVw6kxP(mOeo?xc-E=2rVZow;~vhV6h3 zYx$A*8{!WcS@_Xx{0}3+dpfac;kAtuj zSJmTdsbP)7sM-d?8-_d;Va5nNdvj1}w`(+;LXRp{&Zj#e zP%|qWbU;ArNEP(7r58n1*)(uTS+vX69vj!S`Tqd1Z6J{z=PFxiD;l>AAt2xc8Eg_V za0e#8Q~m<#HrE<{z2Z0#p|RDqMr$N&77$t6!(^Gq9bq{3uO`qw5Zrh!^}IQ8ByHjZ zA@4u}RMV1AmLdnF%UL8$mxWZkene=%rCRqY@e2u#fVUIqGn6?b5d3w7Hha?~HPJ5tUb%DKV*I zg$%%85_)GD?V6qs4?_wo>ND^N&z8M9ahL1)RrIm2vA1~RxtT5J+Fl_b3m{%pvW3CH z4p8Ha^~vMY>syxA{v3_`(BdW? z3(KAkau4Ox9qEp`d-=CE_J~PRo^fU;j;95-=ieEvBU1eXO9jrisJ@)KOwyFLjrXir z95*K*ft+NLIsTQ5*D}bhB)zf8>OubiKmB^sOIW^Gm7{JrC9(kTp2D#b_R>csfMy4k zU{6k`9mlchS}5OQ70V`8X3BMJbmxz!u&3V^Xqr~&yq4*VezmI(p`=?zV_SbQm=Th_ z{YOky;o>-on36rguyKL3@q_EeI6T&T@>se0rOm+vR#GFQh1Z(atSyx#sTZw*ENN2Y?Ep4rV<`V8Keg| zCy($a9<|VTWoK&*TS7o_b7a%Tq+m3*-#lX&{vb&DX0>$GS27!I=+1s!MoVu6&3k7i z$ByPT1zdsyE^)^>!0%e03tszG@s*AI^1H`sUglEenBpWZG7q>J&p}!8S}eZ~{6V+o zXfJFe-RQHd=n9@Yra1PkPla=vW2?^DSN_SlIb8g_s5$SQr1bZ#p`|%8WbaWkoR?6$ zPc_Ek(~YcfKvrxP&usd0TH2n0Wv6&*(^;1P0L#0(8T%xPtmQL};Ks)aMzmWjZzYtitcag~B~J&Oo(Eo;J!z$VP)-S}5Uf%} zj#r6eAo0hb!2JIJ&TBxz@UO`1K~Pu|(T7v?#aI^VV2P$tlFUiYcpL%8T#x5k$!l!4 zEYN^mx(suSboC%qN~%u57_E+LPBNyw4607-5rfx(!5xQgJJ+a8vt3%svXQ<>Tye(Y zM;r>^_eT}n7bfcW*vLBIju5NCX*Zy zK+{hU!(n&_uMNOI;nux-;V+B_g7r(E?MOmf>J0)Gk8V(_5xK)05EZg|o;Vfdnmyxb zR)1leb|NgLfXacM=i5DSE1}b5ZGQGGCq`wG;&N9GLZ~VW9FlM_qd)z6%N1stdks>% zRyzCWbp2oBzPY67vWX$_4ZfqNhF%6P?6SmQ9!!z&J^8PiwEqAq?%8io$R$-}QNdh{ zf%WI}&3$37co_UV_=(|dS4Z}`l=NTTkJ?q5pJR7dsUtL;S z>GSzeT+IY-A#l4AM^!4!yGS4mV4Q=&#chSeLfSry^%f$8tdlqgAH2$fL|ObZ>Gh}* z4=H~BLE62~<}20g{tkRu)ty&I@V2LRBsf-r+DU=*KPGSwbI^CidPT47kNZX3L?&+z znB#YpeN}F@wMk zt!|O8J&dEjTC<`26*dka)cjATLnMDJkOZ1mQ;vUm@<#o>>ktnauP+mfr!&x@gPa}O zJtM=KotB;PZpQmd#9D8SY}(n55-OSA+Zbf+J-L(}{%`1)FdG0aK9Y4hzFNgmC z5IjAjXjMd zWPLlq9xT>v@eRT(ds{!j95TqCFa2}}nydRg+oO0(RlIEZ*B46`@8a7OYJXD4C%tt( z7|}dA;SDoVveLEbwJ3EMqJl`@N)Qi_vEHEHIZTHjf*9k{xvvgs_8tV&#*LugUNWqv zZSNhsHs)0g^AP-ey*hRJ1u0*f&co#DdGCN9`&0I{)HR0+QX6aJjh82BiYQ^p^e5&& z)K}YSs7SJfl$jTh00TVx;=X9mJU8Ia4(rY0-7Rlo)Fl%6vx%V$!gdWNKXgFJ9P!6& zRjqf$2|h`eP%51BeCjdZ?gjq<_0z=5+R12C6{BN={jK~&1OJed5c%Jk1rP4JO^5Y|kw6 z@O!(-yYS8{nwR1?iL9gzrZg7L4nwW95)py?B4m(p=t1?bR|QeR3Nc5Mi^E28a%}Rg zGfKXMh$2HJ#F+qOZYMneBp=LXzJUFnJQd>^ekR&$`i_mLM`vRc@+`60&u}D>)5=92 zN^7I$g!1fM11ylmC|KegZkk0{S0KBn=BpJ_T$1N$F8=`4io(VUYB9O` zV{4#zv44LqfvLwC0k_F%EK9WaK61uJKR;^Yyj`MryTn>e)|ug}FEU4uWN#$)w#W;N zHs-jvix>w#PMJ0Nzj*^{akN_S`&;f|AeGkR=Undvvm&+*c?E$3Adz3Ezp$_T5+ma$ z?VoKQ#f@s(&*9&~%S3CfL&iGv3lcT7Nxn&RxMflHuoshZ%$A9r-elNlkBL(Y8g_De z`fhtMsOIeUJ~y`gnSLi~TC83fi&6088lB*8v)f6o*co5S8{9`7ytBI$OqbfHXyo8m z#J85P-D;9p*hdsLJHagv3o{`utuFP zh5RKYqUpC@DW41CuNF-s2!7LjeibFPvTen!>@9>5gyu!s-a`Hp-9(V8!)~EaF9kw? z5q|Fg@CQtGuh4OM4lgg1BaBH(OPiOfPiy(aDf1UFncpO52QTK4-yk>JA5PN8mfwD$Xao+ghUi{oHWcNit3(icmpR zV8DUKc<;@8{{S`UX`Q2T6tTee&(ghK^_tSu$6^5kAcLG8-8Xg}I@gXptlN(VuYSLc zb>Ur;)P|Ivr~lWpqv}&f@ax33g}_;~jZp2|gT;jZ05^W!vtKayTKj&1qkm_}rgLj) zAV*`LEs%0fILhZ8IIp7Y>@_t8MWE7VPohIH7j zyucx|wGrI721bm+xEn$Mtfz*-ZaN;rt25SdensUg_fkv0=z0f=^=WjU2x}MW3N@{T z%!I%{DdE^!phaJErUn{AKv(;{?>T4F};*+AX4hmU*ph{P|=%0Kom*?Trh9NEt20MhHJS zx9th>+QqG=y4Lk%k~w9SW4MeWVHoTU5RC(d0B%;t1mgz1N?1oIu2y`@!Oq;w{Yv=F z;mvEro)n)-(Bb<`u*q+G38A zipwy@NoBQg+`6>?02Qy~j=YyHojiRi^6tOk&*~>qk{FseFhefpC$MAGl6v;%*1Ye; z7R?o`vjtM|p_FbTX^yBlFgBDxO@ z*lGSQoBk1t5g(H<3b8bbA=w|_StpYV7C<2cWA9e>yQ9H#adgvL7{1dCP_Sjd*&91~ znN=VLB>nE4NG7rL4}t#x5qwpsNiV~_KIZmILmDz8pz@kbaviX8!>2_!0AoD+cxlSl zhNcxFo{vNB>C*k%fKRdNSW{%xKMCYgSq}=h64vR`bqIm;}#sZKyAm=sc9v^!@8+Zy0TTC;&X$(^Cfl=lW zvJgve&Hx{HZOaVfoK?LR%fvn}@Q$_czs6$gO`mtz%MU0xiPLYK%IPF!823^;fs9v> ze#w?Hp8?%`Kh-2%N%TAWjVwrnkbcD>Ovc|MC@YKsxbe##`PanVb3U7!(xa`r9w+eo zSiSf=@uuHSy>$@VUHN<56h?x60}+Fcqd6JifyuAcy=!c7CaBUfn|2c}#6ZJtHo4vN z5Ho_KoF0|=qx({LM*7O?A00&Ol6gz^f)tk>Hp)j;A-aqK_}A!H!mkpaiC+vfe;7v- zIlO^olH3IW^1B@woMR)Ck&GJgF$&L_9?VjbO#LAJqco^KDt^cR01dt++N6(l;SGDp zmPU(t7Wa_6OrlUnml0xwh71cRUJea;55p}&;=@~uPejUJx~!3IbdAOXA!dk&03E;{ zp^v3|-|X@IpYb#HT=B=l85&t;j>Kvfs?1eY>>JEQECzWC^8zs6sqhbnwz@pND1=`_ zFO~pMJk(vFC@NY_jqY>;;3HbY~f{Id9Y;v4&~6HP6vBvQ2Q@=2CeMsVS< zQIud1N`)iS1RPiEM~XCitKWoo_qNu;YuHtctgRt;2o*$tv2fV$l?*!(k)MfwW$%ZY zbNJ6y@Q$|-y1z@OLh;Dp$FOH|1}dL<$j=Nvhu`X|r7I)nFw;?tq;7w~K>Ta3_#gHI zm|EPJE<9Nsy@I+-+k^|Z?Fdze-EcT46_Y)BSK$8u!)vWR+u?qpq*9#tQts3!# zW#1Viwm~3$EBi?JmGB$kH^#4lAMm8UC0N0CV|8!kqoS(GZzvd9plp1SDdZl6@Nx}* zExOO_WvBcS)qHW_FC6M~>oMBgNn#@~i&mQ32&iQ!cV&>|h{y*gp2ObCsVO%~FIQ*z zY5AWGpH=r&S!k8l=c)No@gKuJJ@}XVFlk;F_-~@!>(|<&TTS+RBo5+BbTg9WnPX4h zAW~#>P~G!hd+;m%2^sN!S=24{uZ|ksuZQfCCT6kH&)ctCBjw#Ys@udz@hC~T=-hMt z0Qg74{u=P7!dp!j!xk`UI&GkxlG@TWjxB((Br4-MCnTJl_2#@2S^c7X0paa8SH03N zxz6m3&dxBEt`CidJ_F5hvC5;L|mRp4<{f8eoS2Ywv>+JCUFuj5}0*;)Sp z!gb)MPZH_gU`4-{Jvm6ev65aH)@wr|#vGIq2;5+(Bj)c4c*Dm(5jB|gj}hHLrP#tV z6hU_)gT_H(1Hb!681%2F^?!@s2tF8iQ%kV;g{*AT^{dgQ&355SsJd?^N8PoNb}1*E zj@7@msOFjFM-Liv=Ubj9{{RNcd{R#me$0M7_+=H-8+`}FlSvVZW(38m+QEJ#j|3DZ zSti=Uk&NfC!v6q*=xN#qz(3g9KZSGa7cl966TTs7OL$f|tJIn*xiS_sve=H+0u z&f|w>058l%d^7(51X%c!@K5$D`1RwThdQ5+p}4TrG}vrWu0mTw=V&)`+N{edl*cF9 zVw@FVqbPy791n5-0D_8mzu|ZM6?^u)@CWS2@SDc=zwnIs6G7E{MX%}>4-D>Zt|hm& zir&qfm|EmQWZcDFVn-#%%%H5sqNP%GXLTL_01N(Sy~Fr9;p;%mAYMOzJeA3)qNfK^7099~_ovNy<$JgHie{1i6{{Xc< zbZr~MekagwXMv}l4SPwvw}LRF21mJ)CbN)&*a))Z^Ry5N7+(u~VgCRG;Qf^+kKniL z=K^aUGP-!}@9exY1lsnyJd4rwE2xCiBxqaj+&pnc5Ad!l>8}X%BUkXqebxX)kS1jl?D{7W~+Q*Kpb8Qts6DQf;-!5#%c5FCs0j%fo*UJSNMry2Hy%I(D~kQ7 z{hT#V*&kcIvefO(ESnsQtu@Wx$D~Wd11pU!m$E;jW`Aa@#>z?XgWPVH-Cv?u|htsbL@)P)F)K9pVj4JmZIJ znKqTXU$>F@7ZUIkt4E%3_m|sGMwZ;md-rR8&E3EA^Zl9ip%;kt9R~5X+v+y42hU7H zFh5-FV~l>a_LuGb@s2$^M)23d4JuKy!g_m~l~*kr>l);VeRv211ln6IylPKC?4XWC zeuH?Y{t0F9GsJq_zZCxfWSE<;w z(OcJV$k!9%bm{OMIA)W)rBS(gMP5mK85H@FWD@nc;%hd zoNt-YBLrt|6mG(e$2sI5z5f7aUm9BY&*3k`-vww5d8k}!9vjts>&xau+}~z>k;iKQ za2IgMX(VO@3@GjS80jQxC6!4|c9F`GI5<3m_*dQk0I|=Fue>ASFNjyx5-q!0cxwJq z=OmVBjB2FkN-lTM{(h9D8(84J33xuw#Tsx;2f}_Q@ty6+KWewJ zoN4-VDH$mD2^^9+9m6t$bAjH!Q-5T?3HWE>_rxt1SkZnB>3S}t*GLxjc{MF@>|7D^ z7MB+BO1R*zaCiqN2jh>~cS^p~t>BN~tomN7t2oBZYgVjzWghe$_NKB~_tf191P z`&IC(Mfm>!ZFv>X#4jJ~8hk_rmMbf9Z*92r3i2$0l%6mc{Y`oGs;N!3wL0m-+cWaV z;z#V`;r&bFe~Nr*@w-~G(>0A}R@5~$(d-}^wz~dw?D6c`X>*X|R#%cv@dY$9%^-%Ui?Kr1-uUt@fF@NJck z#SKeZy16%FQWp0fe1I&|m4zb@F;F+K5$)V^NCU7H^X=vQF|$RcU<~ygKMz{|)bPu| zEUn=v=9!gGY~+-bc7nQ1Cc4|tPb2tS#ebw$YO&SwoUWg;P;M?;$=S7a(RptC%-ugk z&^$R~9hR9CR?w#HvBUsSSe9%k?!=Nwd}AS z8lG|g0Fi6)4<92Jk;YQ#IQ}WG)cx=1^Hr?!P+eg!!p!{gK!b-RbL-!q(ypQ_D9H5$ zA8LvvKtXldGBNmftC6W?AvwU#JMekOzp(9J#*#<&bBlWqF0!CSGCnd- zZaZh3cA_*d)KR3-cg6aH>UVHj+K^*Nl|qbyTPG*33GG~bQ^^g`l2*>v!N*aKIIfOA z4(m}&v0Pfnh4K(f@;5$#%Ji-4KZSlPzaC|^tedh$1>fx3#udujAdc5=rVe4De4Kfj+!fsrYZ;m&B)>!=&kj z{N#A}Sy}SHWQSP#U}1Bf->oWl(dcBNRaSta?i=M6H^Ldo`}Wjo6i;C#Q2Ir{ThmR74B?(|&z+1;L> zhtj^)v;B}hC0;^iySvjY@}+{!eQb}wAHn9c9Gw3EPPMIN`xWZZg_7&UdR!xrz+F2? z0qRPntAc)vYu2H{S+xEPH2(nb8Gn)F)#9wOo%!)J*ZsdA^FA)Tw2*@&XXIdW>x0&m zTQbMyVBj2MA9ve|{R_4Ijr<=Qqv{?kjzt(Oscm-L4%t}X{PHWWv;CMp5b5!VZZ4&{ zL!8MNyb^!FM3=iU+nV+1cx#_jvW^yCJ1@KKkW!86Vl?C;a56%XkzcC1CxX5OXl=Jk z_<5$vyzLr>p{m{m&r^oFk0D1@mw6Oy&Ooh}V(1HAkLb_Ud1pkHnkZ1H=$Gyt%cK5%*hq82()6tA!ZP zJRf?qq$SRs;!QhHVH2v(g+QL(LnLJ3_8^yW!WQ5RJub98q%qop@u3^w+>`@R1F+}-<) zbIzyAD>FI`1C&y^)4EI?nhb1h639WSZpBg^`#{bRQ712{p0OB_wE2%MpgZ?o{*$;P zmW(y34Z8;JFzTggpfm}qkS%Z~bdvp9S3S$bkBk9G=2akbhg*y(G^$01E52aW-0{+g z&AleGyih^eLo!^QiDk=SW+t4+<*5~QZdwFVG;)oe{X_Z+UaI6R=SX2s%b@ispT1C# ztxh$FVo`g2O2H340jI|f_2%-QKAEd6e|@pp5ay-0Jjt1Bzj6gT-py$hmq-XR|1jAn z0V&`f$ko2MKZd84I(&bv^uaUjMZ77*14ASWDGVai76l%ZT)ZeJtknHSQm>O$coR#I z1AiW6ZSh<0uc@&YncTO0G$CxQr@eW4|4k(j#nvp^5nuR4(-Ez_zLUu^L|KIPsq*gF zt6OpX3lX@K@y_9%-kBX-qzCS1(>?x=q|d-8xCo2u4Uqadb>4jTkTeXCMhc&zSJ~v6 z>509TvpI4yo*%gCfDgVq>b&9kyI@dj&igH>0Jd&-1(WVT0wS7n5(|J2+PJ|I1`Rb0 zqFx?(IS~D(+-EG$lk`8?(>uSsTguHFYQJl9X7~+41+?vVvvUmL+qb6ox+9%SJG&*e zwFQ;KY%HfK#y?Pz719R%yTS)ucjbfox^fxO58k;D=1@DSUj3U-QWp95`qnDqHK!r= zrQ^0}`wl3Tl9|vd*AEj^O=76(@U;&`ehyXM9_-pu%a&7 zf_sPP8)d5~H$;Vi@bJ7-!$Q;?Mm$PYY#FaMU6&kPU5mOY5D8Al5H@tjbiUb)&(@gg z9Im*0W>-ed#lg46hNX@)H4-=g$9uCv^7Q)bG09 zN!^gQ69RiGymAD2za;DrosXIB3j?ib7cP6^PJ^D`6x3)k0G>H+5`7s$*u9cN0s2v9 z&9~L}_n5|kUyOE5`l4Hu!<*qzIn8kYU^HTNZ2YuBuD>ci<9=+!X)A2grca600a$Gb zXHzY44Bv3y`~m-B*_ zX2~J>km9lCP=V=h)=ke!9_WukAFI1S7dN8t2^rbKY(*LJ^k8ivNF%*I!^X7gn+prO z51n_XIEC7ic*R$Db`WX=;x*I}2z212k@1E?xyUDo(!0dJ%m2=X3eBJIMpifC?8*|r zxT!bAxy&4RE_sPf4&Lm%$o$wig8JaM@|{0kDuk35H#6nFnb;FQoNAB-dONc*qc4Dv zPrli*0IIK2MdbBY=SuD(0FfRqEcs?Gp1lkBa`}Qcc+N-53w@Xr!FbjH131{7q$;)>b@?}VDHAtE z{M-!j5U?LK?Nx^jbz`pW))#zSI6}Q?ekQf51h64o$5s56M8*~6ZXH>*SSk@0$1S{a zWlLHcOOVOmh8V!g5;j^TojqdgafMJZUEpouP);?eQ=K>jG7*M)52X}3n|EMij{Wtr zS1kYFYt7`*zdJ_b3uL?j105F!R_foto1NeT0U0d+qE^>`B$~R<)9?QI7vi^IQChj$ z*ufhT1W7f(tK&9pDJX`6u7kVQ))+663W-*ND{ZVk!64*Z+&Xo-ZydX357!T^wCO|e z!70q?RFsi03aM$!^mhRTqlS9(@;pbGyG&b32Op6CE9cbN#TqTIH^7A8c#d~Z_GAzP z)i0t-T%dg6C}mPsfa}EcC2)7K@ye%AImTn@1R{4S48&O7{Kmfv8OaY4MSp|$GU63W zI>y|x0v+aH<$ji2#P{L?>3D_L;|>IVVY|s1#%b=;@71aOymV8#Fn@Z2`}^`xhmoa1 zaPT+Z!A42%$}Zzo<#ny*QW{J^v#kA*c(skgQJ-RTt5;U*+7IgL+aHX4Jr1w|a|iWd z2xRnsBz3S@5#5%+-&oa-S)AtxU!KRG(PAFbL(D9ysoAT=;N9SlPc8@qww<)-}0|mS;(RnsXb0hWEii;aPJ`;AtQtFIc!tJN&$*%`r3W`xMj)bAvW2>W`Gej|xYxtImqhcSez_EcP0AbIZ#Y+Z4x%56&BjlO7k# zF2Ubm^KqYo)UXG|eK;UtG=#DS3ql5K@5tn#bi!Q<{iWn%8HPSgSA2RESZ=PC&t)FJ z{h;yG%>KI~DMp955<)_zVf8w(cF{YTw762i8!80%1vCg{MINxT7FAisP|$+|t6;+931fX|O@Rs(*ZE2tG98ro@QTQH)O(%sEOX;2MR4wq> z_C*aGV9%zeF5qL<<$2fB=}CREUV%&>c!bn=v$>utdMxjTL&`s=%Oc@7r;ttEhOP+s+9Z<3z%X<${g zr>9LEeHXna#f5X4s@{8ctBCu)&^e34@n|%HTd3h3UV;zVEPu)DBmQ}Dz_+uoq_3uZ zSnAu^`6}N^pvu}%&>v&kO)|73YiSkdw@$#hdk*QPGU zFh8ds|5#7@QSi4~)u(*%$UO8`s5+2`bw4NAoeTm5GWv+tfeAYX^Q*>h`&sXNTlS=N zH-`Sc$QOxoI{erBBwy(ZYOdFf91GEqgT>*W6q~nB)7_SAbo1taKa8(7(Xjc3yiNM% z%t6Z4ekJpf0eILbrTo(*_JR~KdMQ- zFD@QDy3GL{0t@GNU((+?B_@T~()Xo^%b#Q5jyK;W9WJaAEEy+v-hhcow7<+gO+Qdx z>-zfY@YU{YgV((m4NLZ}T+LqQC4fEPhRm#%p2@9#YaPz#0T8*#;H?r z=LqIO;fo1gaJz3}=t+I3*c68mk3VSV^MgIYMM?k8@-Rrcb} z%qF&79plMmc~h6OQ**WarK{MT#I*R+QXf5tiFcM)yW90!fM(+*@R{t0kfLJ`u56-H z+%N^`k0-@_4iZKOF&kc@7k#fDsSe`X#vJn~`h6^KBAuycuCl*Knd!^dx4R?f0}|-0=J<(g z7%YlO#Xc(wVw|p^Uj_ZcFM*2UkASv~VG(cTN*<*ov>>ClkXv&b83_>NcR&j z%~1O2)FnE3oW_47kgvqYIhPJ*;5V$>X=3q$BZI?+f=p)$sBxu(c|Ge|pUZaZpr0g_Z&O;%vXQ&xLFfCj`o0T*H@{74##Vvzn%+tZGeN@Dmwp%{$_aT!L&M0} zJ0i*@KtBrpD?A)z@5b1zKdgT#Q1?&Q<13GWqQR}Qc!9cN93W(ZZBnNk3+X})a8938AI-UUi6zKO+U2`0#oSpmD zQ6tT~sv)uNb6tWA>F?RSO}H)=(B}i}jnk?V2m2n^EXtEnfc)(Xe8MrWR z?m|K4X{+}z?9?V91^5RMZWgNfjn!n~42>^VM85^GxF1tD8-FDzYW01~!#I z4ZzW0^)Y)lnW}M2Gj6p|>gXouCoa2@B$_j>si@~lOWzx0Z8yt|Y4_?%F zs$Uq{cz8*6H?2M>yll3M8ZJ>l8jZ|-d@4kts0`S%%-dX$yaBG$Mz|pFO|B^ig0B=r zGlISDewD=yoGdBKO^hbW%oJ^MiY^W0`cTPsTH0p>R|pSqjCW7`9D4Ra@TB)U!Vdh96aR_k7D&ijF+2<}k8*9w(EgHhyK1WF+>Flhh%wvo~&H9}=XlgHD z9l;R7U17A5;Z%z~I$9HT(y2qEHYAxv-6v8CH}7N-GwkYO%uJSu{?;7oX|4Ahk`0+B zI!!jh3Ee;{DK}!CDvB?;ROipW7UZU4&TD?P(jkqBHJ9bdSsv8wc+S&>!j*Pa$q}bU zd@KtfXl#-8Z3F7tVk;s_GIL;!Jd$B?h}-oJZ$`qA{JnchW4u6F7I_fr&?s6a(t>NtoUFStx-rHk z#(TkA$(y?G3CXcnSf7UpQ{etkoK|EY&*BI`q$oC_+6@bU;z@6qBq51b)RH+8hXJGc zAWU(ph&T6-uld9P`=F2S14IVGk_eJPHt3?{pG#n(<9xm8N>R=&!f4#i<`MTD-qPC= zjaH zE^d(U@vH{|@C^||(_{pQI=kj@YJ>mzkBaSCcAy}bG;A^|qBp}*bo|7Y@5Wa1_rPHP z6B04OadhuguTt9e`RUN%SpU+A$zm2?4i$@P}B-KyB5y2;+y zdHFJ3ZA0k|mPDTS&*1Vo{EPShqN?KTA#6b$L~q^JCq98bb#jq)B_O}z*z$acoOJkJ z$PDS*=K||zNpb7`eIr&iz@8m+bZ5@(m6=cJ2f8VHHWmn8U-WnEVgo=T!Bd>#ozX0$ z3eiJL9i*nk-DNoas|p)MF7GMO zj)9YkeKgjLKy^Um05vJ@#wZD6*?V4?y5v3Xi(b=cdLy9nF3FXjb%5n&9vP7f+Ji?! zXk6Mj-`Z`^h9THm)RDgRjZ84xSst^T=N7jq>oUtlxa;fuI__qC<zF*$ki{%aXYQ!%SAE?q6<3g*k{NZM>@dt0_CPB+x-RX`mq@8eCjeuM=7!2d zn+VwEZL}78>oep&7OM4*+Qk|(ps8u&u8p*9s3i|%&9tRNOTJxtmJOOtP5ritn0tM0 z2vmhQoNzk99w@P5b-FDd)zdl6{?)PhUHVdZQ8xLOMLwxF!^a`I0o{H>DfE2vH+%uK z^DluC{}FY8srpSAiyHYkj!(|8>EZh7wl63z8i5NYoK3g>WB zDAl$%5!+(EX+rd)s#-wVMt-GnKZwXdA;A{&c}?q%BL-!*3tM^1_8-X;_;286w@?TZ zkoXKSo9p#mxSA-3@`Bc;rnamPb#--#Y1D1)hr`3`Hg8!!k3G7rI=Cw<18;zQ1T4C) zVJvTc3bmMQ+@^^3kr~Y>=eTWCoio!mN%haAkXkUHo0o;(RR-K7lP&$hvgm_Wpm9$_ zsSlyG10{uXBCkIT+3lzTVDvqYu)YI_lVttjO?^?F*8e z(}nLeVBpqMKxE7s`DUzYtb#v$1t`mu9^lgiz+F8&n!EXPQxuk5iT>MPaJ!;_(T?X) z3FoUj4+7)r6Xvci;?Yxa0<9j>=LtstAir32?lf4(wYZmDHv&gsgS1DrL?+29+U+ne z9~v7%H@()Kdp`wyRM3#Z8+F=g5@Vdc$8)pPCzz8w!lK*qNA9*VV7N{px7DBVW*fZL zp~Q$yMV6bbpCk&u-GNq^YT5--5oA8In{g#5o#y6+@)SZCh!HjR9sfU&WVslNSQT24 z>P`0eE13Ps^~jd}sKNkwn=dAOo`s%5_Y!nn+-}8KYX8kXeE3NKYW7;h;c`l|IRC=Z z{uDAv+v#MYsJ0{P?V=JOwP>~VABhUMfr7&;$%!7xVIQIAZ$>auus{BfB(}KBNv6GT z&uT*T^enPokm-&)q)`3V>GDVPp1!}049{6feofZ98nJ5VM=cr)R#8YApRXg5!8OR~PTv$X~$+xyznlxFFGT9-y4+6{zZy zm$vD1@6+pGFkXHxN4-xs>lm*uG&RJa!<>KS@UPuU__4b2%?yL^wmtVI7Y8%^#fx18af-G8A!n8&YV9vyiP*!3mmObh~XSdtN z{LvRg1mx{z;uAGmyNyycct?UqmAww%r)0dIWZ#?=Dj<3MZa`(P#AKVG`~d3vg|nT^ z*bE;*$LAFIa^Nh;lGN!RFtE|}$H7lbiSeeTLByIboP@BndZ*bQb%6EilSYdi zEn1vsS!^bc3n%4qb>#j>vKL+4M$t}GPCUfsuq2dEooaGeP7mM@;-GB7nq?Pb- zXcQ1-0%hGpQ!0sondH0Kl`X)osHOhCM%pCy!jN#ivjvAEJ5LBIp7oCvY5 zM6?P^oVgxRe8d2lg}r|>PB~A2yI#MIr}+Is=Uye?cLw9@DFRg$@x;m{T0js9474q` z)`8W_TPLVQoFg(Fna1Wb4CdzyRR}afn(ME-TIkkiZC4@u_0{a|WFc8j5Y#I-EdTWAsj;J__*8wkk`9BDm#9+s z(GEa)w&fUteI$DLmUk4rPmoS<=C#qU|5%V_skz871?|hiuhxetFv$wITI;FE@Ug3_U2e2_pjGkA)tiNf_uA;NAJ%iE z&5zDRYF%FA;cgAWF3L7j?i59DLk1z;Kv?CQG2%80M6g-X+@dglZqEg?j}iyoRy-J& z)WJRm;u&73q{vpZkp4M1j{bfDc>rRrY=aNcB;PI z)SCc?RlBXQf|o}J@Of4rQT9Dc%Gw~Z)VGr^&MdxyyH2!0?tvep&ZW==7(@-?sIXM1 z(hNJa`DFU9oe9sh)Q~d&%9WbYRQdeJaMf?j{AqXQE{Bkic~J}~FOVbtbocd%Ni(}+Bh1Dl*n(;kQj&D=mJK2bjq|5CATlYQ^jzdPQP%lsBaqBws z7my@R3%n&!qR3;muT~d8KafzjBC-O7aUC02j(F6Bs`5x(T!sN1;fti0uu7=qO$LE> zUl;4^^&M}7rrA>v&Tq1{J37jAm6Fe;(Px_IMFLi7BrrPBK;ow72$_J<+7m;;*U=%Y zOz+>#a?yt_?s+7fCfP#dHpj2vHUE*g8?9_$ZJ0Ig`hU6N36u{U3HZG_HmEJM(Y5d)OVA@5==jek6DJr7&4#q-S>Fr zXeRWqH^Bxlq1sJMR0D>E%#H_1Vq<^yqbvH$r0zd&Z=p?7UR;)5&LyZ{8|}dRL>H(x z>ko$>W)&wXklksrRlW=;`qp`-^EDgUlJ}vUaBMun0qVaMyLa<=y_nXWaQ_(+rWkTI zNuc5=FjTtN030y&z8GKSr-L_~!5_9j2ee*vTpt(R39$H9o&Aw=Jf&|u zVDr49f;KEyyvf?fPD@VsM{L8Rz|C7wnM=m=aPZ}Z&#=mr@_70{?EYgUIp-^9uVt>> z-YPz<+a{1fyIx5YaT*b{M78RFXzxVAhs#(#Pt@Z?S%w8vUS40SK^47%~WPg2SsDLxtO)umgVD%B{u2OLCn~JyrVQ`pb ztPwI^G$JbsaeKh$H`Z;iCCc@Oa{t#+4jO4^m(}4oRc-`zEq@jhor+%?u~+SzL}bgH z()-tH{Po+ZwoI@82hqcRG6c*||Lc_A@{GSA(n$HDx+QSkq_U%O3Aq1Aa-G-89{_s}rW_q8-6_;h->Y$^m z|M}8K^?NOUDk-Y2Vif{5IcA?Wzb6q8S5*Cv#InYXT6(}L+-t2!?&7ixISC2;kA(9- zk^{ru2O53ip0(FU0nm!qp$bcto#x+oSYHL8qnbs|YVZ*9sFxQzf}V zNO;TPXlt$VN~8NewiAv;TTMcHX~Rs3?S9^$wIHc_wy2Uo$1+XMY_;J_TeHD;?u>7j zao>+DVB$%%9RHDsSy8+3$FE~DKmzI@slspX`~TW;a>;zrqk8}6uSP|oh4JmOyOnq7 zGyxXcy7e}b9iKR#4&I#OGP^=1vm$p&?A8w)(pl1HuQxtIpT4JEn5WGQwJdum)=u<_ zp21d^<0Y_A=EO)$dETnOAG3S}uZrD5Ge?b*^)5$lFwtZYvzxU;dmn2VtYj2r(ApAP z5SwWQGCLMbjtDoBxquG~0%9y>#y{0-iRx#OWd|X>&XUCaqP7xjlWG?t67s3LyBOr# z^y=fwd=5ZMQPbtFE=ONR-w!eTO68p!}z`2+#FEz z)c@>^60+Wm+;404)@>40!;$<)Vn<45nG<@l5Bg=bn6c44%01)C-DK{v#H;%i!mI+E zT5Ou}KXXcYOX;JaP5sSyk(EPSt=Y)yerSRZp4Ro^TAz5Uw%_~+vPa`E^(f!8b@^wm zl8F1Dx-3kU{JM4B->DV86`}9#;u^nXrdX4!!y>I^-9mw^O5#|cVdYIZA1ZzsYt!jB z$28Z}!bB(a$K2d_#3{YHzluzke~C`}_(umoX_1fzLB_!DIV*97^fKql&a}ufNBO|% zonU(^YJByL>Aj0jlG^(}CyAq*j??+rBThuLH$c1K3>l2Ew zlSO{V)6yNCcIT}q+4jrZErcm!GmBUG)*5P_%09i|9^dDdj@O09OY$*0Pj9EirX^X) z^7?H4+_N;+91`Np+>(MWV(JFLojX^cc*2zX8$IRLdoXtgdc|)|qX*B~{Aj zq~)5~VJj^A+W&**i6_88X0Kr@T#d(_gG&zixrwOyp3s0TWQFw}9=6Nut-;Sq*?QAR z+-ht{T-x`}?tR>q<%f3F+EJDFp>Tf{eE-$9h{*|xE}U8qrHPb9IEnSLq)ykryw(57 zV(bfnADpy!EcmR}P`dlOiJj*V$K%l8FNwvzDgjmRW$!SUuhu1(G1CAX+z1={^c?dt8VpBvTwBQ*D$;-8xDw3#2yFP7ryrMX^aJ zMWNRAn4FTOmUZ9U?>aId3%%J`>fBCi=XZU*NfgRn@WgC6=`L@ShJASaRH^t}(F3Ot zGGZwnZU$ut0!}jPn()1#{3=jlXWc=t$h#zMu;pqvii-r=Ll=z9&|gfKSMN?3>DJdp z&G6xPos1v337as}{r!_dzRhct9VCLy@!A01S_NkqM3!&0Rr^^~@OClH)4yVM3{$x> zpf5;@P`FPU*7gGO;9zc!ZdMJsZKf%a~{fPExPjtMW}l;nJSqz68_-cfr+a zt{Z-=tVJrH2z>o@qru9JPHCHYoi25TvwVNxk(eEEK1%V>WO*oWIYxvxna8Ky=n9j& z_5yutOwq#<Zt?^`ZH#6T`Lb1UKAoQ==Mk+g{^mHFTPc9HSG zB==WWIu$2{u2odM2P#R-k&d-Z5dZ1@{E-9;%E)1pwc6<_iWwrW8vYoYx!y{>VVNo# z7G!a^wXLA}NQC+6#AxVxzQSQLt?aR)Km4_Y)6SAkjMC@C-Zv%nBwQp47`OzQb9b>O zc2#yWPVI@wM(Rf!qRmJLaJB2>J*00R%k;+7RenAh)obP#O7Mer(YyhZ4(mY+HghA?I8=uL@CQ{yP*#rm$dHf4FAAwYzgw@cJfipVj zgZRdMr^;&CV}%dPxu`)UJoTqD3xzUYxKp<`dBR2@FTo%5*%Ql9lHA*clW}fy z6TU!>&FzS;^|spB6sSmsi(o~@nOT4_egdY0%8&Gd^M2uQiJSba)T*wVwSd-%4Wipn zWLKT6vtsz=c<`x-_wAXO@38Vm{I9NFi9v5hw06$NYR5TWucp1yny6`?*Ol ziJUX*&e(*zm}S_npob{SM7mfJx6cZ8x_Nc)B2rWDfF9#*;rl{}jvyT4;I>XGUP~}| z1kp|i=*4z@9oLrJZzR49;79?29YEi+-UzRT@IeIy|A@F&d@*LZOJzU;?ac|KcU&}B zbpAa3kSxJ)O0tJyG-{K6y^fy{$Af$47{3{qN(qs@m+!86IZtGXP6vWZah?4bPA_N{EFQ`fSN^X_j( zjb|3L3Ssl70v-xB=`1%OCz+TbqkIXBu!Do;zFg$_bF-DWwRfcI{&R z$iMzp=r1W?44Y`z+9LmZbbZ&~rl>T`RdF1Z0k0oZy@|iDE#UdxA)YtdN_wO=0)mH% z`kmuLM9>T67UlEIwM7)2s%Bxd4iL{ccg z_Z;ql+U*q%)IyQL!ncIRejU6AWxcx+#+Zy-+fi!Y)p#xYVd<=5!@q(<+jLQb?fi3G zMHbA7FtRw>h^86pTzx#<)mDmJW3ZsIThvV%`cRc+vZ~)MjQMWnN3xaT&ky_sUSWN$O*VUt z&v9)NF%<`G6>*9`xvVI~d~1AcHln|zNBe{3`<=k*mVdWaZX@1*u>H&e{3f;>`+A7=UK!~#&byWUJo5=`gdYSp zEUtSB(g9Wg6|Anj!_1{i?D26QZU4{=7S(A9yKC<{zvFKKUN7`iIc5N=969l(}7|4M-!({t3T;_kK^0>0sf_ zT z0aC*5@Z}|QvPD#}%PyE%J>$;v*6C;}4SAz{!G|9+P9MWk=|NMdV^>TOW?!)!ajR$uN&~h8*dVJ3h+K<4!oP6E3M}4inDh_rKZ+sjZ9M7xqKMr@>os{y~P*YG7MvC(UA?8R-4llv?OrOI2O8X-ndeGUWKS{#1!*1(-92EY+P9JrCC2 zRG$&vu5GIE;6UlH_ehG)IajGMy-^CA1~|F2Q1a3yT<;cd$P=V)3J8;czeXLji?Fvi z=I$e*`+6*cCI^OLHq$O%Q_cYTXZ>sP>G_l}*3T9TtCL_(Dwg0X!vW;dvk>TURdEcHZl)?q}-9Log`HaZG2cT}Y zWnpu_Ri;a&Z=TEqU0TUILv+Cm8+W{ds`u0E0&2X2mji(5V_U1c#ti`B5N$|@F|i^0 z-bTy^hHgej3bVOA!1D3GP=7F-VX7>>7eyg73&ovtOD6|LMBlj-w!eBRM4{GA9noA;#bDCGWX$3b)Unit46}Pt%CGHO%@KO(#ndb zR-k5gc?5V(<8?wD9-CUkkgyQ%U^nqpI?4Un zlox5xt1W9;-Yjel6CYwaJ6=8?+A-C;UI^CWLsT5tFTl2q9=hK+S92PX#UvI|xM7u` z-VU!G>Qz$UL3L9rJntt^ssS5ih&eJv`8f|qCUUW?f4w7zqd^r^2aF|?W||GRmeHn| zQ|E*~xwNJ`Ja<0Q%ml0=pAJ<$@`gVvg}tR(^2$Ivim&$G-gG(*21VvP^f)aseebr-p{I<)CVo`fqBaUUZ}l zH|IXDV$Q@yC9Vx?5Kzfx(dpQpGGU-e$QR>H#gaynGpkP_gNSPBALv;vNZ%UW1sb^) z%|%%scha486>&uSAP3)UCiqkqr;-Q0GUo2GiL!I)hY~jsAcQ)kH>Q1`-teVElZn8W|!fdP}rAJgc&4>W=oA)(&ijR648|qW;YVi}4=u zfzPCVx#_f8&KX^o0Z29vK8Ca&_egpF(9qNLdw8jN?h6EZuPC{^-g7ycZmvY$x<)Uy z0yVIp@_jna^xeC1U)_TtmVy^%>!R%^VMOO$XxRCEtIe_S@;2_ESLnzua-IK73y13# z4I>K8cMq+c;vS57{a$@4e)#F{suDSSW=Jgx-UW|niav5d8Dn24<7guZyr%zF`Pew8 z;=5}!BO6mTMl%0C31wGVXqGixx_rrq@<+rykNAlHcHE{ylHiGYjbVk ztd|xiK^Vz>(u8VDL@q=Y6_z-v$Q=9RcnjP#U2o`BSaAQ4M!i%`k7pn^BzukDb`|N{ zShl$f%2KcOJsK=Ok>{IPGBjroM%HMX9xg%2>5X|0-Lu^ z9c=R!LJ7Q`m3Q{Y>USNx*=F1>q^8bI=w1S)8E8X zmV*vUGt&jKx_|uss?N5WE?2D=(ped$9944MSncnjEuPZiSWY_?%#2BE8ovvm#*P_G zbp}t^m#lK5$0@s;#g3qz^*&JSQ`$aZaxH0`4)#ZdnQ83mv*{J8pe^Y$nU$S_=-AtI zHAw~mUm;wsc-9RyM9}#0Q_tsJeskF${1p^81osYWu6XQxzaQP}N~wIO1JPLTb!Rf3 zliXwtD7e1nYydD+YZFZkPpX5VvqNjxXNW##B@=9B+0lgw4|UR&T|EmSTQ>T}uU?re|oj~=}e%l4_N zhcDhc*BfUKJvLCAwp+so%AV*&U?y%9zxOCr0&Bq012j#zkgOUzSjyV!AsrbKRQ)8BO$0y8h>8X{Wmluf;GW29?g`ElyMvJ30$zIw+k(Rn$(f^)1G= zZs3F7*phuZQpt38HP5Wzyt~F?y#8VClLHCs24vg#S0&(xKDh&MemB9uy6>{EVwqi7 zQk2}p?D3PPyY9o<-MCoT55Jrv2R(#%$XJ1|=UJesl7-<7^s_hm!>@0)X*#tcLw}F) z*WSm3)tid{NI+w8mZYeP=uLI0Qo$Vk9;R|1I~Vs6uRp5J29lmnA|BP%#MYDWHl{6e z-Qj$R7srkeQALfLV($$@t_m45tmk9%H;hGYU6_V!Nhg}lg^-syA951 z?brykTQ}QS3@_BIRZAV2oYHG2pBHGC{KbWp_thU(AVVg|`-#i>jI8#_+my_wuzpM4TS1?W3qM{|G7J7(}4-?Oh zxOGp(jLRua&s8tz1k|ivQGQ-K_6`l}aieo$OK20GhTCa2#_$CpvbLLOXfPqf!~nA3 z$2cWOhaSWYw(#d#5Ef}EJHs?UGdCsmBe`VnQa3qDy{y9UJr60?I-TjL!D!bdZL~B9 zvi@Xx!?=RgR9^6XPdZ80lN{)3G9ni7p{I#Oa!kR?Dr4)o# zl=hrpMNPo2{tL*WDkh%zh27XBFZHyu=&L}%3L1M45)uT5tFqN)Sw8bJ>NMpnwE6n~ znh^@>hY_ngNRz4zP+Oj;>@USu+}I){RyBqa9zMDmM!LQyr;*>SRY^CJz7AZei50&% zdq~3Zyt968woRWgHpd_5RB;+ueNt&GXB?mrN#;IHF6ShnBHpmj%K7m zteO9gDnIMkONyUkS0|*JypX4)9JgTGi`7HFs=ikkc%=CMMU4+rfzbS zXux0p8LrV0L>$<*nmFPgE z0Ck}y)_rDbSEJDy9X{tc?(Y+>8_yiQ**Lp9cix(?n!G=8q@k4|Y_&Z+So{n}3X@;H zo9Qi~H(mPK3K13YCGivb_($yDdn8D^?MDYyG&m3MjdqgazxcfjPW1?F!^Fr*YPJa%M6%xdp} z(0G@4mzpKMaWpMR^n9d}{#MzAJ9<9v`)})8k2vgeGiT|CYJhtU6`I0g;VLIQ&VxP4jhacomSk!KSSPsNiowR zUog7$DYGn3mi1zh1~dsj5AK$40)JV{HoY;~{DcR0zHpl6ZDoUO`NIyCH-Qme_{V5S z$J!#mFj{3?>!NTx_KDi@NyuV}oq#gJ>F`U>y*b)uv97jP;d#*)S~&6`Rbnaxga-fi zKawwQmVf7jU?!TSz)GvPo~15#tb01!DN}egV|eLglpjt|?x?yw-@NL?dZ9o_*Tzj+ z!R}o8sh!HC)twD*HB*I{e3_2KITBg@J*&?lU0Fo^;R5rfN(7o+ebVLpU+q=?L@k5! z=%2-4l#W!UNnBO<2X*Ba0(q4$c>yEf&3`9ZEl;fM^~4=5cvsfUgkSh7;lAL(Lzdjx z_Ec|QfNE;yf-%#CFU6=7sqw7&!wh#KhMYWgk9NcVz+!M&wY1DMZEDn}_NJ;RerT=O)ZViQLUh=xcI~RwTB$vo z*t??k-kXpZ5hVFPd0ysCK6mci_jR4;bsop}*nZwlLk2QTITe-b1=9{kyxL%OJ8RjJ z%QcBSb>`o7O*|JTwGEFE2Z~c~8RZ%yI!ynum_fN}Ka4=M+bX+hUG;;|Ksoxx2 zt#Mjs^M8`Ul`idgzc-dDsUT^zohaSED8OUIC|U9REzy@}ynf6&Hsk6>1{QsYjf@m2 z0{hUr#1m+LJ`-9pw$FNAWkqSoLs~@hb30+j`Hz)noXuP5H2$SbZ$4A)iK9Mc*(dh) zxPRR;2kNUCqRna%cyd$=OvV^(GjPmaxIUpPf z2T-VyfqkuyzUqeL&b_g4R9Zk5EKxS1BZWtr}^ zlkBa8UjLfjn?VV|vya=a20w09hu?jyw&luZaD1H3Y^K41X6DKs6LhGeUL6igX*PvE zcMtxFH1wm4bTy`=`Y?1;&u1g!ZC16F&S2)XDGbXuAD) zXPATj=*u#S8ib@Hnw8JKC0F%Rex6M6+~iD#(Q5b6kV@M=nT7;W8E}fN?d^>3DLw9| zU2D4L_W7 zi$F(&u#0r44HVO82ZAXiS0xXxDFPn{48HhFpG%gP*da?j!nLmqaIC}s1yex9F^Vcr z`&zH(Jl)JZ<+AcYV%x!(zQS?~pm&>b5^h6hu#lzdsG!c>wwAo(JL zS_rP8Phxy|N>@qcBSnCV9|rGuU3$DI2}EdXA|T{~FsAsFKspEW^o{F?-pNp~qxbOt znO4~KU5s_dXg5ZFcu+;58*=t}rp7SBru5!ulNHC=G^+)DR?05(p2|b(l+W-r{ zPwr%B|@qvw|3B0&kVH`YX5^Zz8w`g2Ebg*#ob(?9ZFsy#@ZmkP| zK0;M~a>W>yV2rz=jHw2(ckjw`-gUI4@4sym_U5jV`pEWpAp3%a$zjRDBu9RKx~Ws( zd7*}L=Us$^okHXiOM>QR1XqTms+@B4K`%U+3?Gncb#&+{|p`cXC|n^w6uV6>pzZ*+sOC~2jSVPIeast zv0z*f_SwXW7dT8ki|zWSwq;g>mc%=1nC?#1$%j6NMG|}FDtOPvY*BSyoqw_JT19`K ze--f1$eSb~Dd?|(25nn#o#hLo|9&aaI+F3XmWR>wrP8bdkB3+|KVsL#?=10iJ)AyU zF?&IAFWAv%6T+XC2`C@;$Zq_T78C$sfjpm!NaC4)pYKlGh<4j)H_~o=EphfYXezZa zv2dKfHmz|(d_f6af`M#6*g*Oi+v&68uMWcDh>JT# zEH|#O7DRi;4tfBK!HY-ZS!TSime2bl@SU~eIU&9RFa3o=1>??1^@Ii`l4u$UaFGf- zx)TJ}|4x0|hK)VsE(vRE|z<Fn*P zU2mHRub+9SDQtFI#uH>aC8~RS*clPdnP;-K0;d(R6?zh}G@S>DT6{xynrfGOuUjz$A1GgwkYAH}9%N>5fpo?P}255fTg< zi3ET1_E{df-K!7Z;(Tll=R;hLU*|}Q{8x3cqB}jl!SS&ym}l~_@FBb7CO(ge*HBtW z;cZ=?JKXETb)Cm{Ur1hnZv(UtwjQvrX8boC%iJdqD$X-G()Ip1pm03Kw4NBP$Ogspff zUVYRPn>q}xzc~^x4uhr!9@8uoqjgbs2n*DEWno|GyvW${nh?v05+>GKL~fk{mVLe$ussox~A8d0Ct-O)>|qoJ|s8i|nQ^8fu5d6i};bQ0tLFW(RMb4$DM_K>FU0!7%aO;{F zSXR6Kjf@lV{M-*crCz9gH2OA+E7CP#m!P2Kz)*tXu`d77U$qY{{;HNt$g( z_LtP0X62WC!l@o(WXaXB)hshk+X9^xt@5Ya}uE<@~^@eW}*i|i& zkRC|G#wC|$EU1_H>i6pMsGQYmFAcUaSJIDsVRL&#KtHkv+`|g?pszRz0XM`Zxeh=p zE{<&3LzG45D08wM`SDgiuCKKt~B1WF>x_#dQGwIe48}`rzKN>VuVeI)R(= zsps#}(Y~IcvMYq4^y?@`e@M448PE>@xHe#{AIjd9-e)o`=Frj9sd3SxOwA$qlzld8 z_@GZnognR%WmW4%6;p<@nPtg>R||sE&%aU9QjLrijU z6}+$Ov}GjTC9#~VEe>sKCElrHxu>A~?(ezV+KhdFE(_iG%S_=m-v?|iQVwx*CnAo}zf)bqfYnHa=2 zIj7e4z~4Mmwb}*p6c56R2?vnZJ)9VVbdJFRle$?gqfar|peHx{oex@8I^Leh<~YIJ zmgI;JyM2VuzEuS#8&mG4n}#WkK0QO{z=JMM!ScYf%@$6U(gJO5c0Ql#(i`vV587L@ zg-G~7hHhQ<&b5GsA6i<^$A>>lGx_?^NRb{f z;I#%E6gG41DiHdd+VzlQ1&{@t-?B{(bh~vJ*{iObdq{{@P*K1IC`QWs`w}BmHU*94 zaE$9V`rH9fwyDrD*ojy?CA+MmFG%80s0&ky+YWH#P3b@PzuKx1J(jY^XIpWM+oW6! z4B45|Qavz`|4{I_nkLxEn1bA3UKYLQ*S(vZxBy8EIE2xF9bsRJsg)H-WhH=f z`g%iod9OY)dJRkCMC6CYd0HsPiaWY#CjsNd%Qa^CqE7V zyc>{Aq8)qXM6yQkBY5BaaW%mes=0`Bx`!Czazl|DZV-`x$DiN+gIFrHS!8biwb{wK zTQHOFmPf5GPQRXqk^-wYIT7XCi?uaf!u%;G4$T*PYVKW4(>ppcqOX{c8VgIpp#dwt z%lq$%c=jMMqrVwPh0F*meyE^n!_i*3lDMg7m^jbn$q=htfpK5B+G@Ej!t48tabya? z0Ck&xXF^b9)u-g%y#yX_r4Dh%|Ju4sTy@!fkBt5Jt!sp#NaRQ3pSkD4zOK7N_l89L zK1#|vYl%?<*B8mq>9N~G*eBwICKw_r>Se6i3~g(g_Tq7BnEvpWUb~aA#m}ebyoCC} z7KxIS0!61ArWl=yi&gUwE?#~*K=AK%ac=yvvTmE{()hXN4q$8vWM%DCF*vna_Kb!J zqTg(uS8#ZCMQNEfP!svu;&QtvHrAuon_vTPpv=en1KE-HFxp#-K35-->E^c0^_0xT z{-%uQG^T`FGVuoPsSfcrAY5*4b5-vtC`AjM)>;^OC|OFlYYJ=fLMreVEvFOf>TE+C z7f_F;EFs!zu!2me&+2OPvS!ea_A!FYLj^C`hw?`DV{x`W26`XvFxJ{k`;4_i_jF<8+-mnhnl=0%wZw zl`J4;)Q`1)6*)a&1JQ@E0?M;3H~g*EzlnES-D#yhW|LyuA+Rn_BrBdARf#p4RdZXl z+xCgw@{O4fOIo^ueQa7N?6LsnNXpEkMF$#x>zP~>^huxps9JttMB6BE_uoVc>;2r0 zS;1EFX0IhD#U@DOGv`>(L6>CYyd}TJKH#{bp$EfcorHbb!IaFzwn8Jrzo43IJ zjyk4oJq5<9?0EMQpwP~JCn`8-gU0$1(#)u=<}+m_Dd)Sn@BSaJu*Ylo;XctHpdmC`3>~O4fS0w? zJ$dz&rh;0fe&7Yj;cN2Lif&ZUvnN+Lun;m^K+!ncjIDxZ#wGP6k39ju*#Bn-UUpfW zu*7yvnUfR3#G^bErEq(VIJ8Z6tZ~0>zmrL@UXfF8b&)!}?kN5*QU>*=<2*l5o9%O( z0_RVz*@NcJZ!UC;-&?teNDaCFM|84?^Gu}8P(Ob9YdscTH4r{}j8dKS^nNq^(`)CZ z?S7F=&oP{Ts><5Eqx2|Pk_ifLvG5CdFmld&+`0q>#BRAJi&%L#PjlJI%8QWU&^kDe zx^k4&P)L9!*$ibkpQ}+ql@_<3mj5u__d5@8H<9=&Lx6z_A%kXmy?(w&Seya#u}ix;?#CoZgfvDkomA3B zC^ux>5Zm|>fS~929}(gA(=ufGq58CdNe1;XEvL6U(bx9s^|2}-i#DCl{AxXKM##mf0q?iec4l)jY!iHcFqf?Fe?*jZ-V)&m ztEGCNSYZiItLn?U>fVT0b3KYxAodH;jT&mhRyQHf`Xea%<-iUo>E4M@fPL=J>1wJA z&+eq=3aty6ysb^S|JN?XTInwc47YYN_sMTP&g4_F)uL($xq z9@(remy~3nvwE7e*%L}00gd(5SSXmU)~Eb>B-TJxQyVkfa|6cNR3{==KeoVTyjHv) zTLQN6D z7mCw{h9^W^ZHd)}6*)?2v#1$vm=3W8goLM}QcmAAiz<%l#Ym`2kQbk3TnN()!74mT zW%IlkWKcYRLF&Hy-TZI+wI|t}l6Fv+IM1xsMQS5{RSoR0L0C$ac5@J*m7w$Ii$0GU z-qpBg2y*(cRWEh|`j%Ah==nzRg_8fEmJ)RqqUWxo$VRVSO73lI(L!iC@u$F|cD3mQ zxO>*O&5u2o=wr*Uq%)Z^+d!vE63CWkk-OiTJr~;tPJ?C}G2Tx4Hx|@$%;fV-r2F4F zw=LG}FMSDKx>_@nUIDP63bNMRWGEmxM^40LJLbNGrz)&7CLy$7}&%v4i@yed4v4K3kCKdw-Z9Wpu;gXIrxci3G62sCz9a~&cG8O_(Lu1`@L~QLWqh+Tv zEzg%VuOZX*SQgEy7X&ZIf6MKo>a|H!HtI4FWd7cWUfvFJzdBc33)=CC^nt25h7u&z2rO;TY#?_QimhH53fS`U%n)S-2b|r^<`Mm zmEqa!Bt&wYSot<~z1+;#TvQ`*$B_&zTNeZX9?3adUv;umB2}0!r!9I5|KQ;NUVCgMqSU3MZWWB)7**_ zUdhj60?*Xp1l_(&OCt=WTCXxYR-ZJyAW%h35w)hK?J{Hii~9b`~TjmL3f~(_RGauvlLO&(Nb4ryYWL3q^)trirR( z1hXzS-8!CuC7(fordA%mlVqLjzCEUX$U`K@balpYEK4BaNM>+zeYkU**d7b8$h`L^ z&M}HQEJ_nZwynYp3ab5;rPt-?cyC1tOd(9U!G>Fj3cUs78_0$gBKTR0!EX3x$l{bH z^nBN|2I=2a!>Pd#0<160A1swNOyRkZL$-4J>dSKb6meg_gr1pJ<>nZMS@l{;`~ zbJ2mr+0rEGqYM!H1*jq=KMdGyNn5$n+i*UyT2D3`ERiXDSgJBi6qq)z6o2~*T}N*| z`KWndH-%CA;$d#LAieZ6PQSOy)4NPsWT8HOn%)=#fiCyWV=$9@nMmuq-+64YX}n2T z)b_81{gj;-`+40nK3#?tKJBfUdOl8@tV}DF3U5_0W*kvJxA(e-Oqs&xBz^%j=z4oD z7tLe?5_ zAnpP+H))<6Vwa?zr%n{}({53+lLj(7X&#_~= zvWwOpz*9|&NrS2RwwB=^Zq}v5tj5xE?$f=LGzkDyQ+~AF-z-i6H(n2@edz#yQP$a5 zRqV5vPS6zj-8(pXv>L!+)h4=Q!E)fU(#ZXZk#EfDM5SqWyk;?@ET?N0J`Y|5qmPh? z;+R@IBc@ZMIcCuLoDppjo)&q89Scq)^PU=N4KX35lkffsRf!x4Ba0Jp#l+t|^W3D{ zTJjuj`o`|cElH3JVmrH2-7=NXnVvan|Xs-S%O|!V)s;_$f8GQSvh#0AE*ynfuX`q2GwV<$JaSbsv`+34 zbm3)lrGVf3ja(_>@5Dsky#-!ukxIz7%mg8{+^z-nt9-19n^XLw9;!T4W^;gjr&-Ft zKPp9Dpsg{Q5D+UyBGkJUbBkAK8gc`NQm62~V}tt($*Tf2?tcFJ7JHNbh@5jwta2;a z*Q}{o?wZcJOXB8!d0Lr6>1n!kx`8_Hemmq+>L6ot@O@NJV}TPJ!|PJkgQeBZ;H6bU zbob_Z*)`jS|C3+4OcsHlwO{l>1=c1-!h$>2RL# zP(uWYCcha(b@v)Lv2B7X$EW^Uu76{1C9o@IH6Ae{rn}+Y?U>{$&vA7vF|sp10c(Q9 zG$lgr>1=&u(z^@wF1dIRfNJ_q`o4g@Y*%N5oy-!OI#>XqO&qQ`7#-!n<^-{>f?99P zae$tcA*#=CLX|1DfBL*b!GiyAdOtF@+X#|>LEV=`x#0*quNi4+@IFqO>qm}}yA?l+ zQJ>HvAA%fO&^fi}kY%J@Lblv3mpGRvS0(~K7F|6E-K*=^4G=2$!Z_gx?_W8N8OT%< zQ{vS90#W$&7+vvuU*;eBov?qwhq~UrS9h*4J~9OoZcfWX|2gJu5B-ExM$#Tm9z{}g zrr1lMztga*za)?lPqrm*3uUaz|J`cGSPN1fOJqN=c`w_QXDPL};&fqG0Y(yzs%iA< zBIj?ZwzT)2=lDj1^IKE>W_o+;Dn)yihuxiNTD(MPMaTwTSPlQ9TZ!le6pzA6d@+26 zJxZyudCE|^c~MJIfVI#rlY_Y^7wKRU`DVF;)BBlwReqWgHem@&kv?}3L;J>kqcS!M zq7GMA+6a}_zSM=~Aw?541_HrcD_qpzNW;Z@Yu2?^xzu9*^9sxe{&ncgeXAYkd zF0qzWv=eA~Y%b(yU03^pA9u57>$%Aq&aCXY0hr!uKX?Aute{bU|6_{Z_=6LO!rAol zAERa@dks}az{DRKiUfQUayjl9Aojqh(?B>!>sAVrGoVUaP0ihJlDV9em(|qJVfPCs z8QI-IgQe#mf(o^AP#_B@vI69jY{vY!`RiT>{I|_~JgDt&_npADhMff72@wWPLCW;U z9j>2!*@OE+guh2+{Bz>V+$d7T$YA||tN;{EAHqPzt~c+?+{K{Y1EWY36FLk^|L$e;!nvN%_? zfLFgrJv;;ueR1@!*wOCII{u#>G1x;!Uk%+csg(+eHh+(T#B85Kc#fVTvODc2;&n#I zCSC@tSrVt+?b#_7#G77sO*P&%!$#JJ@t#9l;IJi2wc@L5&H_Fjshl7Re#aj8Bf78I-5SrOWW}}b$5TpjaZiEN^(UlGRVi{DuY}=u_uVE$jR1>#EKBT8 z2r(0f+7U@T6SVw9^(~o~#JOpykM4%mFEZ>BxvADjZCGCU|0Ym55JPL&fiOn@>+h#9 z$k8BM(@~#Y*Ifv~691_OKR>1JS?Z~nol2U{spfs9`xGzRc5=6dYtJoBJcR%aAA-SZPp4CQ$TK5JOB z;vm?^wQ0KcM_Rkc@4=dg^Cz5hZL+An;!icZaof8bSw@De%Qsqt5E_zM|LGe*rJ;6rbu%y>Tmo!=aBapnma?R6(J>UXEu`6gH>d)r(?>8LbfnC zcf{fu8Lg7j7BDK!fPC%2Ab~Et6%$P#Y7Bn_BYB_qVo~*TFj)5#tFW1xfR}S3XqxzY zIk;x?{_~RU(7!wgJmh|9j1s*8FnVTg9=-kGUvHfnBy5FJv96ZuAFTTIC1B68qE)RP zytuu69R+h2kCBDZb=|X+c9or^}n85K|iQYY+AWP<{GYsc%t{7hb(|tnCd`F+|kSj2~|Y90j4?`sc68csKninqQgj zoRh&A-|XN?;D_g{q^DM!1R4Au(RYh@UtDm4pb@i^yfa$`x}%hqch zUw0_nFmo^jn9vl5;o<38B!2uVnqX$TR-I`FTmw`{D~^w9O9`F@HUF0<(9lhiZQuWu z`l-UO&w3M%l^-DitdUwA(Az778KeG3RK|X=ap2(Ck&!x5O_)zruG%5>;mZ^+G1{mG zPGU^L*%)#^#W`WnHInD^J9v(3V8%HjSj{CXCK4OENd-1AlG4)kUNRw|nzi5A?f;Kx zccgl)ex}?rr+~pvXGPtnjWv|b@8O^l;0i&wuLrnaytr~g$U^n|EzkPEEjT&TWufUF8)uxraCF?1cNR_J>%8C!`bV5^>*I7N7l@p9n<>*Jc#HW|j*)0J zIt@yv9(N{(w)-jmc1QfNxd_T-q0(>vqTA=H8!ct7Yn4+k=m$jdX|r6K18y6G4GpEQ z3{Qm(rOy>Epe{aTS87?#OdrvId6%+wzBInLwRiYI-&l}`W1$|#W>@6|*nbBr=2~GB zYNot5Sl$WBS0~jukFIS)R^l8Nd*m4ZP(S=T?s!>U%g;x6rF94Y*qc#_NfV>~0xK>k5pUFk;= zglH|7l^zAF{6)ju#6Jq&$G>ew~Im%q#G<4m1nYjx=+hqiQcL2-M=$TCmY*k9uJSy?^LzC zNuhEznP$NRV9=-KIvX zin=dRuBrW#p^2GaV>V=l^$QD!F6$(|l4N25^MsG^jahqtTANa^)XU}7|3b`V;O3gk zNF7kBGbow0GvnB4n=oN(M}Lre$F08;PGBf9-7dPRMmoK;eG;YBV_mQ!Ku!h(^nop{9$hT7< z<4xg0%Wd2F{9(~wtcy(jKM($!h!y6kDS55WQl_56ONg`5ypzEaAvt^1?t#K_Ib9Yt z!0MjJ7qFQo_hq|=M8g@;AQgdMc~X?`UXuoBSf*=A(7Dcit9(7hL+60eZvbNM}W&2&zIOa~F>+iEW(>vZc!rBJFE!*Gs zlE2d)C~kgw0!KOyhOM8hZWMpAeS)&ov*EH%*otMO)NfASuibijjJ-xZ9#q7K-G+ExYJTNB>r8$El{lIp?K?)kYCLqKLpl zJ%%D>O{N+HhI4}tH^%-U2D(%3wiAlFYk6yE3qvwx4oOdnB z&^i^A1*C^r+%^Z1AanX|Q{%7hCNKD6a(u4onWoQ%dmb!o8NHNzGs46xX#eH`WPmdk zs*K^;>Ri7EvYiyi%GDm$-?TDXCW(@w22C33jlYie=m1^~FDRLBY@eQ(*NZU?!WUeZFjs1OZPXl^?s69>;o7*X>Ck`R3}{i!i3}~2KE}1K^q_b8oTjY z>ag+2Xx}Mf!o^049jiTVP9*~#ooOPqayOIJ3}(C3x2V8xQ`WVoYGurg!lnEJ6ybg; zq-Mj)gZAB7BtfC62#Gsc%r>Ec{S%1%JkYRoG>yxHznwm7iuKI*)*X6hG#A47jdguO zXt;i(^;+;Y`jQO4+B|xyrOd3^o zakcf|+`7tjUiUyWcQtXEN!HM}$ViMPvT?Jr4@?H^+&)9dl&U3Mo{1W-MX(OM&!gAxvB`C!r*+LjJE07n;=!{Yc?C7>wknuHdVh@4dOsChSsJMY7g20@ZETydlj{;wT<#8Z|20&6IqbXm-5{xZkY`zz+7fo!dQyf4?jY zf&^6!T(XMJ3a51h1C~aQPUm-hbQ&8JTmX7c4Za+{V#tweOboH)8=E+DS?)YswxP*| zxuvp#NHA&D2WtWtnhhO1`-o`4aqS_+FWK@6(Io>_xLCf(rVpJU*GQhA=_|dDOv3H! zdp0lSmJp6aoL4o0C*KH;`07KuC08^UWp^@!$}z_%Z5>zZYuP9b=Pkee?J(Cm2S^h^ zxBB^vi3DnOBOG*pJFoO;w2m%aLN)u1zVFHND_?Gp?cjs1bL0)&|ZJr&0F0+TQ1+?QTeQ-5}y< z_ByJ0kt?L(<>5n-;NN`RY`f|cDnt*UovIut;RY*ry~@KX)f3CYOWCO`d7>L3UO%aM zpz(ClTqI=EkPZ|4pdF=|y7=8NPcP9u-ObpY)YoZg^x=*am#xBkD?rS91CF^5d8wsX zeE|n#;LnmrBQR4)W#E1)875hJ1qdFbQ-1pbH+~W#!n^%w6&xITI9jwYp)}co&cnKJ zn3=fCk!0~%_~{&eQh=B1Z55Mi)L3;PiT4L3I|=hrd9IY)Yq&f_33>XH@F4QTjIY1F zT79AOtketbIQ_3dk>%V`#z^^}%ED}+;GJUU2iG8o)wgEH(7`^|-gSXzlLb+sC!vRM zhJN*cGqR;y!AHJ*3cG3@1~?Qd-Wq&^17;XhesH_d-kctx#Cq;nEU8K*_weIV2y&o$u)!|%f$xL6F6G+>;(c11l zk$M*aeb?Jbq_!kucfUa~;VaiA!-!CpRTov}yZ_DLYhbSHu}f-w#W5`WAG-bk7yoc4r`%u7NW9KNLx4}t8ZN17lmegA#E0n(RA6Eha&(^+Qv`Vix3#wjx10V} z^}7oZv|X9s-9Ld5tc^*8w@MZhqe2g8ZkrNwnmPSoD2YB=-AIt{kx(dF`ELGv`Hw~S zdxEH&-#fAcQ)ReFs3hrAO);>LivJPW>v)U)Et`M(u0Mjs++5ZolP0rde{v5d*kfF+ zP5;zL#c;MBOa|Ek=f@)ak!MC2E0ke>$NkmlpG^@)o13{j*)yYvXKBUY+`u-P7oRL1 zE8N5~$y}&p*44{pR9ah0Iqt;(dEb)B_a~D?zJk?p65O#^dZkUWRORqGPYxE8%rdaL zpM|mbX>_)H?*g;P>R#T~CbxHvXppCg9ooC5Iz!8}WBOnCwB`cvvKFLBlcEcD6a#A|;qYPl}Kv8+c z(%^_#;xB!B8F_CPuuOj^LUI88T7&qDliwK12-y1W#lxKr;Br#o4kaE0II+-jsh=_9 zzi*+-QoVRuSZq2APQz4y`{2Y@3yuP#lK&3*8WE?k@z~ch$}-g+w98bs!_T~H#sX=4 z)LiGa%Mlypvi%D#?gV^f%5dB|yUn(N>6wa3i1Jeyv6a)W)$SZ+)*YC`m z5N`%TJ((8jZyvuHQh6Hqd^-a!q93tL=)mtLv2vV=dxdWm9O5U zm`fV0XLy16pLG`YKOp&jwmblR3iOsKrdw9-DUH|pI@tX|^IAl;O#!Yz3Mc`Egw|m# zf+$C$-?wW0*Rs+`XYdAps%m}xH`tC8tAZ;mS@V>8knZ1s-pRKTO*;B%HpMH6QD27V{}y}iVmgvy4Z6C8HFzfZgxRmVE$~WaoD_S#3efi z*`qd;+u45YvvGEIZ|B{ep$kzWY70+UF1>|GSK||v-xrz;?N)g&Y)0tD*mma2*J+@G zk$gFQgspzgmrmukH^A)6%EVf@&fe>tuTo4(T5~;*XcQFw1{qb3=`S9+Dp?K@6gW>^ zP^~e_b`jM;YV`H%U@D(8U+zz`-&VJu$vM(-7ro>q3Q*)A>#=K+L#RQpZwWO2?Ln4k zT=eXZ>gsRY&lVR=N@5uJgRS* zKfuzicc^7b{OT?|_|s7c_dURUy2k?qB~5pHyno8W?w$G4*q@nR*9xA-A(Q*c^vL`z zs#b((CEw-({Pu)31;c(){Iy;0xt6f%EppO;YiGZ#JdJ)^VxE%gh{!wj zDfP@RNw%=D;hfZO9q^4_0ra%1z-x~h79WH^0;#niS7$gF+GqLZ|3RLp zOYe*+& zXr_R|J_*AO-yOlB+@p=>2bp<7NU;J^K*QeTZwngF@RMD(TE~geYMn-k+SF5uQmwkU z|L^P8z&-LH3FJi|o*h@;Me*KUIb?3~051|l&JV~jTKcqfRc2t4X-pX%%lRCTqLw#= z(e(eRjZS^En*3Vd%f~)Zh+m6Y_4P0{h2(?tHL2#sH_r^m><;YyHTF(0WIi^ldyM0`P-p$NJTXF{HWbEXR|cXNx=OwnX=sRL(aR*-mhY?z#DJ)zR^$AZsDd+I4wt|DdZDG~n`qJE<6uv29j=$t~K2MKr zQX$28X>5k2!!$HDx~BX{W2zwtM`D1IO_PnU`VQpp*>QUCirETjFKnecdmlHttImE?QS?itt(KAkqqJ+?3rn)Y04+ z#hb93g^pN3z9bE!79QUj46{!)#>{K}@&vG;OTks+A*{Lo^-E01r2~(`FDxYM&;LgR z40w5XqE-&h58^S9N-syQE>D->lQ&H@4TM?;oWZsgdiDubeF_M(9o~C1hN!A?13%$} zCZDj!Y_SP}B=a&X1%U?gK89iR*Iu&CEH%Vr3|HDc5w)ASTx9nvgGUZ0DV+dgymWqw zfO)n1bTX5O&-eaIS5WvLQ8+ULN*RQRYRyyo4o#LWz+}lx(P5`>hV@YL$nh|>#K>ny zU>0Qnud%zL&5pwoT)`c}xWr7Tu^y%Ea@qHhiQSMA!Q_s8PyR?TKW{61v(V6Kf4*Qu zOz?L47ZHeAV`%q0jg3@RcOO+Z{%P?iB*PYt*{gA!=>Eui&^}zg>9q&JlJW9mTn}g0 z*E%p8_5X-QI|8h&kL}$je4TPuK!AiB%N~C**)OKGgoG2Mc=#3PrXlko^sz7FI`Gq> z$cF_H+taPxp2bJYYTxXlT{s1KqWReZmwWhdP?)o?+6f%>AlSFF%hJx9?EB3ZBFFU# z;f78tmGD7ZE{tPXF3WEDRetQjm_KD=ihR#DM>BTB7AQ54?No-AdXRMA@4E!0su`&u zzfz-JonH>;R=^Ssg|1-jl_B;Y_IjY}{^!3E6!dWg8O=@Zk?zIQl`$|6*vB=QMfXj3 z9D$IZBwGfM6rmhCl=iPzjVj7Ip#`SD*|y4^hPUwGygSK_7owyvo2k>&H{@S!EXTc1 zNy_2~Ff1dQ$#dZ~C>{Qv8ZDGzZE%UPQu^&Z$xp9}x4wic{zeRXUj3IbU}-AK=B*Su z*>Z=`@|ciw<;AAMHF2pm9cP<_uP#2^UA}Mbum5eIE{XkN%FO0VO=NjZz}n9ZZJ+pqv~fwctc8zGGNF@K zR!yxPlRj_YX}rm>zb$^?fNg)KC5jSORe>2V#*K_tI_lNb?+6Sa6e+%4oCaMsV@aj-G$oSc3e(g_?a9| z_X}k)Y|n~{uPra$EYIyP;3)}fr80gpVDWDSCe;#&PW2ULG}Srv9Tg6;sqcBnq%brQ z*?dX!1-21~=Kxdo`EEnv<$TflFGrv1OmoME6nb+rh=zy`k&y0i!OJ7-v5Xkl20R5! z-LxJLCCbV-n0c2ont=ShWp*5ITCJ012F4kj;2;hW=)Vf0YMI#0(8^ z2=;Bceu2DGA2`Z%?6`1;_2d6-s!_FhKskz}sPqbT+?K;tSUe6xRcJ;bgbVNCQgcdX zAVQI@@yr)EKKIr;Nm%$Fk;|yO{|!O3=7}fYy`#ezNXN`?7NteB7T$i#dH1#0Xg)xv zco4d@RGH^bLaMOpS;<0H8=`0}ba*R0$vD8d64c0mJbu3xUicB6!nw9l`p=A$>nUcVEVkVSNJ z6oQ}GEfVZ+1mIb8ui5y~5GGmRR_i)4`S4sVO*L&1p{(y=;jADYXc6`&XTx3U|IUev zL4aLlj_1g|*YBQh$S*NyALrrY2{VRd7@3s;QjTDR2p|4WcuUY&bK2yhW7!~WY480Z z^l;o3ufy}1;Jw~1m@4lxk26bdM=~=QDgd2qhQ}bW!%L$715iP)zVykj^TBDM{(w)p_*?$~1<2L(=J-AE{{X^L z%8Pk%uHEV?jrY8ZYY8pc$G4et8lSCyHPF~vH~P!StAz!!AXBg{5MxA;oLSFzLRU2uH4Pa-z(Yq-2VVEd~V`MX1qmOtp#|-(O!1a z{{T1WQnxzyv4ay48ySB87Mn$?wNJVAxa_YpMRI%HQqmn=)JP%P6 zLP8a7txT_sHto%lNx=%camG8IMsv;w>T05~`1_+P^1a55GU{Gp8TJF3jchK174qA! zp{|vp@vM@UwzGKHoPi7hKqICA8T@nj*GcwIi)^6?m4O}hmilD&ABHQP;!^6q^QIU{ zHM9GVF1@s!Be#xKWZ!pa0mo2o6Q9d9yBkSHBSk6%H}vmys}$^ zd1CZUy>t19l!dQxyeIxpw zobXj6hNk5kE6e`?Z9hnSGva-B_EY_ft$rwYYgCg-@yEuCy+X#%SB<=joh!mRG>LC| zZEgw75^9&lVl&24L2L%bS5V?V9O_;+_)-4=1k2TQPm9+VseADg#x`Cd@SdBh%QM|B zoub*l_KvF@H!RabZE+(lvNqKdvEBh!-rq!i(;u|ze#$-=_$BcBz+M6Ht^WXu{5SBk z!#6fwEZ6NN)vl~pQjX$Tmcq_$wvb8Y#$;=TF7C_&Aqchj?c=W({7?O){vlm!{{Ry_ zL3iSR6Znzhu$KE!m(7}Aw79p4aG@4Bl*)ET5=Rnb>_y4X<@p8zzB(%~#6dzF?xU5{ zl$2!o61LGvM)!Am`>UC=`V&3O@VRW3T|#n{`4l-4vRuh?H{G{(yzQ=s>OcGy6U6#w z!`%nrAMBUmBjueF!JZYp*Q87<&o#A^L8Mzq%5u@#Bi-DrYzSHI7DdA-HNyVa-xKEW z{{ZX<`!swB)AEh2_)0$&YOV~!%CbBKT1vWv2djX3L~SLx>M zfAccFHtM$i8~*@;UHlr;SC`a0Tk#8C0eJy5_FX&w077rhy?gfK_=T%}&fm9Bfi*t^ zBwug%N#TzHT3bUe`mZ-hvKOWoz$I2ixhTW}${er+fn2BULExP~#6JRmWN(DJYdIRP zf~UK53dqdfFxR3X_WH0x*O6VX?RoGE;!o{&{{RIz_}$>2g5uXv)@*MtF06Fv?o!@s z(kJo@vq@W?05TAcmv`G?KAr#>RPvjJX7JTOP?2bo4{K7tkEr$ zw=CL)=8b-vyx8KFQzJlK!Ye9lfVv9uuZTJ&t+)IW3*oPWUBqATn*34mJ?z^~8KJV% z(?VubocxAd1MOXQlkhv@KkQHNH{w5tKWJSg{4L_YiJl*mz}_0rZ>5cO87wsmm}S=W zYm0c=LvL#Zyb(ce(z3L-4$H7E$8R3}rTjy?4P~vs#135UlLQYP3wId zZ5U!J(Zf@zkHpiBEKI3;>uu(>w@FD|=yX5uRV(|8@AxRc#eF1WZk?-HX_oPfe308{ z+HypL*aMI~{p;F1EuzeR4F1QTv!t+RQt{`+2l#_?6h%u7I`>(%(=@3Z1CTCs{spK?Mm9_(?HXuHuiS58g0C` z+HRR`Bcu6nTB{)quorP7>{BMy%MC*lh|6eUBSKM@9vbs5RVl`sf>CbCrrVb?(@5*9 zwO7Yw*bK_9VJgvoS(I&UZ40SMyDcwkTi11|^OxoE(QKo#f_4Owe$esDI^Y5$l>-G}MSQ)bd^xv&i#jKR zb!(;G=q@g{45~u130M={?SrpO9CxpO*S<4&CrMU<-d4YqsTjBAcXkEOA6!?2=$hE^ z2a7yq@fL0B);c^^a4tY0uGm7Hk3qbjZ^pT+(X9+6ECn^o8^$ZWlUKj0PUkf&bt<`y zT*{=mrD?a>UM(wnHoBhOt$5=5!(XzWkA5@FGA^s*-ADTx&7>G5A3KndkO!2ky@1_{ z{3G$C*Kz7HSs9#vXKsKU`?*#-_P0_U$vOA@zg&N9%l`oQLOvCIF!)7igvn>4$*)~T z@s>uG@tNZ;qp%Su=NvXWoc=ve2ix21%bkqsaypPOPSN?-^QVegs;!y(DEu+~cK-m$ zR8Q!y4Dy#lEcTB_KhysJwsJbJh8hGnlgV*@rZ_E=%$b;H0FZFJ0$7d*e`@XiCV1Cc z(Cv_TQp$UuEO}QKR!V=+M1$qGjl#Csih^a741@c$U_%<+@bXWl_;}n|g${*U0LnmV zpX7r)@&OGY_FsDK^e7?Gbkwki5!yh7?j>-ZV-^{h`G5n5B$1qvo~N4iyg%SailHpR zZ{N`WYIcL);0wSpP2HwImtX%>QLc)Ea=8nHJ^2-;I!9$d!L(P zc*h#*R7yVLdrI>4SH1MLmAy|Q@o$HdNWPjuZf#aJRJga2CxxJp{Gj=60gEm2yk`bC z=r+3J=Fc7Ii*0)Pj9}(h!(#vg$Ib6wp`Q@`A$Vuw7lh!tjyXTI^kUJpvICiPy}Kn> zJ;WSK6ESHOP^NZ-$HJZ^i+oaB-!2+0(Xl-@As~_I$j{K%^RFCm>&r6)=_^8K?>rmC zKVQrFYkYCjUH)e)ZK~ebOJQ|sa`x!>4;s5{Vc+*elq6$0#&gv1Uqs8`&jnn30gK}K zx4Qy6hPS)7wpf}Kl1qaWMlHl_SH^a;XFqfo3E&%E>g}n(Tc2;%lD=YLhL_pM5zhM(;iXNF#xQ80YzVn(}+yM?{a!ir(H+ zCP?|t&<{^?FnPsy);e{ysI@XIk~Pj*cMhW&-H%MyBXy%C&-#_X1e1bsp1pXlW|g9> zn>L%X_l_OqmR8&VQ`3z909ta|yp4{v)x)DHC65j7+x-6kpJ^qv0f8XldUV13`&UOg z?k9*{4rlC(fOFRz*JlTVT1XN`lWAoHgA3$jbTrQo>8q&gHnxaz819hzD*WGvO6=~n zB{wn{+4k-@;PlO5QxM|pj;uXCWp>a1)%$zkr^bKyBuB;(Z)xMJ4J%0TBv3^y-OSM~ zq^dAjJG>0=`O=wBnC#5wX*f_g_#a>KFN1EpZQ`W(Fwb$}2=(Y<(=BeNd#j6UJ6Q17 ze{E*Zm2~J@1D4tfjIMA$EB^p#FA{i{$G;zZU#;*vP!WKps{5&`jh_v1i1Kl7wsqUpTOthzNcZUX;$#WFJ`!qHOjV}2{yC1 zL`0fpk~8*kle8RUX1q#NAwr9&rF}Z;eu*mc=H<4XPw6Y-$H3nT>0bkW5BSSpj%yq5 z30pjE5N)bb{?zYlf`0dwpq!Jz>F9r%Pm6lb#Qy*Rd>--F!CiXk?W{FlgZ}^+Z?9~M z#=>XQJV|sk*_ntg3R~UFv?~BapD-j0e__A3FN3vji+`}E#P0?89{KIH3%?EDrk!^R znI7I`fy8nlKX|WTM-}{+d|dsjei?j3@Fbo%_}k$E_Bz+YJI@c@4J^m@+jiGsVSO^p z#Xr%exKbn-%19$)l6d>y3Mp5_({3^6N=r_u*|l$0+x1_6z;T{BjvJP>XUo5)==tOR z3P!Lu!;g+KPB3l$Hu!8?`h4C9wvUf*D<6g{^V{|^*R3=!h!N>m@S|GlsP>N|1!A(X z4;D9nyN2}ydRNzw5pAJr|6OBc8?pe zXx(MEM3eVeLANc57=!tLZGM_IohsQU*{*HwBAOXclF1}&2xF7fGJwDkG4Eg59v|g3 zMwfMvPGU$I1T#qsvxE6Ate(qV7?VV3ywo;?@ueZP8le(Jf zUKjACk;=A@rD}RV&5guq^La?e-J{yyLO8GIUMa>`!OJtk$-By%d-hzf^FMastR)Op zECwzyO-6Rvb$s8U`!T9qIUp`nHUJ;izH{-jTCf;c{;{d!lL{B+f3dnxp*c*3xWN#dq3Mb4(D=l92pEo;TMmOl>sF$qa#2#FZk3&|9rOEU*1K*4uAjHq%x zToK2&{6e~)N$~P%dIywYiq|ZnbwMW5qztJuZbGG)fsyZ;;=CoKc#Bl{&3)sWxY{i$ z%F(UF&V(5*BnYp!Ic6X!4q33g0qIpfA$XEesC|!3Qx&=cZ*E=Luu~&?0fh`VVB;kB zIIW#D;*pm=wmffGg8u+hRJfX9wlH5i9E>Ooi~FaM0U5#Imf-L+Ua_v}38Hu+&q|!f z9G2=PEi^ltUok@L+8A)FyK!X$AY@l3;NJ~Rd*T~i9b+z67e)Mn1FU3uYEI={%;yS0 zJaM-=S*vTQO+9V$sWnLni+KynvIq=cwe>LY3r^Qhw?1j;-KJdG+Pi zVn>tr`AJzrY(?q8!yI$b2N>ry_UDH@Eom)}*)Gu+aZEcAAVx(vZNDnvyO6^e6pfL8#h%lzD64umm2n}PK;?s^u5b$@pjfo!q8)XX7NiZbgS?hY~nD+T+z zn;H3=0=ryWmWL(NO&5svU6GQOFh2Zc`n`CUDvri}Ff1AugRoJdU%P=P&FdU5W zUOhJ%$xbUr`J3WuN}OdE@qUk~jq!Wo-jVTt;8%-26#PN8g6B%s^!Z@8j_To|P(mH7 zClSbD*g#vv*~(8^QHibAMfHz~Oofw^$S zMsPpXpH2HkwxJplNOO*OAmh`gKKMSyzs-aG3Wncm{ki@sYBGmJm&Dh5QPjpzsziMNjf8>s2hsXkEg+OUk8)fqYRK4f`a?w@;L`!3>SKDglh4S4s*9}q8w{uOF-hS@#h zt)w_OZPJ`E&uk`6YwHOZO%o)@vJ7Jk0seLQ_4{e-_OZ#Lcs|1kYxLe8_SC) zxY{KAYva63&t4BAuTeWnOO<-dPr+UMkI?)sz{@hvF!*+~Pnq_#b^KkI%=k}EGH;a= zy5}Ca>Hh%MsV?1^g@s55>-}n^E#%Cuc^&c32Bep9a-C1De+JT>(f)!;I^3k&hX7;i zP@MWzsRrN2nyc23mkO7e{YUgtz&g3*Nv@G!i@)f8 zhJMYr&1)}=EtOthJ4CUNq+qijChle6E>9k2dRN!qv$fP#dPcE7IG94Jn?NcH5=S`T zk>8Qcd}sS4c&k$IkH&pMJvL3Nap9ZsyK3)7hT_%HfjtWEY#!OKw0sG6Vz$)ggn-ku zPo6nDn6n>pNy$H6Yo~(e{{RV;)ARh>K4a+}hf(7kV_kV4{z((brSUbaf3=pM;p^sD z#NJxN!90VwDIksxNc^ku58}R?Z=!r$@lKA>xEA{Ms}S;?mkO7&00%r{(;V08SB{qM zf7&9?#c(?`uulssD-cKr0F+)2<&j^VKebmmD~g)A{Qm%rjp4E5S0859E!NKIg~IOK7U_3msKUD7jP}U@cdt9vybUaO8PG$` z!#9${_k(Hv9DV-)rZ;;U?R3pL@$Oy=qT%|5Cj^Z4J$iBVt9IA&Tgr6yEwH+-Rj^0R zl`2O<2Mb+ub2J; zd{*%$z3}ruw(yprad)5}lIKTReDAPoaRw4xqAY6PXLOLdZZ67>;g15o!m!h|4S!9$ z)htA4ntiL@&eA%fh>)s)nfvbS>an7N&QBZyNA(U>pHjuqSc-C1^*@tyo*l1^@* z?!T`+kE}mnAKH+9&p#E{!oDuL5cogEQ%7&97tYH|k@8yV3ywc@PnSPU(6J=qFc0+q z0B>_8vbCMU?0+*ZGmse-*Mr=A+#cfxy?+zUr(SCMgXwx*t6i~4Br&S*#8IwgXTZRX zN8e_`fIufCXZN4>T>ZYh585~D;-&54 zlHI0|s4}|;~;tf^T?#Xd2m6T2R8KsndDVq6L z$Di<9Z;Met>)_7;XnJuxB$v0hckDCJv}qlxegXdg8vHje@K1>GO(z(e;*z*{{Vu!{@h+9fW@Ww zj>AC7&UB3?+7<)QJ<+>4_pg$Cd;4Pk)?X2~FN{7Vc%JPT5K%Qr?GS_5rHQseJ7BGS z?p^d?&MG_NYeFl^?fyxAC&c4^k{KjD+Ax&9NiWR)?sZLnM)2$(XxFc8wD|kA-0@qF zu4HAe&2QRk{tCtWHGB=x?=vD--$mRz9H&g6TT;E zt*L8Tw4vs4`?N$+h@gfbNQwxQ?TR2y(UMC$JGTMlPbt{ti9B=GzM0az6E2rxEPu2e zt=(itw?=KdUmLd{xE062?co;|_UIz#40#Mj2>_l+!OkoC7Y~_X@buLh zFtk>QEfPrl12M>Pc*@ScCT+@EyZ$GR{22Hll}CGXYS{3~z0-TA8(($tpA8u;_}{P@o& z!5`VTR+B-xHk$tciB+^sE=BwCNpl-{_bdMZUhr>lPw|u;O?{Y+BREtUB;XHo(!ZKd z_$Z&pzxZ6Av?b?zu?jb-^<`CX?!c0WDe$#w5z^19pMhJ~lFY3-Y2N)Z%clq!rU45O3}s0N+omZX&@Le)!*RKP zy5m2tX?<$?+|F5ild_2ba;J81MLA>zPaQ{Eu=ZClj#qcmsL1i#HYOoC11-i$rO(Z| zo21s}M!EA%q}wnJ=IVC%&rBlAA@=CCvEiP;`9Pb@)FHaYnR_Ja85@PosCCHQCH zuY}r7`}{KS7l~~AMRz5{Fh{Fvx6s_c_d1QvcC0c5Lw=#g=f~DOUHVDMMR9+m<}ny{waayIs32k4G`$ zYM#MLoFfUVURHN}wzcls*2?xu?D^C7nD~&Nv=_#2h#wT*DQzP0uCJ?KBvO=Vpo37B zLlkbvN;Ag`Dw3qG<=~NnT^H>^`$G7G_MQ0Qt9)_s1%V6~f6y7e@?xnfbF0Q1%n^0#f zboWxRcc0Botg^GQV(LN3IK@*-IBj`Tf#^;KewC|lX>oAjB8{It0;xIttMl6PqfYWx ziuo-&dLN)+sA6i_Nx3~QySwk|aT@1^?0iLiF0Ze7m)Dcv%X4)!liWyDZC&$9%_CrN z12F(_Fe{jo;fICg3es8wx1hgyL5M^E+5+&PdI8XW74!wa!F$`Z^6u^yHuVdhKR@TibXtGFttJc$ z`<9dsPn7rUGmp>kuaV4rZpdk^Yq>up-{zA1PolthH=RyO)RY&SOY+z7K5s)Tcq+gH z$2@%i@AwL{4Y--Sv(dA07>{u;B7Iy*zHWtdNl6ReK;fm?ZtIgo)_@$ zogb5BX%r(Q{E7w-dibn=(jP63n0iu|t(WTm03+?O&*O_wdFRd!;dj zJF?)8LF>=byi@j2(yfzB&~*u0DRrvdYBH0_*&WQc1bzt?E9YzY`@~fx8S}+7^!Hb% zTlYPB9tdO+r6j4nRiC`|S5M2a`APo(1tRe+(*D(cA+^%o{GA#L4LTN91r=ib*OXVO z3*?vo0D+#B`KUW}4KpEGf3}@d1x$lblH};M3dGVLVFB$lz`BF!HYs!Uz`NIoj zX*YH&zE>c6lV3e({#4@e)F~d>wbsW;qVmj@lqzeTPBQ zq$A5oFyzkVh-7v7nSkVBjc@#MOYakF%RSw;-F7(Rezzov3r zhZ#o)C{nMasihe0%K1{h{qF9Pdb9cCI?wR07Y9;>+$uRab&_{!e6F{BG(6YBI`*e; z;V86avVtpJPfv|5eCdijATuhULZ3PE-{vg9WM=^IJq!C1#w#zf&RCtMHDn6J24lkT za0teF;|FhCS3BYT6I{}@DE|QAB4ae{k33shnmDcG7zv%KHz{62ZuUIap=rWvi08U^ z5^(`;}u;dI5=RbYIcq~jXN;u}6{{XMh{L76qd_1wPSS8C1{a@b5 zd@&uKm*R=+br|E#^DUf_uJWeFMKK-;BOn$ekC<=|0Au0rih6a&hx}uxcym(uu5D)7 zE&&70LFGtKpf4L9I+N2C_OFQa-x7HRv};25j)j%{u_oaYt9e0k7_^xy@-T1Qc%c=T)_e{_Rk0Sgs~%HzJIZ6yPvZmr=tLn*6)Q3><#13B@mVUz$Hy z@M|-a>rGAkaohYh{O)}2Jjc^7BUshQRsme#Hgo>~>-=l5w$t?;U%=WHnR5PJtPmB2 zm=n4enn~m*Cn25W=Z;1=u6s(;Wz?;vvVufLbGOW8;1URDJ-%K^&Ooni@YbiGYc}6! zx0FezL<~c6jznajRT(~+-RMPsJ>ntK$tc{r2>Az3n;!Yd?_Mb) z>NeNs?GU4>IV~G-19EUaY!T01D@qkywL0p>C1XDRB!bZS#|22h;F5jMQ}pj#bpHT9 z?#U!)Bn)>wKEM5H+VLi^t1yn`t#rOO)uJLh zdtw5{2*;oU3&0=b`d5;jjCVU6o=*p_;Azm4)>7&^j$aHOi2v64yWwa27Ng)7z^Mm= z{5#=C@e1hn*I#Rx+j(*s(-9b;d!#H`n~2f{5U3kL`Lchajbrvy_<8$Hcq2pjm*MRq zUjTTAQPMu%NVR81dG_Kvs0v2|Y%RUzgcj@4zlhKHBG2rl;{O1Nel*a2E$h%}dY^{$ zjZj@$*iR{0=D*Y5%!p047ijIHkO_AU%3Tp~8;bt`Kre;fG|~Pd>YDGu?NUiJyPF#b z-4fr-jzxy^b4#i(0JBas7>|U1`@6 zMvAhOSr$mhm=el{LdeU&=dTs|_l23wOs5|VOZ#mvEqeZ+GxP5ea%kpwDbQQ4z3hK3 z-wXc$WZxEiLb<=yyj^`gj)A6mh-HkQHs*N9EgVYUFP5hv||&ok%ExVbjgNfP(sHFkhlc4Nf_0Ith6mT8p0nU-rWL05C9FTHm?Bmz~kGV_5E)? zF~m!jaF3C8+8U!VCOlm7s-KCPp8&q&uk2l%W!npcRe&CDnc z9VUwfnl{1NBH?61kG!YXpVwdbCuhSAAK^cVWAKKPcXNJ`!Kht5#n+Z3l3S1&$yk*U zRaI3$QSNe0en$Am;pLaZPm7m2-1m3-b*!^B#e|k6QQyu!V=6p~V*)d|SqA1H1HkM0 ztN#E5&ha;kJa_R^#v1pCH59zE(X^-{wTd{BJ+FB)hi7F~F8*9XbI;Fs-Irl! zmSS^?R@R-H>#dc)uQS*1dmV{}I*wOSyD8q@m)GuJk^0=tn~5%D`>_H~rxoJ50kzaM z?NV|5RwecS6YrQ7@ zk|b$SSSZ`LtGfg&cM@2y2cFy#IIno|H1gbAxe};cZowqvj(}s^>yFs#UpV-(z-kTl z2@)xXCP0NgRV$J6J~`dhKqnsjkzbh>;;pI1X;USjTA;QYx(5q?Tlf21o`galYh~JUSTTQhG72 zw!0kOh2Mo5U9r;cd_^RGy1UyHPr69tbiph~?=Vn5D4=9*>w+sU#oiCTzmc!*r~k&M@<-pDRs-jL6=aHu7S#~JPWpxab|)ZxJ+v2H7uBkePk zSW)CG`DjO%B!u$AD#W^}UN?D)GC=@zQA|!(jf|}uMs-Ak$(6wyBOwVVKiv!q5sor; zob=8?ud6?2{{RB&J|6LwJXJNcQz|dn(51{#!tOFW#%Xu2n4}Lelwgp*#53Xk42r>I zHx{A~w8IPUl2Y?T&RKk{+gjwbpWQ0!!28M$E8RXD>e?oS;>XounZ%LJ7)Wec;DMvq zJojl`B{^Tc<*@~FISjjptwNIIyEtVgosa1I;4~f^*E}C<ulyC;!}gy6K0e**QR&iYwpw?J;dr5yR2ZPV9XMuPo8->mc7S?u zivG^N1zd@AJ4?7hvo4-wku}0?RO*hQRzSouo%@^REO1ETzm0$REuOOv#jhUt?@ocz zb8~uNhDfB0hnC(l0}X*!91Jq3t)ou$5rzg$N=+ZFfAC7*iZ+w@-$;hmD5swJQr-y} zfQ|_Zh9nRM<=P682t6@h(k7{GXW`!*N2tG;S5splk7`a4z{BC>`ND=!KvVMPIL2%I z_kZA&U$wQ}wYP_@HOt4hzqXnH#h8#Lh>khhq~UY4a8Dd{ukV}SuDu7w?}V{qA20CcbP zFz|+@Z5(#7##jhblwl_1IU@rk_sBUsj`jSxf5FZl0IZ`v1pTBmn8Ms@Nj8P37Hn@8 z==V0oRODqxmOxaQW`P6>pjR+2htjEM`Go5n961UoHOt z2HE_3gx?@sW08|rbj4V;cqbhTF#N$4jAg*Yef!q6rP3Mgu1GnI<;QLa=D*a2v_H+M zDI?H<=Od@RK{B7bD&b2L(n6(k(`kN&+?x|TQ)Nc}6BGoH4@F(&yHROFL^pVGe` zziH1B4-$N3*6txcySKRe9C$e!El@;od*(pr+co;raensxbsptF<6 zoC0u8IL;}`_bC)v9Wd@bQ_%LL?snJgpNM~De}w)w{f94nL-5Z|SiDo=9BPx?5T@$- z0maNxGKMS>GbCy-0bC9%@wI_WrgM&%?kmlfAvv|x9S#j8a>benZs9@Q)N%E%(a(l* z3pjVbb;doup4?aGpN64Hwd+XaATOGyC)=OtU!Xo7xsKON{q7Y&&UhHl{{UXUGw~I< zC_~i#()uG)g(+fjGj`Q4xi|WsPX5j}cNZTYuPrWHD114nk5B_OwhjkgK;!z?=q8ga zT0euYubGw1k}PQ;JxcS19-y3H{Y8FUe#v^H-Tu%zl&;&1dIjJZ(taevkOe zP>)XVd{8T5IN9WEFAT&k033mX_}9>Ig$E425or8Z$82iE@kT1NcDno$JgZN&v((5VmsN+)5na2v$>%~rxlizt19AFfcCRq;W{7lsPwh6N5zI(s>J|EsJ7IwYdsn63#*sF5Zrj3Rr8_blt)cHRm>hY9^YRM)w(z7r6`R9TXgUq=_TkdZzhk>%Vx3@- zT02F$gd-|Q2+4G8NWUlwNeleccs9~aLPbDINRC;sNM%#BZph~$xZ|AT>tE1U?CoXa z&x-mkmp+FGxtM9QY7WpUtn-UyNKK$vlu0a!BQrx8Rt3Ib%EagN&H&;Cg~Un|smm8@ z-Rau@0Mq=B%=|*gC5odOkfx<2ewzOPU*vsz<6ns$3er9v>c0>E5a{x0QFww#7g)Kv zCR>KKv{=k`X(sml+|#SgH$@?YU=flzpMep#jdk5;;EaJJZysqPYz|p%zmm+_9+pqDiBV$#UGryVPNrk^K{v;HW}`snB=Ti8kK$vip(z_m9M4UM3Z4E>x|uvP)N`yX*624Y|{`3wZSlRQ=7uEU}gx?2$t* zN6^=l{7tj4TS(?WsNj$n7$-l6KhnQRJbn8n{B+g6F?g>__+#MRTUgSQTD_9e<`@K4 z#@6O$xwjEbaM47_kxGa*u>)ydszo^e0Kq8#0Bj!}-a~b9X`*<2Fj1dT)YaWly5b9H zE(Y&$AU%N{Xono-I7zCQoJ?cZ&Px9PcK-l@(~aO<(-}fk@Ys1u{drx!{l63OerWyr z)_jp;oLBTG;UD-RcB?JIOXL3liB{0Y2h9$XrO56+lU>|w{{YBU^>2ay0N{(ivOkB9 zo8qlU#J(kyApZLLI|TX#)8d7(^?du+pPBt3xML2Rg;ziD#s0Qmh_aufw-MF1wTxiA z}4cyvk52;^7P|Q_;An*V@obWT-+P&9H(C&4~L{<+JZ0H?UN5N$|+G9`) z$-ij}u~-r@#eY&B2K|CRV=n@T07)=S5f=DxGgd_SOgdL*>) zzMX5QfC3`gK^$BTiZ&=X^cDF2bM%kHPNSX{gq{BYnWgwHWA?0rz)G~KDtMa7TeaWk zWB9i54y$3{dr@lfTu-T^1(GY63=0$B9iBvk%q`A$Nwi=B5UJ-^;k>>v_^;wiT@y&P zYn@|PypGDz3ZLHGTu38`9ixQYL1G3K0XzX;XMe#({v`N2;=k=*tm=Lc@~&;PYfEhs zd!)k)tGgDM&mdut!Zwr040$Fd>=wSF{{Vtbd=LKsgs0*TrSbDyfc=BQs%&)a%ksXZ zbrxihWO8lop8$i6(~x;yKT^$j#u!c?d9`?Q&y_nj_L|Z?I@_kl=h=S=)WqkX+4QPj z3QcIbE#KU`pSGU}J{M@81wI$(UkW@n!b@EW(QVAQ0M9Y`r=79Yrj)y%t$J`yGmdH$ z8R#)qz&Pv8f1j9)MC(>!4L19mEJ8W*&)O%7hwX1REKdv4YOUosV{AJhL(6l5$BT@@w>q z{t9RD?S3NscK-l{U8Be((fkmm*~o8}O-f)I?fPT)DY6wg$Ub1jes@_;mr{9Fp`E=H z5`U4e?T-hzYx^%KRch%vzVr0^EAH3Tv-umvZ1!1}Xz0<_H2u}<_MhLU$q>h6=-JI^ zM;i~l(zR_gjbiv_-qusj)0HdRIr+Bn?_2i%2JsZiOoAl(u|LRH-D9}REW>{v5e5GM zZ!4bun<`4=T4CI zcw!Pa&=q$L&x`11%3Yjm3+-_7&vN|$BDm`V<-68 zFU0k~;u+`jvZq0Mxg@^}zrf^mpNhT!(V3u{^h+va6^AkqM{I$N{x#-0&&Qn{KbNKH zhTtBpaKQokFDD;b`o~HAkh}$E(Va&VZ0ZSTQ_g>g1EPX0CV4z+h_Hj`|T z%(4>_K&<7MLon^h;P&FX548T#8pIndY-f!WbySW#`~1z@*l}N{8t;d^KNpLnYCP%_sU;{MFIFWIN}O8_4ciy6utHF^;_KQb*%n^WhJG*IpRJ z7S_t^Z*QBaU1LGj+=TU@yvfz^i|-Fc;OHCqFYX+e>>thu4pZevju+S;C_l{azU0jU>How6mlmg6ImFsu13 zAUWTNUlzOx@Iywn@#n;i7gg~NjUDV3*H#)O&9$Zci*QQ*=4-IfDN+MA{AED_fx)jp z_<8>T1sneWf?oK9c{=C7e~A_wK>q+qpIoxL%Mu3>+v;(G6l9(TK;UH8$se{X{syx6 z2dhou+l05cM~U>f)_t!%`k&oLv;tT%mo71dP*{<-HTg}Vc)ek@MzexBQYRsCIa8JT z1K;qkOASIYh1qoHXQ}-&P5Wv80KpD*8RNF`)t`_2Hf6|>mq^vFQ5AAG2{h?$)MS6W zz;(f|Pxx`+FZd!?#C;0K;m_=^@rPfq)uyzT!%VWfx4XQUHN(#s2_;VE8Nch4`KOL+V~7{g?bJH;T2t2I+S? zox&Ie#iTD3W>_ucJCpq)>4qVQNUbN{`>UGLbYm5Bwv?3HvG~X1i)m!m{7xs3&yN&p zP>e!G-Ip^UC4nFUr~qDh9Zh*wm?l>-OmcUIIQ!THWMkWe&tdJ)It zUu{BCO3zc|>qYankG(zz`1`^i4!lESs`%de%S}y3!xoXo_s)7xB5k|t#!7XXYO zZq@F88T9vzL*gwX3n`F8xS~9MTg2poxF}XZjyfE0Yx7sf-T-fj{{Rm(U+lZ6t!^|+ z>zh|;Lo&6!_*s(6zbVfs_~f;aK20ayAj3Yw;`NKDT46d}i?; zxu+mDe{PwfKg1&}N)mhI5P9jGbBg^%p5Ffe;I*Ca#czueOp;z&Po>$|M>Cw-iqf@UmfU^Xhk2dUm4|TTf-=>K4Z8H2YHdOK}Q^k7djyw_D0d z^55nt_{Ch)rMR%v?=)wyiWn{TNgURV^6h6odL{!7G8mD;=e=q8T05@`cw*jd@)$KM zyL6d`HWW?MpeKWYAO(Al54B?@$J#Duyb^Li`>n{scRcgo)9|mwT)E`mL-%?R<$_4( z{8^}8T-`{avkJJ3GV-bj<8a1QAM$W2jpv0mYfl2%d_$V**w|`U652!M$%#maKKXXz z8$m)o_C{2Zjz$i@sM%TFN>$nJT<-!bsl#w`NAu}kSFY*$-`S#$ZIQ=vvP?z};GcPk z$slKp?E@#1>N_aH?Ii3)N~vgbM^KAZ)h5(Du%cNDFHD643On|%T(bj9(nRtG%-kc8 zISRak&j+dR?Os*kZ4!N6>L{W+06UoX+t)u)j-I%#!^EB;d&}mv(^R}L#ucy#!90A~ z$v*hUKT7nH=8B2W87Q{d$6nmas$G(q`T7ChKF81s*d7v*fMuCLJo3yB;yYE{D@ub+ zjc315(y$vwasgqUMrf98Ov=R?MFgAxxd3}}S-mz0%d0>C*Z5!d4fw&M{1&v+?LHs) z>q*kAY%Za-x3ev8G;I@)DrqhEZ7(QI#D;cNKRXV``n~;`H9JcUD)4C@Mb(a?eCs`1 zQ4K7zzmggqoAz7Cr;spIXN|b#zs|Se{{Z|G{{Z3?3w@<%zBskfwd;6{c2WI`=|0sY zt^3G+)eA9<0s-B%lfM`>`yZqK0Kq{&Z7{StJu%+l$GpWVW?N zw^x}Nx5i1sd692oKo5Xa{&!y?_SJc?wJ-P|rqj%%q03r4r|);hpZFw0U|VYuK(YUe@1~h;0OPE#AKQ z{{Vu3ctb(>VezW+Uk7TVS+Mafyc(sA>axgWiggMJBlv(`ea=r>_%lh-F0VC9a0l** zX36ME44-}u2fcq_aQ-?q@UX=H05VMeTjE?SsN$!GT^aEo?M>s$Z}>zT;mSf?e%}%q zvz$B;nIs)@7_$W!{uOMKk&o10_$9mA>i+-&H6IhjZ5^bqJ-vkK6l)r^){&6%4ZODE zbCciRzApW#w9kZo0Ptj=6TT~3Pc5mE-rLEt$DcLBHptxLosX^#v3>o{S^NI zf_7@21=qi4Sv8M_U-AUFz8_`<8a6~oRZ2QH%p^w)t{a`%@Lh}C&DWf$wW{5kaRi!SC#mPk(3h%Q?=1mxgj>(6TQUxy78wp#7=!Wi>@ z>m+y$u%hiaDtaHi(<43l*P?ih(jsPlJhHAvag2J7y|bUfxgP*P@!IRG?xjwkWiK0U z7<2=!I`PQo2aM*wfadkOKd@<}pkwOg($uKIj!fipyN{cyB%pKFiMk3RK^%`uA!K=RGp-i9S(YA4^duKrJHMb3<)6$<+ov!g2RLI zfCwWTj)ZzwbSd9Nb6s0Q)$JjDI@ipXWvjGgu`T7WZu^~sbJTFY*zZ_VX{S=Wl1RX4 z0^ldiS($$4?{_H*4tUReh83-)%(syw(6LDq_iE^%I7I_7?I4neg23c=1P~2Jb0z#X zw=X5Rc398Px!h!vgBVDL9Wj!!IO+f_Gfior+Os^m=I#sKOkK)`NS|WJgba~_q%%p* z&@cxh7$YYqKU91W@m`Z<<;f-r4e58fY}-zu$Cs4_LJ*++!g}F`IUgx#nq}Ou+z3&i z#TO5@Vz0c^2;U~oX1Hr!ubsrGjY6))^jRosCWqZWf5nTew^Cy`RBMv1X zf#RlMHA@S*BV={J0c6jaBfMGLg|1$=pKw=D*9M!M_nd;ZS^6{?L*_R^IMdE|pII z0Nwed79~arQa22B#~o|?xBmcwY5a1&@WSZ6HPG%Ob(RGx%_qwwQy^Ey2?a{$0F&79 zTzpGHbZbKqYbJVlc+#sG;iDw<{C~{;#toZkdaK#lG;Iv4=0g;CQMhvCbx;@(epSgi zBc3bs1O5wr@X{}gpYTnu7Hc-}quh8lYi({e3e4VJyM?$_z|LAHVUzOuk<@;wcsBmS z#XbYlyi2CURx<*H68`|KO}uh@bmu*5N?n`h#D*Q&daBg33Vnu$se%V^s(|!rPiO&5)QMH5)Fa%qsIsX8@Kgh4h7HoXu zu1^NPk34|OMehWbKw>6&Dy)k zYjkI}aradvTuO(Yg_-d-Oljwf;pwP_@}LHSMg4`@mi_p{U1$my2=&Hsn*1A!d`QN}89Xi(sKzeW z>VH7+Uxv6kxL9KGNy*7x*Rt~4{Lkb!_V4|i{{Y~jpYTeJLrc)LIJK_{_*=yGL}~XV zSji3JM;I3>vO=>QsyeZW$~vhe0;PZlVksT;L<^AOdsi)8Ep*7XJW(ZCM*QymxX2N+y{RBa9u_40GGlJ^r2k!T6P^ zH1-T-E7t&w@Cd;p)B4xPW2tgilwWhyrB|8?UC%f8D|ZFQj3T&?ECE>wQ_ybXp84m$ zt$joLdHf&nU&Sjg1nV9rvc0;L>9>|kHJp(vAc5nQ1dV_Aachp^n!k<`;wnz{qTnG7dtM zjPyTW;q6Lr&Zw%fQj2X_`KG^9PyXww2(9AXDi9b9r2F*SI6HH z{0E|F8kAa=l8pz4{71URbW&K`EyFItrMmeSCOe26fL14E11rz$UM2W-LKGe+2)ymv z^|AQ3haMy1E7khGJL3Lj_Pn1<{(pV`S=1v-n3g_)Nar4(tyI!PZ*rE5j2VGa-^4%} z;C@_ot1%_a626_OFOzd_?+nUM+?qBiB9BlVSbK`eR*%e)5pl44?HK9X@b|CgzH27C zAJ8t+e8yZcHj(06#7ObxG9Aj<8+x+?#zx`E>7Jgo`-%Gr{8PK|PM=||S}U{`7q>RE zO$4SJg@WQJ?njXS04~W_YXyHmSH9u+qj|m?_aFe%2*R8b&j*voxgx()e__8ACx`DZ zZYR@X)$Q$V?Qd>vnU3+~OmGGc?#L*r4JJYB*0*)zFA!=P_P-jN z&1P98xDlukDU%E3qLd18@kPgt{{Uw119+bCyvv)N z62#p6{$?jg7AZ#ljq}EGM+D~;^g0r&v>b}~yY>T?Nk3(60tsLi;@a<2w2mN4Y>M9c zVGtzpNJbp@>+C+(j4Lk#HT-qPb*W1<#7c~>7bj-5PgDB8g`qWu)NV<^ z1Ddl5bAY0t-MHaLHLGHnAc5D9t$eRCXV66&P{hd}C#`%L`*{A-m;V3;d;>4T--j0j zc-O=b6^dBO?$a#g%C*@CAWGmAwgexWG7wcTdk@-w_Qdd?z^f_zDdAryS@Dyu)wIs| zEJ+y>-jyQ+4psm|zZeE!`;cNUA~`y=*iASd0)qmiq_u* zz7lIc5oT3;n@EIKF)_!RdokH=pFrO`9?GQGu165>pL1W2U+_?miP8A4;tij|eLeSC zcx8O+t*ygq7YWL?I+$P~N4$b4_GaNx!SeJW9Ps7U3G*wK0p^Z}i%-xc_+;p=F?2sFK7fA|oR!XSSq zBDc2GF?2IeMUg_IW#>0 z>t?;Q1bLDu_Q=g+YI@_@SlnFck*&?bLnFf$;5^3)b|!mnYz+3UW;r}HZ0zQE*n!C3 zl0N~-{Hpi%rLU9)ta7|ye+*|In_`n?!*lFk*~?Mz$HUJFN#Y@=S!$Z)+yos$`WPKTA5U5XC8K1A4d|&Y&gLTgo!*k#}3u_=DBK55Tq!P|sJCP#-H7YV3 z$HNji$T|7KOT?CQD6&Gwt1&?5r&0q}j5>|`a2h{Py3BF)%8ol%;+z-ZRx2#dDrWe+ z#;tbwl8l>CN>8f0PTee(yC1W0uZkE<&n$*pgv;sCw=LwgZp)*xvVC=DW-cX8cm($U z063{0;$6GR>FN2`6yokjUDpz4JcSCMmH{L4r#uia9&5CUJ4q`s_Q)jv04n{b+9UC= zW^^}tgDMnzgpb_d5&HiCO350DMjl*(=#%#VVt+hi_5CWidn-70A1x%?k&%Lb5Gt}Q z)y5};7TR%~WO6gu5lftv2Ij?~HPy2oREmiWg9V1lK11MFRQ3b3=Xu-&7 z3-Q!^p1C0P@m*K`3Voni>vqpRkEGtiYTKu>pH#Vp=TY*oGuuR30zuB`<96eWWSZ=T zPm7wmiO)P;2=33MzilY22ZFR+J{V#}ePB6Yik~R7pP!U+0VBUAzC`eTouUO*xwM8| zsk8=(2;cqV^5C3)rn|q2fACNrg@3ib!~H+u*MPnf={^O&@aCYJmDaaquj=}}#mq9n zG%IXk)NP_gLhK}GM=T6sc7RQB9v_Y5w|0c?V8PhqfLLc4{4-vJXw;=mLZ*zUILcn` z#utrzG2vvg6KVEV_U)G3BaCIZ@6WG)!oNyC;E^A-AMGpQKaM&l?AxLE=T+0Z0OIcP zygzI9YimP1k|d8KNe#MP$n35j=XyItGDi(k*=3^KN@^xE}t*O&l<&XBtYD2dfKZ>S&F~* zoy#uK-H&fRVHEHd3No#*j!Rc#=__o7`Q`o_f8cK25Ftp@`hu#gN`htl-5w3U?GqK6uGt8vu6K>f9g3^>X|)@G@%K z#l4mHT|HL6GxHuU;A%OIXyTfBTbV8Hx~=+X^m{8V{{W}H2l&t48mELV;qsOhyg$YZ(8Gzi@pbZ0@Y{M@3o6b^&hgy5wNp#y1lqURI555 z5yH)}L6$~H#yT9==gas?=3K_V5G9hqheH&$QfxiExb2yM!8zF6_O3zfd@JFvGSkA+ z3GPsr`$XUf(c6(C#_aDbtNbrE6?h^tMSabFHNw%P+o+$WxAa$b`LpCOTmx36Z-!Rs zqe(9|)NkmbZhp`|89Z_EZ^SLD_^H0mWQa!&nwj#n>pZNHzzZm5ns&t34!{@0VU<8t zPZZJg=hXEZT`tj1U*>Wce5wfC$2@V;s%uji=X=Y^JlEaJ5=mflmM5upCz5lV*RuZ4 zpA0@Bd{gn(k?`l??V{XxpT@WFXxc1t6im-_;Srgia9F_`+~DC6n`>if{98HAKCx0* znd$m@AGPHeKV{2?g4pPFm9V$8)3tkB>uc4L*5>Ez@cEzUuCq&T9C9-%DVGtme(bnV zLX*2HJc7mUV$D?}0bmd~SwXu0GuELT?#(Iu3mLt?-fnHki>#ari24F4YKF--VKAT1>z41Jb z8XYP{`@~5m<~z2KK<&#AJ6JE8mGwJ#OZIPK8X*oQq@Su*wj-AGOSFcHXzNZa& zUD+BDJYF5}ay_XL%X*tvpe?u!&Di}bJ44e_%S%b8;#WJl>9_p#sHF3}QLec!`-r|o z%AJY_A1LD|Kh*kF?QZ@kBuzRJHiatK0|aDq>GiJtm5e1Tl{Jk?V_zx~B>wXpFyk4) z_Rmq?xWg=pN}`+&2h;PdoBNA-WLs6ncwON1&sN4c0CwV!>}!t9qnuJ^Q<^BZ4G%ky+U7QWGtNJ`<#V$zQXNj=V{% z_t3+e^f~OI)P{>S%r-Vo<(7il9-=1k0I<-LR&gDWxZLtDm-bLmoQ83NBO`XxlE}1m(i}_(Dcnb=@$0Z>h|vh_U=(9NLE5nH}R}(*PI+z?@#;_AN~s8@D>jh z!Qrh+$)=wALve4ac^_pE&lLO&yX&F#_AG=tvGjk7{u+El`0wGZTf{aR3TW592ZQZ$X)wTHc(m(@$eGdx9%&Ghk{jj#eJkTV zQuJEuX3tJyqT6fPZqJh%{^B-loNZXX(IC$mQH+ycuOIMA`BLNdV%09RwJ~Xb z@R8ix>9KsHWwo?XLO26CW(@7SCvzUy75U@)M0^-wMj1b7rs}c)Yq-7^4=$dcsHs9Ql^8Om-7`SlYWlipHQ@# zSl@iC1G5%g#AlqIa(+?i+ov_i>ZtL?vD`^1l12nEP@t*kHo9&j*8mK0jz)ck^k5l$ z!U)gt705j}QO{1eV=BCWrPJ<=?ge=#Jb-hYazL)CP}Ir0o;$5M%yG!R zQH_;BVC|1Fik-@VKwg`&a1`~ zYuKd=Eex0=n1Q8D>uRaoUKv3#(EvHtS9#0TI{{{UW|q~_+%JF}U*r`^LMxev!1 zwsDcq$^pl0RL=~raE(W?(&#a@p^8Zx%92%GvZG2$@;0_N1Z;z}{pH7AMSY|DC2Jae zr^LNGMYNU7bE+tN_M- ze2jI#86&4sdkr7NT8D*iW1mNwSVU|#!vQg_;5!J}SQ4a+j!5}WY-LTgAey>p{bm0E zf}8lIuD%|4Z$Z>7podfrWlgiiaPh_!(=8M(UKenn63Aj;za)jQ5A&Vz9@IRco-zvK zaVK*z$ON4C1M%tBzWDf=@iz0~Bo?iGZvmFhAsa^=O#~6E5Ls3r%eCBs(mJjrU>gC0 zSH=D`flB?PqOoakTN{_~Bxl;brweBro@9OBaUaPa#!DZt{9W-yxJ{~>t=TKJ?jkArr471h|9<3zcd+C^dmEFkWMNbmcyF`n4Rb6?HJ?K`4> zV1CdZFVh|OfvL+NAOXa?Wdi^Xf$)FEzeN84;Ef*^m%?8k@4g*gOjbV;+J=NP0ET-~ zNgU+vXxojWKPlvOuesv>@zDqt)u-|zhPe=4;y?Ng39y#ZLu+x z>~M;552(%$Cz|#Tjs6$0)_x3l(?OCs7++|5ghg_4cU!*zDPD8vN7lb9Kj4`k6y~+p zkA!boL=rRf2H~CFqYsp zefkX7fANP(k3#XK*M%)k~d9|!*4dWpC2&xUkO!#6iKS0zVWM;gQr z=O-2Ue)~Wb`WOEI1q0QybUMI4cOwWT0CO%CX3m-wA zPvu{osU;SElNfu*{^7sikoRhz@J?Tcc7Ju`pIelJ)%R+b7;k)mn)}yR)U?K$+IbiV z=TnC5jN|jq75SI@HTcy(XW!Wi-~`%?>kXcvqgg{MHU=cs*fe7sPDp7~eNBA@;yp&? zej2k)E2+>mITAt%8guaCcGU0=f9HMoxD^lMjxQGlGWw3SS4AQ-`@;;GVx1JT)i9e-B?f2GV{Z z>6cm?jo_qrBr#NcWMDd#=cYz${N=xFe}tbC{s#WiUNrb;@rO;h()>rGYd6qe+uX*{ zy2&NXvqvTylN|9n%?pCbByJg5hE0B>;ifWjuO&CHExzaeO&^T-tCiEDoat>QrT42p z#Xr3H&q-h3a5K-9+drJOD{Zan_f@|smeGA9-QjEHPX5D8zvhJEQ>A*PY z>t9Xy#^~R(*?GHMXCQKT9G_3~k9zns{t4&e7O?oItN3=@nBOMuGEIeTeikqGI? z1-hW4nBrxHZLZ2og1@_!OXoQRZO>lS`BP;&>NfsN zWIGYlj)S4c*A@D0;aOkDpR>n_^tkf!-)MJnZ2)9EadpRH4>jG8*Y-Ju3Xe-lKbkzu z_YLjv6{&ZNUxE46;_VXu09^6J9vJZptaji@b7IgTC=+7<3X;ssjH3gx?%RMdSw9iJ z6?s1buk;8l$epcZm6*!1>~j-t+kidE!Onjncg4EY_AlYD6*CceXB<9pAKq430o|Nq z8`nSW9<}u@{V!G3f3xJ0DdU*5CNjZ^-H-z>To7yfUcC=*hn*^#rkeZ@;(9o_P^(U) z9jw#)nfQ0(i@|^5RPhSn4QkHIRw|_7UgiZ^Mtwxl$WI;X0!08BiEOR_0Fb_f;C14& zwQGXD9Pq11*<+{61Du@gx4oTHp4>456}JLKbrfkPau;s^XFk7=dj25HY0497d%xFH z`%eud;F8&C_i6eZuZX8v+R_FkNin(Ojmk>@03*$Qt^UGVm94Lh4V>j6P|<98Lye*G`^;LIYPa5kJ@C?Zag^B>AG#a2x7gug4PQ(aGqRl zMpQ`d;O!tWY!XQ$zAfKd+AuLgY#QkBQcS2;91w7FHu`>bH^ZrPNcBi`nRhjt&i2=G z#u1gAZ4tR=c+`brNmpfFhoX^Pea4^RtBcjrEJd_%?`YckcXE;{F#=M%hWjYw_+ z@m~iGux@cXq z+@;h@a;W(L%YQLMgb|#JbTW4jUl&2(tqaT&Pi+*E003qMn33+p{dqO;pY0Rj>kEI4 zS6AYA<2HI#l0yqOn38#~A~=mk6L1Z=$Oj`F9C4)?LBD%rKW#bbvHPv?`~C_0<3AX< zlf+&t)2$cHVR8MF4BE_#CVp_z2eylOC+1@#9P)FT`e(xb0PsmU^~gNc_=OFzT!PnH zOq&KtQI=c2IRp}W@y&lM8ZNV}=+>e1onKMYf&fBUUR>J%K)@j&krWZw& z&(wd6e-}JE@I$~Co;&diDR{w-#@L^p?(Bo*!h^p*G>4*~EOB4Xey6EwI@YIit?Lst z&F$>cTwF@u^3qvYyp8y?5(i<&YPaKWiGDozp{tJ&c>7ei*6z_tq_ehGHSV#X3mj|H zArxfw&2o!2qxa*89Py0%eifIsIBV5&(Hg=+I`dFVs6_$&;{jA8k5O`b@)!M_;GB96 zNySYLk0hCC8Z^#x^6okOc>F0joZif>FNy32?%@vY>IN6S;lX4xFBId$GfI^Z1ksCAOiYLS$)+h-Sd3jH#n zhI#e`n!KrOz%`Y-y84L7q*oare_fH%uo%y!ZAO(^j?sxSO47?q5Nj^sNxU&zFH0^WuJ}YK}_s}XTFI}J@9sN0|p}Ukw?G$Ewo_Hkx03%<`7mL5( zsQ&=9R=){NH&)WLUi-A|J~1b_4RqHy&q8tAk6QV&#b34O?Fr*6lP8KicdlG0A1X(A zExK|BK}%Bt9(d$_Rp?XU3`^ElL_B;tE1%ZZvErR8Mv3oyM|Eqb#kY3*nWKYf#t0?Z zdV1H3>i+x zu8>P9InGRuS8!EF?jhkq<-`I zYw;)i6ldVhn`#O{cF2Pqlati$CC{+Qa~j3qaCzv?#@A z)UTRT{`Z!P2yQzE=ca4<<+||(yQmUxE~S$^V{yRa94O#cAV3CiKPvVp@Rk-f(&Bi@ zv-W$$pYT%Oh}ZErPZitSu>^$C^rcJ#+kMEmAc5a-@5Ow#;?LWQ;tz?7jbmNb^+Zy9 zwVLhVjQSRi83Je6NBUR6ptOn=j()kRHk=YV*L^&Oj9au(i^R`n&v3u^<>EQ+<-W1C zvx?$l^GwnClCUJO%P|?jJ^T7sHK=@9_=l;&BDmG=QCWUvM%X>Ex1Qd=rFobD$uERJQMy+dXU3YT@G1mqh{6St$Tl;wp>eci^y4Bq*6zJn?L8;tH*sTXJiLp!5GFe z4^jOqI1X?+A45vmA1Bip$8TT4x?`c7qMnTVxAro$rNH*}ug{BnO9`p^Cee?0U4 z)%tbLHw1)&-i75rKdvj|FBIItcNmvTb!gvqP!PpV00-NT&c3Dp0D^aT)52d0zi3#z zckwRz9T!2ew3cb_E^@HOk+61Vd>x=D`f*-uNBgJT?T^II$3KX&K))9}TVo`FUOjtP zU`m2`)NT(#a6@BnILBJiw${GgrAK4tEZ=3Bq_+g1jaE)%MN#uJI}EmR1_vI#74c)n z+6Rb!EBKSe9vYc$EN``qLh9OWtcBs8`g!7Qt}+87DcVLxc>vaChvPG2cpaRebC%uC z-1T5M;Pae*mGtzmE>xn{_B>jXT+H=tejOM_mpUnAX!6G(3}9f44wyfu6_=;$;&RYk zC=a|SJ#sOepH6yp{3`I&tu?!7uk`t2N$}*w9}9)g-Oh3Xj!8c;Bx1PBsp5v?d*D0d z6+9gJetcHc+qI;O94)cw(CahAh>+av2oIKQTaM_X9JL>$OGkE44!(P!1~wqMgIT>_s#nf{0#V=sQ%Lb03ALu zctgWpC}>WB;olGHdbAc-cFA!veX{;#xY>zj^5Txs5!kFD-19Eg{$T8NJy*mQLR}I9 z;PIHof+uR)?JaQEbl5QEQ67jzyqN* z$(rGQu?|No9+m;}Nw`A(XS#mT-XpW|hsJ-2-X+uSW4ujU#oGR%4a5z;Io5q@_E_ad z95Tp`tgXl@z>W=k&bP2x+C0R0Mn9c~0m&S6@9SM%^~}~0L1iY=WsQ`k;g%qV8-2hB zy?Kv`FB!;q2kzZ|VUFPAra!H1m%`CdM{XhOdmP!g`)%W0%a8&Fy7i5h?Wm^SAV(S#BCnHqIDrA|EIuvpR#*ImS(G7j3s> zNV_z48eZ8SYsvSw4o@Iw8T21c^^Dr17A0XA&lwp%k2L$6TesR|x`-<00Z9#leLIur zNv3(0!-md#@+lC1|Iz+R{{UnE0NIEB6RV~8zwt3*p29hqt?Vz9vR+Hq%$&0+5QZf3 zes%*VZbAN=J`;Y|J}>=`eggQ@aF$(EtMl^4v(mHb!>< zv0!kae=NQiYflb`5WDhj6&;%8w=&BKJOWbzHtoj)ft-PpUR&|YTlnweFNcfpzu{E& z^F@4a9(GxhAsk4!l4g;%l_d@Ww*ZpEoLA=)#Y+{5jH+#a!2L>|3K)DpBvt8+f5>WR2u&!2Wc0(Wdy?N0@-QZWpr(^FI;(#y_+Ng*0FING`N^?rnr` zD>bdm6BSfYc}?oX;N&WXC#ExBr62H1kJ>->RsEE{BwKjP#8w*Kwc;H{-YY|46b#bZ z-iCawtZ*^7m0Kh^3A?g|8LzyJS`_f|mK}3G$oVWEwsq34r>=+k8Gpeq{vGH)0{;MJ zy*A_fPQ>3_!uOsb@>x#F&RxD>?m{DOL6OjL$u;@E{{RJF_|f|__;2E0hJG$ekfaIL7+`%U!=`VtoAF@}+pV-bng_e3(mE*lD&XQEqOpNl} zS`zm%BLd(ov4Uhw72U=$CerU% zsZhx{l$`VOfXp-Niu(8Vb+8NjKIz(Sn|B@m0FirozH+uf-#L@MNFX;k{5Y?iJ|TX{ z{{Zk$AB)Q*T(QUOYerav=$hC`Gc&?|OB7#WbNd>g+B9~3TatjVQuckj`@7cS< zAF}@dgnU8prZkWb>zMs;rYjdT92)692adO^F zC6613BxfhL=Uhg=s7GNcSc1|RfL!1CR=q?84~2!XbYF~br;BP0%Ska5#B-0CROTf1LK;h2SvA%b1| z5gLu&r#b1=;=JcncrKJcsg3FLWk@Z%f({4=C)^w!)KX6OCQ>}RU%rl686Dkb3RIN^ zfPSD6w=1|0yx7ki*9&!HHe-@#+0QuIKvl;jhFIr0$iU=x_4Hp6++3k|Nj5IhrO8l8 zQ-P90ect2KCzIENW|i(8C2-6#+_Lk*=jI9t_3ANR%@pl(jlE2#7YMrnby5ckyp%b{ zNCW_VfIh%;T+X|5c?v~xpyWE^doRqxfC3f;ev6&JXWF`JsG+%5j@3adcV}pRaq}Ix zZW#2zPb*Q`ux6~iQPu}6MasLOfwq^2!x{|gRm~+ zxE%12{MbD)j(zc3sSU%~%l7ba*vM`;JyiYQTm#3~y>gm$#goSzYSJU92>x-xZX=9H z#1r@&4x=3hQw_wir=EoQWNrkK+yj$_UBr?y1_AtQ2+_09#mimDyia3m8$tF)mvqcy z5rO8UK#)cd?Ftw#%*f2y!6v--#TsM`gfRKbsmaOR>73_3=RTF!-_H%j%wh|PCknqZ zMy$-~v^NpqwvrD)*E#1rSk#dug`j3tWZ)JVU=9!6&gD4c4TE0Z5!weGSMMLnNBk5M z!;j(r0NSs_Y7w^Gt*y{32o2^ypt9r)f>ex;PPqoWgZ6dt^~b_*jh+_xgk51xBU87Q zRwM4h&Lf!q5xW}u5B>_ZZeabU?crbH&}=?zU^Zm9IRImU)9|m&OITV~DV*+BP(9cX zEB8F71@)Y=F>3dXzeDqEb#G;hl-EXorzh-V;+PVSx+@4!B@QHT>_D z(ViOzeax&@dwemrYAD3 zhj&m3e(Cq!!XTo_YyXvv2Q9y&yVzz{B z{0?j5Tzc2#IhJ!geOY5FD>=6&mrJ{!xn%h~Fc@lhI&HNCmEQUaNbAy`k_3=38;5b& zf;k!M%|^K7Qk}m1SDQMD%=D4{BYYY7^1rsn>~rC-gnDkZ3_lb+0QREZ!c0Q@l4MqnB#Ps2%&rS*1@Xz*+_)YPpzS1Qt75$|4yP>!e zz)s?*`&7ugkep$Nuj1=K@fN$`ZB`9)!5(9Z>`x**9&m}0KF{IWJ)9tpD|?&M1haboRhl*eqEXH3@YEa6* zZsTJb+iIV_A%;MaOzAe|R$ds4jhgKTAN5<_G!LGpO4w-JD^&oyT3(_3Gu^_Z?F!R8oFNVN5} zp7y=Zt5aQeyTp175nJh(7xyb+6f3qgw2n_A-B1ny z5XP9t72x_)NN(551)H$PTK>DsoRta@slOt>t3R5t$}X*EN$GcQk@Sb`&*CrmLB2Zp zUs{y0id(^E_+q(B#Aq;a*fXj2z%}|O@iFI?=6hJj{Clxk2_$7fJv*Q0#ePo*zR~Vs z)ik%o#gnbVmKnps!bLd8KQfB_P56VTLE?+#@ivD#i)~IAZqZa=GF(O6>7t>)7%B->|sDT@p+ zF>xLbUw$#`Uza`-(XO>e7Pj$^EzVfJeq4RvIvg7Nv*1>?bW7pkeNHlNrHn~x>Zb-+ ziDg21=NyXgE7faQ?t0v}i$6Ox8($vYPkZ2~OWs^rU3n8Ly6y=CtqQOl46sarfuE_b zp}rJpy6%y#%c^R3cQN@fB-4KFR9&e*Ma)i@~(F` z?IkC!y*!WUd;~qjnUOu6)xt$;jgb=>RR#zJij0f{%WWKV;=e?{WQZS7_Z7|Hp^r?Ibxbl(|xU*Ybe(|E5>H*;LZ1WM5?ixVpnT(6lK$pi%;o}ZuC zU$M``9|ZW5BNr(f{HYH^i3nsa22?*gAE4t0)%2TdJ13HOZC)tbIP)YfaKw-| z6O+doz&^ay{{VqnM};-d4@Kj@6>8U-d~w8JMs>upUMoC`M5?Z#lx#aTZaaoR1D{s# zKZg7@d!tR_?-kw~okuMphTt+o6aC^!Df4cmB#)GNa17<&j(<0fDJ!2%JUia!IpQxi zKZZUT(`I;pYwc?2kgTW={7ax8FC^_8XPlhiVz>w`MYJY+i54-?Zo-4>jPu9Rx<83` z_J>f?w9P%H3uztWI?6_Kbu27}f+`}CE%;Q(UgVRS=irLgFv4^@w&gZ}InPs`NbB$T zS5zzLaMh!Cp&Yj`K>kcEk};N0PCb9fug<^Q3s&%kkK*ki>||Egjk!0G6)UpSBwI6J zkQld^6lXhkWDYa>A9pE^JV>E2fyW$YoQ|fyHos~Xjs7z$frUCiq40A>T9O!UQe z;OgF1k`yV~pDdpl>QJkTX`zWSTbvPt$9(Zz-lO8XtBJ%i+(S2fFCZNB;E!KZUW2Jv zLm@W`kqmQ!pp*I>X1M)M+SL@p3{iu$j#M6c^c){fYuKa8-i6NR?4SG+yZ#B=`(J+1 zo+P&Tp{K{G{5$w|#60@^sU@7+i9^JCd~yY6h=KddvxEzQ36QyH{*w5W;7<_zJ@}KZ zco)Uj7WaCdnRfA9&uur_W0pgQ^A>g_xOHIJJc4k?AlK%1{1d;&`u3;swKSg=Yr4Js z6G5`x*85SsyS0zY1c>8;=6NHC0ryrURR95i0LOX%00kWVyl%b${?@)O_+g=VNp%a0 zL8sh(rt19L+p=9)!y=VPqLxk=6~ka1q=Q^@%PUr>;|F*5A~6-C82iWD_YAV>yBzJ2 zP7ec+KAr2Bj_U*>oyth*$s@lWwfy>cv;GQS`%Y^SzxFxNG?jMI@x^r>o`n4@(%j?NoF7A7^!Qs6^piY!W|UL1 zKd23BShCY&d(B>WtYBRH_j1Pw0CXhC$^rNNYv&&ne%W8L=Y{Rw4Qt2xG}1!E7%b;E z)0bX0h^F6nG|C&Z(>F5$hL40Fd09jHj4O?8N?xJV*Zk1uggora6zontzBq zK`6=n#e&&J20HJ)k`vd_N%pS<@pt?cZ^d?Dzu^t=EtFYL-OH+K6G+3^qPBr!&O3R> z>tBXbd|>e#hDf4>D}T>GWIa6z0DV9e&ENR{0L9vnWV*ayj0o6>h%iPEMfCh@*rUR@ zXzs7`GkB`+Z4c4!AAiA1e`{@e*u|#nHaZMB8-|sq#S=GtZ@X)z{D?g{10udP@u%${ z@w>-T%|DBLX{=v)$C%~5onyzeP_jfn1h1atmT6mbtY6)UC-tNR=V{>AuS+Y#!$`px zw>PY$Y8%L7<|3uR$YlUyL7cvgLuc1<8^1G}f^AOjb=vG$4_|7eNb61Sxb-~Os|^*b z9EtC#Gfz7lgYA(`XPLhH6ZJe%l0XNwJVxYk{{YvkP9kk00D_(qHDE?c`eX9^=~mj| zn1x=4=~Z~4I)qye02Df&20C@C>t#AFTw}kn6{{AM^2Cf3g2#?}j@bJ9R8G1^PO9j0 z+c%7kJ+V&_k(_=N(?_Gqe{}xp!R;11)O(}%)$7cq%)SLNI@=y~VU@u>RbI*Zyq z$0hb+Fzb(OfA#4_vpx<#4!>ITX#6uJso4}#FoFk51&&!%w-qCiE`fO} zf{`9OpU{14>w8awmz&wxf}1|+1h(Vvk<$l`m7;zgcymeABGT{gt)ad-WQC?hk%lv$ zDbC}-;{*9t63x1!T6hYw*2h)*CipJZJRz&=$rwxj0Jj@fn6J&`q%p`5dtkc~ao--5 z^)>dBs6%Du$|GWM3hX`c)wu&5O=bKv@NLh6yg4Pc{iWTH+O8gTTc{?0ND3l{kIqEj z9~j=5QgSo68uVR4$)>kgjeh4O1B{II$NA#EM<0pym7K176fo^8K8KIqXxg+)HZ((a zc>%GC{dNBUf<;678d&^7)b#INrFr1c3hlf_uZM zUhA5#!y9iA-D>wUYIhB;-QH?w^IbomBS&X*Bfyzy9fG85)bZNB=J;FtCwv&bO=jYqs9&pQKp+{?*721tfcop%unH8{1bon zv-qQSvHUaemx;9}Ai5YdJMj~3BktVXMFpwnkUZQTxxh90De&L^2oL`N1t9UIlFQ;x z4cq8VA?xA|Lr=11&VFKTCDdO4@=uqX;1SOs=*MmFtKuZ_$8Yvjg4K5e9o5jkR6i>WgX@AjR~>#Y#Le9#Z%-w|t@S^N zFNc5dYySYn3!`oS01G4HR)b=vZu=s?pndwmMX9c?_{hZEV*{GmWfnGq>Nb^vkCBOX0Xt4BjBW zymfauvW2=Zz}!(>kUcZ{*P{4)!F~<3v+}gfHtzW0xVc#uIqCA9iZXkiM{4sb@dhq` zYwkOKp+Y(+{s-bG!jJeQXZ#a`;asVzX}<~dy>4ZZW`a);>Ni^J#X14B#+r<-v7Nwu z)#Q!_Yv$khEyu+V0DjNE@K1eH;3t8tZ1ino;;qygUA>;4XAP>pooPHb8oQN-A%$o{ z+X47@D3M2b6TYk^} z9PuuV;S1X>X4_YXQM}V7zX&bkkQflhac?9Zdorw!g@KQ9GB9IY_)Kh-Wjc=LvY}4N zC1d=!JWn7OR}1!ax{^lQ=n*rMh8%|riUmh$;bv8yOjtN|;=*982fPbVkyuhsILTq-VTGv)ErB(>;yJL)6t471MBMg}~% zglzk>$0ry*q>iVhXFj8;NvOqfr=PON2r3zwWMEsX5z}$}agHl$^45EaT6Z2|WMPIg zh3|qtGD)nfyKPoGzq8vRljJ7|fM-1Q9P{{B(ZgSWvPDfsM4m#7k*jMHA0LN@}r%iXG>6%&l97;*r0Z>ji zbtLuZJBs9vw|a+Uaj{XrI}cCFqA--TOshT5|I+?5yb=3G_|xF#nQxZ`EzU4ao}@Dh?mUidME#5XkhG7ECJi?8 z;`XdHpY1C&Yg-AD2?dln`6j!R#17XSGAow~pc2G{9)~`+`#S#49x&AP{{Rd=fu(q^ zJ2JO&TidUnZxhIO$rx!J_shZa6eB1g99QE10K?yo{yy6QnZ5Z*u1{L>(ZB z$Y`)*k&ZWvW18`$j#qd*Dz)#v=esH#$yAy0XYKLuhgkiYe`ufhNc=tF+g*3VS9cfs z&D@j9kjtmpT{XO>dsv<~^JTSbVm!4dLUI@os(62enqHlt{95>d9g&gW#7(DbQ?!yZ zgEQLwkN10y6$)9d)lrP(^(MZD{jUBZYoE6V!OL$M&8N@cNcO7ODX4ljM0|B zXyw`%o)1ySGbm5lxXo&C&GOAON#iJPZmzAZY}9%1NRme7Nnm;C4^U19ed~*`yRq@r z%IY>NDm2nGe`lErIFd2*s;)j@4t{OK9C2K)#+?txy0?b6Xt#HIGtw zKqHWqVj3`~1P@x@hWIYNX*og?wY!s=@fAEQ6KD3}uW2_nF1mE120VhUpx}K*F~`3- zH2w^zdyv9OEBS31>&nIWw8 z*e&%ar#(I~!pVErNAL83-rqLgAL}E*DNwdK$6MjjE>pQ zDmcY?b+}_Np`__O4w`xH7H>%(QOk7%Vo3xnKV~q#5&4JdB?94;joBN5DXG4Bu zeUSE0Ufh`^c|nM6MUk*v9)!!aqvvo1n0&zFu5;DL;fSvxX~e3q;07$JV%$bgW4jr~ z6o3!qUx_~#f8ewlEP4i^rThc%we6;(a=uNzp{vgeEDA{7C)s233o%iEjUZ8+oZ}Vw zXX3BhhxVZHZ^Q)njd$X^%S-6hRy4D3Cfx#z0=DOTTd|LvsbT=h;=Z3N;S5z(?<*co zD?g(brl-{3@K=30D_`1f%I?->ni;e!SioQTX7EiqNQ4fDBpi0leqw3C((V~p3S%EjHu^=3IZ1Msa+4OzuK*_!J_V-)2oozLoL{t4ClLSB41{hqWfD^1hm)GjTo zEE>D6k5J za6=C)n9vff85@H)LHQ-%Z`os3_yzku{4BBYGqtw4uV~jA#-kC#G!tB1nHJoTc=Drk zQ|NPD=GOx*=0`lUlgTHkHTZ86Wy*$QTAPiZGyHX5gFcHS&1X{y2`OEFlO^#kr>=Of zSh(>IiLYnWH4C>gO>uK0OEiw(d7aqhnD=AU);uIyD9$Uo(ZPo zdtG)vm9N^;Q77#wvF1*sqGh=t)6+<$mJ$dlOQfj9pX%6_Q0>tj}?Byf3!D;E}1Pf zgw>!`3@6j>VVMs&BWtu$WOYBg>G;>(w$`_V}^-KDwW=8aUu)Tv2YEw-0r z-rpnSB0%K#t2T*gHQGgaA%-S6cU9h0dhN*1(;~em;?KbU0E?dj_4M$^#t#i@o*KWB zKQ%4&OF8W1X!jM~f@DD=XQReh4`w;9D#!;Tn)bP(&aqgR$9P&IXWC8|B)Of$YEjs>0JQ7S{4PpEw7S zI^wi7#e69qCK{S_o%-MWk6YGa7TTxUEtoa5 z#a&r>T#z>boE`|TyZ#EvXX38{=+~OGc}oZ<(qy<-+Of5x@3vVK;d0Q)ki?AO@m~$; zZE34$@IfIvlwpVfU>=wQ1L{X!^pV(VR;>DLa=3!@Cz`7xta6C+x6D9xw$66s9A}EG z&nx=OBN)3heD)78jVVeK>G~f~>i+<=4wvC=VB1?rv(0HR3bv|WDg0rZAZ{npzO?)#m;c-pW-0CET0@AUh}KXMubL2EF3@ z4-dvx0ex{CCT>c^9m1C&bqk(=^~P)Z*Zqk+1K|Gvg?|ooZw~lE+ACOYQ6#%@k22!n z^Bj`Qyv`IOce2FW7F;_`5vc5xypTK~EWcM4DEb zTSH^^QxdAAQJyVCds(7=&Sc7d^|O%Jz^|0PIC#UrmR>Ts(EK)$&2QmLXeDMY*q2gC z8DofJ?--1jEJkv!4gfj&@Ak_5ptT=_{xa463-~V0)5Xxt`hDEd1_IfJ3aoBG6Hd{x zuyOK4tO&`k$&GU6$4{}3!nO*G%OINa=}A6(nB)RRN-l7jP?{EOPuR zO4i$DZimV6FAm~rVqRyDZML+(p7MV!75z?j$t1X*INi%Lovg<>BpjALvdSf`kj(uYpC^Qhan6&cR}bDaK_>s}j)H2pXW@0ZI{aWLovYtS+G z8De`^^WHY2acAvVYd3UxC&mp>-T0CnG%+H=+9)|7^ZZ@#uu z^Bo>}RFA!w=7Z%P%n8p2rF;{r>USEpqc){;_vdoNdS{^g2Ney5p?{^`MX70$yc5EA zM>PK~DAcO7=c^HT~lx0f$p1vM_&PrX6?!Vv-#;Y%bEp_cy(QTr?M7db!wh?(T zBy0pqWL$`ufNX=8CoI^&u8+mP7k&u*F|li}iJmmkwC^~XH{D-bLZomAjTnYwy9YS* z0C%t9qhI*B@iWDGM0y8_b?r+2${+&4b9-|ijj-}HxtPxlg~>0KHyjDpX`Tl zQ{bhlvPMC>yHVz@@s@s|WDUa{WD!p_%c#(%y_9Tgg{dh^R(&)Ag6u;#192y|Ys__v z=eRy{3=mtt8+vo=T|C#bPXLTyVSsFR1Ex>&t~Xi?CXj?tv~?bx^P2H!J#KmvS3a)& zgEjk&JNARIL{P>|C^-ZHyQ?W9IRuV5ubjW&yVts|hx>f$+Lo1Y@C`#j&}Tb)=H68A z&l@Y({{Uip@3Vfo>CWSG;SB~-bJq=g zpUrF4$?CtZCEVi7p&m;!@doR}I_=_lS9g=hq@1aC$3DP;SmXv`*yq1L)}#neOw@uF z+l(GM@n4`Mcxp*#hyVbQ>reT%?LBH_w|4~NpyIBLKH-!zqXCXP4Aqk=h|E#hMJZ4R z%1`B8Ew+VoD~zcb^&Ag=asGals}F}}Z;?|6JPv<6^fjF3lQDJIQ-)Zafsu~ijVOWG zg#)d6oL&*UmOShrNzc%JRnc4gJDN*&+7+@@fyu`sj)SMJaac|LX!b_`())=7@w?VX% z)2M6=XPox-tY?@)Ivo_~PI{jwri(L-x@-(MCp>eGp1#$w2ZowKx*YS!&JX4FudXNf zNu=pE%X_Oy6^PshZl+j4WBfn7AP=T%+Pn|@F?i?3g4%BgczagYgsgD-R-1dMsp*`( zq%x=-!#UbJ5t`(yokB6@Iw|FKC-AGEpO)SgmDLa~c-yxGk(1m10I!o<*4_-%W|di@ z0zCf!7#%*K*X_rE{{Y~V-?rb2H4zq>@UvUAf<;#s8i=y7gbd)9`$X$1fypJK9SG#{ zUuF0Y{s=MqSL-oJ{{RVf$AvsU60!2w>J#71jDSl+YiNs={vamDOd9g5@lF~l(waNr z!}VpaDg4#J@cR2|?6(Q#V1_C==cZ3V>C(CzFNRmaR#>CowBzI}pQ!$w>-z=xTmJwC z`1oT`3I6~Iuf)kOrV+EccymgM*@*;koBNy7kPZRz^ScKe;C_nyJpTZK0)EPRSxc+` z00nrT#Z#aN@2F}wNddzt++nsha52Cq1xoXQkWF}4jxeIMif_>#g+3hRUi6YbfW`Q0 zZK6PK_42lmf)vei!X)H{`|q?Kc>33Uq5LCVLf$*OLbAm&uad}jMIxSsWB`Wr;Gd;` zr9Z-N_$5!le}#9)Q}}Q2XTn|_x)OPU=`E~dn6M{kc^NLHWx>H-I47Lf+m=7G9=w)B zYI@FY3 z0P4TtA=I?%Eyo+Nw%S|CN6XvE2ZP0bp%vG`kA|8I7gl=z0FF$NKg`j<(I6Q6#3p3q zsKFs~)aNy!;r{>vd=a*{NIWxPeShVSsTI@b9C8SaPY0$k?OYFuaV`6)Bchf|hl;vQ zpT)0${{Z0MZ;LlKHp%fb;wOf@Jtow7t*mVBbyqu+aY$#9O+G!!4<(`_)q7Xko&o;= zf(L%eT5a-Nc*Dm&De)|P2Dh|bKTd^#QaE^^mQXhp4t(vyCj<}x{-o}%bpHSi$cv+R zCUy)8{h?#GDuqhmFpJHRat?A=fDU_B_m^d@z>?}3eukyf4rI)ZJwe|Jlj+GHO5v%T zVx{)~0I$3CJ7I^T1*Ctk#QZe)dH(Nf z1Gqtq;8*C+!|&Mhz#j{A$n^gJhJF+9zl7~#`BE!eOGtt$frLf3iC7LX)HVR`Ur|l) zBf^@Tl3rg&2#!U;j@m3L3GuY zo(PPSfaxG*lt<-|j2NlLf18 zqUv$arC332A$3zC2WCGvLRjSTYy8;%0N|$)X}ZVl`SF(K;w5r?W2&A`2rDr{eo4P((*DY>`Zb>AG9SkwV2S%$Q_VQ_0)TMh*@E=}=3hc(Ue3vDYu!>Buai(&Rwzw}XX} zJ-?Cq`q!y3kb@K3I4p2M9P{cx{Cd-*wU$Ly^7zOkGN}ZgZvDBh1yYT-JH4w@addm5ik9!#y#P$F&lNDRF$;BdU&T)NRuGamG3Nj%w+<)nrrV zMyT1wSDrn8{dMN|UNq6XF{l3kYRz*k#0`>jbf&80>^`EoD&V0h za~rAXdWiAF0vR?+%3B}|6UKY?1|3iKDTVSrEoM$nlY zA9Ls9RB1Pe*F)XGN?40wr2ha9_$c{r!~XyX{wMgRDQ>(q;r&ALC=@fv9khiM5y31* z2Oj?Q^cTV(f!`YZAMrCp)wQn(T-{oRS>6kS6miQJKgA@A5&OBroN>tMU!`6+@W;eW zYeb(>_*JdlSZnqQ^2Hhg>v95ZFf>x-2^|E5cQ0ZA#e5IpkK5nl*Ms#((LN!C)@|)( zUDh{HMFF>Xiw0FxjZSlbM4PdU<0m!dVY7PpxJ%fj>8;OBSyc=rSjx1YuS5Du_zQpG zO*2>1ul2n~D?2wwxs0HhkJ@fF#;G%e3A=A9idk`ja6110QQxzz$A-Qs{1dwPE8=}w z_01CU$s;nnNVjo7r{uWvS)+_c8}xYj{^;vp!I!|__$e2Syla1BVc;)?*P8yPZFO%X z(nEU71*m4(zD9xq>Wl#Zw%wy3WSaen{gymM{{RI~_@(i3Ujz7V_8$XjR@N69acL#7 z)HM4+cOu+b$}l9n*%|{GQyDFi2tauF+W9qjR8x~tYr8(amO7PaS`S0@bHZAG#n0JC z#eOOMmNjWDKeD`C8(7{&BnbAmmbWg@t=u_2K)50D;!J=*3~`M7MdHu+Hb3H5h310q z;Gf3`?C&E~j%L@aRpb~#4$F-!*~$)fftGBHocjL3{>Z=ZPK&Eg6kmAz_OJ02-x02E z?asxuw7asm4-QCFN#~MBk09)gL~*Id1d(5z-|$#3_$ar>583Bd(yu>c-y6%|9|kyG zGHXMn+pYD!pqVVDYrA`;RAk1`z-9Oh%tF`F;jzD1pDin2uV#4IoII7??7su!J$L>I zEB^om$@nNFli@bGW#gMWNcSUYUL^A_Wyd=b(_FV?Mkj?&wC%?w#~^GQ{i8X`VG#3;@fRe-&@me{FR>G>Ug5LWoEW{AUnjXFflVG9ANbW^gH6G{1ub- zi};78PiOHD;{O1QwR0MP!qZaJEQu$se!=!A`RYJWG1~_f`IY-Y{6y2fBEFmAIOe;S zZARY{O?@lePb7-_H%Rh4j>PR8vlEWKmHMBDxOu|7xt8es?~E-fag?3){<|L_YL;Pd ze_FD^{@C%b%_jC_Uh3t5V>cNV*y7$cR3*OoY&|_!jFo68u9d6o}1xI zvo*rosg@Urhw@qQf;O^F55Q!gpUI@~6fA5%CYh{{Ru( zcyGiom@aMG8C>mUKXuUYlwr!B!1Itf_=q_59V_)u_Mq@4nd4ssUTer5wM`%kfi%RI zcocr|7aqrU4<9eBepfs`RD}<(7_OX;o^Vwb!HcEIK2qG#DyU`ol!4D92h$`0`BN1* z&tclNEN$buwU#z0n+E;tGC&=NAPk>hYR(8_lgnd}4^iLT8vATD1?>~I=a}cvxo?y5 zbO-s@?U(!!xAu7WQ}I*c&Hn(8{wPUrdmo29r?S&#h3Af2qIZd=8w_D$+P+ri$$iAG z05$m+@V?XG&F6~YgW{F-?w_OWW_fI2ONm1+HjR=HyH7bdKT7_Q{{Un8e`Oszq}Y^oR!OpH~i&^E7{?;+dv zrcjDmj@27R)f^6h3jC(O(O=Dq-s06nPYg{PFd1bl!(;*1uUh?J{{VuR8IQ$(586tf zB)T$|Aaljb;~D%#etlnfY71#%5zQp+BoQ%+Mnb5}na2Yoj)3!D(%d72r!2CEI=-K) zKQPa8Ia0;cjsF0x4;7Qbka+;SJ2!4%<0Bv(V0OSh)z3-ctO7x7o|wVteJkJXtkOGZ zpt)SB-GPi}j@|GDbN9M*DK5x;`S*>ZW$n&uLMO8aCc%tYI#}P@# zLUy0=tM*a0c!`9gn~D?OG6NPb#V)~-oGdy&tf>F?xr{t>%ZGCKtb0|Igb4`Yt~k3(B!n3_1L%A{VY?0Qqh zDpb^JX`$2jZ%(+g(arM$W8P4bM+Hw$T;Td*yUT4pIpH%BT%7GA916SPof69P!t+~8 z5EDO}wo*?~vm6d~^y3tGekrum{hxk;We!Nm7-a2(>0b3Et4pEqnS|V=>Zhrr;7ON9 z@phemD{UzzH+ND&3UT!!zpcN6BN{%FG)c6{6iaC80KWCNbP>+U#0x{YgfJ~N1*=TDm2 zBlG+I3w_{?E5kl6@P~{v-6GZwu~RZ zdvPOzqyV52#g8}~_4TjmOa2SVeWp)o@Z&%e#%_(~t$83;+(cqHpvXNohLJ{jujfj` zPixzOZtw28F+ zBkfmVWEr%K2YDCnvW|9-a(MRZQhZ3&rO`Ae(p@~Oy;O-9WUC|~=NKQt+zcMP@m&eJ z)9r0#n(AR4y|iXvN_BE_+j|VL`3EPCJ-&1CF28r;O;z+?FZl%-?uDN>AMp@ok0n90beZNTQ90CR!XixxyPo@!iYuX>#!Zlmc|63%&81X4*q z=QY(r7eqRUrG_2)&~uZT*Ih34utF2hVOlVFdi~o44hLQj^2a}gbbBP0tj<+Y%kAxx zU#b59vVN;;seB`kO0$^_)|-1VxQjS+N!UpnZ9PK(z!BUL)K}+?r-QC8vD5?ihy>#u zYxEoTaPYOZi}22CyCm}N?{24ChdE-&3vG#hiU~OBl6#u+Gx|v>{b_2xXuY3aoUvlZ&a2s_It=w=K)$a=O66?anC&~k<_$b z5oz}vs6C*8+u3AGJeqm9-;YU-* z;~htC{zv}+1&#QvqI`4xtrA}j>Dq;d{3AXe()1g&)SwVb*Kiw)$09w<%BvOJW9Gva z<vj<^KSJbokfcAA-Iu>6af7{0Xc0+r_VNBe0VDP_(wtY`$@_NUh_I?q;~|WSlUJ zN3_}QQb{cCg4?y#(2rxv zA$Cym%8pY20;`qR1C5P5Qgt*-t;dPMI+T)v)c#7Xycv2_dC)i@_X8&*^~NiH)4;lw z%q=KFfj0~gN%?y5{zf`xzn~8T{{X=ce{ate#4qOfc@KqzYy(N+O;X2CMU93_D7TXN z+tUUxeLXAhFNQzxZr8^xYD-&>9QfPAdOOOI`PRC1mF}*7X6lza>|@3`1jo)R*{{X; zXg`YnhYda*t1pRI{!p~; zhw|&~U)*=YPxv5s!JJv!nmT}o?vONkHe#IrzQt2T_Mh@K=L% z?P^Je=w8Q2zM3Z)=l9D8kO=F`oQ#}fn*RVypNIbdu%E%Ng4WW-;Y}C99u9<^#w{|! z2;Ezj`^tf_f_=?;?Z<%r7}+Y%tN5-aSV9E0NaWI2CcEzWu9J-Dwjrx?|@xevXa zu*oPWsNKJp`~&>&J{^C-8NY7-02e2pFT)#+9t8lr`qk#2WSet64<7H4ddcLK*BQ_XsoiK}0EKWEW=9cu8#yc?TX;y5FcOE@`fWc;HYE6T0J zxT!rFUWcI!o`P4559I6Nzx*4;;Tzl!6!_~|)EzvwbkQ`sTU9HP-EWP_P)0WeB<&*% z2(Qqug}?AYAK7Qa&mG;zfiFB$ETKe)#Cn|5z{*Mc_F;qrBkyfNp55#Bz7G}rP5YWo zfuPy>c?r3TvE#5&g~!+Ot0w;d<36*9KTQ$T_NmPH4 z(N2Z7ibuvj2|wVL-wJ*dM3HzGz`hXhqyy&LVWrzC8R`~85Fti7dXvwu($W6TULMe` zmJbnluHMQmvKL5#L>(l?Lx*6D00SQ&$G-%1*Iod7v<>2YZua>{0Ly(eTeosJh(bD{m~5o!M+{5bh_b2j(Z#oC@hQ{a@i$j>~W0j{@H6EdavE_Tdmeh?#XUqBrklaJn>c&#k1SaZEmb1nUI6J)?{&# z2S}y}!<>QhbL&*OUX~N1=FJ;#9DG%11ilvVzMZA3{n2$dDi3m&;PdNK-haZ{*DQ(F zukEa)aniyG91c2Wa-$=jNc<}r&*Gi1{{T+7Tg^T=0cJNA?Ggd&<|8^4^}`Q()3Nxc zXW~{8XG#fL_zwu4S{Yj3B)YYc1zMIu0?5!7KpQ<6X* z(AP&DyT%K7rd}{ZrtU{@0UVlsqT02Ei#E$>Lauzt(8n3|{p5!O@g}}n@xSeX`!RS1 z@vS~1d{pqZm2jLjsMTPaMPZT5aqoQNx8Yqeg;{9`xAHlqC@+bhRIRWvgDi(=9n|nW zJ#qNen|u2L88=(W#_K|hs#OnAfo3p4u({5q0Y?0iS6_=;r&2=v`5Wmyhz zLQQrp;=$~9V2b!(;y?TxL*YAXc|YM-d@hpbfH&&b-ayWAksYK{0y=T$4*b`CA1cLE zx4LrA8%8=dkLarNL-4xEE2W>=WMe%wFBe^zJRfhN_-AxxD89>SB+jZxZXWL9WM|_6j2Rz8 ziuhmRH~bZ+_U!R0-`Hy37Bw4K3}t3mTE@;rNj_hh?X94aJde8D)wB0VuHW^45xkm4 zamUk^k<|V9{{VuV{{X>qJ~#frU$kTX&wc{%PlkL&C6puU%W|keKoVGRG{dAu0~-jH$Q`sV2Qzbg9vb zzKrLo%{>x4+xA!eoF)CG{vus?H^g5Myfg61&eGK`Wz~FDGeZNbN+S?k$G$H*;DEl_lBX$7q z?O)8EkN*G$9y zxBmbHMDTxrb)(}y9(+rm#a9|jM=idUqSy-Z$gd&$9C}rSkhL*@g!%0Z>jq>%tF_iC z<9*J9hA}xf!NI54-RTLaHNBF_Ev@MCyvNVVk{qjViERkl#0FKBm>xG*jY^$YbEZ|P z-$T}{JYC}%Eg;t~XS19Fz{RI56FiNAPT}UeCOFBCSr`-dO?if`g@QGAwHzn6EVM1c0cP`bNUGcq-Q_Kk1)p&lWa%b);Hyz`9q=uC|sy z-e0=9xhKsrnB(N|QXztW)(*86sjO)J8P-!={?4@1V!u*MGD{Vtt{>!>EJ`e<8&4uf zEZx*{D;CdHUkPcqej8iaXVb27up4NnV3RX`?4+8FywSLmIB6PSssP|*nyFwU_GaH- zR*%-cpobx$av4min$CkS$KvmYRTo&E@Y8& z8)p9iP`WZRl2+daBv&{gk^~@(@4>G;)4XqIbpu6Vd=94(V20Sc-8fJ;$K_egabWSPOB)n_9G~!C{{Y(4O#PxiZTtTKhu#pD=4}JvTrc6MCAyui zCAid#i8ik%m|gxvnmBD$H#e6hys9yr59Wu*my%p~ihblWmS#BnyMKrDuWi=+cd2W4 zS3V`x?;i73)Mk?A^7X#-*EbRwX1O4avq;Y)alvC=1>*uGFwE>3_BQMh&Q5FV8Wa+Y@e!V~BZvU)`M41FlFu{i%hCIpeQtkw_lDhkE)>W1U9Bfxy7Q z&$U{%v}p)G!cNe0&V3I`t`YVYBkR-r;=NZv@R*-chC8jT92j}pR@oA+H#S%TNL2-o z7{ECoQ%)&fPh%>zHj3(fDf=A$${!JbYOjrc82A_P#3SpTB)&^kmBKt0ah<5Fhl~_;LRL1jqjXf>rnn;pT(jX*>g}>rJBR*0u*wp3e2cKtv-Fb7UX zE6)B1d_eyIg>B>8eQxE7+RP2S_$P?ikC@}AQUS+&S9|b~K)(w-Uw?2Fmepfs8TtNX zWn3?&c+Gs?E#0iza6i>BRyi2wr@vnHH7F^J)X;Jtor4^X#XHaQ?eF6T^?MvcLZx#SrE3V8!2 zzf*r?pZF*b?V0f>~4Ow36ek#+XPqA3VeW@E`HsE~OZX_QpaEviAhb-JLAmiw3uP zqFuaRREBf&2T&LgLBSRH{rh5kLWB0#{gS>Xc#Gm?&7O&Qb#HO28SY2!EiY~HBxW}9 zenm_G7#3tFs@<%3h`5xYq{fx4ZVVfclHMuT!GgI71!M8GI(=E(kwMeJjf!8 z%Mvi!%OW{A191v5j&on9a2;B5#ki-fpXh#h#uVy8imJQ*jPXAhS{pmow_vJOitsUz zFagK)?_3?g!ia`>>*?)XKC5=ulSdrk{K37xY?Fx_IS13yxto)M6}dju`kb^@K3f3> zqN5^{tFPSXdF1-l0*&YF9M+g(%tLT{=e8=vrIOxVM-)X&j>@W-B(oF19lu)Tl?5hx zv8&3R#`uP7rPFlnDo^!FjWG9V7>xVi3<~-m_C@fO_M_vAuNgyeBoOG3jq$<@G_7>5 zii83FuL{iE9zu+F9tq>SWwr5L-kyvZEZ@ikbix6iJAB#WwSAxa6(`yBPZC`M6v=UD zneKM1gb!chCchfu3f%STNj)!bxb`wwd$4VJ{raBy;!8<|jPXr>GDUE$69;lstBf3i zcmN;s#ePz1x@5Xup>v_$pWfO?>5w=jPBIVoSaLrK{fhAd+fJWkkS=l1bdheX%^Tu2*7sh`}qD=+&RYO#yxOryMu8n+RB64M}BWf={ui4X{8{& ziKcTJ1_9YdNK$ae2aX0!Z0q_7(r(+yNkzU$jLHV)1Ha4i;POU0el>?2r+99d&I*N&dD+ZlumMbaMo8nFSMzj`?{G3byZ#mTU&5c*C-%1Zli?dri9ZT_ zEZ!l}ZnjAk=AU_EA_LT`B$K45>P8t_FhLdXU@At9RW%M~{I1UjJ)s(u?CNsATQAK1 zt$*O9UNHEp@VE9K)Vxpd&cpjNS@6Z~nRxR;rs@-FBo@~bsZ3@xSpzX70GT9=9Dglw zf5BP5Y-=ef;xB}CPXTz>Q}9l;wB6|!Q`k&UVN2P{*6eZaV_jKJUdU|5dilsOF6vOt)oMKNJ-HzWazMh}@4VbTk`tU_A16GQR7uglr z_KolS6hrpJzZh>G>dBw(Gzfn*foqk&{kVT?jY&#R@e^K9c=<0{Kg(cW>0c|5Ito8b z)kd6GL0tO>MDe$c{vv4By6?m-X8T;dmRpFH<50Pl=2eb8hhTYGil{6|P(bAI&0N*3 zZ{fYSxSG$%-xO^dmLy7|F~|g-I`rs!QShe0Z#)B{v`7OBi}h!~^^A=F0G~?hJV5Bv z#r}&uysHd*q?SO@%0y~6#F;xoA92&Ae?V~iwhD^=>OUXNS2ilEec$GCGooHYvA82H zKLBz+&wN)as2~9D#@)HVKGoPuFp%V^{{VOsgY~TaRtTa51=!gH4th7Y)0*~=9+d3P z4hY4`A1PilgOQBabKy-E-tObhy?u}_=^csNwIfnV&Uoh>_V?*r<*YAvapgtS1Cjo7 z*Y&SY)pVPUE5LI>WdXUpy+pE!007A)!vVE((`W>ePpPbNQ*og=F3j{5UTV;Xc8vW} z-8>|dJ&Xoh6B6J%77Z?bPELOJM;v1r@5d3OY91r;RqfS|pucOliNi_INCW5Y_hnY& zXJAG;S8c9o&7|Af_-x#Lv->x8={Z%BQhsB%(LU;v$sG5uF|o0@wedqu+KN8k9K=d+H^A&cgZM6^9O!-dsJRPK-PhaI;%&Dd6{tAmszA=mW0=>fp!;_uN3lIV485un@UT1N8rQ1xn zw=!gBxX(Q|b;t7hSF->sLDas7o04*|^SGCGn>ePlSXqGRGmq)beuMtOzY?VIRp*Id z*5sONIBb^UD@7wODlrM=?%Dxtka9xcWZ-1i$XZ5^ABf#;tu6R-^I&9vypnqK_4TbU zk9XP^!S4Yl!&_-yFA!_(6~*j89k$wY5<*JAXUw{8On<`)ox|o(O8M8+;Oi~Xcx(Rxqb;zry4ZXqLq(1@h-ml<L`nv&*$J-nzJwF~f$ZV%!l^Mqs^~#MChnltHZCiE=z}!I# zpJH*J!;1c#ejEP)!2y43ZEhC5@hm>G}M*L2S!zUTOT z{{RN;+NGf%6Fwr`#@mx;_AZ7klmpO-H7Raalh^lrsq9E2!NqZQ8Vd1ue|g^y8Ljr^ z{eCC$xnc04^t5tHfj}55&Pi|L1Ot!4y$??KFLubUC7T75{{XCz5}<#*zykoDNzXO? z)p#@h2tE4|cyc|SHN5c$iS8m*%iL=1VH=hJ6Xj^)*x<0>93G>lbM{Yw{{Y~dfACK) zhu4d*cyHmiht2)5&)RNuQFlIK7&*DTk)I@Trvo|q*NFA zgiqpIvti*qn#AyowZ4=Z_H{YO5L>LSdE)^|&lUCm0K>2NCYSAF@fB9D~IJ&*P*stsEJqmd>1oc0K4+ek1 z1;1}k6k8^x7lkz4Ffk?L)-{-5ILAM`vWobU2;^iBt$Ba#3Huy)`}QXBK9BHo;!Xaa zd8l0J$*mKnd97}VcQmLX4KP-bl*Dqt1vwl72(R=kUx)gXsUdsor$){;OCm8qLaxw< zZa~gP(oKIOKk#0k2t(lS+b=`5g&8An2kE3KPzYgjdO8og#y(Mu5tEW>VKbaXdGb|y z4!&DP5psgnABT500TYzj)03ZXexCe_qxMtr9vXxa}8=Q=7V}a>kz+dd$6rb?9baf=6 znTb4r1_37^bUau0hyMTs?eRa@J`wBB8UoLGY|9`6a)TB#o=6;a2b%FSzj>y5SQT^Z z-A_{0{28gi4}knRr|Xs`Bj!&X#5T83?qP;#bqjV`7dxBfl?cW*n(91Z@e|`4$7?5p z;jpz!c*4sRcIzv%fxBkaXGK;R7(#jFPp3V7;+r|Hn*Q!NRX`zd*(Y!%SPn7Q7y~^= zTIa9)Nw34^Ute4`pO}%AlX*E{aDhYa+t-j(oOa+>&B?uy>hi;}?VcIc{wM1;!1#y8 zR+d8Li^FehrrJeU{tdS=`G*HM<#F4N2JGJrMf6~JkHs2{%D`|X0a%aX#&(i>p7rwn zp?PPks#@yaOoB$-%n09{eA$^uIPb#){_SFE$i5zdZG09y2$=e>2Yd_dL8 z`MQ>v?=jkQVInrwVpr!$85vk(mE?XL)mdNNMKt@LQ$Dw$Lm60$w!{Q%9Y%A)kLoe* zDhTy`1=Gy8OtS!Rs>;OUr*3oCo-4x7h%}K1)b&YavxS>1W{Hz#(Ut_J9ciXm#XQogN9Ern*GU_5x@%cp z-S&~mSogRY02=A~wAhtYmZ#E}0zF1AGT{uwF(o|@Sio)LYo!=K zSh~c>N+(cA=L4>B>0cS^9~Ax}ToZ7!cFNCsEST~0r;I)TGT zE-*Oxab7uZsQA~%8dd(G;w@VH#FipEWwi+-t;mtsw2p54J0-xDJOCHUiWW|H?o(GB z6Y5LFK>ZukQ^Qcox3}|KK*|`aG|Ho&y4${1Tn={RSDI^o7XA|2httNPr)s){5&5y( z%{8=hTsc}OxUSre27RmI<6&v3cv9Ny#1Puu-7W0WTP^H%x}=H11u;#mNn;{~ zIotvnfzDZpTIzg5;Ex?ycml>7JD`?!_7Mq+>J0I-2{XU!4`X*0!cG^@y7O>2egjtV z!NF@LVLVG}$sZK{(Ek9p$NUrr;Vic|IuF2?@SdJx5*zk=-D)O8Lgl>cQys8mT#^@d z2M0Wg_y@0M$9P4O9BC_218f^-mbk;OF#qm$|j?KXckJ`4WBj!4#wM9*o+jkNzb+-;*RSCAWvP<)8O5Wm#gmwVPElNQ^RH z?5dz1QykasOd9_Hgzda(Wh=_RYP-FFi6gYIfu-}2ytVn{mhXT@(>g!0uB;=NfCFIY>}f}oJZ$uUZV!No_&a#(c9z^%jvC8%$*DV2|4>3 z_#;Gv#0#Noeki?1xU`iuZAoN>=ZhH1MRTLdjf3|fft+XOLPtMwcq`#o?CtQfeG|jF z7l8B~H%qo?CAWaVZ6jN?zyW|48gzRbdz{9X?K@{1OB`3G>67U`C(tzr?1Iixcro@B zOUG!WP_D`XYTIH`FcTp&#~ICH>*GVV@UETYUqNRCOD&vmU(GxW1P_Hog)eLo5m;l( zTUI#Z8*^TEBCO`GCfU-dsJkQ5zqE&htuK5%avMdoSSEzV#yd+`j3heYUR_SsFPG&E zQDiv6q30Y9lXY>c_*&;e_75o)Q(B@Oe`XNnIvu6<}l^>t>8#^g;zw)buSw zNWRlNX`$N34YZP5-OY7tZv-JXfRkou>~|`L$>R0c0hLltD#J|n9w8nJ@usGi`gWz~ zTJFAoG?@VNqA&K_twB^|V|1}cgTO{+0=Z=qO^z?cekAdpnWI6jc!NuVZA?JX+}Yb* z>2~*%%V@-}kshUO4b;w54b0QWllL+(Pqf=emzvGDiLI`$n#%BQl`pI>t|D0OlO9-- z`e`j)mG*#%97&!?AOLtz2w1~!d#!j^$hEU)jyt&HiKMq_)-q$9FWLV9vI}haca~V8 zUCYb1aJHTw@aKqpAZ`t%gtxkT$z|k)5|)9FnF(25+Tv+;f(9UwV^hbRSQAY_hcVvR zUFg<2to|F*geK$4F^FT5*49HcxyWa2E6sJ>rvfnmCA#Mr6z(rHyIm&c-c31@YbgV} zT%?T21<`JN%h%HUq(%g18_DP9>Tq?B6>1k=8nF10rin8Wubphd<&kB#ZMP5&mnJnh z41B9-Bsuv@1I=`I8rOq7GvaG`?WcwGn}kqq5#x`@7fK2<2qBMSBW(;f%RUCxIV@{c zOw*sSSn7Jk#9C&#rtH0zJe)-s9$P|AKoD6@v8$&7SuWJ$?y&?`o&Kre{{RnOTHH@9 zyt*!=s_PR*lBkB@{F27EH|yzs^0`%>JjlS92&1-pZn zX$s(oQ=Ss8lboruhIGJR%c8Wj+!m#@YiU`5^ zfct6|3NUd)jg0wjbeA_5x`Zj>Nftjc(sK;alPr*lLV>k~&D2POR3M1shjtDd+xUI| z0E2{oYinPM-?iZVoIDeoe+m2~w>B>UiW^jyS=3;P=KA2n09f%2yTNG-6cVX7Dp{3* zKiRj6d|hGiOGNP}j{I~CdIpE2UTROMrJ-~d_Ll8-lEm`e>Ttw2F4vY=V*nnwHU3<_ zKKO&;zl&Zbzwz<{Po$#86yGvT_rex2$yiT7+$3FvzYv#mV~(ZvffNwb~+ImR>C*Y3Cc5tIH2`KkWi-?cWAVdG0v zH^ct`3n10JO@@v%xQ5Y#!=)q4(ZcfIxWthe5Q{~bw*ts(@rU7O!(WI$7yNUj{5|+@ zqh9O!#;Z8Dv$4~llH%s#W(9;$#)`$Af}Yq_1=xjFVg8?A@Jqkgw?X}f{{Uny1K{_D zWwXEW)KY(Kc)7HY(@k-GJ~q2b*P49GVQ8RQ#*)O$Q4bBfpOfO8>)2BEG2TahS%Fn5 zDzjQI%>5eFJX@&Ca~FxUTPBWMHxXPLR8W~9C|hx74c1YU^k5sw5yN|`%6{wtCv9-Q{l(KT_*qYV=_HY$~ zM!}8E*dN3g^{(l3xWa)4i!|Fv{{V&wZuJIuhh%15Uj>(;BZ5a2`4fTlRzLsM{uTZg zXg(tGez4vX(j*bt-4vGexgs$f1i14LVV(!6KbJigfvI?xSkwoG;4(oRjUiPaZB55- z1cTF{0GjD>%bX75y=O}i%{LaTdvnW_VHr7HA1J(U9L6^4rw1O@ z`+NHhd@T5Rr}!Gv;|`H-_E!>Eycc&j`H5q=kNsqk$o~Ml@|<#{A3%BHzaPFP*)^w* zuhVw@%&(p@a-%$UT?qT5P+tIGIQ*)r#Y}&j+5zwR$JRABTQE_=Tp+YvC<2<57yEvZV!#po1*mbXR@Sp5u@n2ljUr^W9FAP{fx{dvuQlpr zxM~<09?ly6W?1ZHTuoIsyU^o&6Z=4Gz6#Enq}oS&c|EC$(s-niMXSxbb4LygZs-Z} z_ks|UivHgJ0N{oChr#cI{{RDL(L7V7$#;3<+eNn3jmGI>HcXpR&Ngw(U^6qbV|%eU zzyN<5@_ZiCei^&jX|Q>%%8RxjyoB^Q94PkUzkWa9l7H|}PYirJdvDph<1L+>b~kbr zu)ch%vy;R!Ncjjz`-Jduj=0alaZYbMMLtS;M(64LBau1{%C@p=?ml<_0D_Eu!V!MN zKeVOa!p{rOHU9vE^$TUy{4a9lH%X?<#YMY29JAR!?nyk9F|!tCV_%RT8*XIN#F}sh zNMmT$H6=!6Wi0%G*kZq|@Axl%oqzuT3cui|#k)Ib=CY4c)ciiPNQIgxE?^g{^Qq*w z*+^b_BpebkU&j9c#7$#b*ZfI!bs~9|;#X+-;~UDT9Ch1_=N0;ogw#E<>o=)huo=>G+xVK1vVAzlbQkWwJPfT=E z-jWf#Die{V+gi*@NASb_GwdsEgY%OnmS8NO+ytm!FwgB2PPvAP& z19NJ^^9&B$XOE{My??+K4;7uxr*K3sHN249Dd2@*1IRc%2Lsn9wQ}NT?5Rql=$Y42 zYJ9N1_FsACz96~KF7<1zN9}vsdF7i5jKOy?U^Boyf5yJ}{fvA=Hihu-#Y0WEw3uGq z#}tooY_d3y$Oj0`orDvf26JB}zl9_FLd)c%4shte;AcI1A7U}voLAVtvlN<-g1j55 z-RZFfd9PR`b40QuCzB9AD*^~O#z#GHMr-g)T~|1^`k$gu!}7G#JI!YDecx`jJDO03 zI0G2q;17P->0Tf4Gf1)4JU28tsSh0SJcXBo8=)*8gZw?g>t3O)>YjX%%<=hZxDK!l zi-VFdx#4r$r?q&tx2XNTiIO_@@eZLV4|lqkm?c=YN4 zuc&`!ui9_oU+nSXB-MNetX$babt*OetWH)tgp8lOI%f^R1zR8jNaDPI$C_rCx6$2c z(IvQ);38~Q+5+H&R$>MSgwB4flOL{p(JuFG6T5mY%4RXWk}CV*Ye^200kxRPMP2z+hgK3 zfu(NpW!5CWKu&PFjB(#_{>gdYAN^|k*Zv8C`#}60*RC|r*^A@;meVKpqhI)UR)LB& zwdCB%ZE}Htk{Q`@xd#q$jO?!_{{Vu$_y$q?YiiT!a;@BVI!==?^3ax0VUi%O0VFW; zdE=oRQ}H2Ft(4NPv}#)UT|53q%5at%czn`$X02I;*1X5*MBF0H4xrd zR>|OGV<*!G1Y_~_s}Xnt{$>%VD%d3TJvwyfp5H@XgD5Lr=jv+>KF6D9*P2{pXYj9R zgW-kb@~m+zn~pduj@*KKS3zs=di~i$uTQ;c>lt##fd(XZ_xkljx6K`JAnoR2L^kB}aPeFv>{J{tIS zsrWa+QpC_m5%mOhGA`Bmp&_=Oamo&~y7XG?8gRP160|a)XoIwDr)cCyj#OmyJog6` z`+pAAQo+)GR{M|2Gu%6;iK!cPzu&3k=?bhn20mWL?_~Gs&+@FzRLe94W5kY5a(KoD zG2hy?-raDg0G{KxtXt7M5i_nb6^Q49*Pl^eMIOh^Ceue-@Xy1s-F>H4z8@+ujxK~3 z87$u53<2&q*p*mA>m!Jc^sVQkFWEt zufn>Jx0)XlYVrR7qsG|YyaTl0F$<7Fo&dnyeQ{9uk4Cw;gZ&oY%#J=;KyE-h436#F zrUx}9tt@(tyb!}`ZJ`(i7v%+)ryP8%(Rlj%VP1UCm77qb%C93ERM*o})hC|Zx0GZh zQw%^Ij!y*o``1a}?GsklRX$TA(X;}B1a;wSrKL!5)!MgHzhhCG#9~t~_XLoU{?w(0wvYPJU-#;{k z?&k7v#{dBj7#wW?59znWm--fkJK9`F9n#1h6p1HN%;W{#5LGJe_eSCK1<2y0ve#k0 z%o^I?= zEQXKpr%Sxlt-)lt)L?tf?X<0*PVA0B>w-Y8*x1E+ zV>Q^+E#R6)GBh^uw9-ga<#%J{&N)9R9-JO}oeCXr2Dj4mJ2_&QD=e-MWfYzr?l(Jf zLB<0feqMsNH47L7AK3cy#$>#3scmS+cW|I>Z{2`TIm#6P0071geCbuQHMc{G()9gp z>{|Cz)J?s)ki^m{NaEX;XITnh?o+@35HbKAtG3YmBjLLn4>s}db*UzaS!IS++5_`| zJffs!PU16x#ySew(mX9bseATs40vNwzMGi$-bNyft^gzn2@AJ@_d&)$42Sb5ZEPMsxh??g2P1a#DPQjoW zs29Qn`GG*NtV#eN9J0Q73<$+lo^OuUR?ju&m1{E3^Q@LPN{Y^)0sEq`6b`sQA#st8 zYUOn93tp#vrT7a~wt@#XaN8+dd6VpNFgO4L?hgcg(0#$KfwZ}-hrBzM5t6MXm0EaKy_b*Y>__L(9O*NQ9#?P+JU&eQ`|CzAE@D z#2TcRaq9_tA&kWo2yN9_7XUJ;RAq8W0Y>0|0BV)D6N^W-%d6@ZYS$K)>1S^umJ1dD z7#Kf0;0$xf!Oeble%qh$PH%uew%F6WSMfqkTS)OPoon_e^?e#>P0L!y#p4Yf#CI0+ z1Z~WW>A80{8w7*(-nZfek~rkB5?Tw8+f1sZNl~|~yeP&q_edj(;H_ZQ6=a$Rkt23v zB3uwdC>*RTuDiCAg4iw2GI3f)PX6xX$u+6|eV@0F!Mk7C3--71r|j9IYL{LjvGA?z z5L)Uti3C>{5!~3@U6zqxNa6(=c8}ym7*KEtHS(D8Br|Oi!y}(i${X;=BELib0N}5B z{(-Fj0Kr23B+sK>L8!$Y)r>DSyR3>Pk4?5oP_ps87;StLf-p|tMSg4Pt7Uf}juJ_c zv5b;Weh0sNSJ`3Hmt@ChoUw2h3M zl1Bhn^jZC}sp-?r9;oSQrY?<6w$x=*DhP8Oq@HW-=MI=*o`;cKF0-sS@pL{O)UP!7 zB%UR6Z+|VuiGI6}$YYM`-fuBDB(l1&Z@um2%Bngeg`LlC(7Zuv*3(|cZDV#$_9o^j z97IV9xmeXcX91f%dmIjH&h=}(Fluq>sMe1x%&HVZ>{(ACqfpM#lwbpO-N$_5wbh@C zEHr&vRlR*y9WGd$s$5wtvAF*LS03BFD(CGkhwm$SB0xIwIOHUG_3aAFM6kP`QITZx zjBwpWe!g64Krarz9kh(Qh~_pf4haMrE{=#{JDt7fir}%=AhXr&+ey5+Qe%6llGqh| zuGKRZ40rw9WB>`{Bvw79m99&p-)gCIb7N^?43e2HH#Ls%Pt3QL*~*sg%G-JE*58Nq zLE(QC9Ya*KxY2C1*wN%?w$*gFz==$ZWSR*MmhqBFW&;C|!-~e!HAU6@C2`^{JX+rU zy5<$1H=Drlr{1kuHauT6il~ z(tH!E>l$D7t)kse5?ZW|@xZApg^ZE2%dSAUk2zh4jzAwSMl!6t4Xwm1ye;A8w0pOa zu5JU!mi}zhoB+p2ytA1Ys)AYUPX2*8LsoG7d=x zT6l@aW??KmCGjJOy^i)aSno7VK1+Q*6^2`xOg7>sGKDWBy0x{v$I8T==`bW6%DcHe z?AMd{i^mq%-cf60xsp#hXVh@OjbjGD6&V>*x^kj$IN2Q4={xBG*5)EzVtYvwCNpt_bIPd6It;IVYAhtrltP z);j+HgY=Cy`%t*Jusdc}GYM@~T!P1WOMO9OQoRev6Z@@$isvSGe_BI+Ov*k?#sADsR zwbhKM;Qa7}8?fR&O4ns9WeM*iina>0HE8t>L&Wpyem%4Bwy}L}b8UTlEKrFhnj5gq z6G*>j^KET>*BH*&F57B@oPcq+;U66QShc#ni%{0}AF@MdEUGo8g<%p#LTxvie43(# zWIRA36EVX9!4;9>FCSUyUmJAo2m5N`#`99W5Zqeo7n-1X8Dk-QyIo2XV{{uFM{6Vw zGDu=U2M@qr81ZD^60da~FT)R~y!w8lZui34!op@j- zJ<(BW=M3DF>~%gC_?M}8$4A$#=8oG?mdfVUXNN$%XKX`ISl4?3-_lx`)r)sB9UlCbc$8~P^)^>VMu#yyzs^;eC*xks>(`BGZ z6s{QW0G{{8{x$IU@SU!gBuOT-eQ~GFWY@ahp`@%fh^m)Oa}D%U+71B`*+0!AHrJ9f z`^Cm}ZK@TMHng2f!S{a6JOxJKA-L>YsM_s&UEDdnp3$gH)spC1cyG#8SP?q7R z5?jfwPvQp*6om&*)|m;D2kxS@YFFm~3b$C8$ErHLPFR<~;@icxmNrvaT}f#K_swk= znG~6Lo;iiCp(AZAfKp_SjCq9Q)!22f75Iz6nqIx8PkE^YhB=yRL3Md#B(q{3KQb%1 zAU|-15L!Fn?au7uBf}aFx8SW4#Uj!v^mNqi*7?@qWbj%%u`!R%n)gLnV079-mA64B zA3Cy-Y70#t{u8fQWs7X+ClRh^F`%oQ%| zZ9Unm;tv@%oAD~e+f}fRdyAN4k54n{vCSkifTwk@lW#hrXC$*rAi?=}fm^ovKB*sx z?sR+kB(;59y_BD1wY#!gmydjrjrxox8-jjpJ6r@nNfDBAIA0LnU0!@B)1dJ#qHHaq zd35WWO`=w)85DXq0oLti9vedjW6}5yC&vB(UmVdK%HOku0yUQ&jTxic~h{cf?$==0t z^BkJ9{{RTZvwTB~#aeqxP0Oo8CAGea(*FQw-6EGr8&7*pMhMPEWpO@0`?<#4yDbC5 z8fS>^yfNY_ZLVRRrm$G=F0Zvu-!>Wvqk~=?w5 zC=Sw3r(9lJBtjxcjUtS*bygtl#IQaa@!y8oyc(9?A=GqfjMndNvG|fmgMY1#0cQGq z@w99*&g+*g%Q+l1Qp^uX({#`HN4#Nq;U5p$e`ea*ZgKl$sA34M| zA1qg!F}1Z_MU=nD>If`P7$>!P{D{ckAn0+Nf1b6}UtC*3AC>`>K6v!@=iiZB;9%qr znQ{HnI(M(q;IwDX&}DMqE*Jnta&cN#mo}nE;=>nW7bpWa(MR{Q_|+0ruGo&?M{(cN z{{XLFW`4#00JDy}`&ItY{tf+}d_8#{n=gztNVItGO{9{vK6ElXlkA8y{^}%l47tI> zH_95h@mP;%2RrO^!k;{pJD<~c{2N>Q63qvQwLkbMhs3K3y&FXE%wO5w54*qeAW8KL zu*r3(z_+N0JTOE>yi-9k1(sRYaTWcU&8S4P+jyHmw7AqQ@0F#J30qK>B1yxGmQU?# zV6K07fFda1=Z-o500#JS*Ws3l;lB-hCALjVLh$~d4wo3Qv{a55E#gS0g=2>PHG7Em zZyiRn{X?W{!+pnXJ;1|!6b8r$pHN!-J?~KbMV<3IepT%=L zbnz8kNi*#5xJc51giQ-5^zRKwZ2Uj}03fYZGG^1(&MS+U!yUUnvu-UeBMBoF-S%c| zZUm0CV&_5ln`?6=sFKONwkwl!tuZ(_$vBof?4!`_(wG(coybGYkfv* zDW-wtYJVSXuua{C$mg7m*{)_wm@Fh~8LzasUJ_$y%V`QwuLVdNf&q@03co?p zyyrV^ZlZtx*8Ww0WB9(!@R60 zF5o@QxsP(jzzCXIK>*=L%)kcg$8pHVZ>4-;u=r>2kHg;#z7mMFKNxCo10l7HNY;}` zLv1W~29%OPQNY37fsFj|@o&Np@N>snCBKNLI;OD*O+!&~&Q?NY+=;o)?Cnyd{vy2W zG$ksMsV_SpL5ao1VdG9Z?Q#DA7W_A$-{}wI$TcSt`M+g`)?f>|#Kl>>%;k=9dU8IM z>K_TdANW4Q!P-BI^(`D-Tx!uup|1dVgDj;3B1pSW-Qj?4;=BvuJ@1OVdtiPl>f$(b z`EHuV(%v(X7*JfUJ79HUa>v*T`xoI|h12{l(IN>iogJ>^SI#!Ovje#Bs&kdcP;1q~ zMcUGLI5Bl2Qm-;rx$H~vQ^!zPjWWXe*G+=ds-!lSkw%+34WnxT?oWTpv2@*A#@fE4 z1&@d)8jRCQ!^-*>Dsc6pDWC=#-VYM=7YO&{{Vj-j~~*#ci?A+ zbp2D}#f8SAo0<^v4ZsjgYDc!*j&gIKt!bI!BTkI!HL_=RRfcu3Fr>P)VR)y&UM$sY z?libGo12-foseY4%o$rdOEaM=M=D7<9Zh&oh&(CdZ824K9UfarSgs?L(7QHxz(V=U zboqyB{Y{6(8YhQ7A^neE#8#K+A@dL1jzCC4+2}HHyQt4RRQ~`FJP0o>B$gD8<7osT z0}cj0R^WoCxI7VGhyMU>UUrh){)?lKB^4;kRDRreH}-q@xBF=S0Kpt}{{VshD1s^c zZKY|k>pCx$a3%?;>FOqmCXy2*DZDPnM3PPzgT;Re(rY{7mrT5f#TpVBPs-?{kgtpo z$^2R5FgfH``Y3K=% z!lOofysaB67M^a!#mbgZk{3ALfxyqddi1}ApKI|JyMM1s3X=u6h7~QeM;ee@8RLb= z=UzD4im4AgdB^bj`)8bc@n58Wv5$aezqHl0twT>)B1o;G8^UAFl(ek4ehUQHNa{1s zYVx!BsNp8xZ_Mq==}X(j>i+=M&n$;X)OE4s>6TA+aKM;iX;T^FbEw)6r+;%^&)`i9 zQSirx4xN2#Et|=6BZ%Y$TW-|=jFLb&I6qqZVjl#?q{m}p3H72HP{BaSP{HJkMiIGiG! zkWS*mJdE@liu0*A(Cw2)3E~X}yiwuSgpl`ED15abWWd=Z@8dpM3P$XnNE}zna7YdW zM-9}G$I`yTx4YBy{VsVG!I#LDBEbup9x|xAj~ubUUZ#czZvxd?s^F6zeyA>{!#ZtF3<8YeZ7>TQ22n#HtrOZh0AS2RI9oco^cj z*IDgnF|hfR;Ep=_8teQgc69x6I5I!de{|W~-~3!~dmDx_$7;+Z-6T&M zI(cMBN;7WSnRAbqBw+r6d{zCJv~4@$73QbmEkJ92AJ>&NoflJkgK+m&7lSbwWsvWA zBOt=Xn7I+F6P7snWA+Kv{Bz--iE~5XPlj>)N;fezrm15rMZeH)M%g22Sov@)iVh2v zEW?JtBEPoJ*kk?)-}?vn)AoMw_lkZb%i<3TTv>^9{{Z+!H62RM2{hpxjO!9h1ai+Z zw)}|1wX6XVYK9=5}z^s%A2bU9TORTH9Nty5HuXk^GZs zf3tS0cN&<|8BmP!6`KRL(mQ*8Rj+OPI@~qDvUuY%vBE(b@0GHDg%@!-^aDMIO8)%( z8T%H0!8g1(xbVlrc>GT+Wb=6q_N>`chWYN?L!9==`eMGF@aOy>pAMn&J{SBrvhd_+ zKpRDdm{emtt-4JpK7iooiu?*$^dqETewY24yPv@a!r%BM&+Sd|Emq^epA39WsUt7} zpG`JVkbC*}q6om95Y19p0V z-r(2u^KNOFMfxS)1f6S~DD+5 zpZNa(75Avud~L2Vigndz5+g>rzn_-mVM0u(c?9RO@zit0YhE1i?Unc2FT9&;p)uUj zNRz%6JQ(-BOnmapNhFLPep;E0d3~beLMvo`H~#>^UH<^!oIkPW!SC2JR`K8L-=^8x zc!R>4zMFk>Ji4s6_m>)fo8;X@rb%Q{RyjPtfmEHmSMkN-vvVb-rkE{EN|9zc!7Utt zhBzIz9uI2%{(s=2z7y0uZ~Fv%R`9-#@Fz{uEcWPgQNc^Y7TryQ7Q7u~h zpZpW%-CEX5eMRlzK4O86hbIHC{{ULEFKig8MqS9m1mm1{^&+&jn|Wr{8Pa3rlbjRB zAKk?|#(QLdEbq?j0(<^H{d)b0GxBLuyE@5J?VcUE*RMWlKo|$*#BqVR;A1=r*JceP% z908G%O+jU+Uh5YrV`m=yq;2 z9Xvs{UQs z^_dPuQyo=7EjqKzKj4(#@J{_A_Ttmy&&C60;?_i$MbWQijyAcI@1^X?F3?~?yP-mV zdg=)v1tz`bT{#nnn{6=G4)~dZ1WPbIP<=A{3B}$voADG(CvEnAYeNxXwxVuM% zT6wJDXl$c}V{bS=)JjW|?EL4+IA; zuOy1j8=dT|#3|<)uT{~08+eW>Ep1}cG`|ek#Ssz7cQluG%z?LXes&)*BeR}$~i>1xstF{aNk)zM#t`uQ^cB5v|o{SApz4%@6Ud|)^kK$ z*Hcfv@HT}o(sVr`5oEzbahDFLdWDfzJ_sMcGuyp+JUYL`&kjv^JX7I=e-)5ERQ3}l z$s+_Gkx!iQvu8MFP!2&j=Cd^~+5_SBpfYOr5@@gmNTz%Ej>U4@LYa_F7UpAu3w6N& zj%g|>YSEjUXTP5r-s*CjB)N(>3OtDlLSsA-6rzPya570@!R?-vpC+qqac-|I;rU&P zu2>Zyl^~T0#BTl^aNW&$Od8C3wqH%ShT6?e8_cI@UI{)7h>Wott!E?_w7$6?T$JXO73U zQq??Akld_-6$q$VH#;WaFmiMJWS&sq9-xkcjJUVE)Z~qA1=MVXveC@T9>oNMg&}$8 z895lQntnO{(SHGc2ir{_#m^mCXpQ&0kF-ZM;K(>p4Y4zFakTCF;2PGQ8Oid+HbOqD ze-TfqmM?L%OO*;7NUqJ)as~+KHw^a`$7?!&gRiU^H4QE$mNK#|rrjrE+>%tO$sKZ~ z*S`Q);|GmD;ITgeyg47+{uOv%#2zWRxWF@BM{lItov3jo%SiIb*ldA_i}c(FIQVbI z-|$!8+V{nAli&*tAHo)8ivwu`>a#957@Be-;B@`S1D?ITC}dUTy0@rH6&0n==@q;_ zG}{Tqz2aNM(s_vXsBJbN8QCW3RY>FIa&eA1JlFEE{{RJ>{il2%L#hhpP%w;UIU)ZVG&ydhvZ27 zqYyxIfB@Tp?ZEotz1Q}9@qg^+@b|~7;_r*z1G4yoVG@yTrO&C|SlYDgK=W=qoyOr& zMivwMvdl|{+PM9J_$mJY1OoWW<85R|@w)EILa;}Sd43$8Eq+PPLm%EX#hJI*zuvZ$ zj&cCUKW+Fs{s>R|6!?F`cY246Zne#3cpb{z&#mgd6>eoK3@Z)fNn^i|gqLmq0C-@U z%MqT^SBux=MI4rC^GTz^{uY11Z+r*fX{~$>;E#k_2ZoK%5ui<7?c-QgfF!Sx=Q0k2 zD=P91dspf|!r$8)$3L`Hifa0;v>pr7;*`Z<8k>y}tMKzkuc&3;}+V*dcy)8Gfg>rV~*9q=`_od&ObEkTrT~%0UMJRP(=>QIL-7*k%F@?fSfu+L znzorXj19!6$+j07m87>ypm03Ih%o?Q1JU|#{4L)Ud>^pUwaW(9?(bDvYpu|DhfZd< zO{94j^G7N~(ww8@x!dz#*PY32&h-Je7C-Qg*jZXfr`hQ;-b%7aMxAq@Oj;khe$$~n z-|qvQgmxRgaopppA-qfDMbNcdyNmlfRgNibrM=R1i*3jY%kp0b)kK&$F_p;xV{bLW z>Hh%moZ5U(vhZ%Lr`ze)I$fegEP5^Wp{BHwV9!2mm8`8ckZ`9mZNUZFx(^P>vs?Iw z;s&>-YFcYf9u$vJv#{1;R=GQ4=Shk0q=Rd2%S^-!jXfeE82L3 zzUa#m0;;Y!#s^((Yr=LKkHi}tKVGx9GikQ)rOnQvrRoqk+I;DAsMxexc~Cu6g>jRd z;1IhLO6M(Yt$)I6;t%*i?5`r7G=+*eBGEO2V>-Mrsd(kme8W6UxyO{Hff&ib0C_dn zgDpHU;TxS^-thQx@@Zg+3MJ=(t{!=0&gQwgd0=-%4e|)Qw>bo0@$?$Ws%!cWiTps< zH+qe%vC4}IKA!;nKmxzwOJ(~}5vT4nsM7tR+IL{e91Qc^VBA4v;V%#A8gGa73wS}(>ROH5TEE+^UIY`~T6o6MR^n}-3kwyuyOum3^=$jL<$D@E zMR?ru?H9&g4)C|bjXp~g7lmfIy;hDFwY%_rz(}JfCOZ_pT=Fv%s;KpfdxnT(CH`EIRmBj7H4%W@A4ppZb}^;xXE58you!*;Tb zC2!`sxKpRK--DKO8mwD>$$FP5AUnS7jJ*Q@a4WZ);byNd#w#BYXnGa5`aD*M`m1PG znvKvg$Cufw+h1GH{9Ar|UFvrfBrw9!vDA{bx)5mkr~D??9x&6s(z?VD!*;*fw)%Ozvqn)g@pWyeA~Cu718J95T2e8MaK2s4 z^W-nh<~PiG4-!Y>4~G5(@b-&+rD@hh?`D=)y1c#cqx`Y$CJ6LJ@>re2_ftuR>s&E;S7*4HhM3 zoDndUoZ4!`%mep_Y2W-LFg4KJ>FeQthq`UVwymNt)WP}Un?dEFV8QM@DsG|o{qmUD z@xj__uDsK&^?!*v75utrzYy436}&duMy(o+>20-TKBUCMkXPo-ZmKk|6P9sr zbH=Ffa%CHz)>lKvf(q1Rx2p{De&<%A*YQRXm8?XFB52u``FkL()dxX zzZQ`UN2&f2IwOs!ovw4w2?<@eo-;qgn7mQpD;cjeyA5wtwY-{N_?T(7n)UCMb;u*^ z)7msB2g)Y$gv>`FkIZsBLw~91z8%o?i*(eq<+-$LNs+b4^z;(Oa1t#$R!93;CjoxY z>cnyHUrp-J4S&Si4!fpVro7SFL?n3a^u1rmbdkExt4V39DPVKEV=e|p8?2fY<>kl3 zEpx*2%7x^Xd|6!I>T5RXW8JkZwJ0UiPCFRoXfwdT$gZF59dF6z_fAmPZ4KXwuD&UYvbv_Z zrp0j!c^8stI@D_n;PPMwJwnnwt-Ewgc;{;=#ddbS2-jfvY})LJsrX^Eq=drv9#)*G z9Flzb{{Vz;YrA$IHzeAa$0q?t7~VMeS#|MN(@56zol1R9;%MZD%+u{Oonp*S2?b=E z?TMvoOmY7JKJtNp+%83L9KxG9XO~TEbDjycZx49M{5_%1YokXr*A`JnqsM>YL8;qKr`+8_*2T@vq-^yl_rObHTb&f7@(>Gc zM^$jd?O=N8c)!9r--o^@*`z9DxVRR#5-aQag^kt26O$0rZ=kr+q>b51u#Vz66;3xR zVT~<&NtfYo#XD~i!J}V8YiTygX0`Cqvq%zrtcwnzqRA%WppaVb79H8t;MYtm!R*dS z(4SO!?}9a77WlhMzVQD5g#190OQ*>d*thWWrOoI<%#9D(d_YTDM0SD+W9BwM+E)j? zxbWTnqv5#^k0!Z)?Cn5F5Y{g5yfDx#>+-BkV&d9aG6^yV@<}6bMjXc-)!oO$pZG-J zk#(CH<(|s!%Jak;XNZNcxki;IzlPvJsl>SfQW#{JNpZah`G$YO`6Tdnjb!jV6Frs2 zw-wc-Eu-oBpN8&QYf@xYv$EBM_6#;|GF-?Hy8RZSxDubNv!&KfA(siF1>DtYYjx@`OB9b4sMJ~2%rj9F{ zcH1GE>%x}-r7TU3Wsypr9>Nl@GP zk{GUFffxWptl1=llpmBDnfjR?Ch*Akaq$Av$37FV(7ZJ)*C~3U4L4TOh>iYBgL|k# z*A_Q2Dm$`AaT!K%K6T;8px+yblqkX4DTTuM3Fmn~6{e}-PZMeP zS~J`!zqU*Gt~@j)xrYlZw|CkUvRgAcZNO0!g+cjb8QT8<8~j4PzVP;&b$vTnnLvO? zcdf@}i!HX@rX4>}xAOOAmEAJSj1eItB6QQVjT^*~_`gE%WVY!$!F1O)uxe4DosZ17 zcXqPf+RB;bl)}hI@nhx%x(-Um;b;68ANKq3AHl!a!e7~c!l|ctkHnuA;=hJ_*1WXw z6n0t?pn~#9FC>QE@;i??(ko#)85P;(CDt+r`T5`6%(wRt>Ocb0Il=&=c5{^+-~-d! z*1u$b;I#h$wbj4vf%|)WLHLoRUOu6q>C=x4=#nst=F{|6k{#^OBx?R;)R$7DU}h$d zIU^_Wn^L-H{PdeA%sAcGzCr4JtM)z)%T*jdJeIOPJ2$V-QstfZOA$tWAVo| zNU;7O032j@qC($w&*CXUlEAh=J#p#Zt$k$XmWQ5^YA6|>843vtxbOye^pNvZg&#=o^!jx?=b#2U|omJKULp3)O7jf|SK4kerSdv77SSb~V>jD$;hoE^Sl zbNqSeF7RrRO}s2oA2vqu~9BQS88^Oc;q~sVapA8K_@hkBvZO4!g3ov4$+Yb96IoV>w5~*WNsjI?Nfq1az8mpv zrK|XU&fiqiEm59Jc%qgaCLcM0G8x+0uaF^8@~MpmayIfSnm#$XzVPVOb>n{<>Fkk1 z6tWvjDIpvro<^$_@tFdQusOlw%wx@X{Dbtts0HVs^bTZ`LBjCa%ArpY5M zb!0*l!FPyAI3olOzmj`beG&EikFo6#1rtFmnx*8iF*&x6>{4m- zt3(FiS{&eml0|wfJ~Q#nq)TgUpggg}0wd3+YMyH<@C=)*-0vfn%dyW^J!|LfQ^vk0 z@qM!Ex>mWa$#)L_`Ur-O32z zByz?6>V?1q7#sup3k9?Ih+F7-Y)^4>b2N7Lr2-E*ow*I1VB?Hurz}7f@Q=p*6HK%C z)8Ws7z7S+)U03aTuahD=OK|gVEM!7*V?}Y-fsB*Eub#^B^Pe^K^FGfr%jv_F^j$lg zhwUHm(@W6231NBR>z}dM>8`fpPcgP$S7NOz$VkZw0Qg zdVPvbqSzp4p>H*WQSA>PQa^g%#U^sy>*vqf-VHlN_-S(-Wdq#Z!mG~X^1keD>c;?+ z&3=@83%b$t&wySChf#{=1YHWi1LesiL7p*|GNSCk?~*q3HSgrrx#7&uD>kH~h_n|& z%U((F-Uq-GLS*~Prh8QEu z7>}R#eweSKVzkmO8B!s}r4Z^a%o(_wpCi#uIf4WkSg?{S<4$l&Lw`@{Lyws^Dt3ETTe z_$T&S@b~T4sCaW%xA3Ql6HJcY=4kDqvWYcjRYnqd&pg58D6u+1tCktSB#*)A+O8KlP&Jlab*?RUq(fyZvaj$$L{iw7noiRN4wHt-AmL?@ZE^>}oa0ouc`g32R z{{ZlCzrk%2jWk-eEChJPkvTRGXtT=Dpq z@c#f?@!q$gABY;1<|~~#c8=aFR6#K?;4F_cgazjqWdP&ezes;34MkG8_=6q4fk~@}dda&O#xc8-PyTkAhBk;Pw1!Nq)?iK0$~b?hBj@ zo_Y~omW^R=KCr*J32z_F<|P4{7nTI|=ng%2?O)jwb4u*~KC4+@k?Vg$>p$6t_E5C= z)vwEU<9X!K^m{l(%+tiN?l~b=HIh;h8S+Ra8-Q>D=D&YF5_|)>T{6SL{{RVm8K~;o zU8e~Sm1lQyUvcEM#4$=sx%rwx#FLV1`aJ&tf=m1h_!;{v{=}aSt+daFx^B7SJ%3Aw zT-SBk;D&kRy}yW0g_c;0i+gm$Q7LW99AIF#U($d0Xm5(T+?O67&|c3*QqcXHYj_w( zv4AW**;V36Hjq{~izH)_o<9}OxZ-uHx^Y@3r}>|v<=i<6P_y5?&*rn?zx)#e_N@4u zV%GXk!i(J!X3pFFe^ZN2w*;Os6Gro~AN9+hP;2rp{t8L^JrCJ0_JqCo8S#qLU-**O zLeceUX3{UnwTj;O+{Tu}&9zpNP}c0s{{SlOU;xfde|LIcjeaTJ$Sk}=;w?h)ls}kZ z@}u5Vk+?OKF@yn>sq+cWa0##C6aEW#7Kv&900ju~g}hC2k;S2C7GQ1??L>xI7c9&f zoEcv|j#r+w;Ze@&*Qv`SzT|bwCWIjEC-=(#0Db=eBl8Fk*|S-9T|(316}w0?mzv?2he@Tdouh^z zzc78QN%?W<)lChZv>$4Q<(zLLX+n$v9q>rcs1@d(E&*(@XE8D7nEL?zPuHj6#d>hY zTixYH2h@^x_LBSm0M6!*!S5Yw9}V?;rSM&@k1YD!f7w#csp(K&+(8ZAVvt$MK7Pw2 zh~-{XLga118+rL#;%|kIf=g-Fc|R|gZoC#MoChRz7{?>;XEp7*09kxRrGd+>)GP=m zc2(7fuckQYYp(sZd=GJ^d`h#|H3AKd&W&L_Oa{{JnG!+l!GO=y3j59n#$L0d-(R@- z&M2WDcDH7Je5JS8;almBWX9wkgdB|5XRYa)W|^zoYJNeU846Ex0F;n&+sf}$O@Y&Z zIV;a6w?A+^$qdti6;48fz#YAR8rs!$tF2GNmNrJ+*eO&071-~lw=nHfz5ww zKd~>0bT1J66}g*0m7aT>*r#=7Q!rPFGN~J6uo%e!81O*JIIr`~{gs*G|wXBGYD{{X=(JV|NeEgw6Tew4}P-Uj5PfRitZrq#Dh{+C|OE$$k}Nb#Ru^ zr$e@7RWOw!Ax`3R%78Iimil(9;yqpMZDTsT;lre%CXQugs63GRo_mK2PLU$A@xC_H^oRh{q8%6j<;@xnYo83cHzD6oX42XCN zLk+KJWlMq{(8RSWsdCbcYQOJGx1Z-toWN}|wN$@+u7OH>YDZ8~m zbCsUyov;A}m5U^t9_QM+T|Y?pHQ~5pg2e^kRmYcWZLu&qb0Mvk3R{^xOf8}DoZk#I zTP+mZ#dJQ?Df11@t-D-pm;z46k&xhl^9Fpk9G2wo-}q0!wwfT+JY8dS@gf;b&)K82 zQJfYfVnR8FF2KEyY#nnMRWMq7UB!wfW$Ri@Z)iz%XSoqD_?^m^wJBgxr z&BdIu+T0N8bD1sK9lbtoJ+WWq)A46dxPtogMVv6VveflEILHb@HMQHu0d5#&Q||IO zPuJjwE}^{x9a3dUvr$FPTBgb2cn@H%94&$%7_4;3%M+i1^In*OmrVt@E0uk1nbtHQcRjP*OO5otavf>t_~lO@Hh@oK7&i;1s_{gfu2%ue4f z(oLmEbNkjieshR8h8P(0%{F~M4dhbBH?6FElm7q&l>Y#NQ~v#3mTcii%D*}Jf46NrUGU$AG)pfGcv{u$bgeQ3wY9UiK^zc6 z5`{?PSjGaXkLzDI=^9>>;Li?Nct65AaMSe7F5PWyV6;0{C}RKw2cYAV-11MYZd+=1 zR*|zu1fhH2Z^-O&Jx91T{N=LVRK2yLnY^uI=sQW?+I@V^;aORoYu| zC+VL`i&*%P;9UmR4O3dW@~y5Nqe(o8o(UaSC00U#GC$wz$0ojdX(QM6cV6l}LgQ1n zlNRd$je_vO4<|g0+i-odYGu?lRfx%NE)Fm=jsf)R*Xj6In18~_yi1EaT`NG;ZxZr7 z(A-<360S}*hY`xs##nsAbYtb`0=y&RXUAWTdN+sl8UFxhUkK=*5Os|-4>G`N?`<-a zVkX@TutHp?8$!NZ$G5oW0|)u9_=o#&{{X>WuKZHg5O^j}2;0h-iWKmb)&nTXAKEwb z%L6y31E)j9e23%DiJ$OQUm9KB*?6w+;)T<)qe%^n7s3<|hD8abL2j5~(GkhVP;1wQ zP^GJ>AH3$N&Y!~m7EOU^IL7~&8^;B*y~%6?QPNOZqtUxd6`(ROpI61DgOWjZT+cc@LXOi@t2A;Uk{>~ zl3h1gw7j`ta{PHoePq(bxkq({kmK))>4pmdOu&HFJy zq$J+~JOQmmtuT!ums-5H(k$bRU*-KMhCO1&Qa^bt%R7lC;ALES;kd%DLVS9ewj!pke|CqV zM+Zs@>L<(EPr&^v;pc}uIpE(3_%};`APa^|zYhNZXhgAK#R-o3-Z|~n*bT&qH)9)# z>OEgU@s^Eq;~U5z@^tMpMv0ZqkKzea&+-8?Zm@v)D=(S~jrcgnp%v6=dSiH!`&IGw zm30r=es8i(;cMTr-A^NYu!M(GiU?LkLAb`!oB&rWI?dv530%L0EbRPgWcsb%sOs3) zH2b!ZV}OQMTa6R#5yK-$K^bw7rvM7zoSS!q{$phLYqn6gN6KYsF=V6-VlF4o_P3Tbmye+v!?YgmgJt!ET%FZX?wpzh_*S;Eqd8 zeEI66oPwQ5?Z#nG4qJG~UbOgiVQb%1VDh+z_1g6wAU2eIf-#R&T}>3U^D z^I=I}@bnE^!L6(K)(g)PX+`Zc2mo8nUqrXP+OUHxj~=9xtf3jW{{U0C5uPfqguHpF z_@Bm8YW^71r@hg1=$2H2O4Y2j7+NUMtYvKCiKjct@}}U7_w8IBgW^95_)Ek3hPA8> zJ5AL!=Qi<4HI3hd?q`wP%$^x_Nt+BOj$S?RUHALtLfTCgW;VQ!}7%igt~;2UFJ($oibmP zh?Fe;90nYWwo#wv9RC0b#^$%Ac%#Ig6w>@E+8xHJ1>BDqUKf3!+!H%%@2FT50%+O3W5vmO1?&lSa;r`ltUpcn(~ zo*nxnv2JXg%@ZN#lh9R~`&(~`8gIj`KUuW4v(e$Vj^j;-QM0?cNhSUBv)SqvS6AxW zS$6*X76g(92D={->DndFkF?DXTzhG*^!r$2W2xBcHrF7`#oHG;Zp}VGc*p|?e(}Kq zw{(9HT-DE!}-w6^O z3_;?1Tg%vEk!{Q#HMKraELud7Y-YeJk!o%i9Ql$1Ai+hSr`pBPByYTOTyltatb{F=(9>3Hy_{GJndez^Bi>I1Ido+2L z^3n2lgCaUe4+n5L9eD8GoZlBUj~2g&*3CXm` zFa>j3Zoe$Q8(+g79`Q}JuAQYAtUs}AJVk90K1v2)`aR8zl0z<7sZn*cmjsY_9JQ{o zVesbrR`{FaT_Z>EWjV{ z*I(iv!kte@)2|}&Y%&W~OI6fi@q#`i1P`)mao88Y1-@xK%nYe425$JK={_I$N5Z;( zpw`|M6Hjug4x@YEwrM_5wJmK{_TGKKF1E}Gjz)uYjF z9!rPb1ll&C1>QpJ1}Ox-X6@M8Mol>;#{2X;k>JI=_}ORTdrbmsm6jVL{ibwXHvBdt z10z*ih_6q%k{smxnHjG%)1>fkiFB_S_$vPZRkQIm#-NwbzK(V2b^C&>b{} z+*vRonT&lUssvmv)x$qxo6apqRwr0nBp< z^10jqH719z*!b(<&HQa7J}eLRDHn9``1u|<Km6E1iIkSl9dw z@jt}=A@JSp_K5*)KGG<@-*=^3c#~aB38K6De!Vba&c3 z9zD~%GvbXOO}Fs?fi5E#R9DG4j|A2~!_p~$&nyAt{MGSe;ZBFDXxc} zYaKdwg7F)(k(H2O72F67H?th+E8QBNAMiz|gS6ijCAN-qh}z!g%ejk8i$hoPShBg) zv^nOPLl3&?3djaaChV!pdzro_{4$2-(i=Y%eUknLE4~jI1Xf1fh16G0nGOi$4)8k? zNUVov z`WwdHEWPk;&xM~{)gbWooR*CMhJ9}L!z6i5302b)JG&`L`*NXTv;$7dwzl9cFEB%)> z9T&t}7M*!LoY%e^)<5AMjyssf*`Sirhw10~pBZe;z zYtky)OZLADNvqxlft*Jz)$W$*y8#}>T}N*PiUQIhOab#82E1g z07e5&@dm4-kisO?zT$9c-(b_N?w7=V6^38f6SrP?jsSS)e{8hTKAu+XBVsz0t~+QaD)UDBFQ5PH;JY5PU@N-H(l?)BH0o zyQyuyh|V5my|)SxTm?zD1OSk(3#^eA4gnoG__cP^ykjidqIg%scfV^FcFAiU&8DF= za^R{@XJv94;f{V|G*YV{n{9LbYAN?EVWjua^?!%D>fY#g+AoH+czm+Wc@*9pyN_9E zS}X>)iXCB6XrlmUX)Kv147Krp{1hwW^k1?U>;>^B;^Z>PZQ@-T&{=q93(HI03TQP= zbt7E40A)P{$ZRw%IQXYhSpy`Eae5@R)8mkAjxZ7x zyO4xKhh-&!9Qt`hDPl1Zr)}AWF4Ump+5EI?Fse?L2_s0M79GTb#dsT=rdgD7PjYy# zD%S3!p88dfgjP7n!Q+qVU0$Q9N#z+-{O2SeUrhcSir{C)O8`JQ_OIWlr3GX2h}Cr@ z=E|oz_ULLTgt0o>>2XZj&a-xr2Wwp~N-J?Zq-A+`FE zSK=IgC)O_fJ*3~=OMhg_WU$eofZjARk>s`0TTG=GuMs<-+!VV8#@hTG{{Vw?{{UjI z4E!ejov*)bFNqqQHn*NKl~x6uOK!Hh2AOd2rNch|04iVY3(+Ga5<@te7~*yE`Fj1i z@dwABgF5b!sA;#0Cy4y@k|-tCQp;Grj7Z9%BDIxOrL$lI?DJXw0EGZ-0r>v_73U8T zicn7RkLLG2_awl&G*f%Cg7Iv+Z-Vvq@YU{@s%Y2iW#`HN00{)qSlirN$mL^ka`Gj- z?2pL-+0}??)D}@%ULrpfyd$LP+Qz%#8(D2Nw0K`vi&u&5R!db9q?aR4iKU8H<&n0! zNck+=iVCr<{B6;u_-8+Yyb0o~eI{rmw9`T@y~Wm#1f=a-HMg@mebuD%^#I8rQZbzH zdcA5th+h(PJI{!EAB68F*R)7p*6QO;w~>viqX^zOBuOnbBnJjT=iA+?HsUh8*M})~ zXQ3%4zK5UuK=EJg0c+vg&l%hJYr}W;Fg21&_TDMIHx~wJlq~Q-G~07CCPTADDdd)33r^?zMYORuE^Ae93PuZDW$zw@llFvaBv&ka7qUC&B*!6ZnA!y+4a2N4_6u zWs37%w?Jh1h*(47B^lud3OMahqt;AnPh_rt|Iqw>{hz)*d<^&%cd2|p)^2B;##WjZ zqZW;5ut_9F@<^NatG{eTo0Nt^aHl1X+=~24{giagOT=FiZ@h1Dd~L>=ZqrXYVcni{ zf>^QY*kaAjNj|mrCcmwGIQSFruKxhQmRh{mI=o&VmN~U6xHpj@EhIK^$hnM6S-=UF z+NUgf1NpJ=m*JO=e0H*F7E(5yqusJK&A|+!R7`-YkG?wKACw+RuNMo1r%sIdU9Z)j zPm9M+rD$n;bUo+e=frytj(#xGz7O~U1950I2*OWnrM&x_qObuP0h6_y0h5+vfIHXv zFZ?P00D>ca$6gBfZ=h+Kw}`w=cV}s7Z(?HeAk)?c3K5akI9_2Qw;N0D&u>rj$^DQ1 z8+<Dp1d_|<%&32GWa`U_w0^(^FJ8ZkFn1W?66>}#Fq}TdlUU*AG zz3~pAb9i7;JmAdUU)m*>L@UD?6iCgLE4Z^TBRnw8bK@}*q03H-wueO@-Zwe#f9V<; zC;Sta{t0F9yG@P@tpeXtNXQ$tjb{5(EbquBBRc|5piB{4RAL3O*g^ zmh(dFtSmH0Ba?a@uoB&>@<_ltuunr?5o@5YhcA{*E?HK z0KvF_1av)CV=a@P4cc2;#T-bJ8!O$&B#`cNv0@}+Xf2HA1Xr8?0Kr;+W`B&o7k_TH z_>Kby_Cxr7TJGA){=`JmtV-7~X|@xeIzKNiP~89v^SGQ6cL81<2sQ0FwoRX@Vynii zu#J38seQ{=_x`8i7wq|}_+#ToitWA~c%I%{7$9c4xU-T_W0lCp$4HOP0sa>GdLGsH z@5lcD62FSS;D#R(Z7tjV3qtXhm2GUhHYkBLXcOe_>Ad51HsoLviuuP(y-(SX_I{hi zch=(1#$GRpbp19jI0++;KsP&u$v`q$j(+H`&(DZowa20@OI;p4pkxg~Re|ILpZR8t z(tQ+;E9Gk!WOVX?RvkV1@t=DBmVe;e4}g9b_@DcDTl_`w#Az;(@cTu(*1mUj#pI!F zEWj!A40*Q%fO1F!pf&wd#5m8ZVW(MiNAi|QgZ9|S#qGKM#p!+!@b`keB)%2XZv~#6 zq1eZ#S;+uPkPVb#HQI=vxFtYfO9KA@FBl~1=$1OYwYvWRW@*}$=AO!uOCX8XdEM7( zzyVcu0HCfiao2%flMjoc(+82@-6kc40!A7LWDm4@Jcz*Ha5BT|S_|S273%^QF{Dbv z<_=3p4;jb{{ut;h`J0wa-D-Zu+KSZVrO|v*M=4SOB?(&Z!cmkebI8rsjFXM`KZZ8bt)vRQX9NyQ_F2?khX1{U|(E z)5$%hz2Io0ocVwV?hp{naKX7F1pKe5>pEV$Byq;37YsKMf>e-COylwWE8K;&JgL)H zvod@+7uft&rB52;W!<;W#&Bg&-s6IEUugdT!9lzcae44-z)UPrn%vN z_$0@SzBqV;;#HT9Zu~1_YvOx2JU^yKZKtF#2-;+td2ViIk~yISm}U)18Q3IjqU&@vgaWKHW9k`h63~ z1XJv@i_QZqghUkvdUCxp_53QM_{&_1KlO0M+>sbK9rDMK>0ic9pDv94g;Gsj85Z6S z@dU_^4Wkfu5L@Q!(EdHfewBQ9BJwmRSD7tbkOtx~PjVNp=UF%YE|J+{)o;bV<{0y( zL_$YpRw0Q4oDBXI%J`4Pz7p`swU=3#!ycd;$dWiGkVwn-u*ju;nLPH+4JNI*aE#@$ zJuK+H7P4&IU-^b3hgf4RwEqAhpT?j4qu~2ce#d7e!><6!#0+|nIThvF*N86krnI)x z^jqysuN8=R3=ia-0tBdLS5m<7fXA-wyl0q?#G03gJV3r4@C^DsvvC-7zJOiKlUmIg z!B&sSaCY;*ESMvW+08?!k)$xQdf55`&&CtQbsUjeBoRhK5(jMj$3FG`X}`AD!x{b( zd~^7-@ZV68;kfYkjJ0Cm50tK)CIN7TMS;PGF_&-@pE;MS|Ae${{QwPdr7(@OZ0;kYM(p}aTI zNqeD8ZLa3~M#WO{M>VJJ`hced;=b?0+kivIwCbLM!*E~zXNl3QwjGnY_& zrhNR)*#Mr{;---P>!X z_S?mg=)w!FR?;N7)2(c+yq_`;nU&1fP8A4HONIGx184Z*{{Vt#csobX^j{qOXV;<) zeWz)Qr|CK6;h#`pZYBe1{p)X3jNp-$z~;ZE@7Oc`3N7$wNxQlIpME|3QPuR>{41#2 zYu0)cI!w~6_UOzav|E@|yo>grvotY)&BS@wSr5ecm6tE5LaevGo|^vvk@ub+VyE?* zlwhx>zPdj%^iINxO@C3e)%9znSk0xZtD)V(Uvl}aZ+RrL24)zI4m**!3{@Rl z!gmE>@Ls)pb|-|HwJG)cE16=23TF`NR=;GnMM2E67G(#Il#YAv9(bzXMDZI-sOvg* zwc>q3D`%SDS+{E;1ebC7vcm+nmaB;j4XfN61Ii z^(bCFTTW>9w)FEgDQ374N03~kO3Zj0x>xfY{v*Jx@c>V-AN)y1mnN3$~F4vEFgN7SRacp;FNJD}FtVPutt(u)vq4+;l0gD-(RD|0Qs!+jF|&rj66;QEra zz2=E_CMvBMOT8hj;dtXxcM-ZWPu?3ytema5`CCVErTB`KZ-UA_X!@EtGcA*}Jr(sB*hV3*1#t_)B~@rD``C?zMGmapL_%6K4jw zrojcoaTZa%uXK1PkqAcH8DpLS_pZu)Gg-ILE&dz9ZK`S?+9?>inpcm+T6v6;4Wz58 z%#*3c8Oe*#WRP)5G=(Mk`T`!rwJH?Ob8t= z9t`+xe`{-|=|TS0HjjOEqRz|?E)3dw+K3o}p<*U)m>${YEn88yxVoR>XT?o6-EFkk z{H-l~Q>I01@wB8EZKTyL=DcmJ;4?pzdE|<>6h+QX&*ATeJOOE^_*=qr>6#yiuB49Q zds|7zioA0Vgyiu?mo~9H+MJHIzh#v8qffWV-0aa5w3o{~ z#<*-KJRU2P)6>E}0ulHtz-PnyM~H5A&3>9i^7wZ49oUjIYbloRayM2Dv=NV}maVC2 zwsgJ`_=T$KE2wzqL620D!o(zY)_NYHZ?0OSGBAonw`ibY8mJEfYaOF+D#B~hA5?CVg^nzoKb16wbVW@)3mu-&14qVI)0m}+D@fY zfht3&+uJ%Q8(LIJ@=3tlK&hu9m9KNPxqlF9J|Kg^DgCK;XJWhVWRbMJcG5{#=8@3d z$tCKvV<>SF`wa6~8dr++ShX!j;w;kHTH9bPlrlE0;rDl8veqYC_ln6R9q}2@rFkva z!wU}x=rQ@1pMZQV zscKQ_vABE5qmsi`wVmAx%A0TJd(>F44>1?r(CztaVjVlTV{NW{L3!YrjnucA^m^0z zEM~T~@fEj}pEQd<_FCEyAMS=SKRs&^HCqc!V$0#Lfp2unJNO&SyRx;_u6#LovrY!Z zYa*8hRr2sbX#vkl=PW<7wXYc+U33jL<4n=vjt{rInvR!zL~n;lE#^x*b}Z*~V{rtr z0CCS>r+h=z^y^(~#a<}5@fExdCl-sYT3KJ|(McgHimj!m+FlsJ2boK3>T}4J(gjT0 zytI8!#CIMr@wJ`KpKYNd6uI#RiDz{jF+eet)P8B&DG2ic#_^tZo+~fIG2LqZ5x?=T zhTuB3qdNpyd?%~Te(OB!Oq0cLs)(&XRVB6%KpX%_0b!ez9;YXVJQ3oU&Zly*o3eaIpdG*lY;o=!5zYlA7WN!gw=P*HgLO|H>c0^6 zFYHvCPTpg=yVGxUyTGs#kw+!v`8L@PfR3sc2jv@itLdxww%_69+_xuMk~`L0P?tn_ zzTHH*X_i}UKX&MfWdVK$;hYW)Z9l|%l-~-Zk3o|D`|X!7LRP}~c-kQXp<-oAvmfr< zjii8B@JY{3U&WgL0EIP3^lt&!Nuz&kSQnP!)_eQE3E!*C0>&e@)4+yRXvxaFp+^Lq z=N98)lv~{u{72$H33v-d(L58Q&*9Gx&8V|pn`>=ePX%8Mghv)E#6CQ+02x8%zVOzwr`}BtoeV-Lb)60!V%^!7%xPfNCNasAxTAuE{G$L4 zvx{#U9c{HeZVwW8OGnZzfp)xyNWZXkwhjB#mHVWW*_F~Uos3(i-gpKQW3s-6*Tb)hJ{9pVk9Aw` z3TyUyi>u1XZ>0E^@?uF=NRf2QrCU39J2A6(j4(XsCb_+8X#5l4d*#<{e$92RvRbVA z-Gmw%yn%zvUi-tl&- zFXI0Ij%4fB8a4gKhN*0~8n1_M(@{mW`J~3HD@AK0dx>OaB|~Q$j&ZePuXxi^yYUVD zmmVb3?1i=L*7pg0rt5Yn7&nzHHn6MQFzCq}ZpYo^^>)x)-H}EZb-(yRd_#NjDt%Qg zQqpG6j4d?zt>Y3Mp?=e(7r1D~{ky{#3)GX7ReUX?#-9tBei;j^p!cvU{{X@(s4lPN z`B^MPJ|j^Nlm`qGE)?QC9&4QVabe-D6XCY4ci=cQ*e=wtOj`B5y{oC^n{DTZ zCz0cA$_SCZT>D^FZ-)LhXudRETj0O^Bvx;&G;`Z|8om9dyy+~B_kPc5dv835fbGYZ z(~R}5Q$g0Rz8UJ4zYlKwA$#Fyjr>O2SI})6P1A236_lmGwx3Wj!6E8yL?LoH9jQ^1 zc1Y)`iiXl>rNcGniF_-f+IW9Znh0Iya~-_4dgOCC1BOj;1;E+{L&nRK*CQ3s>o$>S z-w~kK9&1}zBZkCJD{8u~ktX4ixwEznr%RBh8%W6;PZ+P6G@pnbHTaw2csv_(Kg0h3 z9@%NSl+j&7_N2Piw6t(fn6X`3%96+!2;L+x&BWNjdcG24tUx>A858( zo~qDV={n_&o#u~r0!YYG^2RwvnF&?QZ8gkUA!FECv0YTKP3b0cOE8Vwj8Cbpelhq1 zNBEhoz4iRJG08o|G0i5Er%M?V0u@tJ(Bc2x3oLsN+9eN#lo^+jTV^t~-RQ~Uc>Hgoe`kNfai&`vtCgQk@jlzF zD*1f3z-yFNHi^dg_FM(vAY77%r|L1brz^(0=zSgHO&i4e&Yx?d_*VAY!xq+FdnUQy z-9Xw}B!)lvd9=2YOr68!h2xYnjBZjza~>2LKg4;*g}h^{X+AvEP;wvj_`-^+)p9D?i>NWuo#>qXp z`J(N?J8?6_Rla3iz*l!;;_JEmW8wb*1^A0k@!^M8yq?y^%f(R(yD7t=*vWqYklHIT zJATzTEscb7E20pmv4u(0ZQY)S40?{MZK>%W5_Id>?Pk;2qL0Sr(_GTv`!UNqNu|oB zR%O8QXJA+;WEl)iFN8-;*1S8eS^O#1?6kP=Y?65A_ z`2qR{uRr*C4}^4&9Q~W&diV;$<4>MTYsK*0*`9lN*>Sq=#nh|Hj+j4z)Wk z0r;rf=+>HMlc&2}MIvcFB$r&%t(Yl0r_-m;l^`kth!mA`^I>vF8{uCN=o-Jp2_e_K zM?KBm{k6`N^A8VA;oU}6KRU$)>_cS8N`@n7U`F*Iie%YzDQlk$K0l{|^^f>Z?ffO< zeNxK&U06-y8)wl(7Ho*SUTbx^wfk1!#pj1;Im1SzbFHBG^Iq`J!nVBC?0i|_xO7{V zRbL9Vw}@eyDRU#dQZ#bQHIgwZBWU+0L{K)0?mRK!DEvO(+1?@W?bWWC92Wq-rGIbY z3ng{K8Kg;`8<^ac`A!UNk{gnwS?~;A2EWxWA<}i94#%l#)^7~AULUp^4z02;of1oE z%(&V~Eg^Jd&T)*@a|zwP!S9Nm6HQ!4;lC7W+D+`1w=(PPec_4hh1pplgxdg; zTig^NgRw)NKwN=dr(=1k_-Dg*S^(AcjUL{_8%gYJVUNVJURxmnZYQ{%8heQF+XJ89 zZ8&8lf;zPLC*dtp;(asXMv<#(X>(~LLN668I@OYF0Er&%B3evf;wdB<=U^O~<~|Me1n#LAJqzLCrmJgx;2s#AVnOeAbYK z8L#gP{tH$6WO!@fAN&)4#vUEibwjN9x8h{0;eQXVtEK&iRjo0ql z8I7=DK5XP3xg7TWYnkP+z+fEUnz4Iv70mm>kfVSz+qF~*$^)s-^sm#Fi1}(Tv{EGF zDgp0|i1nY_w_Wh9$B1-a3cUUv(c`xW z&UHJ8qif5pue7vw_Kq#pqdUCWr(ArbSB=CN{{X9DWj~SWW!QCAvWwXM!{+^(JWu-z z>Q>hu1H2t+<4=cHIwh5X(S^6$FSLntyJfb9duvnk&1*6%Gb{n7jz%R_(T>g_{@Zf= zV$!vL3-}-Y5$oMAZ`o(j1--VPsx8I?EK6^6@+7Vsl~T~UGK`Foj-SK76ufot`^|?! z@f+xpTgm1vp0(!LK=BgXTfpZ2H`;NJFU!FDSZqSX{DoS7idUX6El6=j{?tX&ev~rEw{=cnHjWn%y<4=Y>Z>K^v zdE(T}5(z}`hPjRlg~@{E!%}GEk|}($KhZ8-H;gI9ao2cu;_}DDH$EM)(d?UCxd;6k z(%yOA+5{i#4V}Ens#*zR7$Pw;E3e8noS#XX_ICIqtVs@o;BORoH+2Bed}~ zl##52qO>;(_rZ5A<=Y}K#z9kE1-HWA9cZ^wXnr2}h2cG3OP4YxovmAHdNOCyIOaD~ z!~+b04ZCW(|3 zkjbPy93&`xQsLK518cvK`lby$k z^%-qb;jh7QZ+8B2=^A&J=D>bjq(rerJcS3j=Q$jXzcXD+*uph8XWY`2HClYTE&WfR zKj47B4zK<#f5BUHe;4R>){@$IOzN7`MQm zYS&X;S@?NdN_eJYbip^Pz*G?+@}K6BK>)BPp(Gxa{5}5w!KV6khPnG@c+hI|Z1a35 z(r+*c^67F5Zrli5?&bI+BLov)-tM8`&xG3Q#U19Yd#U}BK{Rkfe|HjwiUn*Jv*Oz=0t2sH+edK-@>Mo0X(X(2XEI8X%7Ck3 zRXwwwwa{w64!lpQU(2dnSj;eb4be61@-RqjPF+G8{lEqTlC1{y<8>TOa)HLCOk1uMVQGh`zf0obqE?189 z2K}ZyCGeZVx@&!#;jV((jQ(yTj!XSfnW9*cPRP8tp(TJBV=A2dwf%zI{670oOHEel z=IsU)=0gx8p~+GhjCJR~<^Fyj@Ku)41&%{ zMYj8Edl@7kPGhi$F=&HF9v^!N0aMS4%PUuK!_kf0nn%>|jxP;LwDCBZq@f)z-S+RL z&&0ou9~d=H68QPNN%1;WyMs?;kL)NmCdkQQY=D!*qYEcYsciMHio9#%ZxDP!@h+j` z9}!58eW^@mn8u+|Nx)P=(NPctRqU!e=BDwMxp}UXTefD~EQJA5RYM${zCLE>lbro4 zglEQaU(viJ!j$sbU*Bs}@?I|Dxn`BQqofnjey2sE$ma1$%Bp3FUbz1N3jX=O;MH$~ z_Bs#j@$pOJCaAU{`2LAjX@h5}7;Fvxf)$S15zle3sZ%~M_05!5*wXL(~IAHL?u0FNN z$M~*HB8~TJ{LedvDc-c(=#Sa;YnV>bZS?)TgTHeEKf0qi$9_1f+Kv6a<|Nd$8>{AC zeoP{_;&9l-OCN`^){72zWfj%;S0eDx!`nA@N1R7Kp zQ)(A7S7&V^v3zM&VF^?4HabqYY0!yK<>$v(&$0FWK;Z(q9*CJR5Zm z%@z;d>i0pg$!rGG3~SWOah-}s-CfU|s0aNMemefne-Az^{21{!fm+)K#2O5?PO+9) z*u9vI6_zKAIN%Mhyb;w+ekgvx-|$L1PuXiodA=n0&dU1sc1dm{wQ$h}3-@DH`LGEf zZjhS&n(?2H{vUif(vwxb@g=^KZtwYmp6`&Fx(d6%3Y^^vg2>*-!|_GOb*i|+YNAO#Sz zDGl}|_$+tq>!^GN{kc44Zx{)t_^_vnH0O>Z5;S^|FDz=LurD0pyzDXg z+%X`@f%yvIn&1>6gD7FoaC6?jsxo|Rad>FgkJ?A#xs3-y7g7tO8>whB=sM|!Sj=$9 z!Nlgk~l&g&i-?*=RByAT$9s)2vN`hiu$kiD)^gs;SY;;D2f^xo97Xdtim!e z&pa+k!OnVjuYV)2$tcbAXOo>$bz$!x>G$Ek7wTI70K%O+#Pi&0o*J~ax3_DJM$S7e zLK#6&25rHb>30$XD2y`WIoq1iz18phNovq))(NXvdx3wzhp-B5f zi;0IkGwd>Rj1gT8`|JJ~x%*_XYWilasi|vJvlqJFm2AqYptLLG#Tt$Z#quc`BL=+c z$HZDDoZn#Z=ZfyFTEXN^Qg0R7-CZgoXYO53_E_TpjwZ~4On{_=nz5iu;wu)^HLnEO z%55xpn^n@UlTni8NZ!j9ogtA@NjVD$U~n^<`Dr(E-sRI{tkZNWDeo>J@Jw1>udnKU zW8Z6D9-h-qx`I$ZkTiR)9J%C3?94~qBRtjSnS5(!CxpJ+_RSKyJDMWU_=Ssu>qU}PWOSn$k9EDu`zgZ}`6-gx`NUk-m^PZ`N{`d+!?KNer;ejC0w zR;z2MT3G5gh?2e{cg%tv!X^X=OK)CA+V;49w4sirC~wTa9S=J-qNRqZ2|kbVKZ8FV zSgxgcHlu301p7${bAy0#J$d6lg;?;efu-3(HBD5iqedot9EFU0!*d*Cr#*#I)h^?P z`Gg1}ibiv_SxStOaHUQ#Po;gg`x1O|{gHke>aC~#)1MBP#1j3bWw6(YlHyAP)k4{^ zF)59JWtkD2lZM(96a9mdQH^SmgyfQa&*ePLx?IggyLR04kAXfl@dl4!pnM|MJUx4B zr+i59HjdV}(y4(O-$s}1MMA#UWuA3~GIpaQGX@|G{-^%UU+_`Ozu0^J3IpOT7ve98 zp3A`g9>21%n?vIEQ%Fn%ItLc&lssZB`S2L?xnNxN#F5j*?3J> zIGU5G6>BD>p6Rx~M1M&C0JGQaKl^Ha-@g&>{B`h;M$vSCgi8eWeofjRv|HcqW=puQ zBVxCc^b=ZyiZxa_pLiR(iT)eM;M=9}cZc*HJ-k78JEh&%hc6@0uB}~JTt(#h)442i z&UfIB3gG6vGyVzn{{RIi_z{_2hmLH1Bzz;Z@bPFSHe8?tbr=;-wm{jH77VPxvR#cTxCn#6jsi9~Ws;T_L!Qw)v}h zc&PzgoI|v>;&Pp9Wo(9%H2yNWvemRr2Smg$!J%IbM^AFEh}2kEL}dAk2b2XE1eWQV z%GcrXo88Ny>9R+oXmRe7S8Kf?H7gn8MPHp~mhH(z) z*X%C!>m{|5a{Zs}N#t7=a6yon7=_`+4r-;xi(s2nlf;_Nr)8+TXl2oKe-r6LMP`hg zMvHwsa?E2x)z%_evA7)OtXNriuflq*@0X_Q`aZp`ER(@^X>)zzO*Yx*f1Bi(i*z{U zW5jBRep~jD;AC+!YOCT z+;y@8V-Oq*xC52K$gn%IU9Vh?Hx>y-p;@h>jrVu90N`8&W~f_ z9cxhdb>VBT4Qmq5AUAiO8@ycuP=ewK3r!TUSS+%Tj56fSh9Ik^I_PS)7K)eJZ;17K z>t6_IYSPaSjWn(B7mV!PCZl&R%p_t05gTj=Bhs8xhI@aK(-OFuYxr*LBqvgzTmg9ol;AnmnxU=x|+J}TA({+7!U!Be5+B%;N zYH=A5?~or35)HubW)ZI#O{&Cb=yHPy?cc#BE!CA@2Gt4wvIFh?T& zr^Z%d+aEl03Cv5jQNU(CxjidV9V1S>)o%Pln8*ZdNmp%JkGtkO+((R?YWT>`ne zk~^DUwM=K)Mn37!IZ^?wKNe}9@S0d@ei^sC(|k=N5_#7)de@ql@mv(xo>N(vHn37d zhK+-k1Qi?`R$A57*NUzDF$CTz@MVsS62+}&wutFdY+_ByODq!;=4XstXB-t)$*mmq z6Na}Z)wDfU*TGg^6|=I}uM<@(b8#s0{8y&U5Xg!rlU0=+K**DFpyUjb-WhH@4Xu1g z(>@mXetjZE(p1{X{hO^{XxCBB*lVPpO|gw_nZN;*v*ZkqlpbjKcHcwsmxwj5irT-2 zJU^?=ZwZ|>PYY@iY8r*iaDujMEtUwummLth0De_1T2JCVPS?N}dXI{=#@8mfG3mDU zzBz~f5w*B^LGwYLJ8=GQlp7l$f}s#qpJghCEAusOp~Vov8?P5>b0vC`$s zvBK)wpNM=f;pA@@YPvzY@iJUnJ%+yw9v`}z75mQ(#+;L}mn05fAY_8AjC4@=S5xra z=9g#TS^QV0+RX$~Tpd5l*L1s|GmswVQfcl1i>SblhU7PH-fcTtPaa3%-wogRpTin< znHpNXs_BtWr5`A>$vk(mqsTWFVELDgydt(q<1{Y`*?d9xqp5iJ`wzo9rInxW?XPql zYHOWB_6X1z8cRTl637^B0i|FM-EMeNSJ#Geo>;nHFgT(c@f*B0={y*Dt7 z5tkY2?>;a|l75i&|A_CZzHCXofAHr58ECCqCNe=zR zWY&z_@Gpn7*ghX>dj9~!jT*x8d$}XG7d`;I`#r)3VDnE2)ZREiK-12RxUn*@VMGP`-V8}}|5s|kiBM;)2h-~K4JT;|w z{OFp6)GKp$6kab!vDH<}1X(R&i^&7!C0$np0vA1vpBnsApTPbu((El$#eN;o;J3Al z7Bgu>N|H8R=4FQEWxh>-;gkhzV*s9ONXF(8*d^d zdin_T_wyTY64~84xNtGhwn4x-JaSf=e}=W6jrSLRBfIeat$l5Bu!(QHJ3Y3i9B?K? zV)==Ql^Z1`83Q=vf@_A+elL6v_=WL)=fs{KveNuZuC#_&=CRYREwyj5LKn+3`QBWg zyXR|&nLx(fy(>>f_@nV}MDd({8rJmvS4*Wy=81IE^ZMs_mxE`E#)DS2(KQVcIWOaBHA|gi_ich$z1@?%aF}M!*>*zh=zG@;pBHsI zUmjcdI@jVg)#sabV3$m~(oMOMBFhML>zLXAWRDp_(9eJl7-w}qO}z1jh2n@IJ_%hQ zUTWfYy@OeZMYw{?HluClTeHN#;nZ7AhHm)XT@ix&CoJko?#`QC)ULcmJDCRjliGff-JnkFNcwfbqKM<_7&1>PNmtz&p*Oc0mYX1OiaS%T=m(VoOI;j}m zs~y6QyGR)Yq(W2m3dYi_a`Fp$_ZvA|_{2p(IiN=WIP=DAH? zTTcmVLtVc3esuLZjBNUyuDa=P`?-0qH2(lP)un*}+bnAw?Sp`a85b1R<+&?+r<&=$ zD)?=#{A9G!yiMXi3V4HA({)euD`e51N!Bcx<9L7KUvSP%)WHdinB!2%yCmd;x1xMC z(EKaodkt84f5w^@+BH4m;^SNz-j{M_3^v^)v$e&%S;PFXMzOF8TNwsTf8yZrH;b&S zwC@~Cs0npg65mR@(o7a?g_TTtb>yvX?IzrWkz<(dz##KpfqC%WUkmGB+uk1V+vw80 z__%A^U2;Jq=1sepbiCzT<_cJ9SgY-g%C3r`Vg7ydM{g5$*A71kxw?#PNL zG?Aog7OTuMtP;GkNi3sw!GsFnouVdaZk(Dw1W zfy`t={{S`tV_I6Z#OhYAqq@1ggHlC~KpZOzjW$UlC0Km2Y>k*H`{S_I zp<{uA!~QVw2aNQ)&ll?+2iK+0^$#-2(COySRnvU3NqA(;q2-A|BOX|OrGTwHS4NKe z$1A8yf8xCgSuO%B+N|>G8cpt8KbCeyb8l-DgMg_tOgD4{0akov1T7}4-DuYF}#LFGs}N(dWj1v zfLVXDQ@Gpp5c2QePBK&>E1EZ^3 z^6*7o@lEx()FV2Ycs?uJSdwc!GV)!zlzZ^V$#i3!i8pe;D()j|9C9uA!Z+4$=hp2a z@tx4})X8~k8qZ@H3%};GoKEhlMsXZq1IqfCP28oa#_2G4FGuk^UTAuLjSbzcz@G7R z+xeoq+W!D9>zhHo34m7I=_$cHs_w;hy2pqhhhGwFzAD!*Em_rsclt)_Lky?OW`^?8 zFkryQR(37U8Avrl#P>RWqh^{gi^6wyx3=juotCR1O-WIgB*MifXwFF>vc}5C3`JG8 zy75kdtB)61Y8uw7sC}4hvXa8$^Fdio0W&R={iHG~vhIyh7`EnD6=;TT>7E79{3ouP zpA2a~*$riN=DOJHGM1T0BmFB)xRxjxcCjTk6WwxgT;Gg5S0{x$RSo8|;|qJMT|QvU zFZ5@#jwqyUlM8K9J+Z3@+ZbrDc@9A7)%;w!(|#nyrs|q6fczO1-1cGOxV*W0ElxlI z1ME(*D=RM{e8L9eeR!Ng=SY*Zf7T=ywv?`FC1Qo2DkQW`;5sb>X#+XJXkO zGP0`ylY^SMD{MvE-5R={g?->HT2B*rU&8v#8fsi4v0Yp3aoi`|#QJT{*?hLn@APm^ zK4Nj4%W!9h;$#zzW5JKArP9f16qb#qUdI&R#OB`kf|HXOU>9HvcxGOsE^iO`6XJf2 zrFhfBI$nk2DGHlgolehGz0&9VL@Z;JS)vWGIxr!YN!8JY2_R;?-}c)5qr7YT4t~a7 zF8!o*onBoEZwKiH(!)l-h7CaKTAj`<^!TT{futd&xO5FOOUceqo~|nGBuz~f{{XMl z{uaOBzJInAuk9oId-#jOz7EvyH4g@SH=5(adNpKQY~z7(dmoe(WmPSZ zp(@y~zAA25Fqi7ssj+x_{{mUi5tUU<9BjB;som%pD(5ULU`HxJ0pZ@?| zD35p{Po_Im#xv!KbDSQ%xT#=L(u}BV9I)q++;LvS@6hK`J+t6{!9N##WAWyX@b|$s zPpRu#?d%$En{5KKneQ%0SdoGP<~1jL#YR>oX6;|<(fcm`$=(e8k$wbtJK+BS!5s=G z(X>k#eA~v<<+N>H@nZ(&{&*duwYrw#ZS3WTIT*kLAIGo!8zcK7%kek%h}QoAYRzuj zSdU2fJ*Gz{n)*BoCDUvAzncUGAu#e}Yg-?*OC)R`BH|V)keUAG^qZX<##$z$qgz|W zuIpCVxIgflX|JceR?K+~h~q+X3G*OK9OZ{h{$It}gPm_<(H~WkVcco+%c)z%cRm@? ztj({9H9Kauyg@2ymzr7BEu#Ex|eS_)o%~Fw#=*!d?(MzLM%* z9YasMg4%t+>~+R%pka}yHVY$ewo*mV^QKV@1x^MQRUL4cyCXRb&(QX%8^Vzv* zU~7c)HYvyModLlcK2cL?dWVI6B?){z;#P-zNg1LIg)F#u zRSF&(Jx9emNgnl@*`90TT_eFh4zbfmi9BI>;rnZaW`j?<&Hb&s+k;6R$=wiyw&H;e z%MG~;z{%k){0Z?&?@YXX5^XcY+G8+tC6l$ilyR;Eoc{9GR$Z#08h@1Mg2dO*x(18l zT^moI!M-21J{BHfo;^{n{{XhpHU(CS7P<3gRx8MjlrJQ!16fh&ULWy>oi2mojay6c zTHF&ojlHyILBEpooz4%K&LnZqnGVLtB!Vf(wKjb3s_6O(+P4Kt^gV61z{+@hOVz;|I+?Te{VmBdQZT=_$bGVd>O84iF*!@ zuSWOR%vR&gnn>chxs{AShbBo*Fa|gT0;argfTK84H!nrV>Uw=!`(6Ia`Zk~YZ2Um*SBb9@)*lb*b6DzEF)~LB>M}`?(IzsH z$-HG-4qq*kyEXH_?L*=HdqnWYm8IG=Q0Q7?$847IsY23}KfE|NV0Q7w;BrZ>bgBDD zr>jeI=rJ^^FKK-h+56xB00x`ssi=O~I{Ha>_H#Ccem4|HQermDqhpLQ4BT|bJlFTl zd8Pbv@cShG8(E#6x&HtLjQ+@a?}>Gf7Jkccj|_i_zAo_V{{Y2J;9XivRSbUDrnEQle7>lX3Gm&Bi1Uy@>r@-|wf&y- z$>Ox}KZ&C7%d zzgh8A9vN*~^5yj_D~oGnSzt?L@?La~ONk^5cM=ZO2Q8KW{VxgOD%8hAO%uKS4>vZP zVTY8N{Cw-T{{U+-kk7lz2j<)lI3cibGJQpJfU|tO0gia-?_D2^mL zsa`!TF7T{DEG{ zlit79bKwuff7vtk4gHq>9DdEdI{1s>%@uqV;k`FW32~{x_K75d-3*Q7#lAw!`-#Hy zU*w_i{UVdZmMtb_U$okwjYr>kCPl_M=Yc zz#gBwk>LkDiDUTJ=RA9XjY-qIx@>(n4N2N|T~F=1;*b0mtM(@FcbgA~H9dR9S2pF8 zMWkt_-AUsBPkPqTkTcX|SLaW}ulO&;l3GiB@b}@1NgPUdNv>%DCRINyE_lz^1}ur_keZ!&*4w}5flCi z_3*pIPp$aZP}KZcCECqBj)CzW-%qr)2&G7jN94r!9#JZ-Bbhqn0!?y98$y$A2D8Jt zXxaQPcsoM)-{Q?yK3u?p4UjUy47WjH{EIDw2osIKh&4am!k!9iySp$HXAG7WaBPEdA}sCz@HUFylU%p(UZgxTrEAunCDu%k ziFAENXtc|y;FKMXV)A64b7TnB(RcDoXRke6@#>=z{{XYq(~10Td?^0_f?R*WX8c1v zqj-;4)%-VOGNjVOs`#E(o62FdI{lCB$+)M?7wvJA{98#Tzj8li{{Yx)Mff{lmi|BS zrkCRH9v}{}N-hLmVP(KJbKV){2j<%%TrN5t!!`QL;tz)!pNF+Zhr?bN)HI!MQIRg? zys|^9*~KROy1$(wM2^_`$C4B&$ZYi2ywE&T<9#|03wUQ!(EL|zc?5$}m1cVvMQx+^ zA7Dw8$Aa6*bzpI{fnH5~MOwS)dQnc+Kb4>OI4|KupAb9=;XjF^N&6I3MP@;|n;h z;)})*r;{F_t0bs+^5$`uL%_it{{X zk()lNrr!8k(!$}^PbC^Cp=nz!<-h#$3%4bDzDsoCzS{U3;r%~Mx$tkq4-fcW=Hl8$ zm1VxPx0Xd%!j&sySB6t4RoXEk6(kZ4 zF<+7&Yw>|Q{uCToRYd3jaXzDk_)pTO_#(E!% zyhyTXe-ZRM9dp7SA7#9cP+QBpy;f5Ud1=j+tVn**mSsp{cF4v#I1~6)FZ@GuF0JtY z09@5H{Sp*WYouOj>tZ);++$g;q8C6&+{ndUkeu`wugK5Q7mQmXjiY4&Zjx`VTt8FJ% zylq-2W1aA%S;Z`CweZUnam++`7~la_HOVxc9{<7MI4q4-F4fzVcv(T`GM;Rzoyl zwt0(gf+dLnAW0-4Sl}_q!M$(duZg-RhL^^gPOf}&CG5UZ+1^P8jw6hc9%GIBrQ_v7 zv6jww;*_M)C2Vfrcu&Rt9@j(>cv&^QYf@7z`sSEytX|!)Bif?o;qFAiK4Bv63&0p6 zzGVHWeiwK<_SX0bu71iIXN%KRiso2uCYtHLw5}}gbjjA@7a~b*7i=@f`@$TV22^&g z`$X|4g?u$*ap4aH%`bwyZ97ELS~RbC#wnX}#~9RZg1X898=?bmKtZoU@jjRFm&AS_ zxcGhX2T6leic=AJ%RG{_s=JK!@AxVI z0Ex8!00run`n89KBGI%@w_2+zNhP(pYm%!ZlAOTzCME^j=0l#~`cJ?=h(0v&w~u1h zrSaCg@gv5Uo*g&y=vqy>9SccRgt>=Mc6oltkQm%D!xG#yxZH&p3jMz<;@nfE2~_I5 z&&;uWJwi3*823MEzu<|Vu(!p(23_6!Qt@MHo)U`cEhr=2-F>;`!(B-nDlHo67FlEh zG*y?)WoKQSE`Ok(i$4YY6Y*YCM=>Q?F_AG{}rhG^y7?iEx4`yue}#dg-83pEcD_}1?F*IcvlES3g43u~*Ox3^Y8N1AImkpnEv z7o1hlC!4#K-CrrjnazA`BC1Q^y}oZ#>M|UnmL5`_HSbE-`?Nj?*FRxDh}x#8o*U40 z{{RhY^Mat;TwTd&a|^KC5?fOg_>d_Dg8J9!Cx&!8{{RknHpAe3$A~o*O*YxBby;-~Pkt=N_OI^4-3LAw|-I?Ba< z?1LQF=HA{JtwQ=rG#px_SFU>Yf_a<+gjEV+Gz@D;=!t#1R}h zlxG_VCl#S@uUh!eSGb!008z5K(k)dU$4>Dsi7l1Dc0;xybAIb1yRapn$lRl@Le*=Z z3tauS%fk9bi~f&mw&AsZ3u+eHLQOVVBr@AV!Ja75hSff5vFC=tsH`N=ek=Hpcy_~B z()H~M$7vdGh%{T4)FW$lB35gQ$rU%d6R`Oi!2lOp%i6Akab#9bbUSDGh2zU@S4}r^ zBzEa%H2U6{vxxRD`VFt08bG^pM%0X)1GSE8p3uA%uXs~Le;4>``!@Ss)ILRRFFqWW z);V`?xm!!yi@3bkZUk)lf-OoJY!F7}VpO)X z6DpYtWy<+rj$at#6GgeT@vQe>85>LR*Tl=)Ki%3siKpA!-<3jqr8gJXEg$ZcvyU_a zK?{uF4ydi%kHlJ!iS#`>FNacFKy#= z@I;eYYF;VSJR{;=O?>+sPaIw??WtCOnSxr%o4cy0oR!Ep$6kuxz`B=)tfq%f@MISg z_<|>rZxDDTZ8T(x7Iv4@n^&J39p)CxFI@iRL^2b(LeE3hh@WkxGk{u8T@4hHexjAz&MEi^huZ>C7LTCJoq z6bTp!r@=MKz&7RF%Y`}10Bg&&p9|?;HrDOF5NZB3vcH z7v328ah%iV=vsC=T^da%!@4~FGlm@!ePde_M{PERDA6zXNyW|716jCuivqxv1A=mQ zcV7|Q_{YQk2ZO>orOu_PH;F^7=lmraMBXE`mdpCK-AhfM6(QKScg-=-Hp}WX@3^J9oqQ1ZxQ(Y z^`D2*TQALLsOlyiJ&m{us|A^NR#Lbuu&+Fp9qQEj3zef{)4)3SgtSdJ!ru(^C^WdD zk*2zv!rGO#le%V55iV?QA&`{_+$nA9aly?y#@a@K#!S5iB>0pFc6zfsEaM3!-J-~`IesIkL*5wzKQnsUX2OPMv~?2stj zpU1aS8rZTWQ7q9IL^HqsCrcad6nfQrWdd28Y?=MgNu)Ddc&0pC_E#$>xOrivgpQ3k zFUECsjb|g_8Sev|(@2-8E)h)EDN@)QV==gI7@NOwl%o~#hGwXMd%0GOBRpl*CBcdJ z8=qN(e)2E72hGZ4sHVYhA7<0LP~`qI>RVpPrT&fYY?f%Z7xOxh}EUM zPw37<70q8N7xmX@7N_I5%d33J9@YGe;fvz)54^!Y&YeK)tP_((HZ_OPn4FBO@PBL@ z92kVH+siOE1p*tPqs@-CQ>BSmNHgAj4by`aOMqlUFZ-u+nR@vZ+Q;Ay41S z`Rqw<-<8Rsw??bN%J5uVV&NyeL^$4idDk`$Qc@TnJq z&Jua)j12vhzH$>lT4C{>oV!TTp*7`JYlq6VV+UClT&ToD{rdm#0tB@^Z+EV73=W&~ zt5(^%H}i^o)d0W}M5ZrmW(ff(J2)2et2_Q$lB&w(V{4!6@(9P?VIG2t4b(;7GoX)`&>dOwgf+swdX^xW zD|x?jakKc57tF$ajd(S*3HyR-j0CIhI=Zj*>Z$GNls;ocL{9qy4f2Za@(}~HOl{MO zYLY^d#!lY3x}U$l67?M%{I%J_{-#Z%`>u04Pq*I`l)2cPBAhBxR{Fg(v0s63KDKU8 zd{_eu4kLCu{TFy z@_}v@My=-tXN~T7RRXeO`jFu0H%An^8LsRq!DqF;Ls;_b$xXTo1-4`x%yACk59@X?2-=rk7#P< zu0GSTkQ<;1QNG_6zhX89#W88U+BJ}Sp}Odt=xF0~y9otrZnnnM1H#+@zPu@;7R30i zp-IX4;kkQ*ou!TCUuz*uWG#O{i@aXhTs0Ig_Pw)txX&)$+PO2Q@;m3V`VI9$j4Orm zO208A$fP^fyg94ixO8{5qL4&HRhO@0$w<6~FoiNeS{+2L$bH#5srY&Wz&;dyvB7{@ zd7Zz0K3F{X(Z=Wq7OnppH%c?tN)@W4Ur&s}oz=5dS|1^qzBWea7Fm35Icf=2o!NXH z23zYYc5nZB)EfSD{gTB+q@bPpaaeUSG_eA<^7oGMdT*8=Em~SJxnr{e@w?V=gdQbr zAwN$G__K|D)W18jo{##!%L_p?7|+9d)QZNs(1!5T#JjK3XuvAWR6f(> zaN^0x2)RYMM`Dtk5@m7k!a}GlTDCP}pnO1l$=cAPZ1lHK;PLL)+CRJ*j4sr}<-&?F zzhADlNHrBgIK`+ud@4}|m*A$R9}}0^b)jqTrqjaL-?*xuQ-A6)XZS$y?Jd*_o<1)5%;!#Zjbj~+mhi6zwCpd?M85k|LQt3LTI zT|p5GZA!TQ%szkL9L@Q?iyIVUF67pr2?q^-P2&~0EL5#ZXOkXv@?0^rrG1OaE4^>6 zU{REF0=LNK~Djg z?(FYsGzKeEzEY^F87!&=-Ed=a`{cW_kuFJu)U_FIyG&N~U;B}cRm={t8}P1mS+qTs z)!ISZ!2J)RNVZ>I4(w?j5|GTT6XBd^zn4yUAo&0{@F)wEca6Kjm9ecb6dm@)w3ufUlQRRyd;v%bc`2Ts9$Dp;3C9xXs`_!wRNGo;dGMI~N$;&Zi(cxXG8>(r9;QuuS+|`99dBf)z+|tr z`aOpIJ%woS1!tMWKX0u;CVvbR0hLw4sCD0)Zyrdf(J|AXk@6KbWpmJnEQ6g_lE1pu zDR)!U`q{_G$ZNp2Tv4%IX~zQQO&xRxwSQRRbvg3-$$3-I&B%c$gV{l$C5QQcDy(IB zm3_5Km@eY!b(U%qG8e5K{qG9ev~G#!rf1E&CLdElqc8<7N(g8`nsB3cogejMm1T>1 zZB6Mi{g@RlBhfUz0F7jM_9^n~=ceRG3P}>SI-IPSrY-GYpvxv$XlNQzE9>l%^*U*4 zdA+^D$9n0Nx7R*cC~xBJM!RX$q|^ig!#b&p-py<%Aa+D`T(N#~n>%VUR%*;<=nkn| z>c~8O`hIzGX$N7TMmOB;g7&!WUl*K}Jbr=HjK*4lofJCI2j-$#nFYa5o1oTOufMLa zf1cOA{+ddx(^wj;h+2_9LM1 zgT}R?ue_?pO@Gn3qwVZpZ<{vHZ{NC_*j&%9=t|NO=a!5z+K&A)!38N|%8~TryxgS;RP|vFFCNE}m<^juzvK zj5$H}CnL!?TsEypQ)E^xtyfoKZ|)YFbN!Xmi{FMMo1q1U*p!Hj=M|-pVXOdmIv3L; zTqc68jE)cGR9DDmlE4O5n?3Q|ujgPE16RK_+r6xG+wAc;C4S)%a8rKia-!E0BrHgq$Q70WYyAr^a2HRGUF_+iTHUGRz(uMI;#)CR$*;oS}uT{wJU z%h|p)++pRDFFd8pW)CUak2Tr0nz?v-RC2C*tU$WD%$P_?;H+~xNj4-kt{bOW1iBZU z7w$zYLE80ZL|kDp+U3^njULj>EC1n%?8XdmUbz(3>Ao86P+BK^ZYc!wUAv0tsM%}#6uN$P9 zEks3;z$#3TNhJ_(#E}UX8On1-xGxy0M~YV1eB2 zpX#)#;53Q?YG}Q#XZ5omI7BCH&>0)c3+tv^Bi8GKG+Z~Z=skP~ETfjZay4!5`b+`}hMAM~7Ar zozbzu`el~O>O@hSyjqO{@la2%t7wJd%q79EdE)br9UedUd{GSA>NH>JVYNXFHU*Xg zmPZ#B7C7mlUsRW91B7La%SV!P$8KN9lMAL&f-q$mnOoa6%`H#}H}b@C9bwF0#_PYP zG~N^A#Luw9Y!hw;mo_v4{VT@-q8M>XOg^AMq!%Yxqu0u8nft5AoF1MHVp2GORF++1 z*h%2FocE@wK?iD><=Yb#W{B_^0j}QXeE^H%_LcceX$JEmJm`M!Q5!o*<}~>7^;p-_ z=o6kqD+MaCy+fU=y?3s-@JI5@WnROFmWZ{7`jv(v!Q*nyw?cZUs^eN?k}l%O86UA+ zD4BawsawI&X~wJO{3mG2#*Y*3sY6b6z+@*@+8t;>5ZU@t^Hw+ufh=AsCFCY+lWSn| zQ#YgAd>KZh3TQOoNRd7p21?Y`kNSYXsPT;vmk^JdQVX^Wa|jK66I9dYK_pu0x&k2) zeFX$v&;QI$Y?I|0#*h(gfPZIsU#ig#l1a|8>_Vou<;Gy;f>b=bRJ+OdlzQmeTom9J zZc>D6y$kScK+oqJPL%^?j(t6I~*0HBK}S>#+1; z_oP6i;gSGSIT^LGO&LKIqxcAoZ#d_djWsL*yvrkwQzvac-0W!PgYGv$pIB{qOXap- zr<9}la05b(yH>w~mFUYa%^3JrC*gUYxp^1I^gqeQ&TjcH%d^E_N7r3-zK==uCqRW- zUYlJvjK^NEi)Fm|VJ9VWl5Y-9-YG$@cT!E>y@{{T;-PAP`s()^x>Q5Gk9Q<>qS=Ny zL*I6`IZ)n{3vH$IiW5EQ(Xxy$U3h=$s~meO@z2zCYtIn zeGF-a7Td1^)Eyfc`!#^j6H(>2Jqhl=h(Fa4#k@$ang)AbDh1b(R?ROK-74JThxXf( zcW>qukcfo26+{*+DGLFt_&A@S`AQm=|5{`P2=itJRXABW-XW@ZpI>Lk@v7V4Y{Ra5 zr@GDay!D;!XueCR=kY!O#5nT7V^|Yq)Azv7v`3+Yhy6Lrw!onLem{qyp1$M8)>V|E zQ`@?V;Hg0ig|E+1cFHf@4d=AC*7SPxy?k7$3%V|nC4*^RRu!0tAcn9}~+kP@hTPo79PivI%pN$Oe zId)o6$~6^XOjKyyFBek|5MD_qZ^hd7oGmS%{z?!?+kg60K05QcAx~14aB_m8SV=DM z0*K|!@vAlhCtX@4aRh! zu4^mVxg*3GBI0K9k&u^W?xCz(LWj`}WjSSiHKYxoWtr`OGqucs6pXgNCQM7}vKZ%W zPda^GO!D<~nZg3W+*(#TAE?$Q+eBrN89PGJv;qHpKTbnK`V}y3GYx8gZ1-|RjPlX5H;anFWgsOuGr>!O3hno|G6 zvuus}W3BTfRo(b9Vqdl7I=9^D^$?p?I3=K9cjGdDTC&DsbM1F4kPfy0e{X|VBB4o# zEeU@yG%hz;$8cvG*5l#!|46H#P0?($<89yUpM1&;QNLtz8_&2y{}z}p@8XLiUSS^z zid^rrhXHu{Vf-769Zqgr1C$~p*k+^(%Cz8xQ|3RLk0)XJO?QPAePYM#!%X{zeib)H13LG;)Iw z>syWqxXi|UM&{~EgI>4cYRFuj`e{FV3SHsStfQKcAGT{+X?X2F&14=vd?EcNGz$9= zw~9Bx$@`=)?pVkA|HC7yJ5m-H`>43shNho6yzyH&q%>y>A~_bx=;5Kw@X=)MVg7BE zPg(G*8^6Zo0v4D%eX(3-Oy)LMo!mdJe68b;Z2Itk8P@z zc>S)~YOIK8rCS9sYq{+iW3iL36L0f5{dfgjd~kxr{oab6-jQ-aaq;FoRvyELir;cA z2-&oc+8{j+#s|@J86?nwZv(suQCTp9O14=A4p{)eYfhmrHLX`1ie zEWOz)FNBmpeyGV4MMveTtmv=S1HOt| z{t$PRW#7hzX58EAhXp#g85%ih1v z6pD^hkj;6KWM|*j`j``h%2ye8Q4B83hfduoL_Uv`wGZ+?f$)uVw4sXaA^W|Eve?oC z^;*8PzSPwfD|JbLf1|nr!oVUwr7!JU^CJ(O002{0XgP-bBdLJ1ZD}!CMCe74?7{^j zfD*R4m)TP(*7kg&d^TJ7?}b+WO$ZIhQ)c)g#i9}EDVDE$b;T%cOQfj@&CJ9}IzE3O z9S!w46KXc}PH@1$jZt=`+idz4+y0T#1xS2QJaNtX&Djgq)+e^dy(_4FZkg5Nxx~&e zm5k*J@lrPHA&RYn7%t*2o*}0G3H2rp&b<>}m^6YCUNyn0OPh6e;)ij9>zY3p;R1%s zaeeYlQeyNX$K;4`PY&4e#c^>7r-pq8W?eR0zndN$+JzzlM;kT7KQXXicwH`nk?wJ!5B3hS+#Q8e>)1Numc zv98IF-q<5f#GIM}A71MTFYF(6KgTySZgw%|$Mc{>)1l_GHLL>KJgwp{)DDo@HqYPE-0<28Ul=M_I{d!S zhc|JI9YrXViBg~Z(v%Txc=t8fsl1w`0DkvfD9>!Pu(u);0E0+Ne>_=(LI>WM{G4w~ z307)G-EB2B-Q_A8mm3Ul-M+*%d?4DRgagIoVnf`uIJSzQlC=Jd{v0sw zxYP)XKIlL{>d2HggY9sHn+j{_PmNm=#Jy_g_3Seriu<4>daBpjfXM?^{P`%FAvo!a zWSDcTZ}#TG!o@(4#_D%~htDjy)`@EDr@zmC0I_9af~pT#CnKLk>a0{71_knLi|i^H-WF<#A1(+Uv{1bBwQD+ zjJ+S?S87*vb_gmsSHykN2rNGg^W@eEYl`8L&h;%h(63#!2QFl#T${cEh2mtFCn)Kd zb!{FaylW%M`TNYPd>#xi2nk|9uOb%vaH*VMSAYRb(w9c7gGn-A_?I#I)MxKrRIWk} z#q9^(u?Gh9eB|zY;q0J$F zwa)33rx@1Qm1>BZyXKTG+z(GrU63yrI}H!zP>H#Ja&S-5-LA`AcT!xRdZ@8No1N>S z@SNai^`$KKX8Rx6<#*g8xncwE5+x_-wq>GDo}i;6%}kKnZ)Thv?(!tTt=~K1$6Lht z<*cq?uiXN&u=d|_Ci>yV*W~_R2* z|7^q2C&zz*QwE`5(i=aYOIBZ>luO-_MfUe01f&LyLE zitkB)Xh915%YgX~HDPF?cDb$AnCGur{H>QC@LWjGG!@!O@2i8QY9aebi|CqQvNFVh z9nSt#UbeD&NKrL%xe~$K{g)PCdDL&G=ghzQQz2IIqHde)o&?8JfAnO&O99tKqrwJ7 z*!mFkuN>2EO%34y*&QIS^VzPdKjUxWo}Lj|T&(Zne|Rvl<44t4wMAuiNDgj<#DzL3 zcptt#+Gorf^1X*OS=1F|;gi|$zbkHvGQVwr3np6B~c?=9-t7qcKy5Jxy5 zneLTTy7V?AH4q7VgP*#R5sOEu&A#0krX2R;=dFo~W2Vmy&#gS}Rf}cVzbDytL57%9 zP$3CBfuMKE(gkIZa4r*|OXg4P56!U=nd*s%<7pMvG*&$}P%u#DZ8OsKiGy5#B( znL0a6(l)41CQ@X_4>;{lQeUC#=GFOJIxyv!mjYAwiwftZ?2*P*so%Svp#}@KS8!z7 zgix05SWgi#Pu5;{0g>1qn@^w4j`X;bqaG&j-Y~xmAax<+6%Q}VI z^qd`Po-NuKYZ^Oeo zUesKBvxqjiED)wq#3ZWW(ozm{T3d58h{S(NNCpMG*P6`12I2m0GOS1Lo(?OM`zwqD z3kpN(*67UW25u(5?p&0_Y-P&C3{aq@Q-plTwCTn^5kKB*m8(3}$@Q1F5X}l(+`i`8 zA3+x&0}}5gv8s#rPlL7QO6Rd^H5;pk7VyPK!GGg_WRr~u9hn(fZj%<7;StAGFlZk9 zhj&zjR1k~#C>p!T;q?Yh-|WxYZ-RiB{t|7LUueroi07SMUDxKH|LhDca(lqYXJY&L z483m;b31Y=g0u~a#cnh-r7!x=_FTqyGA@{Y93i&H+|1gz)PiLn6syi?rbvse);+q5 zFJIWl3^PY26?}{)lE*0;}Lg_Jsx0h8IukvMxnr=(%&fF;$w7n+suZBqTL2>eA z)YIB+pgFIsn#YfpdQqEpi=%=g-|r)6nR}86Aaat00IgA8>A{WhQ07Y)JQVsa>EA3f z-6jqd`Q5)FQS9PlW@bwtsubF*!Wqhj5xDg4!g!$+Hof|~_qeiUM2uqP#yF zQ#XmXGS5v~l5P&qjUpMfJq@$K9Ib0)!whY=>9JCDCaqMIVH!V}7L#tG>DRYp$C<3bftm z4eEZhG=_dqlxwh1SGu0njFw4o`rOMt`uehY5!(Cd0ZW{BQ}ZU6!0ePH_$6k(2ok!X zi!%SN2=prx0-ku4e6U=n^;%)vg(sj5 z%2%T8A8o#|;43AV#Jm+yc?$mIcWj?GXOi&ErA;~W+qP__`q~SozQj`Z!LTTVTciMr zE7k?FeA2<=#?Y4T)IMh3@)=redf!U^?!|TfAgIQ0h}IC*uwjq8fBHj6cg;??7sRO7 zh+;?HqpT6ybi6KRDFq@KQSXTvehGvh^Pw7-4Uw%EojP0AAQ6Ef^UDPqn4YTQcx5^7 zQIX}Bx6%7#De^h2I32?z4aUAV6CwHhaKZF%!X!0n)zkwKtP`na#h1EHR-u=8E|!k2 zo$?)g!KkKRldL`McP!9n{qH|KRP-7oV(T*5v4N~dVJ7ufBy=?FaDcr~C7@(NS}+RkDh8cW8rRL&GyX3H%P|pbgeR6MZR^FZ(_adG)1M zR7(2x6`OPGvar#UR0{%Uayw>W-o2PAvE- z7Wu-WpKxL5vWg0u6LjXNk}GuVPB$u8w*tUR^V}Kk8$uBC`4>wZ8Mf0&5?tx@zSWxG~tnH)2-;t{0J$DI^r)s>}6otnkoUDX-SVmd9wi zv~6bhYl`xeXt)7&1v5E2`3Jj;eHE&EB?#BxO-E{@JI-!;EHbrDEEzB>#hmlDS1wPK z74Su)2QkE>L^3E?9;Il8cIri>0TqL|?E9x-#d=7vid|>MQkSB0H7G{T;hBj~AYoIm#g;zze|XjrT4=*?@P}gw zgmcvTAp#UM;%N0=FSSQ(nGYtuuW+n5{va*ELbazPW85WsLWu^k5&Q}j`eU2Sive@h z7vSGM+DG%VbIzp&2lLpovI;9sV?SShrcBgj9J@%AXFlTJl0m-Ft>DQS(ptKAX_ix7z zAIPKaZ{czTX*sRilN5IL!#^SLo~wIdOX7CmcPQi${HGWk!YhjDSffk-(~UJ^(%<*hf% z-O2;WF`*syV{AR6$-C{KS08vhI%h zU`TcNqCkQI=q1Xno2h=z;sy$QEto`KnY2f#N!)*2an$h&X-K0hhgytLR6=qH0)v0# z2`acki@tQ9zRY1+L1A2ui^E@hi1N>?gda+5QzMsvgWQ*~>{^I8uy`^r&kLvfM-$0co*cs{a5eQ`qk|k=ZaHj9dDb&C zcZ`u!za{k<1H|(!q(`8z@*kk3v>{p(Ra#n#U18MpqJEk+si81CuIo%jvOLA6N@YR_ zik`)_Sr+|v!qMueu%xE;5LK)2=12w@b*yUhfqpgJwM-u=vzJA>=&O~4xW?^*DAtUj zI0`HmnWRRXn^w_6S%=vIIK83n+bv=N(i_e(PNxUiVq*iDsW(;V=quzW`L)wIQARQ( z6}zzi_AE6d2H1q8lEB5i#E-TOFCxgVn;nLSYcp>((VUSkpb8)&FEZ;g>dGFYg$w`q z1MtMt>WDJIp>di+h7{6i?DV&(65(xPahl-(q!lZYhq+qh-FDRSn(4{ld1pIrLim-- z`_GGC9Af<>UReDSx(bZOzVT0+^fW+9ZbF86`YVd{DPnw~hL_7bxS98xqgdmRIGF~B zJJ7@u7aF*(9pe2gf3a7vk{{D!XFUxT<*>qeaU7L=7Ya)Hf{Gy$e~nNahq~U1)wn@? zO`ACE5yAe-E9##AkHj9hCMMX>Eb~+;R>k4U6Y{q;dtXXoC zLOykWr%eB~13FFn8vno%dSNuLl7ogm?kRZ5Fw?0$+Q2Dn?OWNi;tn-rj^!-VMNg!7 zg6?VB*NF7H7qQ+Y`VJNLHn10(n?>(A|IzE|@xuXfioM;>*66fh_$}d&oFJrq=B=|$ zV|CH+0MyRdeykf&FW{rkhwT+hq-+sgZ z97e-m;WPeI`hZm{w9~JHWKIs=*bdYKB%|i~c)B!9Kv1bUTFuATmes~*a>n`3WVpdj ziKwhET_Sdvn?(yWLsrB;(1>H(tC~L=&*~U>S)Qw8dlB50n~ey)KTLSwGzd!eB6L?~ zL$5=>TY^|~4;NDn9A|^I8n3M@X|h%xt$L3sq~n76Y;{O|R3egMXTt9lu9PB(wa3@MQw-=JJwKAa*6j%%&SM zPnz(!7phW?njOzU^R59}OIjufri^o7mgbSEn43yy>_vREo|xG}f1vLmHX(?W2- z_O)lNpDmX$>Zo}bDU`@RmENL3@UTG%7VuQ(A;9VT^C5C7DO#VkM@{v;kZ2ura!hS4 z>`r;Mm#NLWg~H3Ns{it;J`%CQXhnM)6med3wtb`_zd$t*60jBe895ez8pFEYUc52M z7N2M?oiD=rhU^SC;$v%nI{p^BH5L3TZ4fke|0I|OgYV{D3Hi-I)PEygy))V+f~rGw zv=ZBPIpe~OuH(KD0xH7U--dncJT+;&tK6FlgW=#h5ZCoyh_Q$yXiTLcb_;UD6nDJ$ zQ0@F7+ClraCgF|8e2>)&r~XiOocOlJLf@Vof@4q;MhAGrhfsnCVY+2xFBfY>(hvVe z)DN_aJWxi%DkQj8xe*t3W@ZT@KAJ z7gS8{_7svpWpYfC7}dc9Z{~VHY)y8p=$saA={3=Lc_Ejaz7BCLXW@zexC)z3SlUJ} zCf?Hlb8t*$$x|wYZ$j2VT(BX=glZxr->Y+5Z&(Mp4}$QtMXt? z2q__6@)BdFQlV zZv`VS3Y!UT6|Lz&sX0Wb)|QAap|nw42^*w-hH(XrOi7`%hqy~6lm!vU2uCEvSH^?l z$)cLm#&FdLcpz^AOGDl2CHU<7J!9%~?Yf_S6O6}AhI9vE)K8`**Ho+{d0XZcpPoLt zEJ0xl_1VP{6ZA19*Ir$A67)NZ9H_KGPT~f%qkBGE)&SEWlI1NNbrp{Se00foFU=$t zcw3pW+>)d84GPWa^b^aiviN%!*2lGj#nmu+~O9GB*7-*Vn=#`E(+?qZQ`jj z2j0uSJeRBpDu)RQ#4#bY{ZcC|Vq=Pdqe+EyOYBtlO<|U}uG|zyG&|`=ZZqaqBM=9n z&tTypxGbYDE?tvKjdX3lt&{^<85C$8#)@cGpUOS{507VE0jIrW+7gQeY@H4$F@o_e zn-gS~Js+O<{o;H_`^0@e8XD{9YUiKI&cNlC>5A?*?SN&OZu!1T^())waJ*FR$E4i? zAU_OHghi<6&6PeU7gAyb_SB*!<9x3qhR~4)RlSj;uaaU6xNAr#l?(%YxO*V{m^XtnJ~t!Var3rHf$4lu!=7D zcoT1pTI?fOnC<0LG~`<~vesv;DenPS_L`i`kVORWg#&69mmOa)q^QZIInpxMlZI4z zhucipTw`>;XSE##kD)cUA6+GPaoOMoQ5;w`WM_cI%-b)RK+g~HxyQ=AzRzTY6s;rs zC!4j1vRGFl6+R1VJ;v#gx&9@>pFcw!v|K#q^p5yf*MhTQo&LJ#PSa|SQvkKQq`Kq} zdP$H~c-1V^o{)IQ)||YB=F1UEP^o`#v1h{}s{!gLgG4lwzOH3HQX7`1Wu?vmQ{9_4 z(Q4&I$zqk5c@n;5uP(SC87FlFTlPAA(ioEtiqe|9VSMbzJh?v+ zRuPS*7V1-0#Js{W{j*Sy(SAd{IMdu=K3`PO*WSj1k8A%Lt+YynzrW7GYe+05^?L9V zgt5R4>qPGR%){XD!+G_Q{MUnkpuwM*pExX}K~E_7sphgO*uF3}#Rl@L4JDpiwEFhXJwVEgU6t81T$U(}s1r zAp$8C3G3pV#z9@M%CixYrhotBRGUM433qfe0|SIE&epDWcBu#mrfL-}fJjq@TL{Rq z4JPp`tZ`pjW?GG3arbV0J*?KBzYcZhAiMDNxv&T7PoU-4YzMg*2AOjEF zv0x^bq012X^h$OCwU-rEG@6AYXw@97J6Nh7{=RDVAnr{?kLn0s@{qP(-y55Eg#9?U z$uDxM1I=Pokwkv2KO@Y)^aQf;cqOTSBa8p^$3k#jF9?v3U;e90^nQ-(ks^Dsd4U<4 zz&df}`U+I)@i6Fhii4I4;-NRZMfx&^_)x(dHv5q~Lu`_jqJ@t!aZprrfjLE^8xUut*>nAuB0#e zBmA{~3!(A1?XiqFAu|JNtspX(E3j<*9SSmbDmSA?Q}Vc{>$~C z7E=^ZawvX?`-K_Ae+NWuFm&!#>5$>@ri!E82(!=l1~0w^|M-5A4jC7Ji#o@Vu;1Tx{6YEwwQU~89ag`(Pr)%$s1j6A z23|>A)QW6d$uVIJigNDxRP&D(zW-bmid}I24=-7+-+hcFkmf}@k^5uLq3M4Gm}gl> z2V0ZL=fSKk9gS1L3=ZYVM-wJbOM`;qGiipQLthl=2gkXIDYfK=7|{P3<$snksIt}= z&I)Zk8?(|py@#tzL|h6?tGF9}Qb8F%J-z1~s(^%9V!+-Nhj8f?^`^C^rnLKembXx! z1M&BXbkD448Ymeo!%FLpptr7?w|2pdICs_6X3()fzdXTvp^ZSknaj}+CZ3N&q?tWA zmYl9ME zKB)M*_SS01I9Fbv>F?XMEp)~=d#5Aif@CjNZm`M!3{miiU>0PahzOPjspR*kq2xz^ zQ=OX9ap$3Pmciq; zK@A~A+(MK(KbY6j6CU=(UFND#KyW`$^s-FkMRu^gs18nv-qzfpRkLiFnC#-Z4tjzp zvV6LdY6*=vm(W)>tv~&7-)Rt_F(aj`#Arwx{A?cEO{tN)HB$()Oqlt;^V!$$uVA(o zsZ~Ukzbpe5_aEu$_3tKAej2)jyY!QNxB8nqVetk{?X-HF&U23&$)2Adf2*!|qao)g z^NgKl@(QqR>$Qn10Zj+EXu6(Q=@w(sR2x$Fu1uqTpIH{&DzZVh^N}>5_eNkdM^evg zgZJuT`S4?oO_g|+rlDglv?>*CUudsa!=dWl7U%kct;t1Rd0?&ov2zkXOOnJYsyM-- z2D(Q^Wo}?FGH~d<{j+P~8KCOEV{-5mm#IMxD@eFxM1*FQ+Hb54(cv>x&uC3^YxM-w zKYY5#L6&hj5u#Qe)}t(PQj+9F=OI!)@QIv8N3`6GNOqmU!E`A~!s2l8OBbP4un5MN zDgsNw1obKfypHGn!3tQ@0#Lpv5O)>HB424c1IRMlFJE1iv6(G{d1nK4FUx5NKbRa< zyw}})Xt0Ws8x;JDiA-2v4sfZnveh}k0S_pm=^>X``b6U|5<%TnIIH2A7)LW+|!Imp)D;T(D)ab(RdnSd* z@sF{zeNwQ}q2W z&i?E-R9Ea~NWg0tYQJx~HdrB?(5l1_c0Vp7A;`5RzlNi`P-+v?LlaJZRVQWsJA1Ck z=7eep$>I9N@e-n7{6)cbgfefp1e)Ca05Jbha^0thwDI{(+|h;FwhHyq8is91{=vMW z92pXXD-eWx_as-ILTixA+*+mDmc=K8B>eCX69WBLH+-kj9o{7e`GTkf{SK*~T%+!G z%a{IC&YAgd8h?Zv^Z3Y9KVZ=9%V$Mhw)?wbyh17=y04pz5=&~nSO?Q;m89OAt);Zk zK7TA{-uvk}kvCnj^*665MLD8aJ#j3@A}+|n-Q;zHp_6a9Bv9HXAhYwK_cN0R=1wqj zFp=ab8^ZqZM%a9V;aF6%j_S`<)kr1Kx@mOe@pW;M8{idt=}N#P{ing~-=RjJ`i1>? z)9LCavE+N&M#i7xjB`uZH~U$Nac?BPRu`x8z9k0Q;F0wF1+;}mBZEM4!P=XNK5ny9 zk~yA{0SuiP4Jhfpy=s1>tkq|}WtM9JUdN2Vf3jf@saPNZFAJZ2Swh+-;CxO;$Y;!G0fp-HF``kG7dBRx3wr@=!C_$ z!uJ9gd)=RN;M!eu|9K$rGB9+kM63R%N{3iG1^3p=-i>Zn?~T>6@&<bh@&xIqRCg;NY#1u}3s%lIpai0PdD?R? z`XauXCa8LVDeru^UU=s2YxbKAFTSW5EiNewOf1@~FO;-1dULUVg9Z{{97gkUq2{i# zb_qx~wpT>^E7MCZm|%>q-QP#S!WExRP^#EGXZ{8G8{k~2py^?E9S=5Ll8X?tKVZk5 zx}iQTTAR7HF2|A5A2+Tu$A}BBE^4$to2ecm2(W~`7x94$$y*wsp+i-x21gi!|ogOWAU{d#(;Gkx_{tEwk zR|$_jF+EF7stf`R<{xFr|It>5fQ8upZX^OaI>nq?? zrh_;d(jGF7d4DJcfqju=V{TqhnzFePXER5V2jFeH5>X#e7p}e7!M&*D6va@pYSZ1I z$>o0QKlyaHHJKhx+)a67TwhHSKHYX?R21Rai|iKq56>kmGOUTP25s7} zLLVvw8S1lGv`+VLRQh)lesDmrP?9V}!6J%L+!X6tjk}A*_})5&&fGtk+Qe|76#6W> zc%qT^D<42anVM)`=*qz{eSp`a>aO6oinVOR+$tGxqHTP%fgqZPhCB!Yv`flA&TKxv zuMW-Y!#>eANhs@voCbAf*|vE?3DAZ3*%$3PyK6FXddRg-#cLx}E#h)7llYUIxO zxD&Nr#96*6Mk5kcRIVdhn6qYXwV9#p{QkUgke#LnN_;`sT|9|6y>yzxNp%aT!5wa> z!yy|SC8xGei!p1R0nHzASKw3!SZbHaEn9od%?QVz@LF3Fs?H{5538>0nT!f+WE$j( z=VC0u(3AmzrI@I}mX(D&>)%?grO&C@B`5tM)_!W}r=p$v}<2B0(kN6}gMHT7^|90dghM7l#5AdRH7 zfRvPibWEff1L+#w-5@Ou5|eI_21)6TQPLYZVDNkI`v)vOH_pB1JkR+)6A`?A9LD?C zNfe1;vCxwJApSuYsE?|9^QQ&sY75^E{anop+B%cLr3#r0~W`qB(G95%v_7R1zF$LZ1Fn-mf zhJcqStTz4J)@>anZ1+Z3SVlGUohF2Lw*-wrRy$NH2c>eI<4Q>AmPCYGJUL){Fh^;f zt@(bq85^<7tQfeS*ZP8WwhkWS8Qms$c{9#0YEHH+C8#(LJ0(-xGpuV+G>Q(fg?|ZQ z!U@lQ(-cwm>X-7y9{u6H;KNHG0SjN6811NqQVQs#^Q1L^Y8dcZY7(J+H24k+q>#0e8)#VD$LtKo!&rT?RqE17Qa zIV~(=UO+OO$e<4L{$<5H7c%3d8-wvMRish>mGoQW{pb~iZWEW}q%l-vDxcOOp(ljy zh@Cq`0_!b|Gj9z}pnAvdH`Ds0DZX84^FJ(n&#=3l#}~b}{>&-8TuN>vMTOjg=Q!V# zIPu`ino*2MWzB_P1bxH|aPe8o&bX<6-Ci+1%za`jDOy%k{a}&&!J>oBEwR?(-DqEe zd(F0=Hp~X#PkMD(6OnjE?GgopsTv4L^+Bo(>4+>+zc0FuiOg+NnFF@w%ZVLJn%|*c zH6W~+Q)%P)jR5z zXtV3s2gSJ2S(MqZ+xGKN#Hfy^eW?TUDS=2nQnT~vnx-A*VzO&v*+0(Pz2-g?CAftf z)j1+C$kVYNw3mFO79-f`d8w{aEjfD`#~eUMnrPzKON17Uzw&QHw>fzr;7fe^D2?Qj ziC;ENa(n6>()wHi>njTW46`bN4L|fFKR)Ar#yUG%JmNWl^xswE|C^GTq6fc-Kakms zKYoS0zM4QY9ee$-O}{pT_P2FZ7e6;H*o;d18X)S1Oz$XE#B~u zLl;3YsD`2pKXrKV<9AJxk%@*;9-ExbGfU_Ke(qC9UpAM9@!8>yc?n6O%G<#csij^$ zR9Ib+XzV2#CX5oilkiyF_%yC)@vH0@+YX$RDmYI1X53fxbBA)Snm@-$`sG{R-5-uX~uHNOoPN*43VQmAVzubAtI znhHMnK!nIC>?X$9K!vq6f51t&j-Ls$T7f;dCNRYflVJ?;6Er>iXsc)I0JOvP5cH9G zwsWGt-2lz&K6`%Rp29bGMcF!)psE%kTH1f{`6n241R(f(I`ffuCJid0>aP!aAQMDN zP#e^82yEQ4tyR%1CWu0PgGABE6xg?kTBAhC1Qk05(;PK=Od%G{Ta)kn-ljVzQUm7y zN~*_2Pid9pG`Pgo*%7#blI)I_n~Ttf91XEGPfL_g`O`072%K2QVz3-Flm(1nBi*1N zNE*s<5FEmQ-_SJYZ$l44%Y2?W+O5yit+ic;c5Wst^`}TM$2(UBq{Y)&#DCWV&$7^8 ziZO_2xkoOqqVEto1E~NM6ak#BOCBy=Py4amDCrSm1H2(0oi@_OfNiMKqg)V z53KoK!jCSuE~a^fO75hKOP=}HSLNC){^Bhm^SRT~J(WH&ZvmXm4ss$9T;3kS_);vYo*UC|H%{a=v^ z#TgNoc8pM4AVj4KA!??V>cTu2ps_P3T*)CTvCw-+n)Eld-RVBVyYZHdBIRXqu8M2p)CVBvLvzu9wbeLj@O*5{_@>eQbA8U)jThe ztjEK4j#(^L>;3XFAjzZ6Wx`N0PFT`A zN~YI{nit73(HNC0ndn^H>0{}URs{Wr0Uw_QrX*%M5R^vVhph4`g0Mx-XHV?kr_>An zj`4~>9PQvrc% zcg>v%Z1@`ZmBoIl*yHSiYlU*wLf+vrPXzw6Q%OsExBX+PCHWVz_*sK-7Wkkn$5E|i zQ3+G3?S!T$&KgVk$e+{QVLj)%$bsUY|K_@j8b!o0O~-T|gSHC%cKBpJm%qs=u&2m^ zNFdULF3KpJG;zM3b%tew0~$KE#fyKLJRfG41kV~qDb)#=NxWM}iRd*A470H6Wg2gA;aNNz6j381mdv0U_H#=|pUAyALe;FGxn7hIaOvZ0+sN*6&cbe;b?zn_+2$+vjOZGcyrz9z_ z`p&B63``t|w@Q`i^Q?ODCL;PWL~o&#Ca5q^haG{pt$H7WS^~l7F~s^fArXC<@!6=62fJ z7JgHf-`#P7HOc?ft*Y~py8}M{!4%^6rydiFr@ak9dUkgYcHcZ<084q>U>DO7B-LbD3fi~MBBoW7}>AA0-s2u2(Z^Ml4bRHHA z<4RgN4`>tyvPAY%k9cCsBWF$&lIC0!{p>B;U5FFjUVQ4&P!Nye9lbZ2#qd>Br;>+9 zUd*EeWE(8wEE|@FTr#9brvqbrceMK4u!5s9gvN+A=Q1443J$!Lf?u_=*%Vs%M0?5p zw$v|5H5JBX1d)_!NuPokd+E7)WvHazcosXj#go~sF`@`+D`O!$6Ao<|=mTgo zxd?y8QCS?Fz&%1H9F4>Xn>`5vUnQW4XGIS8{0nb z%9fEO2`i2NdmpMyO*r(Z6RQgi+1#CH{|k4(u+{W6Uc2WqMIF#f59q#{vnlNS@@@-9 z{!L^!HaQwtn4@>Os+@wcn{B*qH!DJu**z+%Z)}LMO^O$860*P6BOMreCewyPoE#?( z%R*^i$=r7~REW+AOUa$~T^&-}QqcZ=T>swe4gF}IRiaTgY2bj8a3dp+mfyvZ%WR*4 z>EH!^$-|-_4RC`*;)XtO!jzG`<>WtoOO`+VN_(GSY$;h>mt#qsuK3pTgwaFp2MwwV z_hG85_M`#DIonQeiO4e1Rq_GkmEDe}X*a6E6}pfX0fWSI4z_0>^U|5_moTJA&7;W8 zQ+%}b14(?$q1%RQhnk8|p2d@QAeMO02;S<%ZO^mrx7gIT@J+VzJ5dbpbhVHpxvA<_ z>}w;UqxIVTX+u)B)9=Q{NiqUuEo>dvo$Cj)Uzl&u$XFu;l`BnCGWj*-wq9UzY=u z6rI2_hd@>K>>)I|OGk*TwJS0UwehDW4aU+T>80pLs~mZHZ^LdrI5w|Ro{VK|TY za?I~k0|_6Lx_0{T3i@=(kxjxY?)7@ICc(R~PJQ!w5S1 zcv>V)zdPqKDRx$E^S26>-E}vo)*T$>nvfRu>+{YT8ygj`lxCT$gwAGMj!i>Iep3cf zS7jY1Zk#6-F~Z5u*P?+@#wB{uylQ_bJQQYP3BgH-%vW6~ZEepLaQ+dJeEeG9p8}xz ztLEl>{x@y7vXi|xd0V>a5hcxu9+*2co;=+{@!b8AHZAuB5x}56`mm^h`=1v+k zLv9D!w%!)R=`T?ew!0{NL-(pXK^l))ws2kjzBq1yzIK{V$!rvX8QXPGQS(~B_5wp9 z=&^qOoGSiuPF(Yw39(e(Jnyq;ka`onY`?Dp;uH_!C!YQ(de9I5?`iY`RblH?YVOG? z?oLePs-cKxN>cU5__iRf?b9cIz_!m&x`wR5e9HE(4b|3|QMf&5zGJgD!X@Q6Lv9vYE_6vs?2C?ATim~dhTh!- zZZpPT@GUBB?e%6Iv&f_22oq*0w((6~<~)^Lypu}Vq4Tl!N##Ksc4_t9Gg&%pJz;h5 zl^?(wqODT>JdXjJ`z7N*O?S7BmW=x|oF}vX@m9`S{Kkp=+=SdXH}%zr*PcLd77xLc zGB$h>E}lRBNmHYP?_+p%_y zH;yaPoT(yWC;j--P_gn-vJ#cpPKw(W3|x*DR7J*zv!LtB(edva<0kPXpcHf9x_!GS z+{Mz|`SD-Nj0(1|Y)Aj;|VR#y&T_BI5I729=^kNr%Y<~|+@^VpeR||nv>h3wb zB`9coAYJ8)fRXX}y^zX_q7lo+zt^)zsZdKQ)eh^fF;|?`eSgL^Qmx44sD_+f4|7#_ zFwvUVKo%z(_j~zJ#7h!6a*w50D@WQ2l>BoHXWE^cus(Hgg2FdKu{EE&z#X ze+tIhq!WdBFnOn3@pMwhbli6BggNx{GZLPm7gRrM#7grQOKQ)$x8f-Ww@f&9AD#E( zMEv=EqHk@LX(L(s=^PsQ;)n!`tro^t3X_?$?wpZi{Rt!iJ{D1mTQysy@4g9=Fc4fR zcrx^5d4XVyt#yn=13gU{%U#8WtV$2g=lW)UsY(%~Z=N{KbCt}Yy6r)|MA*bLpr`;i znH+>63;oEdrV!YxDx^G#a>6e zE;Rq~BG{;rL}Axp(8`LRiAkco=|3!`KiC1)8TLe3<#3$FNofX1CwsD9ExOJF zF?`IVC&|{v-_*MtA=BX!w9G#ck+pP42`87rJvOSBML=ad9TF`>}RC z@{uIL-SiL7b0r1}R9*-V#?+Wo-Lb5akMs{^FkwaL6Cxd+Z!viL18N_VO)pF`Tx)oE z4Jr!Jxc9)!awD;eT9USW;wKDurVwQr$+|TyOc^(*8}sF5;vXkVpX7uh;kHKs@+9go zvkiS1coR;%iGzsa0J>?+>457-_-)@(H|E6r z4Qt5NiQgIHwK<|RL~En8#&@TBFwsy&HaXslyAdrz{E&EdK2i~eR}YP%HwIy2|6#S| zG0JQtQOJ;BbbPk*0y>4;CfyK!heeVR5!E>5lEedP==S$fw~LL6GG0!Ey%%2wbJnxh z>-m1?#jZcEVu`+*Kq^+%{tZvWnRNStgn| z9#YbwcM>r9)=Ap_P6>Xrk*Z@F$E6uaV1*wCv9`dGsp-D-6IV?50^s*XOVgv}Rqm{N ze2w~12b6jrQ!)`gT&iN`Up!hUc#}uoe5BwN*{lA>HQ`pphp_4>H9=4Gr7gw&F@&G; zxhZ8T74Qgag03jC|jPqkfh z2o8AQLuvLAMR=&eKCzYhaK|TW$WViWdBiFkd7+}J zKOt5ETbgMKQTuuUL9gwYKe2 zNtOL6x0mwDpo^G%Kp*JUO3om>Q;HC#0*ngdawSl$$}kB>fD%>2pO`u7y8N3{g`H6b z|1=p~0)7Tmh15I}H^&HZj}Skh#aQ7}*q~7kiOnTWEVEpH^`>%u4*k#~6~TcDZB(_> z^+agbMwWj~Q;6^g(G$;y^FOVbdQs#k%dyVvYf3!P8}~G=flmQi&+7#Q8GH$i2F%Kf z3L1pMC@LQWZy-%m(mWVB0IWkPa<|xs=ZbK2hy-^uc_$}MhvG^p_@wtvpxN?{bx`Yl zx>IQD&G4A&sEzCY_GuC#W?g`SwAy_s1qNpA_)Tv#mPG&EB(^CZ&D5@KzaYbX-y&lYb-O81P% z66!oS=DtnBvj8~E$@dTd*MOybQHd|gqXlz;5df}i&vx1BLvQF#S7d!ggO3roUbR3| z^622^t$>0VtgNQFC+Ls^CphNS2i#UPJIymT9-EMDr<{z1L5)r4wcE|FWQd-WA^ye(I+AOyAJx!1R6O zE?^BeTypXYWnTC@_?$Q{svip-4!-{(V_79{+5vbja@)z>K-VP7=ccyTs!l9|B&L?q zRL&stk)W}#3HB<_20?rI)akpp7%B0Ot>3infV0i`-z)|RAO*l1*P*8c=;WV3M+_*^ z!mrcTluh+5MV(SUD|&)Slw%Xq)Ka%Mf&k1Ha@SY1kC6ag2&l>=_r&1U%qYHy2l_SkFqk^RM50f3bO7(-&a0rY<@t?F=eeT+ z)eEvGF%(jvo~eQo|I)(Ov5y1nG{DSH+X{Wf&?xE#* zzP6z}wreQM-Sl;Ho33!>=~CChR>TSUZNnBkF0ZyJpuuPv807)Eu8!dkOv++YZanT1 z`dgNAe}!j@T%bB)E8lb$y>nCl88Y_sh?>+k{6YcAMKDz|8VKE?%cb-kL9tS zeQINTL#Ibrh0#HiZ#q&QFfbtF`%TDUn%t4}dBLZbInsYtd82-)I`VR<@Irgt7O)#N zH6Sw>dE8JpM+)0H8G0Bg!O|$dP$n$x)@`neK!qg$Rdr^7hv5G6EczP=tIzyt`@Zb@ zr*i{4Sl*onIvAlB=KnP>;#Ma5sQ&8L3`@LPeP`TFQKplJ8{Heh<@+>Nm8Z@_m7j@w z85%G@JO_2=g^gUNT!%rvRdpi-gE**Au$He(s=sU(Qcor(mjXb)Vy4y?@M@NUvC6%+{1>c!iO`hZt5q_+VB+nf;@>)tQW5WT-(zjo>cHAYM zJMbpno_NoF=4!5A6gDpj-(~FW3dxiSvZzHd2B+-)PID!w{ph%B1G9Htrv zA)jh1GK^UDu@)L8Zy``*;S}`~LZ2(u2KS#=heJdvKs7}aR~7aH_*Oup^)u(!`}oA< zdO>qB%ij#^cYNqU#Pw16mKe-ygS=rHdb-_^r#+RQH+1K}U`?sJytMdS0VGh3E_#$H zppT`qB04ofOpz?c!E03F?=XqBR+@9e;}cSs*G4|>hEhXu@FiX^)bM0{xf9Cx;_rT@ zc;{#Q>TP9?_ceeb3-Qp1ze+$>XLyxnOi5S(ghk9dEq|Uywf+0d5~{1TrAro{8Qmh@R=2*TQ$rNv ziL@tbl9C-Q-c^`ytbWut@to-PE=DYe@|B>yuikPCT_lp)yi*8lZHkf~saeD16ylPH zBlM8=*EE)UgFwimK5tR3$JLkVqiVO1kR3yldE!NmrWfv;`sE2R8^>EW@Gjsf6E6J} zjE*-&N$nloNQE`{(%?&(avl2Q$R9ri;44s*52G5Ikp(0@7#!<@A%U zbswb66ITy8p8PfM0LnJiYeH8tanU3w@MrK8o9x@M{kPv=uI1VKnyhK5KMzbrw^?5) znHR(4k<}@k%*d-!H-rVrNz-3A&4^mu>zrEVwMJBHb%dR z^A)-RLHKdaWPC!1M%83VUr@rb$VdOmus+7imO-lTn*6uj11GB2l;xn4Wu_s_a*=Az zO|>GZ<$+8|0E=IoSMZ{`6(+t6r1(+!+iEvV$<%-&WROOui|`GP(8AeHM$f#@=*8-F zjkz^7-SQu-%?e+6Ez>rcRY(*+{xmb7Iw2@;0{JOJx{xN|=rnQZI-;J5;0Fe@7lLa! zEK#@ua;#*eud_|`8lswIqzWWWU>?5du)7cZ^Cvt$sZWhHyJJ~03Ex$f(BuQ59%`na zXwGNO=vl0RN`e0UBhI!|8D zHb91}JH^mJHVv$=j*?8I$3d}mcg=`~8WK*-Z;H6j$=Iit6Tfe*Ltv~v72Gr>5s^+6 zrp)Urz8Sbns?96Y4LxZoHDC2>xcj!x)RlQI=AuMwGN(R6W9*?ZuRZ*|w&nB6g#X(7 zTC;8Ks5f;seaCB_Y`>VRhHL!tE!O$KQ$Z7#LOeO+==_v7BrfW;GSTb!7{`tHXeD)< z1}W{{+n*KstfB2m{bZ2=$UkO^I>UR{Asok3ogHW%q#_ZP?L@_)6Z64snB->m_X5I1 zssY85P}G25>VASxL;{QCq?2CONd86oaA8p<5Dsq#Q# zF5z;T;Qs-WPTQv+b&<+G?XhzE(-Zhpf0cgLQ=~)aT0@+Qvjt+aspdyz`Ua%hA|>e; zC%o?&?&JL-hw#O=USP$${_2kH$2h#?!#@*!wY$u4F#ksu}P1g^6t9aMEr zneDHA-5SY{-9d(O0((^3d|1}G8h)w&q$xXFnvwl&W5en0E7?f_NM9!~`&%(7O#@JB zQT*YH>8oY*Gn9O}0j| z24BTi6=(j4Qkvn(Js}G@)3Xrhel;|Nql`DPMt;|^af*K3bp%JsbW_|ilvWNBmgG@| z0jLGZfokt3VRK?|-n{#L5FRcl^AA~tcAhZTdP|5oUWJ06yL7=khV!;~#*ZI8vPsM1 zey|8@GpJ{8ovCimprRj&Bml|L?)p|fEDBrAJ)FPK-F+DByG~p+j%2Hwyqsy8Hhl$w>aBSMzy#W8l&Kppbe=P0jVsuGO+4cJ5RTs@`9vY}W8rKnR}Gp4 zxVoPr_l{{1Ge}I@Rcn&s=6eW%b3yW=>4u2RniXTHuaJvflxVgFYgpFxS0CQ|B2Rz0 zR-h{j+=xeK9>fu3#)V&vL8E^}EeMuWWEzH9S2HkvGHc6{%4}Fdqy9&9JQ(-&0ijD(Hsb;!j8gqJm zv}CrW!BigTTHNt5dT+BS$~8k$Hh;fyZhkrg1UY`XZNe=eqN-+)A50=hcjDQa_gz;e z%#Q^Isp$YVW4^RPMfbGJZyNQOh1HJFx0HD@3^l^Ps)W6zx*Pn{ZoLH#za3}+&?&v( znM*ujidHVWImD@ICL~n7`{-ouZDG4sKu}(XcHr5TaH-2C;IY^4Hna>6Hsm9^cw`|$V_R-rv zVa+ks*x18;OCsUL2FqZG^kbApahcKT6Cai;v%-i%3;5Ee_P2i{sZV0U-*WzDaQl46 zgSUG!PNaeM`2myiS$_;8ndNDhE-~pDUXuuhQbiQd`WVf>8OZv*O5XX>**o)MjM5lI zC-TwIGupkv+d=R@ERq{@{YtLfvYSfsju^i!ty-GE{|GOu@uw>}qy_L1}^=KsSICNNBtiRLyP%VZT~u?XDRan^)s_1Yr5 z#^y2*Id=2f5ejV__E#h;$DGU5tly0qHAl{&|L}%{o66VMM+)g>2E=*B`Y4}lC~t%x zCqV5(1>Wn88;I|X=t}&;H)pGmiLk1vsh@`7!j+2E9Zp_N!=amLUIEn4k$)0b6#)iw zEz`g|++YJm^?euJ)SHZL!@Zu<@ar`x;I3J9t>^%<2_&LN%1(KY+AnP1?5uccG}aB^ zaVqmQ6{J3Gi-5^*RpA2-_6o#XYAxN%rO`8u+I7noZ-t6lr!;Oa5o4-X?K7XhFVfV? zx{d)ofTmBgjhBb!9lmE`JsP$-TA<#I$>y{tAzuwDO@qtKd_k*}+Me>9lv|ohEvOVh zUhQZQM^g>OS*8*0xz8`t84Qkk5X3UC)Yk|mX=;yQz?(85(p)I@^ze3VON2V}AxU+z zhpm^Btz+tozFyXt37q8s_K}p0V`{a)tjw-H3ZzJK>AI(c$t2EPVv#CEo$Hg;%ox zCQ$@z5vTi@w*koM88!Qco4hN#qY{Ao=a`_<1GX6f9~@Z^=^|okcdbDeSFDU|BdF{h zK+_ukh8{_xpUVM}UaxS~u7CKA)uOY28;tU!^wOTj;BDE6<&;Eh^4e5b*VKX=tr^7TUYCzt+O7 zsh&eD7R33ib>2kV}u zx4oJo2h#E&^q|$-k`#qEn5+j-?LNW52V+_;pXNEQF|NI^P z8iMt)b&dUdQD83<_BS!?U{fa)-vEH)Z`b1)I|i=w!ajkg8Kux7=~+y z+-m}zal7g~H2xyvC)C@I-+j!oubk&pW__{P#^57(=a{@-Lk-(z(+Q6=q=;lKuQz(DG(8k%11iF|AKP#Ne`%{(%k2IN@ zra^T@oep$(^|FG+SgW~{2PsuFKl?q+i7o3#CEO7(Tx~9%kZ`37p2*)fR`LEeu*;V4 z@i36M(l0_Yd-Xk@K4ro_-{gwZ))^GZtJLnLZ#BoT(SdsE3@PSu$R6 zOhe2WHS&MZq*k?kU;Ywjo0%LVD?GXMFtT2!87AymF9QUK;;SopE0L@i8mn50!Jx_x zcu}*%GQDImecR^DorNgPqs<~u$ZzES8VS-ZF5i7hETe&I(e+R(il5+lBuiWJ_%J=W zhL{vYXi9^mpO|N#v}H8@kOKSa0$O(K>N_wm;|1n{UzcK6m-J#sn-cvRZ4k zTIfmc@glTt8EbyHi>Ava{-rGqTXHFyuSc3CTyq+l#wCW4KD4#82|25R?2K2xqzm=2 z`hvk0TiaA;UTfdSnj;VUw|GQ&70=ImLdRk{!YCS8u4dcqrpiS!E23bsMk@dGn|l5zRH5hg}X!J$57=}#k^d8Qibq90D?1+OA`Dt!ev zrIdcRR#lAwDFlw_4-8h1|Cp%o7$6=<>5>-uLQ|a1C5?LB*fVeIHi*Ki2BRE>!8H1Y zXstW7I&L>A^~zx(ZN`kR%}xEi0q?kzlo(#%Z9Ac(af2}i8@r9|sJObaRgXmN`x zfdE;~4&CE+!WQ=Ze%}nFo?*v~dD8j2cK@S0gCOC7AIEkq7F67$f0CWr#8~3IfTZf~ z&Y1mP1WV2B>4ph=&lx(!P8_$-3uaVUA6L6@fNy_IOj7z)-kaVkHuy_wj^)q<*Rr+l zRJHJ!o9hG}Of)Ye|6yWwwd$0Dr;^&BnmE6$@lBGb{mOUTT}xa>iUpWb{Zs>&Rrp{l z$$Gy%s%kbr%C<1@wr3v8YdLZ!SmezFmR^;oc{feNb>#77l@Wq`?1J!a5qe35$PUHk zeASjQJUo6R&@$j22N|qVG&DXb)#5WDoQPjqAHcu2I{g56RNo#6|I5&~^>7b57~x@f z#6y|rMTyHA{o#?=k|NixW`sW$fKpX&Z|s_@Z@c#;!Ir%C_K6-@X3~2xOrTCU!$g;2 zqsri{2s!b8iJtGJnaf~H1*8|kN?7i_NliQDPfV~Wl@CkGG;IcBNz zv;_u4OU|0lKR=To);E25p9v(bn0M=`YygPOo>s_;$jF#&&Q44WDSmYUi5X4y%d+49 zVYzATPDvdIfK+*>L@@}%WoHE(`wY&|fZpiikvs>O%&(j`XX(n=m@ zo8j$t{zHO~aS^c^5HKO2Mi~E%c>|#8>JK|=-{l%CN&o&VuEO>qsELGwif0Va;KTea z;q>eO^crQT;XJ&Up}&*18dKe_aRJBr)g*Y7Z>h9j#Ux*cdjpnc&0zPXDtI79VzbI` z?uOY3T4c8dt<)}fJbHyt5UEVeRh1QF!nv%rizAs@pC2vjIsAUm&Xw;s;_O*4sE;H+ z9uF;RKad{ZIl?(|YL+T0gn)jKzsM8i2^(hXh#z#k`@HyX`Y;#o7ZM0=Z|-t;Rq0#$ z45uZ1fR7sdXzBh<9jU2{b0LET10zL`n>HJKWi|;rLRwv$o(r0R(x!|8oCPCF8&d|e z&8+0JzY)TMAt)Babs)yltIY3jYv@{5nQXR6W!*wJJFQ7Ifwul|%r}snQiE`CY71f{ z^?hn)%bo33+e8q>by{X#6c0?Dt&&NHrX-iIO6xEEQ?usW*_hYNW@l+?STBw&qOPhQ zPi*m4Am`;#@!dS~awz)B1nT4JhPDhdpL#3qnAX@NuP>KRrdAUYUc7}5%>XJ+5*ogl zmTzVa#JjUEO)b8W>aU-7QD@=1-DwNdXWQ_2boI4;o1ae41MWB5MF(@-tm5lilb(iO z=;OD9^s@X2Y|LA$Py5Oi^77m1?>)lcdC`#EYUTMHq4=p)tIH|?Omf&&Ut|~-i)}hg z-rtxkJYLAsDQ&RXJpJAoFJgEV#G3Nh;*+Tgav2f+yNyuEFnQBDLa+Z!F271oCyh3x zHusFOH!n1eB1~rDHc&U~jD6n!G09TFB)`@eDceqX;`&rzqkNioq`ngP| zceloOh2j{T>;Dp?d1nEmMrol-2Sn3vkJ3>B!;t(X1!u(DVSqglof?SeYEoSTMxAkn+g!o<-&HfS4I>3z92=*}O1y^*A_%3#pttf?d&#N1YJH9MCp3{V; zKf`ptE{#tK9!Yx?FT;pB0rCbo9Olbb@4BA~zwlMqY~~^%k?|1j<;};g^Cwm1mw5MV z9C8zi21KeSDs#XN!H?mpf1=*q_1`01@9r(D1xfR@syrl#!QD(>sW{UWKLzQDF-)Vh zAMo8!E(paONC8@D6CA{2Ikg*ySh_uUcDee2EwnFjDApN@DS!F1w(*Al_sbU?|6y6o zb+v}mAdNbR{>dYD^Q)snTTvd}Ly}4bOD6p;wiWxomhHqtn--T{^+@DB=bDy#%Ot7@ zj&s%RVIOCC9NWRqX8btliNI}*ly7XEBq`I*2!G&;h_0z_J zDE@IG}Y9*4B5KBZO)d=xH*@8ODlJ#8DR1-m)F4Grmh4= zM^_wtVtK`Xz(;T)O(v&M~d1XYwOBB)H z_MJ0hIEqy4&k%B-O_iLWLTcb`o9`vg`7=Qc7{4YAdHU5#4O*44+duq)Kd(nz^ZWFB zm_*T%k)$e120e3gbDT|KXyn`XHz{;1ud#@@C;!88gfHi*Ot0|u<(RsrD8ng!{IYu$ zeAPdtN}+tboUKbTe6VpwK?rb@?N5QKQ`CdpG4L?S`mOXi1dSPCZ5b>n}ZS!v_?4B z&IBtWqI6g8Z|-YkAo18M?=vT&+qFv$I+^O7YTElcXTC;z@Plgbbd{&!=|W5v+v1mS zJoFoY(Pq7+Qxv&@Uv|_$(wxg-T)x=0D`5D`(kafl^7EbEd35y&<jXZ z{NcI5oucQ9lQqVu1bQE}Sdpw8;pyW)vX5XxATF{%MUR&UgOVKm9@3(~7q)vU`ih&2 zWK||RkI~6F*?#?z7}R}Y{r>h#l0;m?uw18j^iHruh1oYZ-y4=|pKeB^I#Hlu9)|em z^2Wr`L={kyo++fqxUTx>p-kJXpd`DuU(zTMOOH55$fK5-n&MyRhpdf(va$hB!33J+ zBxiF0(8j|;YHH>#TTj0? z7$2r`UsN3E>K`G(qTPzji?Fb6ojP`5sUxtIgOA{v>StUf)-B za@jF}phi8d45^zEfY38m;#+{9ZbAL-Y*~_78^Z~TQy6$;Y}J&;(4gb)a;M*alQ&}> zBMe^D-r%isaV&u;qe=rC@XP#G+*t44FFh`om>F{8@;R20s9;K^xfzKT(}FT-#k zWUwP838Bc-fn1W=S1ESS%1nwovTHUf^GllJcK@C^S5_VmGaWzfN^``80D7O+dQ5VJ zAMF@IqMUd%R&ulvFG%~k6R0`Xzj4f;C3y8@p4P9U*&H!s_=vlMV8mRW|C1t?@!UQ2 zOx1tY42lxz#7g!%R{=(@S`Lzgdr3ccV)^{Q^ZBz%q;-v5^P~3}Xu#g^g#A8&uimCz z59K(J*%joLgQsH7kX2wutp4q9Z_|jUSxp*Z0Kq}#w=Gql6lyHMz6u`)11_`f-?|U< z$h5Z2_#i{V>sUCugzLR^zio+aJbhb17^%Y77}ZxJl~tCsH4@Z1@63B)?7&UI0Ms#m zFQTvp$Cx>3l9`jOPcPzqt(j&lK-PBh-f7w*w5L>se$C@v@F|%<;1Ik!4U~EA+U<1r z4kji;#uqivwS;ZxS?EQU%A2WCwcY=6@NJZbS=@0ygg}Jk`K3vZRb!ezu4~ezXZ?|kwd3M2Wj7-}Os5PjPD~OSW_72Sa`aXfZ{|mHMC~O9 zVITKX4RO8MxlU2^hqRg>Gc4Iput!bgOyGlSjO}y`1+{5TVI?vZnp=5zGW$TrsFvH1wMdu*Si^Jb))h-Cu2+7~W+>L!V)LM>^{iMM=A(E@oiAJt z1EYF$=F7xWX*))8X;1{Y&u5@8y^SxOH1l7Yy^c@oA*8$VLIJ0)8ON9|{uAg#!1^08 zobCHZWqx!2H^D4f+)5XsTn4<0Q-<*0t-We)(33=Vv%Yxq4-dClQtwYL2Z|_aUQS&c zRT{QNE&3JV*+(My%>c2cG%E3v;~FknpQX~03qHyyY{-U>UL^_-Jd(^ga?W7M`#vvh z_{;n3z)ibC!frfW4&@Q-ihtL^u8~XDHDe8l{yv$(ns_ZJQP(&PDyp#trGd7SG$3=5 zTqtv0B+qtwrdq5MByrC$xZ(So?k_|VC``p}j=5&r!x)9=)tSivEuZ8unKjPdHx^v3 zWo)VQTstBni24t^m-|an=-J~RI@UpFngTYzB@`D2j3k|Q9fl8-3^B_Q&346x6Ql}< z3wN*znebn?ov&$?*qsImus? zKZ9gKd@e!0TpOyIB#Be%!V(J{W=6~trbPr!LLao~Dzw#zzu=C&I=ZjFZ9I*xh= zMEZ;HceX`d>r-`iGZfN(qdY~osmE7y!zX_6d@DWfVj>LuKLABRy1pHC%~Qi#4zF^S zudP^Gi^*&ynE7zrZDf%`q>ML{8AVcBPmnPm2!7VTvoDQ*W8d0K#UHZw#mJ%l-tg@4 zOBSi6S(9z3Y4>VmvA%@5$+0Jl5XjA#V|8&?(+wX?YZhm8=-{v>yz;0zxdgJWDy(>~uRI0+00#E{ z*4`@6oBkJ1jl4bJ`Ji(my`o-gWt5CA$sjsng$Jl$K(Em&W*C3xRz6mq3a8pX5Mj8~ zZEf6K+b!DlFLN?&VbtO@Ku6#+^sUV{FAlWuCx+E6Zsi$}Si+1l2Rn-)I3A?e^mp*f z{tejhkA&|=t?|d>8teA9(grZ-b{}JT3H}Cqn~T{10O7o_q;&?q`S@%900grC0D@)w zExkS=@n^%?{Amj1yuEUHb!z|t`Ab{AAzXox<|Y)3lis|#nYAVG>UBd3{{Wc&I4)(M zL(`{iSz?|D$=@y2!U9wb@{1T89>eQh$HD&q0(h79iPmB8&+OfyYF;VS-AM90F{hi+ zz~sD$hB${ozF84Qc{w%x+xU0(cm0pNE2@oe;E%$u1=z_HNU7v_cEct!h7tX&K_=0_ z1LfKWIpEi%+UvRpi7lT>_?h9YKf`TeJji02*;d^InHylcv}mJ{Hrz2Ptho7=LFbaD zaP+hehf1Bgzw5F5h5SAL0D?V#!AU%CZy?sb9FGoZYbyD(_@ep*aGlI{wu1I~S#zDM z8jNJ;j(<-+3jYAXzrPB!4O-j8{{XZn#X%%?AG{hrg)HOKVY+18%Cg*F2_<|H_o7IP z5Oc>B`@65`n(nvZYkMskMYoCs%x?;b;AP`$G-_APUI)su0!J#@>yN5{6)|*DC(LcR!Sm9o+bPNb$C_ zqG+0pyV_Y_TtjZg;wc--M=Ks!5zgFX;AG~$eDQCJbUh!%9%iy_<&EMBjUkMnJx+1J z{A=c4jQ2KIe-yk!HOAfl0NS_Z$>>A#&Ns&YSQOYk3L)dl_a}dlYx8m$DS0@ty;zg`%CN} zEFc8VImtK#`+;1?!|&NA_MGwMH3>0h8f z3xD8}zqSvEV~bGnZ-;cx1n&We@gA#f70$*u-5tHDx@Y<`CvlwdT~yv8e(WIr=FH`m z;c0&!rM#O<{tw`OZ$16~p!=*5;`1?p31&F%GlBY7y#CA{F7XF~J}BGS%{Hm3Jion7 zGfnd+xRHhcA{fDtuebq6eAn&|fd2sCl%E2A9oxaL{D1Lgt>Ps}_sji_Xx2J99F55> z=4QFd{njC(9OsPSexm#-_&@NM;Kzq&(S8!>3*h@p;Ha}qf@?`7UXn;RTg@Z5;GZyq z#{}1nXi)kbv|kMar;AGc$-4F_)+n*!8aNWo!^&i zmb#d>)fjwA5mBI)oOtH$T~zyyQiDr^hR8a1M7X#~{Ln1%6ZZSw>Yy z2T#~x)}E)t=9#5TWmj6S<)P@>p0(p|0{Cj%Tk)Q?Hl(oJG*55g8!2^I7XyiJ>(JzbonQ1faJ&vn~NL0HL$Th-@YbrLBr!XuU$zurstZV(z{1xrfB~F z95knr&2Dr%`!f`d_ZAV&48@dl3Dait1Gxu{w+^QS5IC&MZCAn`G`oV`Y&FQdMW;pO z=HA}w!ssFmvG1~wEKZ7gGeYP_FmYbSz7Fvc$7q^O<-VS6W68AETkRfWjIxik#>QC4 zVg~6Vn}9NNlTmo%#oB*{wDs`!#m!DpW2i=nB!o#Wo=NA)7bFOV8=eeo4m;qAbstj? zLj%Q);+tE*`ZdOzV$HB7pMNN})T8-wcCmTkY#f}C2?LJ3d3)c8{t?rBNpIn=h_XG^ z_nqgbo_@z0K0LJ+w^2zKnpg}j)^ek&WD4zM_<5$squoW|Ei4vs6GI-b^IcdfsmX9% z#KS6nP$Xpp0!OV~CtdMggP~sQUlAtKv|B4j1(QtMsKV+_R#lD^GUXY06Gyd4By`Ot z`;IRA2BvJ2Nt6B&og&pQjLj@dsy)n+Y&`j9RASt=esdcr>Ot#R*Z%+%JaysE4q9qn zF4XL_2$;(bZX=HF);t}7e%BI&j7gu}<>O`t1CVfN)?W&IeXTEyd=IbcZ1*yxmm^M) zNoR7XOYCcA^F%E9KQv7V>$|2acEo&3vDe!~x$u>>u9>V#B98Lj^(3Asa87UFxm0`} z-d~yqau>Kwue84L-$TK*kA@y7)D(D!!8+a5+FZuV942SJw^;$qZe(rqMu#W*eW*Nq5gS879^PDg>o~I#%u1)OHS}Nh@p?c zUI+0t&WksPmPKf^iD7|l-c~#O>q$^SG8~`32_TYD)YUt`4EWPT&@Ap{(PHsC!hl@f z+uTQEFksn34WS|@+=q}S3|rf$R4Ut6V&QkW_`~Aw+3!}@p<|->>TOoqay-cG!MakI zJGO{fBTdVYps2z65ngfNpVHGUEu{iUgQUpW}3lu7&__BHZ zqSbA_8pR*>rl)Ndm#ynI_>5e|6{evYD;?Mnjr)NBf6GJed9MQ2d|{}3KDfBe{qCb{ z90lNlOLVunGG(y8X#^$;EqdH9BSzdOT#P%);P!@5^*aqBxJXw%7sR+aeGCxIzJQs%vz_4 zEhN@F3uhmPzqO)ejvKJ>e6hI$7IP3$(X;b;Y6$6(*W#ZPf5A3>FvT_X(@PRfGI@q= zGTv)hr#Z+C9{rBpaKV7b8%J9GDDfBVPw=kV+C2y2o|$p3+JJnky+}qQ-rTu`LwU)M z?;W|v2NiYy0Bw&4cxOSk@b|;{q_LLNNb$AGOL~`KzGaNfb0R*`(Lze(00%*e*AF`J z_)(otX5FNITYNeH0D@FMjPWAT3wY||a{SqsFH?*W$PNlJiS-*NDAQRP7rUB=Vq_p4L7JnRQU)d*5veoWn zQj^-f!ALNAuI;XwBZ9I@qnu>c96ueP_-zC05=(2~`zz#@CA7McLPk^X{gesjRFOv^ zkdQKX9V>d3tIJ0tIH)CfqlWS4?DOE5Py8Z2Cl3VPZ|*Lp`$eQ}BbC}=yBi@n`nKY5 zLGSV3#J_-^6Y!UbR?hRqT1*<9v1XDRi?FvKoRAOMqw^84e*381!0XL=uZ}!*;(rue z87%y3sq2>42wE$9xZ}EzF#yIEXo7&Fou9hhj!7r4hj?e;_r#xwUL_h|jWp}q!EhQ> zH&BV88%B36&{9x=&ekj308dMVd3BQ_ZQ97Yb*x{{V+7h;>bm9R!J)Z=$H`lW<3KqR zA1-FkVy;_`MR``C@Q+8=pgtlNw=afxQT4elC7v0$$R2vEgn|dkTON!>euC&<04CD} zTIYwnL8e>8=oK{SlgzW7!j4VMIF>ih8O)%14z=zd670SRY1%cumE(^GUihNG+kK($ zQr=t5KH6qqnOH^sl8(6l09&vqQTK&Itdkm`<)YmD7V$2V@lV6ItsFXmju6>xjWwz; z7{~gR8?%gUEwuLQRJk)7i?9Q1&Sny z0l7=t&%Lpq<5nd}83QLBmx>R9ykp`!k~~|j{{X^Oy<+n%=38jwDe?f8R}19Iorjj7 zF*)ZZysN?%`UG0^fAFt#`_nzEdDpf=@;GE@$sqZ*(?rEf9*?Z$8m8P4V8A1c?Zsb=PH93Bm-DZ7u@NK`_E$3^6s55xA=IJ(PFmYpH44$(~=Kd@H`U@aCs& zdo(^cy*T>>Z3wjw41fk%CMDt-Jm>hh80u@E@TbC02g~9+-wK&HyEUw0`iy_Sa0! zwKo!DOfV$wt}_1s#af?-{5g4T@fr#IS*gJOO5174Fk72^DxsDerwT~HB~DZTHmRnh z_b*E`$}T<+>(^JysA;|`u-7#Cqy@~;hzmyQ!}l`6%^P6jfHREooL7=~gW)%Yulz_Y z{w`TxS}n!Mf;~g*FL50FswQp~o~`beY_>)OK=9r^yPCaEl()SuyhC zCBex#;}xVUTSjxbZtwmW&+*^vbKp;hC3R%+K9OM}Mt0k4Bkc_+&O!4cA;(NBA;3T0 z>t8i|OaB0bKK}qfi%hZ9#;<>H?6;OSw@r5eF|l3d-uv@)*T05YSM7_WgL_*mC+KBuKp7q{T+A;GacI-l9u_`g%y^}!keu1i5w4M>QpHi?JRw&vVc;fR1Z!>V0VCZ)y zM_jix*HUZwNT(@vXItREioP%L?8)J&HJM)O)RQynf9U;k2FRi(VFy2bM;wFRzU1(4 z!!H{PNaeh;{@>H#j#hUOz5BuC_efDzP+P2R6T1PD!A=4E(1XYRFYs2S4yoeL39NA2 z&XUDNd&vHKU>p&${t3=sJyqbg#)h8~zHL z;Tz(&9vATS?zt37!H7R(U^v_jsc2eN2Y>^yJYaHb=|6@40JW~Y;%^N>rg$p-Gz%S0 zR-bO85}ATC?v^wYF}eq~!@RBr1~Fb_@U;_eS{<>PYR^;a{{RJiM6d_Mll(65%>E73 z<#=Mdw7cCDI(&tgB(U0D7J@y^lP8b@$VOZaGoWw&Dp_kVS^QD)zL%`%?-TF2w1Rtk zn2HV28DcFZyqlQqGb2V7dLhOSo9SLH_-xuHrFY|t$aVF%K#vqw-fP|APUQ)Ev3VF9 zWC3zIn&&(bulxX)##Sxx!^1Z^J@JX<78fmb1TwDD+m4+u`xCT42j2+e7$oG@5rc1C zKd&*#Elww0_@VnYcw<(I!$i<^?E_JJ`*um~%=UH{vMZ=XK2&dH$#TuG$MVf8o=7BP zxAE2A?M1I@7jk%WLeTB>i?t|pJNXTS?d6gW`b~(s3^$AqHUv2sCxf3#m&1P=biMbw z#-ZW+`wN*B-qPg0n(;#`Wn>8hPYk9$aEHobFf)@}f5e;r0NH=TelNJxyia$o+un#@ zZoQ?o?wMknFjO_nUUUqgH{G0V1K%~QB&}pAZh6J`fIby?3q-N;uf>f6SJL&Tia+1! zaa@RO!YC}0-`R;GTsCmbp&SgHjN{fk9cSXN5&Sw!zkwIF{xDc>r(f-R=7#1yvK_+Q z+*+(qtD!qXd0X}nWDZC**XduhH;i=82RGTGE9JYJ^0ADjt$6BtLV{ffD$H`koo9wZ*)aj{Om~Q0Kiik~a`3l^6Gix0s(6#cqA1);X+MyVDIkStWSB>ErCaYSJCXndEqJHL zFWL{lcamOd+DDDP*%Y>>IHSK2%Qdv102npAF^jJ?5;^JPNN)B90S%O*ypbm=N}S22L8vN4kMP&#J(oepuI!p%VL(I?%9!u zEw&%rs3ReVl0g~d5!dsdUGdk%&lg>tIq&As)^c(nxjP*(jD4BjRZ;3A2oG?2*DT%! z@xHi;W22j`Qc!mP0I62_yJ2N>oc{o_Mtv)~I4LFZ95Td3t629h+6MRbCD$~&JtyG? zi?3VV!86Hmdt%UAM>>QdBXztp#vx{H{{XmDkQD&FHv{oa=9A$Y`__}eI$hjcQLB1Z4O>dH&VH_ zSTEwVL?iuM2X?~p0aZR;JMiMMf8v_cZB5PW@+emf`?p84uwAg66+LiCt>?7T5XEV% zyv*KWhTEG!>KE>UTjnJ8;~*Y+s@Ara_g7myB+RkO#kQi5r7_;)Yp8BG$@Z~Md7aq>1w*QuA>b8c|KZ7H#?GkP_T`s zAAzWJY;?kRd!BiHaRc8x7q&A!#C;6grEDIAZwvzC(}V7Ku8J)e#y%sF4vlvd&cG;$ zAZJ!%g+)NilHC;K4)_&v>et315?jklM*yA7sJO_$3xenU-hUdcE}fxV+?gj5gjFI( zfC%F`>_d$6>@kkDi=ek=w@X%iFX1oQ>-IC!JS;We+Are9uNJ*;ArKDaZ={+l$lM>E8@naBa~m8FHaHnq{i1L_jlB5b`$qoDUk>z*FW_gx z{Q?U{i|qQP?xA$C8;L+wQyGFcj#iiN5iP=z*-GZTQ^h~GAMIc92f;TU9M?1_wzagJ zNgbVbZH=UQ2Fk8$qRx>*W(?n?~E-i zWWRk1^2wpSx3-G`=9f;?e4Dg}Ex}!+z*aaU8tlJkEd%!d0QlQsDe%vWbj?!U)QfFbeaW{b}Kk*`xjnRdn&*{Cn_=OQt~XuwLkz<+Q>8 zS8EcQtQI#xHtq#rCm?;&a4R_0s|NX+Diosbw)Fo1gZ^jGKMAzW7vTPv4xRf)d_>TO zhk2E{n&#>?KtaOh&S>+swtzgD8wYDQ86)gJ2maYVu^)%8VzuzE#9Q}BrDj_zi{T!f zGKIq;Ez-!_Sd5{HL}S?FgZTyVNB#-H@RLFD4dt(ZyiKnsie`XZ%Jx_4_R{1HjsE}> z&$Tn59ZXQ5Ameau<6rAH3^B@Ga;HaiGySN(SeYl z;<=qD$zPb&$tIEgM(E$PH--KvEEZZsI)1CALo&QEGAe}$hlrUSCy#QK46<&EBxDeJ z?D($#0O5VJ#pC@?RKL=7CZEfiEk1d*2S!nnwM z7@i{WKCiBPF#gJ!R!i&a(Q7TVjuE`1ie{R~+n2yighE&q1pL5z$HV^siXJ}juZ6F5 zzYgE{cgGvij*}j}s6nA$#?d<|dx`Y;bsITE>H{H0MnR3p2_bkVO}%3O08@7;^#1@O z=-nH{N#cJ79W&tet!LtGUTJdAsx(4YRT)&pjDAu&jDp4%3^?1sstu!jXJ#!Y!@Dxa zleS$uZhPZ)o*N#S0Q&P@ZlAR@k2IIwH1H0w;fQqRO4ezx(G zxulU-%O5e=MO+>m_!}@2Cy%cfKg=0CN2-+|_fwOR=yGeCv@Y-Z{{X->g}<$TQ~%fe za)uue*jZX9hpt-o#Yg;m+uI~Ef!C8fz59$0>rc43(e;Fy@5M1LmE{ep(q0X~fz_ji zTw#CS=hCrnG+j>DQI6w6ou+uk^0#+VfH}r?Muk{*=~Y+7Hb@!#LmYD6J8f68v}bkX z05a*5^*G|Y>{u6Hu~@vDf#;plz6m7q1!iixhMnRmZl=_h z?#1I$43BbPQgO-I6o7y`=Nab|%iS|pmi8O%7HRKgWj`d7h(hFl6j3VfARdjMrg^Mc zd`aP3%|v)xP&Sh5va#~5tS!9lLD*#CD^Rk}GjMPb32wr;r1iTxAs4zu3q;m5%R5&jp<0aQ-iw=}voXH^hl~HS8CvuiLSxm&K;GQ_bq@uc=E)rI{wfpFPNZojM zRMD(0zR2*)W}_rQ43|vtk&}W>-gxBh`c-%>Us4wmFuS&e2M@Jvi|4P(!^{{1o)r35 z>?V!>00cw-0D_BY-XyWJ@jr*gixH8Q0Y0UqMHH@}L%?XTiL_#tQf z6b2jJLtOD6g*-2BV*n*Cul4&#CAbHWRtchX9+-JR?ntSOV=kmQCD-vk5H&3h+Dj{I zX(U5v4i-@~@?5YTc1svnR`g)!=~q&J6WvJfqUuv5F$B-sZ4BXuZHyWh2eD_}^fmjH z;Qs*lBlnDaEvDFbxAwaDyWziv8YT3`+RVWWTAi$~xa~yNVY^Etk=1|W+{eFmLYD(I z@6-PP!8U*3k$(rR;@3ZD{{Y%{;_@ru`DUkF{VM!J_`ClA1QYmSqe-E7L*X6Y#hdGCj8FZU zr=2tRU~h@#)HREU1!S9(~~LQ%n587{#L#m{{X>Mbr0F*$oOma4ERyu z-vVhxR5VuLS%IWkm_&`RW-*x7hcoaQKpyOa_eVvoi!QFzn%X85BMkb-Qy{| zV|{lYiTpirr)k%A@koN+Sthg>C!<9j%rh9!4!D*V3USEJMsJC{U2UUknq`-ZucflR zyJ*rhCFQrcb{m36bvN!N&hNUXo=E37{w#05;HW>hCyabrJVl`VP}MXWMr=c*SzB3u zWWt!omV#&|orZpP^JjKqbGVKM*1i7#1xfz^f~4v;QE7Td#f$9%$Z}xQ>~ux8k%7v{ z$u*71^Ed}^Va^Bu*K9H>t7{%@Ok{0z?tf&OSHt}}&hGD8(AxUQNUo`Es$4X>T1xoL zo1B@VBq;z!?58;^fDLL`c&|~=d^xFjqs5P7;oTQWaSL48-@&O^seCw*rie45fx|TE z4%XwRC;a<jmDEB^q&Nk8D6pAV;tU%&X@Yc{c`23OO(J1gsq+aCE3ozf*;UroKRGCbJWk*&qNVrDtop*J1hFHk_> z{8^w}{5-u~C&yYIqv4C2wRtU9SJLkEx14R%53*~#$(OVVzwyg*~S)1wNj zJ)~>_+79C_xH39prZU;|BC>6?uMK#b?R-THamefmTgzmdZ1N`rG-38gi_w9@4#0Nv z-`Vol_K?(m8~9Eii`r(NFNtondwDPJ^!dfRE!sw+NaeMXR;2p7K?ST%4HPc|fN84nS1{zf4wiw;C3W;u{TH z#Sf;~YEl6WwZ+U!1dJU4u`ddrQ@PdlkG;X%@E{tXrKf zW(GTb+0NGcJnFGbm_IP{PESN5r_NgM?5Xf7O@CSO#qFKvf_2?<3q9_KeLXCuMlEkqo z4QluI-vnT>_?M)4EB0#*PhD*@QH(LbKVxJt%BTm*7V04Q3aGWO@UQl*@ZX5F3;zHB z{6Lpa@IQ()%VRbElX(>Sb^cwNJ+atbL@wu#EAmSSk|*Se4lC>rF7oE^Txr+w*uflS zqk`TTrxQMRg=q#bpbQ+i2aIuCZ^S#_19-o|ZQvh{-Wam+XNUDT%3eWvrbVdfI4pLF zlzEcI=K+EFagaguB;BkiD7&V<@9NL+I8A=v!d^YRPY~!@)#Zk?lcr{}Ef!2ca+fxD zCRE@KF%q0{oE|!F6UpO!2KBXFBf@cN_NeM2mFE!Nf3kL5tWX>i)+Xu685O|zQ}$8Q zd=PHDSMU$w7O&xrH&V7plFsTSxYHxHT(YIT*x9L|Qcsr6b3Vbsrq7nRuM2p);_t)z zEqhY<$)M}LC9}{Z0u4geIIb)&m#aCHMsAY}joa;1@G?yilkR5Jc255Qf$ulEhli3| zuL5|hSr(VqY?oJdnoNe;_2%1#ZSaVZvCwYZtT-aDw0#zR8&00zPD#8=c5eRw(T1e) z+R82Q%x`xByiVc4+8fHq;fNfZZBOGz!Ot3LM*GHEWtNwvnIL#B?;UTfXC<4<`z6A* z#(b*-9APAkg3gQb=d{v(Drr|fA$?=v{{V_ENG_@^F6|+n!<-h{=VZ}0pvw-KBQ>K< ztEKl7DJ7@oK7SP1-FZGK_=}*Xg?FUfc@Ryj3v$aTQ?fW+BrJCWfKo;Tj+n11*020Q zrFe$lSke4Pa?s8j?KZMPFAO=)HuK?G2W+}YfyYYqxqdPHMe*N>?tBg7FNfDA#^LS- zo~>@ynx3A}s^t028mE%-CO0F-aB?z0&3G=Q;ctiDJJaT|_+jHKjRVP;$Pb5Zt>-~6 z3PkWe_~ZbMqA<#<$pbvr^r`hM#I2n*Ay9K8xbb zE5q7MdR2`6I=zAi`*qc?k*8dV6~0!2+GS|njx)4M7bBsrpTfQj_+tg7kB&86B0U1* zT}Or^tU|V0sSTa+#t2ef3hrEP;|-3L*$T0>qq&@+WpAF&DP%`qC zw;^r`URVg^0SX)d26LaSVC&xk7f#hC@K2AtOCFo5U)!wG>F;osk}|mkKh@y3`=DjI z;Eunfx<7|}GvMDA2sKY1-)kBoLnAeYt*4JZIl#E4+ePK!SX7ci*>n)F70JZbBnmQgMdEqWk18|Tf-AJ>~qTx9*4nN&+NzGF9syS zJzgD3?qHH6cRBI+AQyJ)<@6FD9&-`~GOd*Z8%KYad|RUGnl+r0 z>F~a%smNVsM2y-Mexym~uIzFN0GuAF4Cg|73sGB0I{!*d`+lY+sS!-XK5>8 zp}A)AmyyB^s2iT4n0;5RbV({0-{RTTz;eQMGZeI+BxM`N+#t5UF zu0Ce_J<7_&XZS*!xAQtN0m9;5r*!- z=M~_-8u&l1_)El6d@b>K7P{;b`EgomrGsP**|xbyaDHEzS~*VxAdz1}-QW0|!=fEG z!`2bR*2p6!_7=W3E&%zXnm1-coS&K_o}`Z46{4Q8I_bG5X&3wrFNJ(huAA*QO107T zT{dvnAVD-YGlxm$kcpwYZrwQKZ%AdKF3p5iby_dq#zuOvc6jE~7aYI>R7| z(T+kHW66z(!4I+e432o?d^zC{jCz#+0Pu@y)&|lUqGwt3+3mG0K2sP6W5aMaiAei^ z#!GfJ%j^FD4(|Rg-^f?R_p7Vh?TFjQDYu>>ouEsl$^cxE_m(vE=NYXcr1ZF)_P_iC z)pZ{N$Dnu??(TGjSw6=wOPg!(;zb`cGT4J6z;p7mg(?R-d-zv{bgzM)8rCD$ zJQ=HMw^nVHYj~a;t9Np^5-YG14WqX506#E13bW%6gC81v32ASwczViBVi==Tmoxp2 z`bjbaJTW;Dy0QKp%EW&UL0A^|8cl|a3HXC}o)5Y45E~4lEjv?ph!Q|x6ts%GHxguH zkyXnTbj)O)=;$?n9sEkT(NBi8FAHhcIxeb86`aL)Zv365Xm0$uRP+i~6OMr66~Jo$ z02Tfx{7Ufzw)$s?e$REKqT0;{k98S_5Tk{b$;Xmde-S%d801%=_$yV={0*yWqs9Is z)O=NBmPmAqY4oPI)I9y{Ssv~eNaYeKRY!3euF_bX@$(nNe~sD&{{W5bH2(k?{3u-y zU59PmmEFRhv?z^)gEw%P)PuK>?!beCoZ!_uS9Z3gG}i3&KNEP%;@+2{iFN+~4_x@B z&@N~4ZQ_+MxCPoQJGssqY8-+5T`FAz#r`eVygO&8*xK6J=#v7r@X9VNql=PuM+BRk z6(N9A&~(b+*Ta9bAMHcq)t>50PZ|v^+z3{|R8G+xa(v|rIB}A96VDg}7(bs{$Hl*i z`o4#0Z>#ICujz0|(|w)fd+T^zi4MUhW%5e_hVqqL-n%K_9OC5kIp>Jw(Efm|_5EQM zJIzB+w6nN|M-OA z`BfT8ri_deg=O4E1}pO`;U9s1GW=BV?E2TkSYWk+`7vuf<@A?!(U`$k*&7YO0thG$ z0pW?oXjuNvAG9Ubxp6nfo2$EdG`I|r>biC9yIQ;|a>%H{JAhSwZH6`-kY|HS2TeW9 zrHGr-$J5>={j>Zf7o5Hq@U5Pq49%U%Z0PvsZ<`*XBL&YNbh33huN3j`?WN(pUj0{J zw!hG4R9KQNI^`XhDE>QtDXnr(`==ZRAXkv+-?O*EpNN;n9S_E`T;0GGZ*4B65^8aY zIYBM7(A!)<>z)H69x8%c5x$YParq7tWTWZx{tFLn&qS%7S_NdS8J&ZTn07MzPdx z?lj#i!B!Im6W=wwcG7Tz%V9g0jmZSrJ{%e(h`K zWeeWS^qmj>3F+};#oB`Sr{X`0lf=4Z#3kVSSD75_0UHc534E*$M+&TS)DA1qJU{y# z{3bfhzK`)U!TQdTb1mA#4A*v(8%d;Q9$%NJTS;*b&T)m3ME6l#U&6omDL=x$hu$F; zejV^-)|af^F2f97V(u>adxnkBTO_J^4zUtJE0Dc@*RlP%uNkfNeRIXyJXX4hQE_YH zNh7zri61{YC8>C3Dsl3W4_uR6wVokcOC7LK*_~uRvUi63J*-LM9VYumwuK+&v(+t= zP>v?!1BixNWul&uUXPDF5kt)7ae1qB>Pb^=H`L z68J0NPab$yX+9Zh?QF5k=Hcabx`xtd!jo>$T{2A(3UeeS)TucD6I%9`@9_Tn?EW+H zMx0~Q*Uq(`#_C|rDv%6D&R@6~0#u~(A^W6c=D#L9Y5QJ$b@7n6(aqh4ryRpFE!5)l zNHOw}ZZ^xgPds6UYvo-_#Iov>jW@+t*Y>Ib-2+VV#zubZQC<0x3}YZ}+5q;g>EI^y zZpIVDtLT2r`0w_`_(9+p?k{aL{YJx3xo40y)^x^yFy|!}Hi`H-&fYsVdi>k2f5Akx z{eN1PPlpz;X>6(Fmw0BlG6orK_wcEO1~Ii{jDyJCo-5)%40wL`P>x+Y!NNP{XuQD# zy9pU`2|irkxNP;zdwzzx)8Rc@t>{)uRX%xjU4vpxw=Q<*$T1 zS@AmW?OI3n-l9MX!U>G=D;}i3%F!-IAf7laiu(uQ#D5F4d#4FwcdlNkD{d~V{JVac z%QQ(g+~D$1a0gDc^dkPyTJMA)y3;Lw9mfh>qO_w++p(pL9kThYv>^bIxq{(OOxCa6 z_#^rp&S}c>XXiqE4EV1bZr1dRyXNyZtf;?iBaV_hhs{uX5XDDRT%Gs9{{R(7BfYhy z&8*!DBmJU4T%Eh3B&b}2{9_-jewbQ*)zDnpBkJ-?XB?6#dv$p4CfkhT&9@4R$;jTt zz0X?mkBL9DM4lwGlStCMJesY%hzn1BAf58Ojkd}}ih3R-U!gU`F`MmfmdYron>q~wfFU&MbGemr=$!dHF^@h-JJ&XIi>H*ifZ^FGorlSV|G zFI}q2yx{s*h^y%~@hmgTEtI(|-cdHO$hgK2nYjlY)Pw1Y_0O{SNp_=M+}p~E#$<*; zY6v8bW0NkUwpElL%CU573#GT7*F&~9_Q=9PD#&DZ$m}j%m4L@PWaHDC(lJSBijFz7pUZl!0bO?tN;A(QN`GU~4);{;&g5E$}7 z$Ojp(KzZ&Z)eWrZx_#c@Pn&R_ZV1oI3apV5c*ribYVyxlNaFi^^In#9M7Btl0Q=Y~ zsN!d5Vn7NVcN2vi;+@2iu2#mENunavN_ToOk^P{hYsJuZSKy_=_&7t@t)g2{hY? z zev@D_Aa;$dq>POI@nMe~VNQ7R@p+UW`42*l7IxJBTYe9C1HpGUk$98E7MiZFr{2P1 zdp$nRTay*eL5%&X&vb1T11kdPa@j3`gZ5{`pMYNnJaMQ7__^@!RMGVNRU}Dcr^|U7 zD>gSw)-biwDBu>8g$Fx`$sf|+gnwpF**C-9G_}@8gKxYOs99VKm6ql1tu1age69AA z13sHFGL!O5GtWRrA6odM;2(`r)%8ydU0U7gEW%i{yOBPgfE*AbxVLFkj^MSoJ%|W=L4ETeocnU32-dl@Z9`jCJMT33K*A{ot+g`>u zDF!&M1id~`PAli1i+}J^8=1T$zYV?>_;w$O-Y9|{z61WtH#XKjEcm_f)(uW!9Pam4_AjX$ZLX{H-Py$R#z|f2Ce_+U z@U?s$r})$0?}Bu#Lr49cFYTp(X5td^Cb@HL@u?;$CA()3+mMHHN&_g}v}Bs+g=^~d z9ZGAWKNuqL=f=N?S_Sr*;)vn+eQ9Ag+Z#@>(rz@EqkEYf1~BYkW1qfLYh>;!p!4-V z?ECu${?hH@D11?Os$E{_tr3-;7B$M5E&kbg4ba+Sid#Eolrp{_E}8Pk`I9G)7V!uC6_4PIelL#u;a|fW ze+%l1bgsINuOzxdPEceC;?wf7p$G0=N86E*E3INGOWlGdG&Q?N+W!CvJ`n4A4epiV z&xt<{?#=%Ihop{s9b!8Ob?G90KzOw)Mw0FfcV>l73GKSR;BSUnw}dq_1N=dT()0$B zD;<6~b*GJFC5F(g1==A$bgb?G;0`fgkA5iltN#E6L-^NmYpr+>#THs6rlO*IdqHh1 z(KHgS_}&?9LfmX+AgjovFg$Q;xbTPU{{Z_}>l#(IweiwBuM`QGrNyt272H~@`(kUKrOY=GA6$e?gQ zz^~p2u)pwc!kt{(YTAn%mxEIKRn^s)j4t(CO!JMm_o*_T*V^0P>8`~^@zf``cWiD|QqxQ3hUD^*sLx9EPYQm+`sR_T4-x!o*1Suj z&1~`gqHQlqH;_QXBt6aUme*>KjC{uC6bsj;O=bSjzBtri@r}-v;dw4RB#^j~b%l=i zPL1}CH(c2ydT~Z1@o*bGdW_fFpRK$9*@5X8Gbo;^PSz1h1<;Aqf zB#ol}$`-`NMei(VqWitXA#r`zfm78-sS z@d{d4HN0L*jsi-u4WMo$@_u8t@c#hW??1HeU}-KJ1*Isho-u`TG8BLZ3_E%X+v>Q9 z+VV^K^FEzpsl{DCxqqGi03-TY@J5mU00!ay%eR8V#M;h-@!Z@^wk=yz(e=*}%8FG% z^4iiFbjacaHd+*nAL1pHll1q9{{Y~wKk!Iz+0#gW0shS23}<~l%1G{^)czbTzLSX; zBq5qfEN2Y4K5S=neB&+7Kaq&^TTMh8tzr}Bxdew|>T&EzD~xlBvf6g1W<=~_w6~P; zAXYJi^fHhK(;~B3JX^fv%;lIlEt~oO0F{ybPk+Qu8rGFPy{Cab5o>o^Oq+$vYg+Vc zsYD1N8WxTV+h%@;5>2;C}3OMFwUO*ezQL!fwTOOcslL7_o4_m{Zs zGu*t*6tfjLW=nXGk&u|;zb5#E7ut+x3{Zxi&M9IT zVYHTD6!3Ykv2-8!CHL*+t=%C%3$A=Wrtetf*F0Bo7MG;J?7?=;J2dma+~l#g+Hr!w z)k`nK(|4ERXYD4|kw!kh{{RIy{{VuC>-Trse~f-M>o?X{`-IwjmReDYByikY2}-Mac&TcA+i9E&=MjGJQ>c^n5@6 z0E2!%Xg?IgZ>f0e;}?VU!!%ir9}nrb{vwRXz?BPjC)1;J=yDV|BIVx$w5BE`t@Mn}W%^Pg&aXXpVRMw@>6jsf)tW_&)%I zDmA(MscH5AN

    0R(=}OKeO~WZ8U2!DU)TKeq2smV{wf!4&Vki?A*fuoB>#RPlq| zK4eRa+4W19^;I#pe3@?z;l2tPerU^K@yM^fejEPE-Vyi)bSv3y zV@S5-FpB)f_c9?Ez?hS`f2_w&d1ka%y%cNgowbwnKhD|@hyMT)E%kdnF4w}^<)zlG zv2CH$G~3GyiP?@oiYvHbc@zRZWjGv?KpC&mABKPMNI&=}=f&+N+fmT`AEfE_*CgcY z`qiuq5S|?t#dQ;~4tXle{oLda?bAo`oELgB-gw5!Zw+dZ&TQTtT!eOFyS7`qw2N^Y zDaw>)Q_e=BL--v!1zFj|C z)GW@QF0Y{}mgt~vh2mFk!?Pu@~RedXW}4|w~-jd`GaT-L7qSh7hKuAe=% znp)jTqvn!nA$cWo6|t6G&(wei73hEPi)#;Lbp0nmgHY1sEGK)3$z7!3$!8&BY;ll- zZU!^RtR;=Dcg-T5B;PYWH~1s}00f`?gT4jb+g^M#@QsDU(YgCm_=Y9%BM`*pW4Y7} zmv+Qpl~i_&bupaR($C;eg_hEt3&)=fbj>c(;u!#zJu=4QOqvMtNPCqZKCjc zmPw1~FhK-IXxo!$qsu73jFbw^*Ky{&KgT}-bgzh>AAKj{j5l8r?VfXUdM)RY7^8_C zI>7ceq8FCfa3qZRo?s-;cKhNw+pEwCKbkfwvGlqQn5VA zwR!2DhO(}8pC0&gO1sxSDzp~D#e`z#O`1a;)FD)xqNt^z>Ng{0h6hnmPI8NFI|=Er zouT|8_+g>JZQ>sa_(#LK72JC+XP(~0bla6#IgAlxe$t_oWmZtRJy4#V9ksO9n(fY{ z{wvk>OBi8c_6yvp^MU^WmRIB^R|g-yP)0BtlZ?L;>Hh!;{wdm7c$-$YZCdffO>L@a z^BAv!BZg43+YQc}!6h7#$pm22HT$25_BWR8;hQKfwArT$@!QTI)NLZ%0GOn#zHCd9 zUNA#+U>F=xI@0b>BxHwaJ}A1sS+r01N3XQ&y`E*%9wLHkxC}vxag2wR!XBM5O7G$;OKN=G@ps@4?1kf$OV5q}019*;7Fylfq`Ho| zYopp;S$T@2NM?~s-YTMu0?~jJaC2W1_~-rz&HE1c-tOmJ(rq>057}HymrzHi>LDx^ zCso7{MRbnI8xNT6a7IoD9Y0od?R#AClrO6MLVH_}Ft%O;6vntjY|jmo9qPc}6niQ4CBJoC+Bc*Ej1 zj5G_Gb!`VvgHy33B97n|8jNK~8=eqJj(&BK9k+6M z1~kd!9@TePe-3E+co%3bmRO3L$>J_wD!F~x+NHt5<$+#@k?6hjqfI!ANah%s>qJGxj5qvRlG+SF6Mz+)!YeVNW{&+unHiB0y%op$c zfB<GCr;hj})5(vXbX*`9M+#rpAdWkEb82OJm&R7g) zxT}v5+Uqf2_-ErUg(tJM5H!;*^ftG;TShvwPNc`Tq08)H-D~4-5B||UE!Xtrj^^rp z0V9Zh<4uhxx56k~JWm{Q07ewD&yQhU>-=ldv`rwv;yY`vvs^|Z7ZZgRGBI4?8Xqta zMpw#_gMD#Uu=dkqIo5YQV*6gwZ7eO@;cm4Si*F19D|>SaU0BJ_%b442#{-2i%y0+Y z=~geia3j;2U0yjgI5tN2O{c(SwpVgN4+h& za^U^0&?$sCAM(;EcdMV_EQ%NoGn)DO^7F?w>2W`bHCd;QA{CoXmF{8~rE5pCAuVH|{vleve`*X5R>2gA=8yX%^D%3R8ac)N~A zOR=xC~-^nQ~NQhTLOjyL_Gwx`4St{NRD!2j0}U?yvFPH&HbRf zc|4ZC4CmCe1!UPHM6je&0r%VO5Te~Fa(6JvUQg1#Ub65WwW(^$;cZP~dE_WQ%XKJ? zh;fh=0X%=Ycs2G1!~X!;_u_|ytVQmhJ4F~x$!_xg;5S^SJFvuc$sU5X`n@=OD8||$bpa(-=Hc{{RaHZ65wyB3#33zSw!-P9hEuH_^i4h?Ky{BoZ|x3#d- z6Z>W>R33H2GOOM;0418=O>JX!Dq#@;7yg`Pgsp`TKT-WwZDY8fq-X;}02IVamJ zo4Tt;eqsRt*O6#H8T4-nXqtpx7uW85Wq8wuvxicWD{`@I3h|qbl5ZoDH>$HA;{v@i z!auZ)?y80#5omGg@M+GIn6(HJXkm~XtEAI@?;H+OZzn%dE}xi6YS;XYo3DhPAkw@S zVc{=^DQ%-Yl=8DSw=9~XNf=_w8$Rgfi4>eE8}J4O0Oq6`LU@0{Q+U7PR+(?12=5xw zYWrK4TyYj58clF8(WgHq(4jCygvVAl+zpw^s&Rn+4mg=~IKj zU$fjd?gFnxf?%P!3E1>LG5xyy58;m!O{jQ3NsnC9?ZOZ38#$tqc#z{OC5&KC5YI#N z1JvWT(2Ym%kmnoQ{v74}75gy!9r5;~Y2%ND@JBtQ6K=V?(eI&(34;ukngwGU9D4>m zG1jHJ{g(V~qxha3M&nG;wapsh;UZP@e!-|(EQ|s>Lp-KA)dBgLC01Y#*vS|_HF($l z3Pa(xgICe~KcbB;4PDl2tKB`K(JzdMKvxql&QBYDbZyJQC#86{o%>b8ad&$(9wpQ@ zTXP6ywY`Ek?;ZM>{P%dExIAH9V;;D!rB1H){Y;yK>VA}KUkX2EEmy>?@TbOikT$(! zT&0ppHH^ySf2_B5^2~%BW#eWYiRQZ)JPCW@Ux!k7bKy+_mYUpO+CEz@Hnd8p79MauRvkTg ztDh0SX@82|Exc`O!X7Py!j?%KP=96W2_3zRk|@C+X^joYF5P#G4g!&bn2j2Pa*g%; zPth6TyzsAuC-HB_yC^&#Yoj_DrPMAhzQTe30M(mm)q)jfIL6g-#~X8BC~7)a!ux*^ zMdD9~+V-Vq6~w~k;wUE<_BVNK%l?mcM1vsbbTSS|;=WArhsTc({5HCV_r+SR*tfii zB)q=UV3$zS(T^K0CC`xAIUhPO0~x_J#_1ol&%qr(`$@hLX))Ve>rkpK-ke$dsTV)L zODS9IyRyy3)gGXbD@bAF^)hlvT>S*J*Su3}aXZD~i@j?|X&1`7(V1FE;%2}%HV&5a zsOO(A&Owf~r5}Sn9LwV?pABffB8S5I$Gr3C?q0 zn+M}J?IC_v9ZOKM)ih*DWLu|(TN~vmj4Rlok|_Zh<|FeSi(fVPxAwO1cZ{^@bYF=H zW#S9lUCRZwxob6z{i);kkX*Lg*c+dfmB&$q0=pxGn~0TY-2R3%o2%~#X}4B)kXZP~ zQF)ZuwbkF)VKEK>kO-uIHE>TkQ_+a(dT$2!`&Iaxb9g6IB~^~1 z;z=VrKvpdgCpj;kYwan2XixY{?>P^Wu|K8Z8q{7nVVaIi3ck`+124&caJAB zh}R4ixvqK8o$UVr%xa?9b^f+LLwr%;pB-6i@_6Ur&&7)?v3YbJ=S$VBKeX(`Wq@U~ zxwa6?3+>2I!O#(sdXwURwIA&h@HgS{x$y7AKLct$B=EGB%fDN{)6M3Kxw@;gA)Xz8 zXUvr&0R7fDCcaDXC&XXai{PJ(?7lmEGoIqg!f!F>)3n`hIwjO{#8gPSV>H&#uyedL zYJ+*{$*-S0asL1Xbolu`tEk8D>gPe$bOAF9cr>UkEbb$Kk`_4<^hhSaz-NhqvB?2? zRZ_xKZ6c?Lh4t6)XV`iNhCE3B00*B+{heUb{4=F%5+b| z0-;!dr{z!$e60_|{{Y%2&(|+LHeOpnW2D<}x4Y1!l4rY7yUY>ToVv-hDOHXZcP)-_ zlkmsH&)aLqKNz)*GS}jgPpAI?WTx9#tTkJUJF9%)<~M+>1=k!0jm|z&+iPb{{kU%a z6?k~Ozi;tor5xbdH;Cr9w}~J)7-x&jX&EqZ5kYS3GhU4>B~`LHCt4CZuY|v`$H4yp z+P}rp*?cwet%a_wY(&?ZLM*ZC>aB+@b!T+3OCABs0}$(+^P2kB^Zp6@`$zl*n)Af} z01rG1Y2*DaILZ4xmaev%$pCd&F2r`Sk_QXtARP$rUld#a0Kr)PHR^sa(R_5eH-|>K zrL30L7gA^`a>5D5*NHA(U$h9_Ko6Nh@IG4WuRm-}e(zD2##f&i^$0KSuHu^aN4v70 z#8xhbMKeclC88wOOh)BGa}<1hhZs7}jdrn13b7%))wW`|z+Uz8SHy4lDF?%i1#Y|}qxdoYAZV9X z%CpO>M!#d5dgYPqZdImrTm9hFVwJq`8hy z3`g@>G_B@I3^8A=&7z~R`GRa^NW5>iTwJj4i~LI-QT2U?fV&BbdP}rtC&QY<#QxL}_{t zhV`rcU%;OqB93o0{{Z4&fA)P^#tn^!jbpWFW{iv!`^Ra)Dngw8L-@zzpY0Fv4^_6* z^G^Q6DLw3$lvR*u<~GTp#nq;S~>6~j+!uIiUl&*MZojm5?>aPdcK=Qtp= zuqx-C2JD_WHRw{yB^_HiYU1Ml6n*F7Z;O5}v%N8VIq^O9`mAWqY-NuUXCSB9*omaa zJo#kw+H2;o5Kc9Fi1p7H$qe5+?GCcW{{VZSie@A*Am`=C^sHSE;clmVt1Ye2L|0KB z_E#J8#$+lsfP3x$cRlOquL^t(&@5q##Xl0RV}>h&7wrjg46+GOa&rgTWGFfr7^vq2 z*Hj!Kc5&3Sta(+hi|n4wq0ww4mK6mGzF~+1kU;qXZg@Bt$6AgpH^CRylUv2%&$G^q z4lLA&e6ztNB@NDT%8`@L74}z$yfOPYcz@3?;>MEt<}#@hXJ+!*O|vvi4*YFm6yO|y zafXk$fKYV%z%_7G#?M7s~7vxX? z{yl_|fVse~*FyOH@v2DfWB7mYwRG!ktU^aH7Z&WNnAJ{M9e}uHdcRsD7 z**d9jvEBoB9!7ZGAC)TSxFNvw;=JeL7l;1UAU79PIZV*OpZ0z36*b-08ex@a2G0ya3>TAJU$JV;W zvki`l&u6NRv)==#lGzv_ugs+OA~HWJ(ll!&cJwi+S`zqHr_&nm$Ik`cUeBTUbHi<9 zLY78^%#(si1w5HzYz{M*+P}EB?Mr^&w0*72(F?fm?e>#9T+0-;gnx9TaT$Qe1w>$uIqzIO(|j_y3#HE2Hdl7V zR{69@!`l#kY%1O5lmLI_nw`9X&raGl1O7w7JcP@OE5sCxZ88JLTJ~LM!Dmmo@@;j?iC{nkWl?RI0-=F7 z3+66Ha!RP@j006Q3vEkMwT9os+DuxSLAhYQn%G^tF~grQ@^WwSb% zjXXOYrm1fXzaWX0@zO^mDuXE}C!r`v?~pT&cTn)=v#IJbjZoZa(<>0`aVlIXJ4gUq z?tP$tvdQ?@v};!SmEDZ3q!R_dm-8g*llg`=;FTFMDCeB7(AU;~v+wLh;-86{N_fBH zHmi5w&jrK-L#d{kCbhUs5(-=fm_Uk73reaRw@g$^5gKajaG@zXBlBa!{{RcTckv^{ zw%!TQpr2Bj?G!W`ZK5y=hlh|%(#f@(8;bBfMSnqmu=ng6`zZV^HXc2{zPQ#rd0`|z zWyYgt7_!o*!DosK9ZElw0OQSKBmn%5fY;EU2Y=w1nof`Kz6kytc>DW*N!3H%CaHTR zsC%S#!i18^7AKA{Jh=Y=a9F6rF>JBqbwBteO^1l|>%aI&wf%h|hG)y(+#7|$ld?-` znpS0qlk%eZdq*BvuQL;k=ekbF^r+B`cRyRa8?1O+R@831H{%iEt!BxsUA+A%-_MnS z0!Zetm`NBoJb8B#?mPq;&0qL+C+yLpc#(9!h7J9Le6ojqC|u8_iC2-ew9BQ92q&({ zf$zG%7(6-u00g-B)1~TGx4r=QlXVV|LT!TbSgz3a-5a1s10CI;1Fe0H;Lm~o02}-( z;Zvi0TGO>35!>mm3^VBs2CWn=3vQ0!K`c>9vJIev63D>vtU8|-aCgz%?wViBevEjV z#(x%kD${BjWuBXTXCZx%L3RC|dJ(x)3v};qGoSByu>S-{4J?YLcJkyrpi#h=O>J{NWfgO{*Z%-(Pl6g}ha}Mc8EUWMeP&iIYk8`O?wO-;kfH2j zbzq$BWruO@#EjR(e-WYhKk<*m$4dR6JPsz8R*miMHK?zJ-LwrF?m=>}Y`=@A?$Pb= zSbz$#$^3r!^W)!+XT^HHjo{A$>AnR`b|5at*}l#viV)6>v)ep&KPN5$LxM@##DIS| zf8i?ewVtT!b*sJ1ai|g-hWkVTOMe7W>~KBGei^S?hFs;X{{T~(ScS4j?dOYrE&jrP z19eHfDe!~h4yaz7*ANukJKo zh2;2h+i<&0K~@JF*bTBZ!pj~*C|%!a49)y2(!NO4e`~+l#(fSi4(tB_53D>|01oF; zvP-u@pkR-*Ixryo%F)Cz>&0^#&+SX_Csv0|(=@#*T`u27REi5W3wS~XEU~4X+%qYR z5^=Pl{{U}*2I~hqYMCyqU60g%g1;ZXWbcT2Wv`31S@k~#TWMurj_oh*Y*q!30(^;J zm5~uoDpFKj_C3E{J`;Y>dXIqgyX{xN`s@5bw0O+geEPJLBf$A8hFheLSf?dV1?9*c z8z#RZe`O!rN8qQ0?QQ1xmoAk)i*;+fM{T0dVR(~ae7IzV*6P*b!EMhO4Z8p?2_vo5 z{{Y~qKd?`Lyk%{9;ZKBDz7o`I?iPRTDD5VeMBB zB+jZ_ty%v7nfk@A{@H&R;nD1Mzly#By=xd`SdO8j&ODfeM7|#cvjJyr|Uq$;uYfa*B zhW;jk+TKDGuB~J*tzc8hM3T_0+-lqn%w+4FV!ofWPXTzpz?-~(;QL)uRJf7SShQ!B z?6U8~G5}+OLmu2SMnW(rZsr3u&Z8*#Sn5e>Z4apQ9U9u!%TBiVOK+!L-)z}5x`F|7 zb07c-4A${W99bNlv1|tbU{-W4U3`F=^aMjLQJ*l@$9+>x7`y_n>Z(&g_9 zT>L!MCbzQihmWtkRTZ25{{Tuimd+TR%DleY=#G6^w{7X%TDb9rloPxW*=VY$#X_;T zb^sh;w>yui@79yzFT_uTo*&dC@V~{chxh4aBdXf#THc=}#gn!-f2>7m;*m3*z$oCA zd;)9bxxe7Azpy`tC2tQ8+7IFVxUeSQ$`izPd0!^qnnHeDW0Fl{8@*yegL@G5AUU z00!ylI;V#rzxa>w!shPcakivE>68RJ`P$SpMw z5-i$gx2Rfq?Wf#Ku-%46!h0yyw~U?H@+HE*BTq zP|vE|w2^dMi-&h-Wh3P+CeT1VMSahAuXvi@#%SF# zz~=<*lPY-m^Tm3WkE81s3*^rho8;^tq)G-?)19!NPE=b^4DnWcHFa~g7T zyWY>p^Sv8LwD6Uy=w1QTFI^*!G_=s~B}+&^URpS=<3e`r`?1J(ard!W7Fy-7)ZbZ` zO`l5CuAS|kE7XoRV1ON}42-jkHw_te+s-q^Wq8NpZinz+P13CXH@(DS;e4jnEiCRL z)80i23r@}+3qs`KQb`K+8~SIf)OD>F#2Pu%-qO=rv2{rxhH|qM;1u$m1|wnA6yw{y za>ci*cP3G`==1%1!`E6py^fvX&2ldbTFdNqBBp22xIP zL00WfoG+vTZ7t7o)P5%X93CT!#r`6fPmcE9CV*U|h;=yCmjwio?^$-|q>SJZ$2hMu zZ;ZN3T7B-Rp=y_&IEpY9DD5rdv(%Ld#@F*6IHXk>$&Uo!5QNvxP_MxqGgQ2T!B#f< zE~7kB3s{3Q=?`(8!Q@B=>v&uQK`w(!-uTi@uGejHeF`|mv#(9CjK zqjp%z3IW=-K=v}sS3lHXB+YorD;QGtqY zDN;Z|=Zq1>a~jvi4-qbzXQO;H@dcNM(bh2RY@!z-=a-b=68 z*~Z^&YfmX|lpL8G?9I1v!TGWC9(IG$w~ie)x)}R!GwpvE{@8yA{t#*};jbENlG|{R z+qCm}cCzp{7;fchBw?PQjmIA#Dr#(RBI5ccUX1Sv^I^B!}Zu0nbQJXdsZQkID~=4UKKW3l?p z;qTh-;*E}*Bm6{dIw&E^NqeI-t8a7(+6;D4$29RV`^=_C*faB-W~yo*wvT|U^!T-n ze^sAR`wJGfm+d0c$vOFud5+#=>Ns-|ZKorr%aAxMafIJ`ULFpJubPw7Y0<)6aQ3BS|S@GY!53Wd?JRF~H{oyRH8K;H?&3 zOf!9_MTWvRD3Q!TDe6(-SCTdZI4VFrEBT|-&&3ZFPc@&1E@8NhS1zfr&IlhcWh$Ux zkfm>VBMP zf45$p;>&w&BjOIZZ{VwjxqF3O4PsZ8cMN5D?5$OnU{Bt|4t)#p1JF5$s2bS1jouIR+Do<7! z1Fb~z+CTE`*p-+|?P`BOJ{tYJbblMAr23wZYdwvWiFIc^;M?U)pC~INteYfIPdiB* zf)7KvYx`UHF3VGn>rnWQY%K2NZ`^AFCzdwJ%G+MsEH?6Fl|@-p9+_^r{(CO|AnE#S z$4~f$sl($LtwKnKNZQWo-+*!FN4iE_{{VV0TeP$gx*}@683udnN z#1Kx_&Lm8pjL6H57O!lZ^fmtwfCz{eu zq~zn|DmlUR`FG+U#vKn-v!6%PE^XFS%Evsmtu(Ny0lryfloG&l2FJYnL08O!!vTSd8^8IB~n^3v8|s&E_39YGNG`ke>SJ>{S*W%W6xS_Pw?=LR`NDFF=A&js;C}fPs4&$Gf%1i(V zDl4PYekfb`c2fqqX$8g7sUymP5-h0slt{-TJm7)}Jvpy4KL>R^KJHyg8D+bKKbz!* zDKK0O%-ix@^c^}?`+peR=_s0Lu%A(8EE?3WpR)&O+`CYwa4=M_9r0K7Xv;{m2~DkT zeL^{Y-MbeBB)G)ttFst8wzC2_$zpjuab4ZV?M?Arqm1a#$!`n(^Drz* zyN@G!vcBWTLJuFO#dh8;u+-A(0So98g)JO6Dvu8F@__NL-h zq+F{gBoaBUCf_e(+Z0)AJxKpI6MI-LqjKU(h;37v7u`QlX4;{`1Fej6TDx{Id3Ek;~-`udj z_jbV9Tg`H;g||$^NxL3|EPXo`SOHroko)x#4NCsiM zxAT=Z$=!ge>ZK?Ct^&}JR zLc-H-2Kn0J;3Y-JfueL$0ULG5fD)Q`l_37~^iY|~}>S9p9e2pVQ zNnRL;&r{bJJf6b2JDcqW;G0WJi0&>eo690eGawxb5=%JbcLWZe)#Lso*R;JF$L*Ha zQ%JkEh-8??RhOJ>FVp>?GCJ3qTl``1eVxpal!Iz7b0%Z523lHmwEfSyox+DIgvarjmJOXB^G zlNwvJGRw1-*cBo!PH;1pDaqOnGwDLZ>#8Z$Z)S7XUM|)3+i<#-vaAaK05!xbBr4eX zNp+2YeCKdd3IcP3+ng}zrq!YFye?!c305f_<#Uc^QW1x!`8dZMVyXC-;s&*-NMSlO zKRFHNTSFw$BWIB4NkVbl5spSHht{urOZ}X(8KHQG?^Dk$9DslU`4%!sAZLOA>&13M z4wBHB)xPG-YThXqk=kok7MAwb{Dp|-Y>t390yg!?&(^%pTEFmiuc#d!<5ar5x|&1& zhjlnHlEnV$5dc;T#y2@{YQVkmJ-zg1Eq?6W+Lp|g?4e_J9N+~c`)=bOjd7EBlG{s? zX*7E)dE!x$u&ae#-L}FoF`m1L&o#7YIGH)N^gWV4i+>dS1qsuA7 z=&;oF3w=H{V5K94?)HK+ktC%+9dZzsW!~`|o^c8m8DZ46 z>{mo-CiNrQ$sKlq<6Ex@>Sx6Ie6wB)c5x%y&Scy_yDG+ZFl_zSTywy$f42CoapJuy z*F_p-_K6*f36@Pd>2&**c|P;BQL72g4@r;!JC3#UhLx)LyHB!f{X0Xqg56&^nPJ;3Q*W{G2=c)|YwwlD59=`UL==V?AHS!C0-8#bNBI!PR|DgD=6l{qco0nr!dVJyT7Wow<$}g3SRRbZsnyt_iH~8-CI{--aEe z@YL<8NhC^I=E;&cK|`I4tXglB<8r)cq;?}UHj|@%&)yK!pr6C~ma7$mqnYe2=YrzV zjH7N6E41?z#lcpHs`n^s=Ud$#(&xoD9wL)Mit(W=(OubHz1u||aGqo?ury~MeS~{S z&$e=nEAE1I7Uz&^{{R*(b=^wx1=BQ}Yt2ZThFu=PqPb^61Io+0%MMEo@3j((mSgs0y*|jYAxL?=Y)u8RN0zJ@Hp&0VB*XTPy1@>DXig& z&PZVjHbUihuTR~L>WOVDu;A0im zLEz6F+grzBu11Lqsc$akXPf0_IXh!w0dA!31&33`ex+Id$i6bt?V#4J<p&Bv;s<0l(mz z-xO}VOKXG(yO*I6dr!*Ae#Mx_$T2OKMf9@@HOl- zIdutzOCzug^c>TiYGXUBU#5M1bg749q{w1U;Ht@T|y zP}$}(ADK<0tsC2wQ@E0iz`z;iysG(?NjohMLKGmQeb37nKj4vZ__oSTH$c{7)NgIw za!5$yU$@VIsX7=KZ!aW#ovSFyMs|kg|xC?+RX*syt1H{GWvbQNENm)b;^*+LCLP$ z;TP;_wmuV@!7bYu=xK(BwN`ssnV!s&Pn8+gsbph*tv(F7mt(M+cwq{{ZbLu6Sn7 z-q%9c?>swuB&`L+7Rx@brj6Oj`PChMi__GKudCPS{@{3s>upclpNV=u>@9KP8N46y zF2+40Qnq%1FQbm{O)WBw#KC{%#{|T5A1MbM5-ZAnC4a#}z6Sgy(zJg9{5kPewyk%j zFWD~NQ8zboOd%g3d2CWOSsSanhs$&r$*;-F{{V{r03S7vJ5sWNFWV5**bW>?E6CAO&c%3Ea=lj?M_8G5+ejxtTFXO2S zc;#iW+UI;W1*LaZ8U5nVw`&7~h3nTC;=Hdx@OF;AE1vtq-Y2vWPi&J)vPj8&y#3gj zFvW_2*LTaFdgiWM{7JU(z0tSvUxwSnSCHJRTFI$N8W^^H!iFS~q}|kRaB;!z2I_<( zvcKTSb(`GwZwx+;WEzKsZmri&yM)N{UtY`hr-@I_W3iA$9E=YbUCd9*&1UKsHoA;) zTIo72r>AKa*^RXum$uOS(s?eBO8o%oxkDdp*OhpK#u}H!?N9qtOVnl4?wU1;;GQ_8 zhvg*gis~_xIVS*>9R@vo*8c#+-YvDbmqVFg)h%t@pgO$j(G97{h`#xkla1-g$I1vf z7aCG)Q#~2!cAgjTjrWY^*R-D;#FE;gEN0jkCwVjXe$gwXvD^kZBph-(S4Xbu`t;FS zTX^5X66&$WU7^%9Vz*Pt8UEz9N`aM!I5`A%ZY#j1eIc#i{T|{ANl*zRg^bV=yyclf zTr#I5e7uec_2~R9&{}GjKiSgVG?I}U{i1a$*bO9RKP>M9AS{RF7(AQ~l4-RK zPAh38*Pixm=gdS;?DW7q;1icVgtr5yYJ2WuYZPugUEp+s`$e?-8#|LA3FnzE3E9RL z+1M(R>J;=mdi8oUc&zEkt@v`*OVKEml`Z8<0!!ejFwM6q!N%0bZPm+bJ}c1lYu0ws z%U!Yt1y&gA=tmAC4=RbM*6bnk~7&mLSBCOA*C?IsPN@e~!FKANIxF@$n7eC7SC}o?$FN94UBbFCw=) zK*!S+#oBnJ-(G!^>S#^CEW7QPTejyIBpEj;<0GIstfQB!B#q~Zi&nAw1Mz?U3k&gv z$5k)jUkYhDKiXe5nvSNUQIX=^^1N`vsL9264e$IF>-LoKex!8I5na!$ zA;<1?t621?Rfrk=aac~(|Yq^r}h2tB*b{IYQ z1JruIhPxB(+B?#5?GJNM8;= zYR`jH=$AUj#B2L2Cy#>+8r(XVakP^o#L9^h^Npd2-;vN)k$i9X`S6>=HaEIQfc$6S zzX8pAZjOJn^-zWsjU0&~g5prIs{#q~*+Y;zkSp**Sn$t|b)N*a-}dyN-FlWvV7_^)df-}##rTv_ouW`>1 zebcD?8u*Xn{Vn`sul!@uyiubj*?@;xO*3k#KRH%kn`pry6)|OEz-X*+v#mG=I zx+PyQw*+BIk4)B0rKg8AyP0BHr;_1Vln&<7CQ`!~+qj=Vr)dMGYt^TRYj^h?RVR0# z-7fRNFlwK^w3I>)_~V{n>&I0j7|vL6&Tvn9`VYf@6?`?SY0~Kl@aD=}epsW+=KBU^ zWL>*^5L?!~GI+dmZE+R4>DKo0GZ@=#zHp=NpEx$=EIJ&Fck5EONEK8eP=|#|Q zBPbf;BGPaKthfrf{v!DwP;*so^&%}Nsq7va*X%BJR2~t$PYtrLCr*ayNpiyn9#zlC zs6hF=wd>C8*JKYTeS?v8tcIIX>EPk~+>i8b$rUMj!SHFy*Ea9dk0 zq*y;bUBolM-d0E%`PG2vK(2eOj>t++W23S7;|GNF$ZvnM9vKxxaIL`d@ zWIb|5))?oJUvYdp{{Vu4e$(C*w6xc}DQTo?7Itv?QbBuhKC^CR1$?=_(fg^FXa#n( zvJac@17Dx^pAfz|_>)Cw?ffTV@*Pwm-*hOUbwK)~(^@aL+Zqi*))ewAncG zUe*~|%#1i<3~G9WQ=I&tB)$juTX^yKD^t>SsTh0H-} zb**#71sD4o!X^v7Ww}0lyUD@X7TDVZIXQ5BD2@^fp)r#qFIr+JvVosy$ntop`TEPuRcqst5#s3+Hvm3~jB{k?K{hgADo*2<|IY zMLmIHAKG?5|I+@pJWZr{2gafZ{vcVU#EMkGaR%sSv~@U1A$5N-Kik0@v4fGtb1-fFZt$*?!a*?0o>g-3umy_`yI%}=U-rH5ABHtOR_nk% zJ8u=}$qe@cM7xD->d)(G)&`d*itY7b$!09IsC)X ze`rf>cff{qvi>BnD?eldJK{i2}pCXM4y*{j59Z>L2yy}i$b z{6QExNwI`1avd&vWJzsjh!E(L8DnBLouGzaTe#Eo{{S4`r~DQr&{=ABlCo+L zxI2t;$)7H0{Z>Fh8R~f*9p<;GXj+Cf*e-9hDZHp6ztR>N&zRUvw~#D;Y#^Vy;hHna zW?FXsVM2EJb@e_R)IKoyTgJZ^@4gIcH@BV~@kA}=+ga*x8!L&{HaU{m1DUczV5V6> z%K!)_$B+IUCy3*UA0O*iGF)2*5qWA1iIIXw$mcjcNey3nc+0|{2mDYikBqDzP&U&U zZKsk@w-)CcTgsaum5=cu1xUy_ug|S_;YWx*0sXSmz{{!Y+6CRc_1sX$cGLMcK4+SW z;(6{ap^s^0A7)8o2N;eez^=t5Z+Pc&wy@Co&s2)X!H{AZE;ZYGDDxci$kE(q0}JK3 z#^Oib8vx^uroI>Wk^6XD{5{nhMz+$gTV_&ADN9Qt=jLyb)wbs#ZXYXtwf0wwJ|*}! zR<@e+QPFN;zk@9ynZ)+)+zs~gtGYPJ!Da}{(Soodz6{rVOQ3k)#P^yUIz@{_fd2a4 z&LU%>JgM2?`kERf23W+DnEE?A<^cFmOogTn?G=(^1l6d%XoFYerUY zJ2I7J2kw!Lo4amKeNSrlu=A${?jy>n&fVGZ&6c;X>vr(?b5^-q^&spsNQpQkWI2%V zPCGFi^fjbD53ao#o55)_T@aIfmi2PXySAAN%Z0#iT=8F9Tj-i$hABK1WNfZofEI{? zSXxqXkmwPEHyJEKj^tN2Y2ZJI3$7-gScD2Ngyy1R#K&Ls#ZU=6)*&2y! z9SrsAc?XBI$-ESr_ciE4!Cwz`?ME7uC578< z*s;mw$1Ar#G=QC+oMWChafJy%WjCcz$JFY`nMhHDb7jVAT#vOhdSqiwHB7kNRG}$0inDO z-eRF7i5B76j!$!reKB69HEj-m4YGVlp3he;^CQ`bMc6IIWN?thpHgsob+13uymP5) zx5I1NC5-8pf=MQtG8g!RDBPv7{4y2C09U7IR(}cg+xv|_M4nrlxmY{tv*O$^i~xSm zIaVwQAQdd9j+q&*c{jX(<`?1CgQaK|z98_d6Y9wvs`nPsT%lhpZ`~plO{H^_mMlLS z(D0wd{{Rw22iW{SqMOYe0+Q+RLiZNU-!e48ut^7Y7<9oMbJbdF@8IoDMACdSCYdQN ziy+?MKLv{!SR|PM4CG_3PkSq^*!bEBE_`ERG}Z$#UTLxy-dGg@?3;980!HZ~l@D>~ zQg>FKp{GNoxV^vlxUuQcUyljQ>Zj~C*9&cC+lWviYhZrwP_iQA6N=$Aj}LgK;V!)J z!#T3pz)sdhQZ@`Wk1)yRB!J`P%ws3-ZK`^&fp6^Z-&zp0+$jS^aV?BqNLC}}-mYbt zTPnXZvJ3;tgNp7vEqANwx>Q#1=tlcZn{)k>Rso?5SO#QiN)60LSITD@=dCq$@allT zNjw|l>$E!r&E_*L&Ad$_Z)^u?B350*?ZaSjKIpE~{uS4VbUS9$r;ktj9B;Zi$VoJw|0@eIp3PP~>uKp|Mj1eS> zCzb-ASp#k=J7H4LGpxpD@39c?wg>R6+ z9Z^>}JDIuZo(^4?+RzV9H~ts!1Q6Qm7V_y=(-I|Dc^S65e4&`hi#w)ne zJa_O)*8Uso`R;7pL63cy^I$wN#gMo_LurW zkVdgY5Xhe|%-(9g9{>3^mo?(*a*36Uzjf7upVYdXdGrC0@;0!QV zW&?wo=Ct36T2G4(ZZwOV$5r0<7V8{x$ellVA2>%GK(;KC4wuB%M7@n)}Ya(pt-+yvU~4Z`_y#;QJ6f17yPyzuOYsjZDCUA$01kM6L~ zAPS}7{W=R4ZDYeQuBEUOIhI2cMUq(m0Hde{GIBuNPrrKUHLnNwXT)-?x{FIo-Twe8 z-0wE$9Ds~N6<~T78+!~_CF1)}7*Od6j$6pV$jhc^yE$)0%yaMx?*_$Kpd66A}DB}SG9svfbI2A2+WWx~8 zyL?6QU&lH;^4RN_cS&oxM%_TI%y$6e43G>*#yBCA_swt@o-ei5G-A4xQ|W-SH`<}Z zaJO7~*b`=y6^`BO~&p?phyZmpnct7B~z*u)YxARvq#zG(nA`$_n7lT{`0&bh03 z%Kk-#%P*G9b!S83~xNEz-pJrKcZsS~Zt&#EqD*7TX1QPXtq-a?R%AmWjY^e`1V$L~GH*NN;Jv+qG>l)))&u6k* zqA;?^Ws}e%k+nGFoSb@Bx9A@N{7)5)&bz7Fjbcc4`Dv%xxw#7caR&oF;re9azLEG> z@KfOjk8H~Lq)0B|$Dd~!2yU(2PB2Qk%^A)KB#&&@HA=9Kh}~i2)z2L8Uw~fMN}pS` z)l7F7LM`WG1bdD_4J2zMiaFqg<2>EQ z01Rtax;4~+Pzzg#?jw|S#Fnyou?+XxLB~8A`8VQ^jM8SeVv=0Ik%0FadPfmi2mmtXLa*xC8a%vVl@gdw}ecgXqqyRI?pIIlbKuYt6^7XCS> z(=Gf&75-_h?%CyyLBT#$gaNemDo@hA96cK=z0N9@WH;L1g)eQ)cCfCXk@7>p?>Im1 zw<!GII>4q1D zu*z>tZ69DqluMF-x<*Iy(Syd8ng)Xg0NWjFdSwZR7YkO9`_kyk9NSsJrMieTb-Ou;d1ptx#@-y6l zR^j-+Z>GsK(?f8Rr~*N91fwU84q7+kuw44$x$Ey8c&k~x`&E#;(=DVZWoaZ4#ULkc z1+gWE9Wk^M*P7_H-lz`a!q(QhW|D5LrMx$2?yUi|`!GNbG9+g!Ajct-c5}#Hm6xk) zUKSUAefEQAE9}cjv65T?(V7zwZls)s9=WeIyiIP&g~7j+!y|5yt!>gdQzty5GvJlu z*#au-lZ$ z{{WU_amG37K{Zu-Ez~JV*++Aregz1ke*!pAOSL{3R=F7l$^88%zY~K&<{5dmQ z-Az8&VU-H2{h|xDWVbfb6Y>^2ut?gcf$y3Z{1XTEYi)MN#@-6?9qyfGvqLxWbTHhpw8`aSzOB-1XfGA|Jo#bR<$0Tn~e&Xcfyo!;nDP24I z9hBt+uDAQo)~#Q_C*a?R?w3vQME)Z1eVXh|N5eNUF}GGxlP;SI!{x`<r2vskDMyR16#``3%yZE;b||nUQ%I1J}hoed9Oyd8W%J ziu5a+J%cjHV_T?+CkwZ7l{<;raG^oRt#3^x(tnAJ)|($SFYQn98^>N7wD@%T9p;T} zk`nWHdRc51H9cNP(UdUc;RBWGO4Z5qABq-}Z~K=3a+FG2}#}YcU6s z7#^H=u0ve-<>B8D-9;yltYxuFnAQ}O%9h}wj4so6)9orp1uO*+yKMuTeuEU|}$NM7wMcuN}2DpP5;iR}9ypJc6 zOM&Z-m5HtVNbx6xEmOi?IML*~vF0#!Gxn1qZm@|Fyv7*dU{C zxrN4dlF-IvZrH?%8-hp6f_F7<5BPh;+EuhZEE9dICl5XTl2#ux`@o}?`AFpYbpThJ zXf8ip(m&4Zpu=I|--y%LUHFpj2ro3i z(XGI?aF-G}+RoxR7A=d6?c@@A05Mv--uE<&dbCBOct=9D)b1wuM{x~n7*MJ zHg<_OF*s}-908HQ;;^i~A$XTlj9Kg2GHbSlu^d`~TV_x`@e8q}k%wX-&PONHvHt*s zR!4*v&kM5?ly$em0)L1%9`)JScymtiCERxYEYhsB=pPnHHX#?Uhao2Nw@4g}B-? z3T+=wYFc};{=Q^7dg#u5ZoV1Z8E?MFcV^7wM3*v)yEO=>cJxCGq-T+raHEcTRxZ8Z z9~OA2+-C-v+dWC9vtwk)Dqra zTM1Ppm4uSKmuvF^K}b%`gpzk{Svq6hyF0yCS@8Y*E8_J2-_zpr72~^&+A!GZ4b-E| z_Y4_I;9z4FjjZ_J!I~?@2nR&JEF|BlV*6trO5$Q2LuV?=gn@&OYE)$OPeG=os|ybi zYgQ0Nq4;RNr5BdpEv?Ed5hz^Zb&#)=pmYpB-5#}VHOYKK1;>Y{w2Mr;8C~{U?q$X} zkH>`DMADI6#i_S$wvJJO%~UbVpUj82~~GoTxqW{6XUX z01WuL+IcnNn!Uq?WA->6IZyx>i;0X!JPZ{G;LM!juoM2#%I&OT+oMV5CmjBaV&^PYc$I47lJU3kaFa+$Q>?6G)|BAFWQ@e5^2H`a6v-69X{?ruYk>&Yp6`MHfa5*QXa8me+ z;>FBfG?P)(VRR72*HI^vv3mTr$}x=KGXi4On9m*jntlB8Z&lMs@}r0k zxwhkbWam4AjC2CIi?0nypm?4e+sjLhPIfqoNp%O7akzZDVUdhcF=Rgo0hB7wmMIYN?i+#t;>^e)Y-vog<0xq@ky z39)G|@R6zsQ0zIuNrP?AP8UA?>xS2L?++%X_Zo(iX>BAcv?&gxo(AQM0Wv!y4ZK#K zsixfCUYESTXrTk=h6ut)PdNrw$U)HKXeZQHIjQQh!=S*Hu!$hDkh{xvjeOo;Oa_0I zNbGlGHQ5N?SE!{=OOW5(>mDPuYs8vj%1DFlC@teqqjuC~#Cx&)InFwolGYtgSRJnB z4G`P=mI*jR)R8Kb+6eV6j=ihfbT5Keo;~n1emL=Fr(xmU6U;3O-@XeS+fL}W{_mhU zEHjP+3|Akkd@}fX;k1tL!oDuF)vj1SpZ%U$P#(#NRxm>h9Q@?<7!{JQ4Ps*$H?i*D z4SpX>@sq=Lrfpeu2e&V7Y;_m8Fz|7JV+J9B0U3$Ab6=)@75@N&ciZ^y!^++(hCMpf zqDdi^D|dMDj0E%ARO$%8*%{7zSLOcz?AhYIF3ZKsq0i;%t#r|#xZWYSExXHS1&N7@ z2FOyUDi2;O^;bstm+`m3lYeITKgAkXimc#>x>{<+ODT_bQGITbKrlG~+YfVICN8AY zv`SgAI(u7Rh&Hz{HPk_c z-<3OCsVDB6h)^Pt+mK1>0L6T<;=hPGUCh&XyTN`W@a5bvLXs14JcXBWARxF6u~@b_ zU^051;;2@e(Thu;HYbGs5W_q(cr!-v3>uc5wpWTM-x({YcpE-eIm(*EiU2RkP-(RHMo%3@e5G~! zO?b}w=1bene@-(@#oU`xa?EmhVoB$@B>I}i)U|=8NV=8GMt6{TjV0Z~LKy!5c~&*p z0VAB86V!oL6XR{cKzx`JkGteR*!It#&OK^nLJ8`KjaShB)BMA;@Sns>!!y8|m)fml z3?h{zEAoySKP5oO>{pI4n)dr!{{W6K7_O!8#;Y9iBDvO9bEioO0AZRbWoYIYA9a)# z1J=Ij_@nzq{5jX5m&3C7ay>@IS9v1HmOn2C1f;taquNG8DJMNE{FQ#f&=HdkhFC;~o zz+u50C)bmXwe0$T{1lJk+StpXc$&u3#TsSG2<5fZu_Qx~L5WnUiGjfkqi`c5-{jdf z-wA!a@2_vJubr6AVT#^q_uzGJnPcyQI3V?^4X!Qrw*C8fK3&4Y<#I049v%3s^#;m)D1N2z#z*HY8(W_g}=(_;qC;fN&3a{p0usl|ES-|f-y z2U;sN&YIDyOx{y{t(iw)!wC`EM?b=SM|%A0wu?;GH2J6Sm6~1MuMzEOEre>M?k^m; z!u7|>Po-~KYf{{#QQNJZz0@F?fiqkzs?CA6H}d0C#yBi9>6)luDaS~m&l=w6(ifi@ zd>^j(g5u-EF*n*J!(7_IZq03TAUqqWBvAy6N{^o+PzFPHti1;7;1;u~P2x`s>G0_u zA&+yzrOPG67VX>2jhiaLfzBf@jNpO69yzbKhi~m5(dE<^PP-Wm2inEAnArJ-LbJv? z5EP7kDQx^P;UTC*pV*#l@gL~-6UQyWAp;<_)V^YZaq^y9rUnLUp<$!bMr5%L+Md~O z@&5o;@FbsO@c#gWEo9Zpt4wU-m?&PLGmb$dbyfQD*6yeA{{TwyZK`SBH`A9wXeKQk z#ht*GEbClIO~-^m3I+eYCb1xn{8ALBT!gM zH1WtxML{I1E-;>l2aMLrlu?wMdW^Kwq=}jI>rtoN#Bd|K#3h4~oT`F*^QfpY;gKXAOMq#)F zXDM`Dfx!L~^KsA|3hA^j0eml-JADsZmh)Y=-Im<)KbAUu^jAM!*Z}ZA0=I=ky4;?J z%X)8)z7}6ze`omWL#I!ZvUtln7g7K+Ll(k8>T!YXUeRy%p9|V0^p<*jnr_cD-lIit zYa~sbubg?YzDL|D+@7bceY5bp;LpQ78(WSq25UMtqZme%*xbBOY7nyEjp+(H&c7}; zsw-!xH9LHE_+@8*bEVtKQ>}0nbh=il!xB-HFhtcRXjo z`YxxdX%?{ft8a)j%jDd!J||e>CxDaW6f687sBSVq&TF!VP4J$8k?DU7B3b2mU+o%p zwRz=BBIkv)crc}x_(a$w<0N9W4yW+@#F1SugJ9D1+xxK`lFtg6;2Ghbdsvwv4nV<~ zLHR}qIN}*T1^Idj*EM(3ZM5rn!%cr{F!DE&HnW9lJ@-^L9&9l}Y z!B0M^Hk#T^)Q-kWi^*b&Spx7DKQJki7#p@30}Qu(Rt~N46T`kXMz+`VsO~ixG8*#0 zh+L3xrIE~NTQT)UEsx@ZKF77_YCb^*bLYa>C5hM(fl(S1%@1o_R!2M*wlp z33cF~g}VKc+V}>0STzY5m2I!Co>!R&0ahtQh!wNIGDh5ba%lFE>Wo!4(VkIt;KjM$ zsQ5DI_=?3teWUl@b0eMrn%)M6NV&?8<$>=N1n(R+aRm}NyvnpyD*Mz)(2mDQL;?gw+ zkom4d%WAS7n3d5E<^Yu?LaF0ExEhV5ejh7;YjZBGHNTV=TWJzPrywbqq>5E~45%Rg z0C-n_s=?q(Z9LrQ)4z!<+lHN8r9h=QS4o2<4Gsy>xaQe*ic!x~2n#)VL z(PUiij6yD>Wh8^Q?BxSzKOiivob|2;;r{@KwQnDIg*-9g4SP}2wFG&wZ>lW%OShIX z=H4k0Jix#cjqQcYFyfqGlHSAQd!x`SWYe@clnHhut`$|~dxwy*`FA16=lzA+qP^Qn z_+4}2wp;AQ8Iv0t{e&qeP0JIIp+(yMGB7{F ztVRbICl!rWw@lJB^ttOAR+aGM;a7=t{{Rbk{`MUgRJk5?qsa3xW@C_JyJi;q^Ty9P zn`jtN0LRmFcuV2VuX`tmHMrJ$&86DmC3F)zjv7@!sUc!A3Be>}Fza6lXcyiax6!1B zMe&t}yQ5qjU1_tzl39izos!zj?IJKE{+YIV=DBT8$Coo$X`USTZ{jF?Ef$>%Lmi4( z7O6h2cRpvLpXpPG8h~|n1$m4Ktm9fD9gO8j1ajg75@txai zo-KP#M)%~DT-z44yI9Eqb8xIfZ{s2TdBt|np!a4qWS#Ay;NCm%Cx@(z@%Up(9D z^ZBrx9BuO(5&{oUS+S04uYvp_;^<5Q?gJA>17H=Dia| zpFmF%NvZrk(scg-63T$)+TsQpoD0+yxRPmOp9eVG<@yCV=j%TV{?I=aXT2W}E$pme zkYF{8tsj}PKsl1sETpL)FDa9ZWY?yrD61olo>SrP*ze-s#XAPqwRO|9_*f{4@>_!? z!BS2Fi(u&40GvF8e=6F${fvBj;f+QM{{Zb3@lBj8tu>{k=+o{&2c&UaDT&DGwWVFd zC3_0@czz#4;d|%SJUge`_*(6ijMnxSQpcw|za`$x??iBUCOwBd70)BeptSMIYv$j_ zHuGvW*K=);Qql;$flKg;@xJSrd-BLv{jpr~ttas4UW-I~@59NyAH$=F{G01PEv16u z4N*SEEu~Tsqw?h28|^tJKtiy?DI=Qo$UJrXId~rCE6pETlT5ldJEi+2yWi>Tcvlj~ zDG01b8{v=~k<<$L3smse!wqZ;4;5WQez5W)zP>U^8)pY#Mv_Dz4oVo$7~>VqKZkrJ zq*%|U{65s?zh!;a*0<8IwL-v#RJll{kw-g}$b_ElgIrUfr7OvrDcO6c-(EWXx;`5C zO6B12b(EL($O5eJNgD4eIrAZ1vn~!sHO&THH&T+_+s~2O>NyIKsL{%$mC$YgD8cE) zcGsQ@_-%BG-Z8yvGieYXXlITcvKGfN7C9Ypl?OdWD&dBvz9n(0?QCZ0x{t^265PqE zF1>MW4*vk&EzE*xqQepx%(1rf^JC`PPjD-}(R52aZsYzDkBR;^y|B8HZKlTV*eYEq z+mjPc%?!*z=gZE~&fM3``t8=A9h}y>4~SO$MJWMokv#W}hT!s+$jSSmLLX6#;<)&J zENZam(%4&S_m>v(w#jXE2T4mhblV%DSeOot8ivn8E34UQ?*2tOm(ic2n(yrY0PqGo zF{StmS+>$O7>GOMh+U=zcNSJFh5rC`m#+tk_;NecwQdY@`KxQY8^6{t3OK`z@k#5NM)J`jncr)x=^(yFOfK#lhS$2vuRv0H3aV`E+69xNSefQd(czsKno6Pa zcC33iM!*;(HhpW*q|(ynXFq1XBhs-BpQBtw6B0jqvD-w%jzMWyWOn&gy(_HnN5OxH z{v}D5O1FmDC2T^G%5I}Z2b|>-X~D<~kUQ~P-VpH?pQ-C{_*+=DvPG4IK`va}$PPF! z5}Yp?97w*k`lI_bd@t~9dL7I@1e#biIY9DLRFYY2hSGO@v6FQY$=Oxh1A;Sx4>l(k z%dLy03(Cjki~i5Q61*XG2BGl-N7bUUTo1PGGuwi4KtEa-Ts@UBw zr=!TRf=L&v`}mjz4p_Rq;epY1T4Gh2fgvGUYcI z!^In{GCFgO+>UWxIi?LdAsvs246=>DZn|G2bivz&*~dKYBh=UL$L%rUjcGm*&bF_0 z;!SGOH(BmvvbDC<=Z`018DUQ-xJ+OH8nMG2xy^nBj}mxy!@Aq)TD12zvq^FL=d0D<2>!2=VM? zCyagduTio16RG(^>%tn$zDl>2w&(X(K&Z)CC6ox%l1?_~BL^b8e}tNyhluppo^3Ny zvxK8|?DuLSbE(Ry9N57OL;05g zukf9?JxCpE2~>;H);6Y@b`1ws@GhBcu1s1v1b%M)1~Dv00|8o7`<6W5Dm z;kS=<`#n>}8V$6U5T+u#ic#l|;ocSsj#ZcC`Il+P$2G%Cq(vORY-IKi*Gq zV=QT=WO7Z!XtPLEj^;GT=Wrsl{4eoiOTN^u^$4_4V}E?Z&%V&%^Cv~e0}`x+ApmaK zwD&ybvy>g2mZQ5;KSKT+`~&gT-m7FZ8?Wu%9`v824!*^VgPY;fr zckK`HtM)bcEemLWv=VAQCe~RR2;tK$rIzI+w*xVqLNJiWFlHYt*C!sF8vLm7Z-zWu ztX}E2$*La{+FZF?ai}%Ho)_W5vhYx^-pb>rBfWGN9y{?jfn4}|;s&wy>vUa@X@3N! z0%Z9>Gs?l(4Bho@J7yc@~)ilFx@y^cHSfXMD z&9NVE5&$=RiSlk>c^i=TBNfGXZ{hEUd}F4QZ*gIJsxwI%*j&slXOh^GSBTa>F~H;? zn*@$X&TG-N87%c3GFd)1TUuN;{l0FOGRb~sJOc5e-%1c|Dm)k~oijVDo|!RcZy3v) zAPk(G_oB~z%S|tIoSzeG*6Dj?b#-qElMy}ZwUkVwqbm)Iw0f!>bfW&xUAvB0yj6E& zs4JI7nPFij183yAR)i72IV$<%HOzlyMX6d%t!WZZWi`$gNcF)YmRIL`PdRxu@^S#c z9l5I-u9>WOVUjrnx2I?lExARuVyB>aw>K(zDwy;lsl7BCPUkT-mx1)#ud&_QE~e`3 z=02rx!qPQPfJTiRP6zj#IS1Oh5BN#7ttD->4+z-3$$j2Hv$Tz^He(D`<8vHf;~S0+ zF_J4P9~1aO&UZx8(@maMX%^)jB$hTEN`0kWLmt}@R?YSIi7vFeFZe|)WRlSlzSVs9 z1sZo!#5*j?zEHsdk|65DZUA(mT3X{$Oyn(_!&kSn-*}rzO(J<=$G0p z!wKin?&d0{8{)U9Msg)B0W#%AaIcK@1XrEwUOm*K)Beq?eX#kV0$Qvj+cZNzIJst9 zbpz!A3EXl>$OgD;jdJq(5{M&$IFNuMl`e7zIml23J7BQIIAPZ26P4NO^Z16_Nq8-^ z*)DGF9JcBl3UO-!2T2|MUB%e1kXF0_`8-S&`t!RIjt z0G;kki=M=OwRtC=OF5>xvJ>GKSC6s&I;z1bD5--dN- zmxD)mE$4vkDp5qk1Cg=7WGn1J9-Psnj|=G2K9!)}MRBOP4J0t-r;wA9U85LL&vFNB z=9{I(Yd@U_iZvN8Uh#i<9PmX9YJF2`1|9ilX6N#@SHs#=M%Ti(%L}MfOKV7l$4uZb zjT;2#sbSojMID!!ENM2McMM`B$C$G@RXG{P&<^gNxIVRKN7D3p?g6q5YV0yr&R2k_ z$2t^y*I-5X{c&(*vTyTMHdq+R}y6WpER4D!QdQz z2B>^WhfmZdwz(G3+8CE?zG+lkZNS^KxqP0S41tn!T~+RdsOU(qq`V?`;cX>H^R7WS z0u+WekhgLRcjCT~@Zap|@jK!dhn?oo=kWFF4>~CwK1Ub_cHAtB^8Ww<8;L(IdRB9* z81BuZNxNu%cxzrB@N5PcZlu1tYzC5BTtgcSAMZ0TQVs|Ylk1A7a})__zv1)Q*?{1#iN7NY&>1!;*)E-c%B$`#3j^& zTe9Palg)N2g?$w{?TV{Ef_@fTUdINntlZqhS9r8jx+au@r#Cn;D8Rr03->1&t$kBW z@%-uK-rQVIZd1%zC3A6Z;kXPQM<5RSRE%~Q#ay@3d_APf*EhEe*MkV>PG69R`^R*< zK|k(gv(mb$$?S8+o%Cq0pzHTu7S-Upv(TZNPKrSCBr==UApjT->+%vgAyo9^HT1WR zJV)WL3~RsI{{XZ90F8V}sp?a@jh|+D?4mpe@~*CcRti8+u&2xXL|1`DK8K@Ro8J!k zS66Pq)u)lt;4TQk5@Abw1Jj!K?JrpHFN{1lr?#zUtlfC7(lH;GrbOaJ3IeN%<&kZW zxX$i=Va6*Ov)5E~Q>Sgt-rO2 zcx-AKECwBrHR@W=bsQi976~LPh8P>SBd8e1IIk46@P3`)4;)-c`%YT;r7kaI`L1M0 z@9nNmzSt19Nnr$`Lc0tG z`7k}Xt{uKD{5pw@e{Hx;ryEgW+A-O1ae>5 zDQTsnSO`vXe|IGFF;Tz+a4I_-*AZvpKL#X*PYd{RZCc_I16&B@aHNh`%$=2TPj%q_ zb?<&P_~+nD8+jw}M}hpeAh67KvHZ{3nopSL__8zfubH1x)^4>~ucWa}Hc3Xpw)YP> zVmbMNL|&Y6l09qaX~VeXJGY_U>E0l_ySaOtdlR8Eg5}9ajmqF+L_x4I>`BiU6%-o1 z{lx2Ou4)r1%;qrhq)?#^&UcXQj@T>>d8`Qfh4R_>iS9?6jCqW3Ut&;!29#!#vxE9EO+W=eIcY=|rHS^d{$br+A;hI(CmPgU+`XJFV3u zzva0gv}#o|+_MZQ++C;iQ%sEw(z_T!U}1U!mHA1#!lCCm5`KEsd2M_)khPzV z{6nTie*iAdBzU8FQ}||v7DD}bP(W^_am7Wh+4y2j9Qb?0TGUs%ilJEq8|9qt`=VsE zR6~vk$lAw@XBC^G>R%9i8KbP%8Wp^j*5t6gSWcZ24nnkpV39VH{5cFp4PhyoI3})+ z>{)n2!a4(MF!**G=8;25b!hhRTf9u!4sK`0)F0hDiS3@-79K0{C!6+vCrH!na2+0d z=ax*jPb{o)C}K0**DIrVOXFvWt)uY{qps;z)|ZUS{)`RU%m~bk>c$`dAKl5^4>;?Q z;{N~u_;$&yt(RW4ot%e;(8~64%6{$_WQ663z*5Hts5#=2)7}={PN!JC@XoV8*)O%* zh$Y9EmT1wVT@c?eTc%duCOA>Xdy&?m(=N1a3FWoZbX%*N%zyx9^B@hKtkTJZ+@r7~ zaqW&q7l%9{;q4OYDKES((Ot+HNSWaU*mAy9uPM)dtO5Ghy6L(uqp!4f+U0~JOjlPi zPj(jJN32Z>N%JW`cX-cC; zJu%2U8tJWm4o3tN>pyL{)vPCsys+4`e`!TO!dK?=0PljQr_1TpUVJLlW(h5o)y}DI z>K03DCyE&Y1M;Yi_q4w49@D|&BD~<6PYPO3sd!UI`z7F#RGM=$iPLEdws)ASBL4so zQy>HkuocYT@(A;-0&f&SXFb<~BD)Yvg>5|BH1SHizJ1F0OmoQu9mB6P{G#iXS@<41x65{bVVTK zD`9(rE6My(@k_wo8}S%|Jx=EIN00RDc&*;k0GzMN&z8mu1}o2~uBgSngIcSex2yOn z9U^#S@u9dPSY>NjEhI=RXpsOj4LcMxlO z6JB|Db20wU)K$F23BU^+Yq69*(}heE#tuoTv`>vc5i}VNqv7uo{gUJlnk!p)ts`QD zi4~BKo=o6jhDqu;uadl1@w4J~z8czl+4L0L&u;{F6T)8ulNHsm_ODi61%dA6tV zb4*Cu!^c;vcE}Yz)bT|X%Mf}>p;ye?oTzmJzd5bpf^BLZ*Im!h4R7O~l{#Fvh=!Tr z-CjlBw-DRF@y^8LdC`Un8MBijuLq0{{y(n#Oz}b_+Lwrgm!uG5dpTnk+ef6E<3c|S z=drJo?VraQwwf+93r5v#OpJ*nQ2mn)j*hG%zyp@X?Bk4{E1I#J$9lb#noY2`vW7+i zMYnf--IzBBi-LLk$DG!&z`{DjC0gg#Px0@?lIcI#db<6$PggruOPMCPgyWwoUAvUy zw&K67d54L7Q)x8N>K5re>oco7GR}}r0AJu#Wmosw!x{UzHRhN429cxN$!h*(t-}DS z&vPn5Q7Hv3H}w6=k^Ni+)9uEDZYJnlm?2Eikedjbw?)PLbB@GaH+dhWBS z>Nc9X;ze~&w%PfIwZ)W!$tq7RBuIuFNd1GrwqUFjoeRi+sYebDn#-Oe5FX;xPj0Dg!=QE%B2MNH0NjNbAHu&FN8G+ zbu9*Fy0nerd2Y1zNtN9}^CJ5{%_IXHZzQo90IoA$o235$!A*4CHP+)r@SJ+=cI-+l zu>%@o<=!Qb5rfxoVZp%WzdL>%e$OxByT;aJ6KVG`mWp(Ax%*NuAYr`KXCb&LgN7I? zKhks#T4|vW5y1qJ@c!RTEpp5M)kVLlZcI0P(>ZBekg1ss>vv)P6&2gG1?aktS zTVIyz!V~Jy+3Hgr`gPftQ&kqGXN?^|KQbe6^khsE(~AA*_@CjcPlqwfuXrZ@D`^RmRj}3M zgY1JUKX)6bS)wZ32Klj*m0(6bEcl)A!qOWRxYq9cn~5M`%WG`cYDW&pW{fOfcn_G9 z(~<$M>@|D)(MK&>cXmH1BGvWzbk??mR+QS~%X=GGORFoML#u(f_2|3DQ(U?y!{uMI z-@yg7>gCUy8(cyek3$$a1p6rf^#E7Dc-m_p5ziK_{hlO7j1Mwrh6z<0oPOhIZ&Q-Q z`q!2>gtYRP68LH2yp34P<--t!j1J5Q51yN{IL8(2({XEE&NiB7eWrX{*8CG_i>K(; zzCwYC?c6MEqZn3FxChsxS6e6T1>tWJSzE>9e-Bz}-cw>Iqbw$XV?Jb83{qIhIKwF< z5C|3XK!?N@*M`nGt*pc&bFA-{Q03ZRkvMUHxV*8uQ955H0W00_pF6{5+inC;v? z{{TKBVU3CCy9|W!*MpzJrc{&M9J-$GsD98g+gVy!cvjv!eUXcB+LVnf(v<_0k&2_g zW9BAF?rW2{_`l+~FQk^|OS@Ta5GR`)?QFz>!2vjC_5iLrfnGbKO{Qq`&;5;I71Ze8 zEycKLg7c0x<%3}V023Z_$gYW|)%9yJ72ca|2b545X1G(_Cr=P`7+w_zC!2_(uwtWWa&=G&a(lTjN>%^{$k#LF~fF?MT-OSvFz zVH%ZQI%NZ7brof_REF>S9(iwm+YlQgg@INL*fMXFDCvT8^c6{L?=&0JZuWaFOKnu0 zU(Za8E0DXk(;1^=WV4nq35{d(Rx-exZY6N*+$#`s*S&jRhregfj~^B+t?sP6AL0jB z{{T~eC~G8BgN=gWm7Pf-5EP8^Ytv`_jsE~??F&i%(D4o42(f5c~YKWi7Q-QFOYlHD8!#@%0+MISC61LTEu6(_)!xgbGl?}@vJ3;!OV0q^`6*8!# zN>27@(zf`Cu2|g1_FYvDCgiJI(5Q8iHwPoH?-7BKanyXI<3CEJrlx?`X2-#^ zq_9X?S|xy+RO1-)A_HR+&)(xdbmukdHcw%sL1>zVt+Wkt7j&e_G()${Ki`6)Zf#Wh;kbAeUfp}BF{{RiOKPy+%?d+Vzm-FM1QQ2{i-T4?Y z0k{&cxDMDgJ9uBjT4tdpqu`61OJRVfW}$1 z-v!uT>H4r?yHxPtj>I^~EM$W*THFkQ^CEee7$kvTpC;$S-XGRh%II1hV(u|7_HE7Q zkR^zoRpE_Y*#O|m*g522@Olpmd^YeVkY&8mHB`_`E0;p(S!`{P7gwxdi2e3 z{aWtm?Do9}{B!uTIs~!96DK z+-p$jw`~%kc8d}XuIJ_j+W~#dj0 z<;kw{v^qpeJ;{drZkB13&~NUMq`Cwg_>WPkIGj7dh`{&I_@ga zIb~*0(IW6NXmhWMbyw15C=%XFBy0BM<1gif*vskWHhN$h={!N;yKn5c?)(jNFNwi6j$k0gGEkBb81@0C@(}_~#B=F9-O(=GRZOxQk2F8hHe^hE;_oWZ?O3S0RgV zyVM?|J?gdAi~j%$`6Sk6M$mOTXjsQQL8X;KfHy}hr)JkYF;zScaw{%L@X z-0pEA6O3*2uVdhw@i&?9?^x3#irK{L5CZP*1<1fQhA|lm00(nAXV(-hHQ07Hp6>VI z(>(Uj-u=tzaf&ow z7igNb%lK=t- z;z$Clc-10E)fA853?6KpU^B9iamndgDs8S?^C3Soy0`H^!W+#pFYLo@pz2OzZ?@jX z_pKQ}!5os7jwQ+9>;!SsCp@;kzZ|r!dPx>*>+5-gJXcn8hPG%_3^AGW0;ta^-|JI& zcz7ShbHx{g?pwmTqy!Obe2Z}$%*O! zW_^%O<-u3p&Ua(3(zzV~z^a9!+WgGs+tD07=fp(4^0dzzMGmI8Wk%BoGb
    |11H z4!2IQe6k&Lje zKT`O?6s<0mtm5;{xWw_e>4S4GWZO1Cget7)@E zqutKyi+xV%W8NPbVgr&DRCZjSU~2|jeM7$cxjQ-(qJoa}bN$96yLkPkKHZLjJc47uB=-p?{C zkl{S5dlwJRRwWWS8RO@W4^C@%#>&QScRiN>0OB`-1hPu9+G$c;v39w(fsu|0`8f?C z4UNCM#yz>N3iDO*CFQ{JZj`U7%Pqmkna#9`ka3^10Ol;??gPQ-YtQd~A^1|-VE5)7 zD*8k7O{b>G7%<$pOuL>k1_&PY%4)aTm8GldI(6~9nZu#2z5B(RApWMv5yr z7!V#zNi$;@cA8Mn$mA6vbK1Gtyg>S(7J8iCdM;Kt=R$;W!2(d^;NXBU`PVHirH+|* z2K&fT?8qb{QY4m5px^o|YlLiGfR*<`SZ>JJ)T%`CA;RToKO)tzq127n=2g+naf{drbL& zDhXl87QFi+0Bdtx`o}!)iW(Jw0_?d0wQ>rz(3~gDFFC9S{VYym03{OH!4{FL- z?X7O2{@jaGpKfy`vKdi_sg517ARe1fsU+817J+|q=1W`Ar8DeAMgs9p2P0zbP)AN2 z{x#0e;k5qJj(uiLQte}vn9Q@WhylhL2)v~P9y!T5#apssgta2nHQ$Hn8$)L_hUr*^ zx6_rRb$o991Q(D3p?L27cpJH|Tky`GVQXg$nzx9)!xJtI zjr?)TbgIk7(-S`4NF+Bwk%7UiYE5o$6{d%VYCa6RONO!W)%K@sp4I76{3$t0JvUu=BxDjqiy)hNu^jnmieyuff--&0bn^Jp_rg9Yj`sIc z)UI@d!TUl$s{;doa!GQk4*<5@^O0WdXXC$zF!*tGf*{asqWR*~G`obgkTbCWV54xM?Yof_+Ga^*`4#4jla46?^5UP0rU`D*_F_MiBT z9-gDY`rKY9)7&n}FKy+qxj=aNq>nJo+>(gA9s%e+eDN>FuZVsl*KK?!@ms|*={8e3 zvT5>KD6*6`LgDUXk^XESm~0Ktv92lmNpGRFTD6iteY`WHe#-v<4ZKZhfAIUnv1q!z z$S|=GTI!bD@>v;@L>Dc*j(n-X>zwdw^dI4MuZ%Ul9{%UV_F7c&7?N0TG;=$(z*2V? zwvsfOCdlD&Ht~(5kzdZ&!5@b|v-iUI;_-fy;v?a0O-OTlWNc@*m@Wtp4a9P0J_b@b zBV+yGPHXg+;iv8Osafi9Sa`2f@Xozw%1M2twEAr1XDaV$dAW9f2{ByCRN;c-r;~_; z)Avo&PAb}--SI2J{{XXJ#o45^)F#rV)GY^@C8IUYpQ+loQVfqAs}<6@T;t?L1OhXP z{9OI0{x5tF(e-B1wZwu;{W-qOjdNtT@jOu|SjxgYsUv)S=ZRUE!1=K2sB^1e}5is==wYu9+??bLQ`e`bWhtiV)dcd@Aso-#Csa zklMiLSUJYwy`sPa_*m}kf@)uezp-cS74bVzpGwvs((I>z6u3ik8s1wHIWk0_yi9j2 zrFb}FUZ3FK+kfKcf;1oOzYAH|+*-WB%+r}5lc+Gt=`hAqs0s>#Fn3p_=)blPjs7$1 zHvSa&vjke3i6b`tL`83`B~XjxRA5twZxD)G;%r&1BnhZNn}kKiBpCO?dB zwRF=wF#1=D!lOc`bVsJuviWHN{#eS>&F8!50883#R_*e0p;QigD z>Rb8u3#n;Vw-8DL1;iItQe9e?LUI9k+Zk=3FC5pwZ;UP~@)Y#1oxUdj0Krss?GIHx8PlM7?4ys&lxcGlXvj-07Tu$U zNVCZ*@%IDf#!nSVR;w!({u673{h#&iQ^Hn3f%3+q9;IkxUJPw*arT(v zjE<%WVsLrqjDB?dYxqy9%i`P1-;R-Lz9qAQL>BF*T}0__tU;8$uw;;cpacrcz+~qK z2j-dlf8)Q3Ul8Tje`cQzYQ7h~xl;3s8>F#fkA-;+ygOssK;8S;_~hq|hI~)(@9hC( zXNSj{-lwYDvxL91vziojK*Mp6#-&-+hBJ(GB;vZT_&Fzb%&JvKN#fz~8YqRPfva96 z+CpVmm1K(QA~=k?ItIb-f>yqMfA~qYaWoopOC)6&H22o~RhSY0-UwzNPMtHwcM)rU z3v4uq{5fSFqol9_(d-#0CQerHnpnjv&E$N4(9&u!E&*kyP-vH zWXPB0;jl><$j5s0(y`AZwnjarjG{!p@eSmqF}$P*iym-tj&jU#{{VdY6IuzS_-<7a zjXubR8UFxT7k~R~DYu>v@eDp;@eTc?QSMXaT1L+-n|*RZs2xZLlhckWfztGq`C97u zk;Y7MXYtAt`I;_6SKR;A{Ec6Po+GxlZF^IKD@-=f_N~37E0eX*h5Q>F`&HinXkHD| zwTFY^m-da8nsX$6d$O<1$qun?RL@+M>Con}yhZUZT)sCDYq#xittpT)Nr=j0KYdkq zo;fF+_QiQ*+RuoV=RO->^mkGvfT%%^d1BiS0QDcQf1`wDC8mKbH$LF-map)p+Ua!9 z2tU~Er(#T!hKeFfa0JtS^s()Y7hM{?jflTFltyCj^D_Oo!y zlg7p%5s`(j&RYv#6W!^n9)Waiwq{77Y{(Ib1ngiy!=9Y+*NWEA{1vTu%UFFV$*BFJ z*dyG>3Gx{tm9S+yPIeQ<ON2QRnnraOjE#$ z!LiN?C?~E3cK#Ch(eV$(R#w`+kEz)kdG`_)Cb?BrJ6H#l?IS%`1d8!14}&_3=;K|~ zd`G7xmCB6Ar$8iOjQoo%dV0`h#8*Wu;5u-81YuZHz4h<&NcKg;Y58 zB~E=*9FW$reXP(k3=v*^FG(D7!Q4TQHS^2Qh?i`})P3_;0JB7j4Ze(Mq|=`V->00Djz zS_v$F;Rs7x`*M+7HQFg)WC}`ecX-$`>tgT~??2KmOC79PTvOyjfsx-qkpo{`x6y0yAJb z#(XbW zGFieG#Fx%A=o|N~rKpwR$iXa#jUfXV4H+bLAXiJHe#Y7|Xz{~muik3b_pt+;WRl?@ zY2Y!-`C~nQcC34f`@SEIo&vcqb)y@JZ{V5HqPlq%p(sY}@w0AM0P?F40QdFsj~V#a z#2z(@IIQ5*w5!!(u-)nZ0BK8Ljmc|>j>~y@#z|6pZW*m3nANqU4wqxVtp5OIZ3jWt zE^n@4)Q6U+6ko=%TRevWLZoG7B8YEW9dkokH3H3w<}267dE$1R%j4Qk`W z*II115qOT;<4?R&S~=n}Svo!rzo3mT_IdFC0El%vtus!B-0HefM!mIbi&&a8 z##GA=)|EE~AM(jgdmgpJc+2)e@Ds>C{M}{<+<%9yRjDprD-Omohe57&msV6;gU5Z@F=?eBe)4_kVPm8|K zZQ$=2>Cs+jip*t8#+DgIbNk4qiT=?OsUvH~gJ{MuPakjmJpHHq8{umygLsot)ZhrR zrje+uaY`7SijnF!D;mzBMi+Q8o~-9J_`!Pj{{Y$&N~qdg?3+Y!mb;7+0o{O6RB?=C zs6Fe5nmZ_NUSAWwp>(omdGnI z;E6@X$Zoe2%E=RfjH$>1zaH&;O4@uDx@U(bOY3Aa->FZg2%!@e_D5*fjdcx3#!HBTI>$C7p@m za_<-?p5u<)Yo-`Ttqi9&{pNLx@dLt|mYTYLg>OBT%yQ&Q3~|n^7-WfFC1wkbHsx{n z)E+AE@5IN`2DNjiAMD$Gq+XU&0;_${LI)r(OupW|O>&l6=ZFoPLl&Icnug*_br2@r z{$el#pz5dBAm*xRlHOn58>?2aL_(>ULtHwM&}DX})f{Ih^sb0fOJg2w2=BD%Qr;Lf zc@t2KpOr*xcVmos%JIS2Ruh0||u|i3}ASfNUuRzuH z9}3%DHKwm@>xE_WV`(1M+yRL^xb~J`QM>95RMNGC&>9Eut(-S9+`00S&IHVbNe38T zFl{{Ya1S}FwYMhSPV3?S0EKlw63%qktgaxIM+_QtTV((bn{MV%!F@nD75WR{FZd_+ zjpCVL@dt^n2Adge%+_wwxndQRx){P>XK@+H=nhSMHQ^r^ccUvO$s>_{QPYq!j92P^?A_sS9LJ&DYu^tpCe^HMrD<)n+s#3c2~P~R_qPc= zi~^JLzHmrT;YE0u{8ZzrJFt}Q^xXG-6ZRy~JRhkg{;T0j?-lqZE%7z~0Eh2dTi7Jd z((;ksia6CflI&`5ES zoD+)u3Gtu6&jb8T(X{)Yh>xgg+OCwx>{``@^!9g$&Gs?r(7|hd_S;t`cxIjpd8JI9&k+Ha0b||4;Jh*WPk3X;hgH+Q9}8_Z z<4+qd^ts~l^%zyYP}A5-V=4<|G4h-N$vHT#U#v@Lv!PSw_pNk~D8K!Z{s(xs!;xxQ zO_N;3b8cQeL+u6UXr{vlhUu8d%FBWtJ~M(iuaPxx+0Rh;8LR1bQ+WE*U+}U@#M=0+ zRWGfB@w&%Rg%VfVaq?Ym-JTc`&!m3Sn(vDB-7Y22^{c-P-q@zdE_BIRZCW6?*>k5A zYgZiOI7eJ?!=-)|{BiOB0LMwK<gC~B5gr^8lSkM^80jncz- z0@|+J?E)OT1_wPEbKF#(9kuv{E%>toQoNZFRym4PqFYLdg_+UXNh!u4^X|}W9NRM!0cKJ+b>GKdVl0aW} z2a4_VUkrRF@OO(6=Icka)>_%Im$w$-RHxmInV72#(r00>r^^T()2Wrgm1xg?30byQC--H8}D!eF1gd;0$XfjklMOU5xs-XMvEsy@eQ z*ut%jK?=ieN#krq*WW!pxjJWr{8a-d!rO=}FGDjuwxI!amFxt zIBz~QMXFAgFwJ9aX66RV2raTtPcm?-sKAUW=dW{$;&t0iEj>+ax3LwbjiYD_X%4@l zBPE$o?7;b8f?IHT93A-_nDPMZPHR&C0O9`tgnUwD)MmQV^j&K4!ojCp89{UN6lHhv z;hI(hJ1`DAlS6ptO4qFJ{5RuCAk(hZOi~*)a|*JsRs=cW)ZmbZk_b4apN4)JyV1Vc z;6ZKTDPud^`$}hoJ~Q(yHu+KQ<`(tOYUkB&p`(2f<(?+9_=oW4Thp$!YgdV)$$+O3 z?k6fdrBE4&JF&6HLC6)>f5KaL?F-_s z#4Q(5ZwW(d_M;GMW2UTGWDV2HD6&kwM%|gn?^k?Br+7zFvUvPTkE7}jgo$pPvEDKe z??BR`0!Vd{0{1-hxnE9Y_ZdQ64t~$!Hji{0SMc@pm)=7-iq#lI!*4j6R`ZAqdX8kjv((qA(nxiI@!R1Fi}9f34_N7TU$M z$5@l^ytYy#5U9up5`iSFLGFQjVS1XcY4I9cw2JS=mNqx0%1L1IBw3bdu%Ud(%VtiEu^uyS2DDl<+;-tLh#7582ppnf`a59iS)=~R{sD~ERqFRbHhBa#Gy#X zPEOvWdT(2JH$&F6EkjE1%%=O!juQfxAt4IHoW~Lk?Tm!U%ADl3a4t&ERbw?Sr;Nei z9~O90;yr#_nKX-gLCwve{p8EIMhO@sW2qIQcY5kyLZzL)k#^Bb@Y_{eMl!Km zA_cYH?YM2S49g}#?pb)?j-sumsp1a|*m=`h&t)n38huV?NSZ}B$PVYtB=p=E`toZ~ zXfxXA7nj}|yMjv@A(Y$4q$E*1YS>}tmJcIs{w<|)r+^K4rN*b@TOHT8ixTPJ2UDnR zjwJ`2sFA$V2gZ5ixub-Ph11vNfnh-3g-X;nfuUBDOH_}3$Iec^pl;A(BCCXambGTbab z>4>VsYk?qDRV79jKQ2hka2Njo7d4G`-6Xk%^~+eofg7lFUB5BJ?5ne$NZfOb0p7Wf z5Y6!5=yn>8kFMWGs$LtEzS5E?p5EOfd_wWw$OLZEjIj!iP>s0+Wa~~XX>I!#IIfKD zE_CtXsYbEkyAyqIK=N-Txp{V+{HM#e^5W<}<)M&zW4|AH@oG|&>Du5~?gYopg3T3f z2_rv#AKkGz$IgFB@*Nk)R~{eK9sE5kmaQI7n;9{O{JXdSd*w*Di!8j3FPZ3vDCw>R;C z%F+@$;rjN?Ue@e3;#))@nqqMfjW&mN4&T@uHcFfPvkc`Woo$G|Qg8Rm|Epe)~ zy~mV{#@^DyyO)u$58mSguWIUbzlZvlfWlnGXu2H!NVwf{tGVNqcPpEgXEF7w!sV7- zL-&t@dhaBpWRb{G{OaY#uXCz4`LwBIg^-2&JYHlhBO6?nL$!U&?dKV_fR>wx*Ok}KWe{j5J{p8)7l_!nOA0I1?!(<{CQP7;X_gWPvP2imAayLmo<}sL zE1KCO=-ns78gIlaNiB`z!3@r^x+dt~AfCGbY_9`p1aV&N;BVOlptxKA01s;57`C^S zu3KgYk8omPnO!6WvT*GisOKx5pBd=i5oGXHyjC{1H@+9Z1#O+)J?y}V9xa>_{Ez|M zaqC`-;fOqYuEGa{tTmZbNUpM7I7>`8JDEk>i9q9xpDuHrwS`J@-7`qbvGk|JuMlZ} z3uL;{^@wg3z&Qr;#?C1$*pZSNwzndy~UI7_IcPd#P!uC92>``fO`*c9YeV10g-KsKdFh0lv|^9Lsfc zrAKZqKy()W!H8+s_Yc-vOtJ^G}zO$FSs&E)Qsy87V?NYpPhR1nS z?WK*QC3_xit9(rG7mBqzYwwHku8XoA*7gxaEzRt)ecjSaDl7nJBLFrB9kX4l_=omI z()4?&^gCORHe@nKCO+2j$-!ohJAl!r95yxs*ox+UHvZ6hpT!+2+rx?A+l7KO+Shu$ z%q@TY(TWg`&>)tK!--)&H2ZwBQ%|;+I9f*akrI|{fnc$X57D6{3s z&@GHUGSjRqG_+u0w7R#9iDLr{3dqkXZgN^I5PyhQlSv-8r$_cr4Z zp9T1DTD^zBHZsm7*pXd9bv&sWs-50QxCY^4%auR8Ob~XA0iTw2JyTuRbup@1-o-Oq zH<*bDWq5;az#DSy(BLzYN&G9@Aov}v+=(AuNo;3<48|27!U!LG?&m+k82(kJeieAL zPSeJ#;Qa1So2;z2F@eZ(xIrFI1LZ!Wo+-kWHSq2Z4V+`^_WmNYw~xc#6V%tm zi!bhVD;aKV{%!`(DNycq1oUNLk^t>rTKH@BUj4N1yePVdjW6!B1$KCn)_a>dF62Ez zh4Um~xp~WuI&}mHJ_dMiO8AxG%~DSq8*8|%Wl1D!tCx=I*UVGpsc@*^u>>GRB;fVO z7IfQx+7m|BZag{g@N180Z@^7VeWu-GY;dy77FfXwd1H)n2NX@T?GmnzQ^Vg0yfNSn zJ~8n^$6dGAr41bKbW-BTR_b>kd2>sQ?Z` zTPt~f7Q0&r0K*al6Sh8W`v6%1?eg_Ks(tqFVc76x@c#hBZC_7Yt6OO8QIy7h*$c-q zV?Q$N-mF3F00;Y~veUvoI|u-uQ^r4oO_Oi@2a(66eTU#{yYGk^RQisMc(y)Vd%|ie zpgIBkGUhXaMsPu5Nw0UbgTQ}fkL^Aqia9ne^;qQ~HaP<)I0m`hSA9xQx&PMrOW|ki z2k~3P+8BpQ(luLEFZ=K;#uavgo4)7{PP4A~TTt-_ihM0>klfh#aiJF) zy_WD<)Xg;NZXhZ{MjLSo4$a_!S^oeJ{x8q*-$R?m{{Rf{q)TOJ)#9Cu62Nhn^HH`* z47ktA#~2@XwP*dQIY)EbSS1I{wmxw9aqvU-T-Icp!rDHH{uc2DpA;85hM#swxwndS zA~ljSvXWa2M48xjkO(6cx#Rx;g&(psT5M)LGwiWk+Di-H!8eg4GC2y(43ZG)d#kR@ z;~g$U-A{ zqln?~jLNK}{{R;|xC1;^UcdV;_#eVLUFNay_8VI*YVs)JmsYg4f#ul=$c@tGUoLRi z0D|buhvbkj7111Oio4Y1od`YmKQ^v^VlNo{P1Q}ujkRk_d%Z>hEVmHF6PJ-l$ht__ zeCxZ3HiB0;uS@uK`vz#90MVBB<0;ZKjS|J!N2z_HJ9}va!{ym4C}Qs8Yez64ayFjz z^{<9LHa~*&*S_(Vm#1m(XF9@XR|#o5Oah^J?tF`jdD%t`Ga{92fXhNC@IUBFoXTcI_%cP5Y8xRy- zEzF3;og4<-NNCa3RD!G==RNa^@r^_F8`E^j-s9oUrD1!jiA-x0@=G0)kU!;{KzBy{ zzVT4m+zA}$x9tPq>9h&7?}GYWmW8WLC!cGk>MbeKmANwuUnrHfX#oL{e(W4D4b6Ei z_w8Bn16x@%tGznwLcNG2S5}urV1gp~DE_hk|dKbe9K$*#{hLubzG{d}*@r7Kbmx{ajn?dLS7~2aY*nSy72H zd6E3_zW)H3O5l_8SIXC^CGD}l(r>PA;*v!x1laQ;RRC>CpCOe`@Ri&%jMrrxFE_?= zx|VlH`qx?b&*KZ5DX%;msa;)15k*@&n}wG8ILF95$!8@b1AwF{Za8Csk1x}{Jx_C~ zuAwydLs+#Sg}9P)a;%N=l?p=S1Kn^`V;t9t=(@#@p>&5?Y2^L(Bul9nVMqHXX3{#2 z*yq~4`#`_YJVS1DeSglku;E4gC1983APh?QMg?*Tu{p=Rb^92@rNtVJyEC}5)qF|u zjn9XCM!Jj__p&UJ-D#1mGPI?c)5-aDKOfTugl&`Y>9e=?;aA5+$x8NH{S+CBpfRS`K!(}AKRDU zcDZ4H;cpCH$>2?ER=!*Lb$<=oK+iqIU@x10XK@^hzqCe`qv>9FJw2Q>L zg@eJUp}LMuJ{bJr^8BSIe>5wB!yZB7g(ALQ{{V-Q>DM=M9WPk7Z7{!)cM8Mi!7AJX zlF;5dd4qS}Av$y18u`l8isYQ5oydpW0Kv8vg)>^xqOe6^@;6_KTP|%F)DL=H1#UMZ78#%}~qtkz8%S zCpGyctp3#(b6AT%5ovmsovGU^iS6ZrHrpUSD=S09@sWauA-e7v;C#p8ZAQ=HcBwV( zjkVU9dvz+4cWb?7l0*uD-Yh(FHqZwAq@j49|;DX79v0ie2#k$`@tCd%M^!x*oLzAgUNI_9ei>7E*ywY@pxWu1ll zTk2kD0|rf!0*`-e~Z_W>pDcNf3qYoP38iV+RifgWSizmI`hCdINU3`mL3q+Ov-J& z61qHR#6K52FRa{8CW9QT_%X>1owKydznsX*tW=Tx_6MG8&gIedeRo|;ohL(|NAt)n zJdX<(JOyWjJLG2>-L#Khxc!T^{{Vt)-fQ|40_y(rPP~Vdnk18PBp;qkszTYw`F>z) zss8|mJd5D(fmc)bmR9oKD}W=p(rl)=b%20lxwy1UNRFo=gl@xb2wY?irJ2)?h{0iG z&%}LK;r{@OuCC19I=Q&Dv_Q)p&9qVM=bf)7?;q-RsOf`S_Pz|!{4?RW^)r7R!pyFQ zIYZ7Ee+~q=gezqI&V8%)-@;$BN5O9vh`dRn>u;=SOdoa4hm_FZWEGRj%z*C%5L%#dgovAe1{w~qSCMjS7j6u6ymKe-~~uUb*f5|*WXO`nbydOowO zGPj0Sd65szZ8Tn70OO#M7ijE8ayxNXHFVc4^)%6S3GHlWk+&#q(nz^otU*8&6OPTA z{WjJWz82_`OYvUD$483RUoJbNJTGr>xZYX@alLwxheAOFbiuEXe0%Y8!WV1yH?&<| zCMup>cEUpHa@&N`ZQ8gwI|t#K>iW+&!gETOE3-TcQ}DzZEa5eXpH{UPTX`lwXOoY= zu~RaE$QgDy#s^+G_Ryu%uBE#0bP-2xjg|7F8^JvZGKO*wAo|y1b>S#Ak1prKRuamN zPTOng-Gpd9ZGo}@1QJHuYvX)7*6LixUVOHY}vkc4!7{Yez>DI^KzYdX0=}Y2i%{Yp4RqOTh$_A>GuOGa7Fh>%WgqwduEC z8KcrKg~pk09+!Cwmyob%ypTp0FDV?8-FO3x*9YP+jlL%Fn~8N>12m({kL~cGfUw5V z=9#2epRZhV*FBAUSv9I5Ld04n)~#!G4c@YUv892-J3#9GVN;OOs*@P+kf)xR75YEm z58A@l;h6r}mq@wQE#hz_yN2On^1_UbwzkNQhjtGxK+oR6IsCiT?{)99M3;J`Qd)5S zZL~t-LJ1=TIY`2e%nJiu-@{*rpA-Hdc!Jwk@OPi6JCciYJh6zEXz1}qv8e!hmM7QJ zF*sPwS-TxnDk!_N`Xu-({{RI`v+>pYcwb0@OZSu*Rs#W#2>4P&>gHqDmW`E{f*9A^ z-wk|Yd!hLc;13-g78zwmz3}gd?-x`+jOTk=-^se}7CljJH^-5;03E~m^6-D`Z}CIK zI$T0+a>K*kQndG8T#auEI*hQC2T?H3Jdut-Vb;Fp_)GA!N$}T%AinXxinP667j-6o z4tbJWKEQD8G4jz_h#&@F5Ad_*zEc&4rk#_q>(j4j-*fg);vel%@NeOcu=-EL=x;P( zD_HsrCu7S~E7iI@|RFs%Oo!VU?n-EZRWhCElQ4SPFe22G2is6u8E+9!TIegdUAI9Gcd_&Uw zO!m5@qr>*{1re&lGn8Cy!m_fW&Z;x8^PjDD-X!>0rd;d35!BAVzvQ?^o=Yh3 z31y09i*(0ke&e>>iiYCV=B)gUAvDQ6L*btjcooNstS+si($EmI+QS>aE3uuV>8Q=-fFT2#`g`oEPDvwRMLJVv>))av@xbjDxJE7 zjIizbaBw8sCPoP!SD3%8N}n?KmHfn;PUVeaPlUcK)*_DIP;DaUt9k1P9z>4kE4JZ> zlpN%eNCmPw)tyIAkHHt;+ZLK;-z05@=703biiH3+{H#%iVtPg~$2EbZd?$lK)9s)r$rc5xMz6m!4LjAL+Y z1uSvz*BZVv@Wzwkd&^1m8~8NY{E-0rKm@-G_VcpEDg&0o`Fn%8&m@z()Mm4E&ll<5 zKLbopwpmEQOmf*PJ-l&%Hg1gx2pd0nf}RdajAo{<;2#uQ=T?Q`x3aYJJj;u9lI}~b z#C`Z;a-(3#19G0El0c}mZ*`*uE>&wBy{@-?@aE}Yn#TE0nvn02qO`Y|FI*KfGYkUT zTL&JMZN4acGu3ar?-yy-%W-%J7q*ybqfj=eC78KjpkTyvj&WLACypX*25k*&?lr`f zq`|&;(lu2iGQyFTm2;nz%Pv922N*OB;3QJPP)2xVn?yw5FLV3?mf zV-vS>;1=U)H1@la)RzX%hfMJ1wW3%)r{I~U*DW;wN-f^q@tour7X~>QR1!A~IL;15 zaS-YrB+|7Atm413w-E$av$utuxEyaUF2q(n*>X7hz3I357sW3R&o#D_Yb>)$5ofwU zCRQrj)SJ125Jw;?va!w?NFu5?#N9zHXVJW8abbVt@7#+le`yMrmT9X=*3o&ZntdzO`uZNeevSK4yVp1Qu|LKwq2h0vw*W;L>=LLh+85rls6h zCjJ2>?{aL8kR?rq<4ZVDO5kOj zi8&|upC658N#g$i5%`KPJ6W(zLfuC<7e!&8r#NN96Oqs%$mccV1IFXSw*F)nQCY!; zj%emzHCU-RIC4~Tzyk-;xofW-T59pA(%y7wp8{_!P{rf1YlsRmW$vQr@Wn+I`mu?9KeefZ63T1%|l*%h>o zJzm~MJHFd5+8vb#AO{Md4?&#$0IT*5J?>*EE9hx>i^UoriqMNVUFQ-Xp3W0AO^yNF zKXuf4;1kxbMewWQMD`HsdL5VA5TJNui!$6WMj+w@&jEo4t9mIIHO6WlFpyp?gf}S_ z)WiX8hAF`8v8mhnVz(gikBj^#t$)HrYYm2#bmf(<&zB*P$f`1_9C^qJFh<-CneC@5 zTMGBw`)lC0>^1P`;y`UjT=<&0iH0>>`$#Rm#r8&*sG2*ylOaaPV#(iwUgP6W_$Oz> z--ocKvEbhk+fOCA{{W9&S~%{kB~@T|rgiqT}0!8e9MPyo<{fGo(i6v4!G-G6n-_)wCg{#eUa{N7?2=`%V!-F z`G-4HdJ<_V-PqC#$mldrv-q|d3u!j8$GhkL%4d$@izxv_+r|btB~v|edFQOu%!zKF z@P^pKKHLXgNO{t3z&VOyRy6lMUP;L$X1u~#d_m$!Jfo&t=@20VvdGe0NWFmwqBJ1m zC!FzF*FO(+ElH!k){^5~iZi*OmVMFyq;R&t6(bqORr8FIRn*O^8>7c>s0hsZJD~)k zMQEYX+#Ya1$0yg1Ox5iN!a7HcZ%NhK9}n80Q2Sk`yBv~yw1fo&jGXQRJYd#r+P}m7 z7BZ2^C6&7F2qcfnah?K|QH{qO3=n;5jfQpArJ1}H4xw!Wlk*9Dm7A}~V?R3%`03uW zo!BR1?#~A4{{RZ~&kJdhX{9_*tE7@eacitc`T*FYfg35y5DeOMQDU?*a&5 zRg7(JAIx=DnTFi(n8j{r+NXgcNbGb^CeZE6!dSBxQJD_s1(*}jv)8{B&nRDWZ)%;D zk96_RiaZVDJLt6!hdv%28raxbV@T{^kg+9;MprVBI8anq3#jNi{E}gHIWHk|%yw#) zhiLx%fRYJ43KhVv3jY96@V1w#NqM7cHw%3LAs0>Absk9T<}nI#J=^F=tplxi($7vy z_yI^pGcdPjl;@^nW3Xen#ytg6M(rKHhJ0V(%@*}ziXS3VmN8xzGDtu;23IUg4!v@5 zUc>O)a%NdM*~kR47=VaVGvv5bo+u!ANFHq z-Z~C}Ro39O7TtK@{K7X;?I=*wu1(HPv zfwS(*Ynx9K_>#u=#0?lX7A&#pm-edUZS$a&R#?LnAQHPv0s%NV_zU5m z#=nT34Yyrd-pbxsHi;Whnf$dt8?STk@{U)rue6u;r|=)fKML7Dk91ul#8w7WWbPXvc5NxJ>%yz7@OpspEYcPM1cx@XFsLh|0-$==M9G+ivMbKZk+SkzY*w zZ1~^tXUDqC-Xiekt)|=A!UXfeLYtz)i2%B~BYsA9q<&alyyCuX(mpn7a$1cY^f~oG zb0FK~1(_#opOmrVAQD^W_4ER|X!Bd%B3f#WW5FK;ue?!kb-hY!Z9Y4kNf^?aOLn(r z#x@Aum@2k-Eyp3<^z+h^oMUt7R+>4k8|x`9JVkRShaOOjs|(3- zA;(O@oCE6Hl#ccG7KyI@$QC{ry3lpaE=>U~@Uug#381}Wu4njNZFOy<#_x&dXDN;TvK3MXOq@Fpyag!5SZ~n!s?%QhV+WB2ji*84 zD+^_5CxUClveXrU3S3#rv6&QO@2sv)P6v9(@#pPX@T%iS9t_faEZ=3fBYaoL%m^6- z806#y9HXh{*Vn-{e+?V`5ufWdbR*E_5D zw#!e33maJ0D=Tt9mrzEYWf;H#+a&?+s4-OvN$9mFn%@!F%kewK8q}8>KZRcNO3{wx zg}mpU+(ZY;QEpI88uj^Aii~uvPY8I&!@dw`b-fA3qp3?EfAj)2hmZKot_$ZpovFw0 ziuuo5@h69TO{qtx>Spup3gRf*4b#Kzn6tbo$R}=bjGEoi{uTI@@6DTPQO|0aJx2FV zGxBUQ1IO@?Pp%0S)Tl)-dDvdlvGirX?K|-=#2Wtqo#Sbt(RAY^R@ayJ2q5w!nTn*6 z-#+BMIPa1(jD3B7M)7q15P~ls_!m{O(n}`Ax4O5t znk*7H3c*|hfJsLVMn>Q>QBt2Ox4Cdu&%%fpuIu3xT+1;ak;J0jO)D>e%w z1X2*3{McL*w+9u(cyq&F3H7UWwD9fs{3IIW4kbx00$cfhS{9QrT&xZEQqx{Nz^%)0|#wj|I=#XEz|JVM3{vGK)9=VP`6=|L$hVomBa^PAB zV}*ej46n9MFhJ)Z5z?XYzkoakf2Znc@Y+o`;rEL58>p|Yb&s+~cLn>#0xI6ANZrFA z2+p`T{w#I*&&3yatMJ~(L;aMrJ1-6DI(tto{*`x`6H%6Vcavz(F57krTW$gL`9S9v z!k-c~F{WF|K3i><%)l0b)7LcyV0*O!|i|S9rUhP54ve zkBfW(;GeSo(hZ_`V^J3=Yh!T*+DB)0?176wr{+9o44(d(KHd#2*M$BlczOIk4cld+j z>n%lYGz;$w>Y8MWX?tNR32o$-Kp3VE5VC%!uEOO_;5cXpnK;wO)^{{V`*?xCpNzJVl54ZM&`b2K|Hl~^1si?PI! zFgfyMR*ASc$Qby?Scg>jGowwa-q_!unS_@2F7v~rLf|oTGX<7QAVx@e7~Aj^N`!%5 zzgmaD;rl=QKGf#dH9cG6rj4ZEEEZ312yIJG)8kbPlLwb^*xUHBnzIIl1t5WWuh z&r1>bH&M2l)<~Hye$-kiBaMb6f>^s8aLMx%oM6{wD(O88Cr--Nx<3{*T~EiluA8$> zw7t^q5XLS8A}C)t9fV6Fvogqj?2)mI_TA1r&s;wclSq@p{x;Q)wWhR;l3Go0CNN`y z6sgKE#{isXur>DwjivZK;7wBR;n#(tzRwejwlAUc1IwF{_4yu~3#az1`{ zhEcRA$-vGsPJJuOtb8wTt3sY4n^l70)aMei#^`%(;ZL_5gO9^{NxUfx@XO*IMs>MB zOjAbc#d4qpWC%;+)V@V}aD|nO8oATzpA_`V>u1xV)7}V*l!oTlB5Xm`rTCiaYe@0?$B3Zgfx0$Q20D_X-`2Gx@ofGcwhM1-1?*sNONkEFRcvkh z#Y&QXq#sK4e+=m#9d+=R-WIa7x3`@J*U9$@YWObHvm`n5cD^{=LW3iz|(UW0dasC+oque6JMn>UR3X6%^l zZsje$Giz~kg9%-%869zg4&If=Qya*wYn?RdyI$wTnkVdU`$zbO*vp~#dg9jQf-IKH zFj&h0!HKZ!!1@NSp#BQ}$Di<&>dW9iAKB`fCa-I3X1cSygoc#^1v0@ZowKU5D&-#_ zpP6zoUtIWa{t6%AJ6L4U{AHltXnMRmnCY`fl7?ImB#F`EhEb7`v~}y#72Rn+w}<>J z1-bBq{udgzhwq`56AzgswbzvEx!OCMLXQ-He{_W$bCt>S=a^P{Bz3}__alS;3HRWg zZpOz#)a+)JS$3!){LRCS>Su6s-~C$haF6Q_TI_pR#JGmVW5IBWP?Ovso)xgMOjDz%rhmAZP z;+;t~9dATYd1-5L6~3$GDAb^hiiQzP@w`EPQMp`|Vxx{L$D)_xpMbn&ZQ+|;e$(PN zhc2cqCB@;6*I3hFkd`vt#-3CY!hmfIimX5f4f7i0`qbW%HgL7vPXN&T3Gu(fI?G!4 z`deLNL5drTfvMb?AiqUcLvI|=nAgk_N56cE5tN0(NFRFE@XoWOd`KFWx$xy+ySufN z#L!z44EB>S3aN1ns4E72kiBGe){IG;L96L2gR4Dt97Zx2)Vc27y7v_t>Kb5q?0YT zelys&0=x@G_(SpewU78jel%%5ak+_>EmK2{j*&jqCBxg~wYxI&wqGzD;bbjesMo$F z@s5XgJ?Du0FK<4E@)m~cOY<%#SpIB0wlX5f;xo&b8fHRSZ+z1gX1PNAvsRuh{2b))shtDWv#tmY z6cIiKjz7K2H9tpgXRFSMLPW?7-oHU|1TXBJku~5-S3gvPLTvwiaXSwj7 zfP6<4zry-}C5vN#r{>2_EAn^Z$Lxvm zQ^tNQ`)9-b8X4fh<^pY^Mi?6v7z8ALc@9o_73|T*!LC^&f>>vJz~H_c>0S@9yMw~^ zzCE+Iwv#O$mvN;UD-X*TruYYV-JW#@BIaHxYmy2L;%Ufn$w|35XdxgWz??13zZ` zIQ@r)gQH6ajdjU2Eh(GqiRUtJ4uG?&fU-^HHYL`+3!p{tHw2H3eC;Cc;*!Ua=V1xp5fNRDq{u=8(DZ0DU{55*ohuFw3Y>H;Q zWhan6QoBd+yRxXS({C7l&U$x+yf=OS00>l#bzt&&q8m$xitBHyu0u+T(C)!KyNdX8 z#6BO_ycyyfJx<_DqeQH}UEJ3~2_qcf4e#b0a5#*E>62Pg#WtTKGp$Lcu6ZS{k*9b@ z>|1KORPx=cDx%&>skdtoHX;__?#m3Q=qvO);Md0Qg|>58=zkNhPJ;&TF5Z16$QZa@ z2Bt`PcJY;xF&e2DVsZ)ccJbDM;=LB*P56!*Q(1?U*Y*~OuDHksLhgn_4^6TB$G2+i zG~a>~$7Y(Z!^?B2+s1*~Thx|mB(RtyvyvHMTp!&tTe8lFZwG3|a7N>jE3dTir-yV~RFlX0?Ut6&hjoT| zJo~5v9sdBjZe;6|v_Z6k_W~qQaPh5J}oh22cXIvwFj5xj} zcoRo5Tg`5=+v+i)`+OVh)v(2}C8{`3rX~Z-ibUQ){m8}+Cbz7#-W-)tQ;KcsjoPPKV-xpiGF(hzTewp_+{D#;^*6XcRpr+l2(k{^INb-tes#5#nU zys;NUZ>1PoX#BinH<=)29XA+blNtM_x*<{zcV=ekw61P=r@>m+gviuwty1C?m-lRk z?J^W6B1AGKz~dM=PzxRoDV`korQ_i1Wp8fYAk(B9nm3Df2d}d!{C3o>^ynn<#)2ldmJt`)tz&TP8zT`- zIU$wQ{HO~1F$Xofu6#7Q@ur&(h`tSrm>egR_S%_}3GO8GH|{NV!PLZzLaH~GRCHs_ zduM_?C*Vy=SmW?@^5{BQY zB+q|xoa?@!b`UEw&jbU;K`!dPzQg^9y%jx-46d#(mM z4^O`(@TbE&gp0%ahM=0vbLKR*u}8U9$5ZCW3{A-x%eT{mUSFJaOC_DN zO7D&a9Y8%9Mr*I}SAo7K9da)YTv=VDD|XVuX#@9`LBzq?JIBykr-@$`a zOAm;)nu6XdsJOYbwrxBTM&ahdvI#%{f>dGo2N*ayP%nuff=?0rCVeAPQJCa9bQ>=M zj>pZB+_)VB74-z?70dXy;eUoByq90_y}iz_sVOQgZ*QK`ON0k*=am=Cn4)}&avNyn zjs`w?)IKtJgTdOL_G;Ma{vBBfXSBA8NYS>EyKZMfC6^>;FEIxIGM+_JN=x^DiAol_ zlRK?5$38yN@9s5-XPiTD9oPFwfQCs-gFaxDi{%Ctngu5~&t55b&%|C8@rCurl@VE{ zfq&98!6QbpWSLS}=ZPedR1AlWIVX^M*Om{9ntzWK;PFnEajQveyCJ{RAS;5b2G%RK z6<^{cGL8mEHOgxCemB0jO=H4Zy_A+#aG?`NZcW<-W4HG)5tqkVT;;kku9Zt&bbdt2 z%Tu?#w!VtiIdnFI#I_30iOlVAkT3C*0{KEV2PYm`IrpwM-{V}e*~y?ys107!5UUK! zv@iq!Ayi*A09;{P13gA^PnS20FD3DeUMH~C@2>S2nnN^qL|TtD@$(hWu?vTr9HNRB&FTOwk_I89AvYQ8AxuYCpqojx+6-<-bNK2-iNj8vv_|}(2k?v z*lx6o(4~!@u2rpHE%Q1!!y)bl(d&S7UOA|x*M@Z{<<##U0u)D^2>htoi92yLh0Xyz zkbP^2w!XT12(=vwDYZCmL+p|>CW#&JflY5sJvg0Nlreq^HqJjnjXIU_t~y%7G+ zK0dR)H=3W7;){4fv!oL}z3UI-NS09BPEI}WcJ&p`_+Q3a=8>V#{{RZQ#@5zHm3Nzz zd4VKlnN$=Q7{(orGr%>)YF`+BCml)K#rmD?y`wRYbP=eC7XA>3yAbEO2d*>HqVniC z!5)X=UkvDe3)H5!yVY&9>&ucQlF_6FbPPUU-6zbW8NraQeJh2yu=s4ZA+9Z^zPeUC z#uhYUdNW3n0pA$k$Q<)o7uui1ZyxEwD~o%LQpzmiTkt+#_M;m-+!ND0VzBgG7eVmb zOBTNO@l1`yk`1tyP%yrHqjY?AJ2Cjyu&DZzQWi9|%{RuH45>AqnQt|Ne8M|uTHkUL zpO`Ba8?bYZd*-?S0PL?3Urim}ho(ts=H-NMAy|+xBm&Z$kiGMkHQdedZtBVZ0Mc}5 z^t3%LVPh&|JTR5RIB#4a^{h#LA=-G+ypv|y<3fWE3J}o{NEx`uQb^<;htrCvxjVZV z7WAKl_d2{%Y4_e9Y6u(UnmI(*34xrt z$~eIO>ibrG&X?jXNmyw2Lf3xWLv}^Z6}prvGERDoj1gUqg|29tCa978K}+*kIl!ueTi|cd>YhrAMEcNYACT^$gLYiH<2L? zpWX(Em6)jG9D;h{v9A0tFNeInPvOsr?X^87d@aO!sTOl=;{rLt6_Ysmdy>ACr8M1* zJ(EoM-&XMMsc5_PX)bQKV-ZCrJ{v~*q!#*C?qwwX0@oSi6BJf+H5O*lrt8mE5$DT@MeR&*b zX&xZ(s%iHYG3oHY@3$AQ5jDV2Io#MQ)aRx>J(`bO5ajJ-dCUAW@kPQzu6P30@>3+7 zA~Gsq9z3Rz)JdKJ+!P!io71D$yeX{cjc;Y~67N~Ew=jV3rzCd&05cK_`Rc^T$Nh%q zfr2ZwxAE7CybG&tu-0unLM2V972w$*Rv;)6#&)UW?)5%{im9yr(VisM5`PZ(cSc*g zf<$wytP(bDfR$q7VNP%ZADgFYmgLrjrrxaQ^!+#CXNQr$v2P}|S3YA4(&FJyc?p$4 zQgfZT$R`BXkzQ)P6Vr_M{u|b3BH4+MIB^>8`{dlI2%$MAa6EUdPZIbu#y&B!noUaP z+ROr~QUGpU5xG@QJz6N#9+(e|02BdOx_5!J?+I#9>Q@$jZ6%gFd2f+!88gEO<$T5+ zvG-6%&NZ-; zcA?IG%QGk>k-$uK2h)RF$HqSqvET{3^MM49YEc~sW@dB8CLi0T%NOk;Hh=Ry!dH(cL|$ul~fr~ zB3e3`!Ter^rgX58wC&@*$;#Z&u_hgFNoCZMYpOpM~M@Mz*uq-d#_vTwQ;!is@X+WIUF`FI@D%`kGEETZ&V$ zp{;yG_zbb+5G-8okI|IuQ;xx$4P5}oeoL8gxg7fx(w(y$j7uwy$ z&6L9^x_zN*<|^BYzm}t5Q_kRh!y5AM6r>&!j@w%Be~F^D5I4(ZdmMc12O)N$QaSCl zj~OPn^ncnv;;xFe^XR&4Q%LN)=eM1b7Gxb~mG z)n}K-TE*4wt1^k?x702qS=g!CcNv(p?7uDtnhEMpYUY1v-v)RO;id3T4tR#*=H7VG zQpV;)W+9mG5P3r)H3Ord40r^dw7flYY`dWDFQPCuVF_*Q1B#lP=3=)9K%%_i( z;C0-1&sE~j+2+r{iZ$;6+-b9%W?!_#?{Vf6fE3FiX$N1MDtqFy<=0Z@Hn(TY%cJ;; z^TW3HS`r&z(wFn@Bo?TMN6UrBndWDsA@$;>vC?d;?Iy7C4e8a)s;FWrRaKY}aVzE9 z>c3v5o8rw!UbxbulK%ifhIfWWV|{Nd&R7GL47-^LQNY3iGtaG1(X?+8Et$I2e7z>t zMPjKs{qPP>6mmv5ECKohU5P$h+`>-o0TKx;ru6-4Y(6>Ft5H~zG>WZ zoxQlv9O7y|AMswDr*81vucAc4mQw>0JWH*0q?>6Y{A62M24 z(xj2u#v1{c#-(K`xa6rldChcD=|2)}tuE$~pHI_BD3WOCVL+-$7J$03^s z@~qtx;njhX4MX8>uJYa%X&xlRZ3_c{+sXNu;N?(Y4i6+&Q)#UZg&VWhv_Fm!*(`np z*8DANqeTmT{!4pwkz`=Ich2vbQ#){3fCJvVUsGrJiK@u{8t~o4&|J#g3#ieaQ*&qx_R@||Wgb;EI7CGyK(}MVebMU`K z)Dr8%TA8=Lft6xQV$zVHZNlsvVYwT(jPdlrAZHt_{4&?~kc5<}lLR`D8{i zGIpp^bDZ}ib6i=LuM{#qmo?SnIQhS_ z(pbW_dKqF^)DSw2!20qlx=)LKEck)pt1S!mh0_iFq)Z;mTUmnZdU!$x==_9`w*xuI zVz~!7&3xti7i$;4wEqCX)zqxKN&SQIbHF;1=(p>r#TCYttiq}$x4U~zAIy>m0opBq zNHesq+V(FN>Rt-dwOvENekSof$nh?dwXSU9v1nl3BCGC(YtJlC78@RHNKsBul0zuB zN-kWITBFldoOWl?_x}L2f%q5j?!l(i@BDA0#~bd|ty&n81vx5biDP+{kq8ZlhH!Zq zIO!~Z;H0`P^EDl%f{#6 z+GN8;9jP$vJh3w~w1aMNxL%)mt7VbWhVl}}Nvkw|llX`J3UT9~4^Q^b1K2gIJR5DU z?{7CgGm_tDffWwyWr21aah|pFkBWE8HqfEH ze-2&gu-dsv+GEOqMIyA4qTsUf2Gw2NM(<;u zEB4>P{{XPJ!~5b!v!lnT#;dWUw}~SPPgZ8mTZ4iN9^ZDpj__CPArHcz3hO$L!HqI+ z7HV!_p5I5my7D82H+E^`hU7&vMIsZGiNIM13bKV9Wmh<+m69$v4sC9JA!+{rv7f{r z5v&P$Xtvi=z_Z)jPY6gza9FPIFakzC`w-33AlJG4CjE*0Lt?kuN5nr5Uf9nG61J-d zf?ErS6|uc$m5V~dAT&~<=lB`dCckq&23hzM#-1FO=DEhfJR0M`d;6{o(OLYU3fFac4Ju4E(sSYsg-!zCm14Ab`PASf6Fo*2<$qJ zDw)KsqB>)Rg3+x{$zK8f#hx9vi8Q3pt?q5)+a!@(1XU%J^vPxgfahy-fC$Db-~Jo^ z#C{a;ifUdb_*-pubv23p&*AIaksXJgNO2@mG;Si__Xu3@4pe5o#`tsar{RBswHxR7 zYvN12W5brVOz~(92)uZnF}waH@=GE-QRgv;i@mxHzF(H32dVJi?Mv{x#9GXjJ{AK_ z)qJ5W`bF?aHC0kJq=pE?d9k?!M>J0)ZG*MW4m|pp$5GicqBJ>nS4YO)1JZO)h#n>X z0E8dn28F2TzAj679kdNXCsZLDY4WZEEEg#r1e?%|0=WPjA7}9w>`m~G#ab2ThdfE5 zMR#pE5?vXbnMVOe-KPu30B!(|-RtW;BgeXixYznuinRBTT*2kq-b4~Ri+JT2aUI4< z5@2zL$RrZnSAuG7@oU0*>>6i-b+~oU4N3|y)xKR*OO40Ri6m(a+7rnyB09IsjKhJ? zJY3@WY!aatsy{lkANVHLvGDK4&1>-cUb)nKF$bG0+8ykEY~hL@DPfrhn8*$@7|UlF zIP2uk`#O9s_@k}g_$~ZF{{RS{w`@$eIy|~lY1gR{=vdu?(}T3_c-7Q&CnGib4XOUv z9}E?4JUYH2I`*NY%jMnujELlo&l_C3BPIq55DqxTYsmf}e$w6o@vn=t$UJAES$LFa zmkBM7pqEBlxJV!gZRPUNlmPt7#X%Vj@6`-VOA$ITw!5Doc-Qtc_;KNDG6a`8uA-Z~ ziFHh}$2P)4vdGaEU8j*42e>A_au%LB_*-pjtN0r9>$-iyM%UUM`mNR0nR3T$$){>? z#TmS^L57RZw~B4K5`ubunCkk6#amnXyg<>f#194;joU|}ta@&(V-7$N$zV~I@*)d~ zB}vj`02GQ+a=xK9pWrq2+dK~{2Usqkch1(@Jh?LXKR3#N17D_EAAo#k<0FwOjaV@?AUjdD3h(tt#5xM0$XC zH_G@Ri<>zX6hrcpo$s6;0mgBu&rvHx=%Z+B7JjT__KNss^ZZS_jvp8JXVWreEO`iM(Xz05m;&Vs^{PuUlDvE;JXhJNe#SLo;L8-zjGzxK^q;mmsZfFymxG;E}>4)q_UMP zL5GH^8FI|kxXL`+AJrek{{V*n00KTHYBu`Dp*8N0;wxK)k}YpXxsJ|ATq~bVc zRzk}Af!w?fMR1=H{{U%iSHSwRU#EtfUhoZ!QSH_ATf?YbTU?#qaJkarg=LN`Dq=w_ zrJ1tGfMovwJN_~Fm+@D_+C8n`#cf*eQ3XrKac@792Eoj1K$3QdGM)ib$>SC1zYjlX zpNhU8zO~f6C#^o8Dnqo-8nw)hnJ*lEWW|dk0y0`WgUFvLiUj z6~{U$yFD4L-skC5{w>o!A9!lQ*W$JPm8|n-REJJQ0d1XvBgu*7NSurz3o9!*+JS{w z*1jotV&6qgH6mkWa!tL=7m~_^2gp$y5ahW*$Xu$N0tI|^qKS!prN@fo7f;gaRvSY?;Xb#(a&h;EyHNCf#xat}aj$hE(X z{{R^EK;9L#+FfM09yoT zMhDLo)bA7LCxW4veJdAH_|E#qj|H#6Yb}$lu$AG}8dlVka{PsmksE>m3UJEU;GVTp zPyLnC#9EET{{V*X=XAG-NHmLa5x5(^W982?B9$QE5D6XgU9FFY>@06!@TQkxZD*@T z9@wq*c`n}JW>9gvatIxm50s%QM{;tQUZ*vl?D-c>zxc)R4)*Fl72Mv%cNM`| z_?yFefz|hbt8WNc=Li>O zNtDJ0IU%+jjz&#bi}sAyd<%OM==MvZTt*TT_J)$>_X1Tyf>IVwP+|ZRpL+416HBG| ze(r5P!(F?zn|40OV1*sR9sqd`{i<`hg6+ZR)o#zn4dS^i(^%0Z)fU&~GC40Sau7pE z@y4jFg*jC$9mM${t$TQ!?!DI;Y~_?BU%ny zCS+MkZQYX+F8#U2OQr(;nEhIse&exfZq||Y@_y8R@QTUyp9x-G%XKhjE^boIB*)Ds z$o^v$&p2qoJY%h5+=7sxhu%> z-xYi=@js08!KVC9I%ctc7=Nbe-{{j4F_z9Ylb`MkXSQpP9{~Jeq+C7cgmitdLJ?%0 zAr}|1$iKqIV%&O#MJJ_1DATo`=1O*Y8vZ2FHC=K@^{)-;^7zwBytr;r{?O!%sFzX%@ znm-=3v|;0lOOs-Xjlj$it4Mca1I;n?>)O1;d`0n|mv3{VXwzGGb>NaAHLbi6$15_n z0v|nOmCA9KBya)8YUZa#AM)$*{;p{%jjc~i@YMeR5j-UmY8piUbTS;&ffT7qKkRERRjzTg-6YfxTR9pwDe}Nc3K|ibK>6}_+w4}-S~Z_+C`+e z5=W@%ESK`0GI!4~cLW}Gs&IOam7m}*+C$=P-PP1>X?@}yBKIvUTF~F8tfOvNO>)u4 z5&jZXrZR9d#e9dMd`j^zf;CM-0CEQAdu`GrStEt{(*u$zN`p(^j-C3HrrX^6GJlL8 z1UyZqoij+);qXSG9LTp;V){F+HQbg`EsfH7VY$I6xmUj!&nMy^7wI1jW1i0Q!tx^& z-Dj*`N;NBKpN8M$N995W00FbX=dFH!>c0iNQJ`vf_Zr3hvD59qiDzFjcJgo^0^Ts~ z<_?S(<>+z&AbR(}qi1Vjc)E7Ed3|C62DY9>w~I1l21|C`CKnhjxp~HOQ93Y$eb;kX z%gFalANHg1YeM!q<;{+%Wp^2lXcs0S7*aMyZQeJGGh;22jB=*A%|pZ&+Kefv{3Dj{ zNw~HiY!;WU^G1>mJiB>L1E@L1;gAU!#eG$xe#~(AjtH&(8eLgYVvD2DWDaGrdQKdU~KMu94ABbAcw{L0UO;B2WrOLqtq;e`Ta(NdMkf+^a>5Kth z%{T1vt>4?nr1;Ll%Jn0dNetKGOSzg;%7~&n2_zGNw4S-gTK&8DhvGlkhU3B7hll*C*q^!4!#joezC z68y`iN@KQdt(<9RWSE6jvWen>-Ix&GW=zeyg&~-pdh=gzd?ol>;eUx* zOr9V3n{WRB2_#UtVvlDmn-PIHOQx9~2S)q5U6nw|KArs1gl^7slX{;xL;E!Ni^sN~ zXYpmOpCs`NDbr(dcZ1It3~=4R4hDJvYPFaA6Wijqg`NCUr2IaA7irF-Mi$b^E!DdL zz5K{zcUg!S+#&?$fS_0E=fNL^9}T_&c=P@#-x|+#pxoO^lW2O|+f6)IN~&NM_c6*D z@-v90VUj`KI2F^+{{RIx@E?XX<@k5vEg!@l0=a3*#x<*PWp63lxlO$G4JDk#jydz> zC!NIftYM9BNG2&$P2Hard>Z|fz8QRH@O{T3(lb7Ok?W2r(1$t|0t!`M5tXVb1fEp_i5-uPpB{4DXA z@nwW<{{SAE+!A@hAlrb3^zDv*Fd0~a!@peJCstn;hBYFTebd2yA$&5M!8(ymerx-y zbl$G95o-#vaLXp$>`2c$wkhZ7TAvDTyc1=7+H?rEse$r^VI+7Yt1_IIQcejifKKCH zZ}Cs!4~u+3t4MWSRdj`vyO^wCmRz%w_oQ~&7{g;~@Du^gGHYnMg{Our{@>ws`&_7B z{VL!I#v~YGdLRM6hXHfz*1bqVPB*>GWfh}7z_R!sp!kj_@jrvLPxwc5rcLq5Z*c7f z?&jeYUOXOz6P|wPuIpLwb>5xei|G|zg+HBdA3ipn!*ut4V!FGTVY<7!`(T)EhUpom znQo?=>F%672jk#4-sk-b?$3Qc&$qAdbxFK4(|6MIjd;%&&(hg;{UI^wPehlsbqj{< z?-57XC%6_Y-N*WPFpJv}pZAMGn!@^<&CfrOZ7_KP=y`;v<%7|7%exf!Y6#V!b}=?j zH0$7cr0mS`X+bj93SM4bYM3qqOWc88dsSJ{xU?I@_i@Roo5l!rk1++^#*OWD{_**t z4id6^N#-rlD1h^pN?Y@vt`bNatWa-MA|PgW$CAA_a;IvqD|?T?g6WyI18l!B4Qs}# zM=Y6l*I!ffg|V6X3`|6K)k$aQ+a<{X-kl4XV|~cKo@6iE@|puR>!iOLxRehG2Ds8= zjODLsvHz{A7bW~%*BbS{UA`4RL@6E0WpK^5zMhsQGF zoXl{)cb);7ZByr6}Q>CPhH%Tk{gF2XoaZmx#>(XeBd;l&Qt5IIza=yvkB5y=9=8=|pJS}t0Cb%zFwue5PpVXT ze@v`L8#b$iHMqgqZHoQSx{F%TC0+1eN`RW}hZfmzC`n zW(9IMNL;Gqa1j^h#(2-01`n*&F=rR8l?0OyaT&_@bhGR^5_%5wI@1&`S(lq}jbUfu6 z9wSUcVi@zi;b|MQwx#+#6)ax^4c=KgvO;m(IEuB2o766?(#9I;Fh$sim?-?zKHM1HQwzgp zY>8hy(=_F5uf~Oq!oQt*Q#rlt&N8X zfk2!Q@v7f0^li)79i=UWERhGV1rUHJwrju(NdF5+8=|&f5LDpkqTxeDe!BSYLcrw% zKSD}okJ9)N5lbSY~$=0OJ92H|q*o=332xspG+ zNa$NNBqH%J9*<#{)$Y`M4(*PJyM9(QgL!aFYJpizKCs1FKOD|4jDbu&N!wS$l0(#_ zFVvP!1QNGlb^^1^ChF3S5vJ{*$aOMh8FM>dwP8wKa!H8?>ghQ_S$6NEYkH>k6EVE~ z<=n8?A;CYk**%8@Y+lnZ*WCW2m$gwhLn;**$?;I8e3 zmQ%%%1|pk6Ou}qjj~9i>|5T|@%p=KhVY6B;{UpHou?|jKdE+mr6pX?I;=Sbk0Q;MH zsECG~dNxDf$WLWCGU(>GEZvN86h`eJ^KFx?0o*mf;P#tA4Ey>++^O>im7u#9kcdjV zwMGxJ4t_x(io5=Q!k|3wsvqe5@7C7FR~*ttKRjd(OQ_si(Epq-)E((|!*a7KDDm0Y z8Hu6~Wfm^+#+XSP5C$DelaY={vANC(Vr196IUsh9GpbSe*gWkEfO)F9bl7}Qa z)tqWhu(P-NLJ89N8~6uDf4`CRYNOWoT>r&ekndji9gtB;f9_@{)|hB&Fy_ozH!5E% ziAZ0uqFyZiV5l@D>ddqpzt=YJ`~qq*R@QcPqj@bxWXm zhdKMoN;{3##s{BrceSOK44w9kyE}It`FKZe|J*d@dUieexqm~w^Ff|`%EXN|b-TEF zU>g5I^TZ9G%+mE7(fInBQtDTQVVU7#r08J8#**ic4tqbXTtnU!KGhE|prOagb+9y) z(jFReB($F-sCgKT)r9mO?PEvSy!%P8)?gtz{PlOnz~s+YrgH}kZEZpRi`KSdcGy_R z51&b?`owQc1)s}`%~q)J1`yQkODs)1jQ8w`F6basYs)_U9gj9_JJP+@TlEOUyG5`_ zV#t6>>&ACk{>fDKLF(s>*RKWDgHy95x%w*286oKI%C$rVmBB6%&-kh2Pdg&Kl665 z`Mjq2Z}cBi+uxiDmZ2IHMr&1BS^^~EX`x4=QMf~p#89Q*(#Xp!oEq3bk{m9?tn;}d zvLBsOvG)z3Z<^<;`qnfNOh_P*lWRPg@Xda4GwVK1!Ox~)@W3i( z3E1BC+eKNtEH3){Nc7y(h%CLftZCC^uPebN(6VazkmTz&;q9zfA*O9pZRJ&=mF{{x z+*;VUJT$=uEr;z7EUTA{_m#9Y#Fk~db7yT;dlc@0c6?s-EJHZqg#Fh?>Mb)?<@{X+ zPWDG@mhSG-UlFIgWHVw>;#_Pe0K%-0RDu!arCFa}Lq~icSxccF&YzMdAw`+`_3>&( z1|?WtGP0S55|%2#0w#lMBgmHOtnE3wBx{H}T04;cqeD;Ue*QDj-| z$l$0C5J(4=0$>2nTlE<7b%~mTzW}{a_$d?mV5Ee$5_U{wP(T7|h;z;(&()oD)|~;w zH_`)&Cf%{@&F1s!eoz2|Ce`UCw5~lmAg{vIP!5HJaz}5z18oGD`jL~wFhf{k#5B|V zBR;6!`x3(vnB94jX%m@78A6tvt*u|l2h;6btz`{t;dCHoX6c@EN+&Mu-+#%Hk=j1P z8zp_cjuv()RL6^-T*W5TS&)HV^)z}Y@fMB_j4pGHBq{x=T;4b3mJIscsZyr3Nk`h` z7$+2zBm|-m-4b^KvVNkl&fUIJ_y?5>_P!1mL9K?2?**tJ^aED(B!$;FH^s%?*0n~) zQ1w{;88nCEJLB$pNXEacd`1!M6eB8;E3eB}7UUQ|CXxiWjJY|;h$?pLDE(hRdra|8 zG;e6l&`h7P^aUXV@iy3M_hPZO z%ti!-oR`(_@#p3YNZ)P}^y@MeXrnP&+o7c7%&%_m ztxS0~hm`$<8v^sOWH@hq8#N`YB_|>`o8bmfruJ_kQTxT^@umY=i9u+Ug#y|cE&~3q z4h)7hR>P`vp+TqpH~o$`>Q?2KUpY!Rm=9XopJe$ONUhAHEYhC*-e3#`)J2D&z_y3B zIC>#7F|u0Hs>u?~=U z4CCB@WQ&LWgNrfG@jysZA>k*1Bhg~gd%@(#BLceWp%#=?EfyYEuuWXgq^ z4ic)Y;U|j^SG(#ca7;*H@-bBXGpFk<8%(8oi8x(M#O3yyn^nppGDSk|qFDIQu$<-M z^*$BvVEm3Sn8s!I`GXx-bt`Z84SxQ>xvkQY;6}TpSV@SG@wG7PoMw=t!wlO~^)vqB zC4&1T@MNB|mKiFMlT%$aEp#H zOYet|xi`0>vF0Sn#pCa_|y`8^35Jtj9@opuibfOp<9c35Gb{1O}8JaD-dtPUX8AjJyF zs!;w5L|a0LKL@f3QVPV1uqz>0SvCz#h#ztv+v}YC#-BtpHG~9arPkCET*I!V%D7A@ z&k8^LTv@IUFSg9wA?zFSnb#_W{1Y~6seZIUaQyWY4eiJCV#mQAP5nT>ewYpjNL5+u zAyW<5?%)AbMgc5CMs8^S9fv-3z?z#a%*zOaQ5Qj{eBr|B%AHoh(Z*zp?XKjmP3@Km1+BqFrmUp@mz?;<5H9u#-HZVl=*&n99}`{E*2Ai33QHVkap*U# zatN6g`s7B9jyH#`6)f^gRjiNsm$5nSXNwDb0yOOIKErUJNh1pLd(bZz;$3AyCWaYt zywNi=zb1Pu&=^wt#O~@cd?X{c-a%B>{G;W&e1^zZl{OpWhs z8+niz>t?QsQ<98Yl=kC}{?V-J?Q@jEGv`i-YZxrRcU@6JeO{mOD$p`-;k;%Jr`z~& z@LHw6<`J~U&1Llmam$~MVfwFVTUBpFC-afi6t<+U%F18^dwSvMy-={gu}X$m1^t4x z67zUMCibx>bahy~!AWVak~5M++1qmMBWz+fD_qQN2dguc>0gt81B1+6>T5n*c?$jE zktC5<-O^~OW{zOgh(1FH1Gt2DJdWj&fsMY8PWFD9R#*!oW-5cwt&q5H`j8jfE)YKv z3=3KYv;QPnr?pcH#l13R!bX7Ne=|Lklip)^#&BI(0ZAMc|1wX>}|u!L#X)fTDJw*>qxIW zg+tzx^5l8b#oeP3jfnBNjq$t5I(qpYDK1M;!;&FC?)5U=upBEKECQ+5Ot{YF?2tuE zls#)lzq^aoe7>V{niBJX?wdd^YQ_M*Z>thn&P#$v1H+5q4bW6Z64js`=s$+nf6e}L zS_4==yEU3D+qCPu z%jxOY-4gSGpC<)&2nlxZ>!Zj2-cYyG?!-m7{Sy9LbRRqt+d~dBGfkrMGF)u#gdJ(T z)vX_`IKst!&v?D^naA^WIBL+*uV%^h+`a~zL#gH?YhQJ2=9B<{rSg_hbPILP+=Pk+QmpRbKnUks<-#U3WKV}hH^N%#FZ z;%;Y9;G&S*7LPT5wti3bN=0|8j{2q2+zWww{DjFw7cx29PeQs3XysEZGBnqB2VTm~ z-Vze&d&xuPmtD$`xz=%YsB?X>MbX9a~IY%GP$@8u*F9kjks7_ z3jKFrV&rRuxw4wzc$+5PkNYe05 zMdL}RwF2f~17XQ-XPlEBvQC)#4wc?8;hC2IH4+=URsZZ| zjyD4iBT!1(<5#z%d7XhK;o{_U9H4fs(D!OXr7*>+~mDfSxZo=vS7jR*NJ z@%zcs2;b1O35$D{CA%rHq6; zs>1&16SBIdb(ElZ{VnMh2MfGT#{**T#IH2pb{%r^w(=u_$g#psN>>+yTkuNx-E~h#x(K)9 zruw8h)tY~V4)kN7>SY!?@%)AU`}4Al_mf4^H>O(~sI zyQ{Ef0TEZfh7YABamElsCS(EOF>9e2+S|INDGh`$?ESFY8(5H9^sph{I%8ar7NwpB zc4bt~wk6LfmMeS3uX1*xKd_%2{!a?a)@}8fUgZX(C8m7Sxt@Yt76gOS5t6L~>_4+37`NX76|omw-d^!| zZZJ_%j$-sp)K{3{Az)1P^8j>V;|Yorl9PM*!JnWDYhNC-1_Jo*|5&C^Cf&^wPGRAF zE$yF3MSfdZcYv}+{&*W*>gjYeQpwnX*FZp=-j!@QC7d= zU5Iu*>dO7J1Sod(zL5_01JGs`r@B~(RF{&gf&hvll(!kQx9gqeWS49TcyIjchI^P* z6$UhW+w)Wpx{7{UlK7IAeB9xplG)+>2sO=+>|1{Ukr_B zFUq28+x)EN{&ue;;E;;>7Oot4-Yhovw0|`KAcBnh*MP8V2&ra|_w)QU#pu%JGF3^~ zjp~(n5H(Gbvj^9**e{=dGTr`^t2JATWE9#cmBLytCZj>jCE~(ZVG)+1#Q&FM`*l-Y zB)Ls=T=Vt?-dm3I3-n-od^slB7TXPK=dTnEsjNG1jD+fDIU_nk`wC+M#r#ZB3jW)Z zO5M0hvg-*q$KsiK8!?GpM%s^k@J8Gt!+r#2Q|VIY4?lxhLC%J9eCtt*oLrYv4%g&R zWvw?ANWqa=J$lEC*w`MX*){O@kb~BG*wGfDn~(G9^xf_k9-f_4iGNZ&3TlgER8_Ym zgN2QD5pe1FPXDsG=F+vhz_<;ihGJ}y>R5`9JNB?1`fmppD;o<-5}4f(!GV0Bb#wQ* zU|iINsH^Wz*=!<1(B;NAX6;i0_J1awUwvqAjGLXjL>ql@_#_3yWS@ND(l8Tn4>5!~ z!orTJ60v((nt8)rE_wQgo%>tg!7IG^W{p3Rj#ulgd$|+O>3fBO((Ri#LtT)5=K`Lx zdld{FnJ+cdX-%MS{N6-c&p}EWAFB6SB z8j=jS;r`{s8+djBbMv)jPP<4@GR{(hy@(ltT&Yh%RUwU_Hy5CyrmIMhVO^S-qn z;xckxwig^IT-PP+A=!^o5hU6@!d=7&!Q@_F2{QzE(&nKQztrQ zq+d!bqDfKogXhmo0eHGRY(jeBcy_1oyw^_pspYdWq0xsScv%#8i*(9HCkb_1ZKY=} zb6~gH+LC%is4aO^R%LCc7b}D8+gwhf@B*&yoLLcxwb~*2wSL3D{3ix`)T(~^=W0Tp z7{hdjA2pcs=~z%0!hBQzc9M}jZJvd}l=o>?d)%lB-}nzxJhM7|wLfleiV~_`jd0WD zcIEl0Kypjn{O`$z|h#9cQ7lt+)q$v1~q%*%XWhJAU)krM1yG+V%GwPu?OL7ihA*Pu>h;k zx8}CJ`7W(p(F*X-R{b=@rh%tYhH>G$G#*?ji==;#oe%|1kpF;k3-qmsF~lJ!ykuVd zFG-p@b~%-FxcJ=}u^Q0^8`4V7aL03AuT3%zT(${-LaI~aA;Er9#E_rjyg#&QZI89a z{wrRMD(gm(I6A3BYV}*Fnwo8^lhVQW4_vP8Ia|^}{moyMV94?S$*bwfhd1jA>)9k} z^+sfUm{kP~6+_l}3u(ct_`6edujs2ZPLp$KJz#&%ms^Q_))(BrqU|i;$Y>lps8mAkp*CdN$H&`GG$RsK9aAxq@QTu%1~!s zhXQ=aQc>kqe{RM4xqAd$=)E6-kXV8h*#ajnM#>A#7=!gdw=H__Ni{oG`FcD&o`Bn|`z{(J zpyP?+ph6++K=si^zKZvztgoUBOmCFiOAJ$P(#JP2(`{CM@ABsdnb>mM$^pRV^KDn# zb4Z>4Rxh@P%wf3$)6_rw6wvK#xglOckDQ#B+ZM3?TwJ6_*5@-L<~8M?S^Q+!dzbDQ zg4aUmiW^x=szNxz>{o2G9=8?B!)ztw@1Q>)2_2A4JMq3V&cGmId>_xXn zGTGRv4b{J(_fdPoqx@B6lFdb5e-zY9_(NI3LTLRN?nBVSFD@uN8UJG!T5mF+aJWmW zf3rP=FZ!DzMK9VIP6yp8lU(ca^L_;5(R~cSqgMg|3Nz*tuF+%^R4O+Mevh7^v1V_a zUCQ*u-a(7$23HkYJo4HNq>()4?-TGAbcv#e@rX}|C%5>Ul2nX}hq}uNnoE-DP~P z`)y&!HnhQIVe_OXUZxIJaA|03Jo6K0Y*|NJ+?%0d){}&6$_I}~HT3ZeQ*o!N%rX<~ zJihKr%hTTVHGTkb<+3fk+qVCe-D5q%!~57_1xa)d`JN^05jSp46?1Q#^Wt09r{KZZ zD>~hLgWh<2R%SFvf?b)Iu3ARrRE+||e3SCOT-kQ9)&2qJ60ga0n`BGOV#_9y-JbZ$ z{$%Q!@{>vuXNZAwkPgSFPFpG}s@Lf23MwZx?SEDW!5D|FP=Q$MefhYD=joT#?iJdFn^oJX2-oiHjQ+KCsAkatbKAj29!%Y}HS2~^T0-}aM02%(H zd5~^itKP=6Ku;O+7WsmYncyd=Z=r2kC30-_L56j_`{|_-MU=?9*IRW)VAhT~M)ISu zvP5^Ii+}<>huUuiessb8+?})P(x#22U}lkX)k-*jXIp(M0qSbS@E?Q8_%#-v8|e|U zkL9-)Mr%>2-~DC$Yr5dM^Z{cL#tbAfH!mq&QyL*Igm+>~wgtzwek zpuL!QdzT4ghl=Y%+COV414T$ZWu8am%v}4F`VfG--pJg->db#_?#QI2ZeESV*}m{W z0j&rv0UGxdG(bXw-E4wO+VtNNVrw%d_VT^NA0p@g8Ow&Od7)ZQ#(}8_#Mn@Nat#q# z3%^HW9=^93rHjJ&bWUSVv*9X=?O`xnsjf}vs3LppqVk)3t1~m+biu9Z-wQ~`$`#u8 zPMoxVKOSQ*hRvKQ74N6Ty#h2yYxuwx$Wy292BGG6#AxXqic#?5U z;d47o2@R|y6=DPl{5o6bKgl$d)63MbH^coBh_jX^$2EYu`ngZC%bbFAnrmFW)+wbO z&?4ORVBew-SBYVA9`mr5{g2hXGfT8@hVN67f=-9F^%5#BMM`i+Z*O)*$(ngfJ~4`eV7(vVz( z3KqY@`#EYjtqK;>^&!h~TFQ`rhb{FKGEAwOp(6V0j67ZRy!C24)r{cV-<9Oiu@Vf9 zjSm{et1!>yuXfrh@v$l%kqPkfvhq=u-ts!-S@t@xcp}TE+5N_tdiJ|i?COwGqLyb2 z7NN78vy%B9sxx}^3+rSpo(hxtTBaEtda2RWHi_z2_vJcT3TY9}P%4_;qO&t zm3@Oz$_xpwNK#5kUXvX}z|VZTnD)+i){>)LYkWb{;h&Hl+ebkOJjpVvN8Qo=G!0oJ zIKFqsT9Ed*`49g0(q0uCvcMpmQg$)Q3_zhYO1SE;Pw)@@`4z5*?7)yp%3Hycb(Q) zx%zR!!;MDDA6CLFwEL{QbM@;xfG+P}Wb3=)fv z_1|G6I|}*5@_1j)Z-x2#BM$5>&@0gtHn6ZcKMgQYu^onzotk0Y=9?bf>@2KZ=0PVl zHC(8w?+9sWiKDjmRA=iv^1mc~8=X`rS73dlVKxbwGJO77f!q<2OcF=Dcq5+I(Bvnd z#4|?7WywAKwg*jz|C9%8`hSLTtM85?9LG@y3Ccu6-&$}mduewDORhBTW$6K3Z(YB^ z_`=wnL7O@s!G`&(UjyfvQx;xg4r3?>Hf!4Z-wtRCqH8z@%+SFct!)Oy9R-K$1je!f ze5uBr;ez2d%*F-B1$jQT$r{Z+%O*uKTFNR+r}$g)iF)$!hcBeDu>&@!r0ABz3Xl$N ziSnxr!Q$-;rYb>I6BS=VeNqSMJ|DJX_lRU}aGyFYNw7FjziM2(L24*WftAWGZ|py*?lwq^FLHI{dQN3Q3Uq!T*qJSaXG(q_$4V=FYkGCMjfI)pft~Kq0134F z;Csh-d&%ZFpgiA0xlPr$<@gwZe<)4(tw_%u3kCVY87U9tVxE6x`z-X0&Ae-K{1g(q z_e0i9=FzfE*Ld{vv7~W+wy<#NNG}_)ES9< zRzlq+GX}MuQ;|YExcXc(EUO=YVto8nyZg+U^(~F_gahVtR7cUTT`{FLO^pA7MUAqLFgpXdgS%5 zT#w;7k3UCUjUzN@A#W9t=lsLBhMGkQm>Rm$wnUTZ{!n}NnJD0@_4C3F>f9hB@KiU9 zV2&5i?FYSNu=&$k^s`6q3rLDTgUM?)Z_V!LK0buWziu~(1{0RU=AuB+zFOncO_vPt zXE6?mXAT^g@32+ZqEE{#CoAu5$8;=bd+c)?9ju4p29>y(57HB zUqLDZUuwgnjXK!NtO$VuDFo!(E6%(0to%@O%SMnn{2AKtJ3f*IB-1OT{9unOx)Z$^ zwPi~~of+tTAUb*h)y4GY2h%}|5lVtFq37h1x1P(fCY#JnqUBfPejzB3%#45%hmMvE zI|tW4qscU1saip=N!A+)+|U@VUY~7sQvgG8oE|E$>g?A1-r~2Mx!Khk&IJ{h@^w+F zF-F|BObKZr<2ND)x{`g#4@6?3FCf!jFQAjJbsu3xz>WWgZY2W`8n{>4iA!WdrEzn3 z7hel!f~h-|JFfNALtlT0I~i{E{Zu^Rfcl3a=W>mwWUMe#FNq*vOG81`P9GM%dz{Dz zC>w?pW6yt>Ji1oi%^^ylb4%mXHyPha!@At3kPqsO>^;~LlScrOACEX8nurO>Yo?Q4 zqvU5oCV8?>UNhUA_PgPlT`HB40;*2Pb}W6@vY2RKsr;;@4cRD)R}Vw0`}k+0+dgPL zgv12qL$+k3uX2UHRub8>(9m_~P?(RG8JEr?#%r;>7`A`Oi4{7A*YE&Q5B~e0%9omdTYn=F4Jnj{{!Ao?DJ(6i{%5e4jjiH9K@YMbo^$bW&LbwU zYYn`oP{)H=$s4%{8ix_3GPGjezG@HHI=) zZi&5s(!$C^mjw|T%SPc&TA4bA;PM-Fl4MF4rxuB=KUk;OoZ6)1|9jpRt4x!7EohO(hvq%ZRKjOFdBQT&s#mZdI*!uo@zBCwM0J;88_679% z1@tE|L<_D2oK{v9y1dwXo!K;y<0Vk*lS4Cz_x5k5pdn}6o71J7CJI}XZF;{|3L-4d zOhf172U{ivdr7)AN2jY*yZ*JzxU2$DJ$dn{ARq4J{cKZ&yM3`Iy+sn}op`+8ULisj z2;`S6H$;ypPZEGh?4mt;Hot&oZJYDj`C}veHsDiGw5ig*FAE%*rB%Qzo*LrN8>m?6_(VjgzfHUJwSoJaze%#uPwQl2jkJcQjqG@-l z^5>H^l^<9hnYO3e1b?pe6jU%#+`KULApXhjL;P#rIm2{zCS|#_)MoS{u8N0t6mg}s zl4|;F@d9GdEq(!+S-pVdO8s#G;xPvA!su(qTYCwopC04IDzYnJerVNTN1n#t0+v>z zaveEpmnQnP9feQ;(BDql=aN(duUvcq{k~wjC^Uq`v@X+k1}9}D$<3zWzRrF%mT}5E zc9w3c1>`NT7f=NJuC5l21|Z=D3xQ0W2JzWRr2fwHo=>nyP<)zD1#;M3+GvcyzA}cl z>dKF$|Fb{|{=0g1glT-RUc{W%+qjl1Njok0Nebc|!k+;EF9`oe=rkqHDJ@-UJ4Lhl zp{~7AAR!$a-cv(W^*;)G0WnShP5WQj2$`OCm<@0_qTc7Ax@*JZ^qw;1eN$nW1C)0_ z1l%zk&7fNR%j@o)fYAe6>NVm}Hp5IN&?D};n`MV&h=zD;qQ)UmyCpT^i2d@=S{oC| zjeFEw`l0df?|*f(Zls~3vB57O<66m5Uj)(%D3#|7(Paeq62mzEsC1cnC}Sv6myclN zd%i+4<2A?3O6k-b5(nQ`JV>N~o(rpN#OT=X>Kc|ilI~d-4!A|pia=}Gu-KUA({VJ* z;kq+u6m2gqSbD8Fv6;Q2SR)5aviH1qPfarBA057)v^ig}fsko89RE;OFFu&mK za}HlGjg-;unQ7~4ygUyn@uqpIK0bv~C(m@(F^b2`B#+Z_>2q=uhoBlK&^yn3Hx?)C zN<;8nqtn9|zc``*^SDgQOaU<(dW{7&dyWLE>sg`|#1hRl(+J`UG0z|Q@ne%r6$+Vs zNWj?(2y_AGbqT8cTfmlUI(Pe<0Lw(=@6@0&Yo-r3Z)ALsCus|J-YYey!x;j^QYhr7 zbI~mLbK)&<98`cePuel*) z*3_Q?i~Hl$irii782C+lj-&XpF1iq+0Vp%fS1*~e&7L2$=D*IJBFj?g!0!7bB2Pb_ zzjw^l7IelS8mYH@<;YeIwZ$RF(3xT_3h+KZJ0E{uQh6iDG? zmD}S^;plP&jONM=cxu2fib_c*De2pbioDszO1=J?gx=LGi?LL395!!GXYtP~Gb*aY z?iR?$9OfAOD)002?2JnaQw^B9x)9w>jx`ld!z1~dxlCsM0&+_<+-#MQdB`krv1~)i zR+^yB*fS&UT|P1U_qQ^XuMYI5_rN3cN9f7;-=gSfR^NqaUCs3Pm1jF@6jl5r<-g4}glGIE*hMDbP61_T#SYoMkuagvtGLfxbsqf~Vtqtod0 zdI*1aAS`6-S#o^1kA!&r0!o*Z{I?i-i&9gF8af&oiZ}>;B-ASm8XL+{k&C0|f|P}a za5}y@z56ravPVjm?-PpG&^(()myI&1A!nY>D$sgG_U#&dM=u9%1gqP-`qGi>s7pbuJ_GzuQKtNeSk$zVj#g}v@rzFr^FDqn%<{Amg`TS)c_;vA@mjw#1 zIX407<Jt}NO^3z0M&?~0Qn0#y413}m)sD72x#b*WOMZi|I8&Z0 zWFPUr?j#g&o3ISvh4qq)k?l_j_WNbdI+4pV_NaCK>^xWf-Y~-YN~4g{bv%6Y^HERr z{~ZA13+NNz;7XSfaY@}bJ7w^gN4saA^auU`SjDwT@dtO~>W4yw1+eHYtn5#1mvqT! z{l@3v=?iPoJ6e}x7m{}K#cES}~E(qgXNixz`5(Nl~3cxo7AcD$H(>!V6_dBRG?p?A%IRU<7K8Saij&&A(D4*r18PQC zvtP*>zM+FI&^K(oP6sc0@}-6I&b@Hi*#rIxQWg*&(LQgdHP%43#?|Ai> z=9=haKD_>e>ZLKD+Vre@bo^v%l#ZA6E;5#$F-a3cULS(xYU&qhQBZ6~z0o{jfRWmhnCUk@4@ zxi{a#0Sgb3wqaCpaVx7{x|^4Kz@99f+i2TkSIkM&-%cQ=gMqX zPPeTxl!P`;30X+T=y(RsQV)B{LidNa5$!BDj*Czlc$&E28IwvWDg52`nlNMbRVW6~ z2DzdDi!PQzQL8D1LN`4<+}>VQE}z=DK*W! zbC+PXqp4hLU{bz)lHHR~KUTc$D<*KGMX?TAc_05n9Sc07I`r%$l%;lLAoQBD2gr0C zR8GGhUhx@MwpB5l_fmj0p~s1@js4S9@@<#oQ|bL{k24o}JgN2LEtFV_q|j>Afy5-L zRpOmRaHXX&kHWA4x8obZjWk8pFa>20VM2OR^EiwGp?rA%-1Gukbvj7~y@1BvErg!c zm!}`j((wlyoEKt;+NiHOsbdA8(0A}$^wTyDOk2Y1`9 zs{?YE%Q2hWn#)tq%;%+| zNn4uVaGFQ&M@4y)6r3KjU^BpZ)FX%v6QJ%>=%wwE2ptocliUh@MseIV{h<3^doFQi z{Gbzx&EpIWsq^qT6j3C~DD6@p($BIi-q=W|#q51gf+_V>9Jkb=jx^$R2*XoJmg~;@ zm4;xmH*`M;dun9)R@puFo29izV>xtx?-{SPu~rCNpnqO}VPpNd1nA{& zQ)=So`Uz2+YyAe>Rg6yAIZD1I88A#Ua@rzpQW5L&G*)C!n+WHstsEEpx*JB&f{0Y$ z3fgo-$Q5D(DNyzHBTtv$-aS0PFjx^0&RP$L|F2}pQYXdW3$IA7DSk-$qvl}*3_-rp`32Xu%0-l zh6EA7Vb)CK?}|aUMMg8l&fS0U5d8;&ar`a{|tqn8lwGpS9doZE9Qp~$=ut+z#VlxCp(BFtau(| zBLg9&=Wn_@ZNMd=csmkVyH<8!?piHWdA#Dh4m=HYl6+tr11hEY2h7tSHATY*&t)99f^aJ6+L=zhlZ)tw zjzZ0L+XPuZP6~fyw{-X24$sy7Kl^9fuMktcq!L0O5$~V_E9v%h^$sMBaFa5_w;2^j|nWJ7Q{7VioPE7u3le^teA zR(o7aGoD^i5Pn`^M{~wR#L*z6TP35f>xPoov=CyPl4ni5Q%;$r*<+oJ%JNKB4=DQeM$Qkl-~k`6UpxP8z!>r>kc7mN*pBe<;PT7o{ED5=hlt;!=6RP% z%6M!UHtf9+0&(=ZHVIB(Yp8VOISB8WeDUG}V52nSJyq{NXs_AdaN`UI^4@O$ zrlx=e?{lL5tf}Nfpf8qvOegABDZB0!Wt}<9upD6IT+X?rA@E=BBhK`7a4MhLbFyC( zqH1b?+hn0Ia4a_6$R+etiRzD4(7f{)4Nu#Yd|s8z2$<>Td_X&;`S(PFh*~^SBXJS@ zA!>tSwE|b)-;N+p%JTZ|uogVkv>tb?5nz>)l%PTS&eWq7C3hj`VFO073vguh24HaB tP=2vWpJ7Z|{u2mz!BCNwEZlMV@8kt$Un(go=%hR_5NLj>uB-Vsp{ zN$4PiB26TL&{3)=`d)tj+t#|D?!C{P`7~$FI(z2Koc%m||2OmB65yP%zL7qFfdK$u zI6DCU%>ncPKt{&@X=lN7)|gqDnVFcF*+C!{R!(+KP7Zbs4lZuKb6niK+#DR|1kdsE z3xL63PM-4+K>-M#09fFE24Mi6-NVGp#>~tnz{SBO@c%jf>jLnyGLA6=fD94>Otun$H0k8Gt}WCgA_f`mA^K*>wODFEgLG zq7DncdOz9vTJZW8@u3nh|q;gm!+;q%Un}Yy^cVt>D|1g zZ(wL-Y;A)=+uGSXxVd|HdfoT-!8{BJ4GWKmOh`;he)9BLN@muJ?3|amukzj&6_=Ej zl~+_YG&VK2w6?Xs`_%KfmqhOC9~hsYOioSDe4YKiOr@=?(%05Ee(vob93CD2I{E!S zxERiG{-5!`1N(pA;yuH~$ixI>0{ssz2F9?n6UfWNEUw7Hr(+4a7sM~26vrx{n^9Qb z%_gaA^#kl0{DoZ*cJ2G6pZ^2xeo7qb5g*#C`d7QhK)ID2_OUce2&ufHzx z8zAKNG&q3O-qlkByS+Jl8{E+lu-6qZe@LvGD?F)>Z-Z!V_8W{{iZ*`6!3U`s<3?&w zh<TY=CY^h zYgye50f8>2szScn`j(oPMzYf|q3_fL{M{|1_`V?nbf`hJC~Nm-vG2C9Ll_-gCJ|uE zU?5qdKh`QI;V!S`A@bACtSX0&lJU+xKQ%8ng6SUi=q$QyG{V}Y)jV(feFUG^-CjwI~DQ~j?re?;GK zRFkkjq@T58temM{O6=le#H@`XF8svWEFd4K~M=t5-U#*Y3#lpcTA za70$lJCTf(4YRD%Vn%Q*D5diI>zCcYkJFuo?p8~U0D8fQ8Vdd5rC392xmNaYNa$O? zsh6&JNd*fIz6jv1HT3Sv}VD_T#{TI?k zUU+1XSm*ZAEUgkfxsyJaY2A%X4hj6a5_#IbZdui2GH^e5U?V|{VM3~)RHHOlh~^1T zawZp+Tp7NQEdIo*w7`?;+_QKdpX4l0-&>w~K}zzhNG6xxQ>fESMpjHbfIePhvPE;J zMMhp2?8v3zsTae5B_Y;mM~Inz^x&H}6@QiOTFpl=*ds6z^NMF^-tBUuC%lPJ{1bP$ zrlWp8V$%6bwuXW54@H#r)ys-$h1EvlvL6cAYg%Xs|Bk75%j5N=Ltzk893k=#x|v{m ziDy8cRUwwtLP6RO6pKlD(%Lq!C@9;fmV2$6_;Q815Fo)X~a4%?d00ADg zKaEpR-gE|M@kjwh6GTi^oysLO13-AVoj-$P$hElu!XjC*k9woG1Tx;7ty!-3)MtX z<(f}&iv`gBfvbm_4fL;4_9PKd;O1dz=j>ar8&OEfx+=w}L~2lf_v+isA2%Sb%D7H% zzbA#wN6V6+vX&^6`tv1$Oe3j6G85YAI6S)#p_f|8{g{)&zo5z{DQh69`NyW|RmpGg zp@Dty+%pkX!sN&hEg7_vkXC)S{hd;UaKG$4|5y|{dORZbNB9k;6nbWRm3)(@=D1|b z_u~%tA2O^|NhD-8d=#Wo>K~t#Zgk^Ql#SI~a(bpvTIiMx^r4zS_Mr?DH<=R^9l4tK zqk{!0*YPXb$BozXQ#k-g2-1#oc7$W`hnr60&*l0`2lNFLX6LEDt@Mk*>Q9COQJpeJ zpV4VP2Tn@_H42}SSIoCuXdqmO?95W)Z|^FhuWdSm?53*J`WdALr8A5~b9s=AMf&IFIw)e`S<;)ni~abR(^eXAF!$wvqry>>ei#~2l`V$ z^Qt(i(4yRyatTMMEZLOKr#bM?uHv(jC9kI21~Pe-Sm)80`Yx+@jDk|)Y9bIMBpJ$H zGwt~NJV4=&Do)v!Jv1_3V}Z@H&3W_N${}6FbUwALa8&H*)Z0DxTxC}d6ndb-#=f19 zTI|9w+sSS-{)JcC-p;61P%38YXRjVC!qa)FZFkJGx(WDe2CT^{!mI`l?%CO)-&daZwS{_7{NE+S>N|!qprDZXP@qy!p4~OK%Vy!Aouk^qGA{Y> zkjlGmjBsRVsrBjz3z7&l|6I`_-X%tjOY>P@8h>SPBQ1+0g{w$^d9D^99!iLDBKXW( zdCBDCwCz3eBV^3~?#W!;Dur!JJuqQ#?)q|6Ct|n(*pL>!b#m+{qhQF`zQVEQD>PTp zqnfuVCRuo~T5WMSy+hp{x0wA^_YtvV*bA#1MDD4C`>I^1iOBhEQ<^89+ma+7(%@l5$SeUzTd&0W6n^(PB?= z+gf3!KyZC562)ehF%8`(99ButhUTlP`sQn#2%3E1g2oJMIRa@v;?>(pUc&o@c=0(%^EM7tgR7@?_b>_5uT!DBr5>MlB@{76E3haAAIuA<)^OPY5H+2Jy?#wLkzpOoIv*~|Yp z(nQzKNd0O*X%5XqG98XqOEyY_7;-s7%8XMgjd%Jr(v0I~WD{MIcQmCdoVj{4&r1PX z#?;v}uY-U^VXGBQM1oq}sED-HchsIC2*E^XZkTimqfFjTPU?dxN{YTm_3dzv8Nm+0 zDVgajt?qP4MNV{ah1QZ+iSK!T6UQ(W2b$D^7+v|RYDE^X=I2=cd$ zc_7eT!EJrr)}uYK)S<17n;QYy@u_;5i{&nws??wcZvUe2E%4-eVKH$w*{w(~)Pa<5 zybY9(%Q}aaqnWIvJWnyb&isOk?sSUFd2*hnyGS9pSQx&=WNR)>rO1 zb%a6=$~k9fG1)I_aBV0`%ft&LAYFaTtDn=c+FCv=cs|m4O8f50w$p?`y>ZD_mR!^8 zHc-~|wO{y(ZX~d<@^z1*WCavx-7DN!ez5Dbhc+OZl{`1T9Y_wFZZ@q0FHynH2&Cxy z$s~ZZSf=>{<8Gp8v5ZrouwvZdXe37Yfzv;sQm}d;8M$r+Kxw;;?dJ^_Rhaq#GY2Ap zzb6Lsr*-;*nb+++ctZ@#bJ40JhAl zRXCnBe@Ix=Wq>7v4$4~vX`+9n6^!8IUzD3$esS>#jVXMKK7X~py>c5w95XYa=K|#u zo=~wHU{J^GNPh??hm2wzibvG4Gw$sOCp0les4%6qL0bhrQKg``Ne2852>>duUVgQL zB0e;OEf%}SMp?n#w_O=liSR8UCV!SDIaDNclW5N&*vBw+UFTYZuz#qRLuJU(!*1MX?j)=fpRA*Ha+UX zhZetIXeY0aKB?P%u4cBs!Znt&-@Vq^@RF6ayCG{XG-_g&6g)ewR<2&~!CkqY__2iBzH0vVbduu_uN>vvX7QXdwZ5J*HqV7u zR$RXZkZ|8f)7&cWt8&)I*mug(`vL^Ef2iRNG#%!S|4DY(4q@uk;2j-^hUb5H5?KfM z*{72D4byJ*p{!``t(a?1-~uIt<;?{l4lZIHpAC*xh25~=jcj~nWCrCwK+Sc_UBYHT_4cq4!K8?$s$!k{GpS&r=(W>Yh6Wr+GICeww_By zoqb(CvU)K0gA?|E#yi_UYk@+UscF`Cb&}sjz8Y9y|D6 zpSM!p=j7ImUf*Cm@nN~4oOfI>s#TR~^2oexKV!{s( z3w9arsqu&^iUc27sIP0z!E#9Q7J?lx7dITCa;bWx&7j?bEd<%`@==il`fi-*rq0$4 z>E1pp=Pc$bSm}^HC^ZTU?xk>M9EUT$uS_j!P;|b1@&0IE=+Z+iO00o6_kiPri&yAi zs2>pFX|TJ`oiLv0S_Q^5Y8>788#$u2&PQqFbVWJw@z<~Upk}+fNdm{Taea{RQTd-P z70v8;o-8RL7@kUav2s;{FOqY1fIV4|VTH>=uqRvtxt1mcxDAtAj{ke2*_RI*UkmJJdSU?+6gU7)P?J2(w zd8xp}gstCUs2a@uc}`!*b4M+2P5z$!`IYp{a7oeZmtlgWOKoBdZQO4=q!-Z-+~UK+ zkYC4Sw!5h~Q!7J3lOI4}+^*w!)*5FsmKgue%Er$%OY#E1zFHmC355HreA@Z+jO^{E zak5VoJwQp5csF3G&m`U(4Y1jE`7oqrLH7uVUon~=xouIA-hm4r6;MlzuI|4#sxg)H z+0G9`V4a&sc^A!`+@l2gWKH)i+;ogMA6&!o4=)I&ccHmi~gN|8_h{crm30VXsO&K=X z)3ym1Ab4RUXsW%0 z@5MlcB4^|wS+nvpWMMBIutll_d$_Vfe=w-P0=Jo5UTX4K-Z7JSiTP57p3O@i(Bq6X zM4rm%ze0ToxPAjTOPm!GV#>lHRf5D^=eb!}<)%Ia+eB}h-^q6*)^oaCmvTXpRro(( zUi6b#9={^KmG}>E^<~HXg;A67=c@S2lFUCx!Y}5VTxpi~46RtROnpQ~(Y&Th92}iQ z23VAkhs3EP;amcgUQb;|FW1?)e6Y8w#&yCci*DyHND@jsM1~HVA<^GdBh!pKSYE?Y zQogvC3X8=w6S;FZIOVkh$~t}K)_tCj=zy>n$2&I!wleFNr-{R%ZaQVVPT5Re?B-&q z@`F;1v{yPCo$!D~ii|$s%E^dIGrJ>Rxaea5h!&{tDj zT`{r}&6cCI^q3cjAThIk?UHnhO!54ZsdJ*quv%gi<3FQ;cfsV9REQ>iDTl4tU;_<) zM*ECw+nW#egp|KE;nSXthU>E)OC*q@L=R1yQcQPrxZagHDM)1#1Lv@D9ifjCA6ASr zxfIst?54Cn@T=45oIW}geN*!At_K^h$BEHD@zV{q0+JIx z5^HM{GPax*hEyj4Q%B>q|8(|xEO=9WsA7@S%N;^nQ@Yw9rXQ@U<>vQUmUYP501`aB z#1~(K_TqS4#+b<6c2EVebTTB{` zs~xdE!!5J&-ico0v-wpZIH+4wIz!*&sUg6N<^4&gS>J}KUoP;*6_MDp@^EH%*TP}x z+-H%5Uk&YQ}Nx(VG(wlG@QCy@*ABrn-ePWK?|2uThcgGRK^-prNfVmq+C^UV&o zuR%_NHGfZEE5)sKFZQx-w_usONXyEUiKGt}iq>SGDZ#{8?YT6EyY(l2PIy8a@J12_ zSv@i{G1hyZg-tAD+s5PB8+IcLt@Xp|lebFl+n;bn;5VA>s4EPd82oXeX_I4_Kh`%} zGNJqK@~A_Z0!JT2lU(iNd{cL+VACE`*nbjp=kxDr52PPvI5;~`51(~LtFtDg~;&XW33t&eYx>fBi8w5M$pMzShrC2cz*kvi^e85%J;8apAdPoXrw!4r+lD z3<{0?1-}?=bZD=mm(+D@lrZ_9h&`Ve`d6DIEEJ-SYeG8+lQJ*smBi+i~F7`*o3#Bx&PwCu9d z0({s4uK!7(Tu3&UjdT}1e3$&>HTvUCr~Tld8JoHfTag!y3u^lTgvbjWe%D3YG>Oh> zN+HOWYlYT$9P|CzLcS|fVksjnoI&gBj)Gq@2m88iqzdX^zb0p~4Q1*63)g3|PSYc6 zxDp+&=o&#loqi6V3m9$JEgRdj!q9Sdk8p)CXKd?R-AzgH>o<-YGfvQ^#o9(WKpbJR z)3w8~)KLfl_ViqQ^8l6@|CLz>0wKX&CxPb-nGFXqDg6zBENnsIlJ`d;l4Z@lT^q## zz%qykmr7~3FNnAH9!{4%-u;_6iKkG-qr|`PITsnpgbGP_*Kkia=QIF2C>6nZl~~VK zsMgQQJ@@>!fw=sIRP$9Y8b=yt#HZujh+bd<{$RE7!COr=u9lRnN7VaHt;dbyjR8eG zP0|3&82UvY7*#(Klu{IGuTOzOshzs3ju-XxuRG+Pzh{#JRoI@byUGHkdDWUtjxBt` z?4Q%r79k2-JO^x(#v@b`-(V&Z9VzRQZJckUSM+uBn!%)F7-JDGxqY&Y9k38LmQ74w zkZ=*CA~(m|!C&^Oi%JXzvIvR^W+@i!8*CbcnW~5HPmoki){P+R*CqGo9*h{SaRrUO zx}REfrPQb7le}?e%{(LMV!n#|eJVtZip`p8EXv)6$HiiX?Tl_qbFz%zxHH*fwShL- zEzA*g$HewpUi(__ z0tY<6BB-sleA^`N5;k?gToOtd{`2X4{0zxJ==ZpSX?q{wP%HbridzoJf8xUwtGwv#sdx+Jc@fjL~}VYaYd~=iHB|S!Orq z0dfgAR-x5A+Z^#U5k)jVtNt>o6Hx1^E{d{mZa;^8+QY|oaez4Q!qxk}%Rn1B?0m0D zesWeJV)Smcb-Q(2g(R?C{S}mOIUm1f} z$scTr#G>wZd8@gBuz?s{v%kd2tLLZh84Zl1@Y^aC!C#HA@;YPwq);i2?@=8EKbQc&J>}3u$*)6fJsySQ4G|RGF=UaPr>_PQ|LQ;Ho|gn2xp5^l&mTb&70c6qqk zn)oX5rJGS13h?AlPrAX4e9_2sgmuD*8KUafsxY7*zO6R|Zs69`sYyIUloiH!gK3s= z6ZQW>cCVl9t`Qj(cOAHMGwN4isK&dH#W}{3TE8{=gC)n05AREOF0$ zlnlAo1@Aws%4G zYG(J%Ik&j~E<6?4R9)?VPY?iu5WRwJmxICtleB^bYHmDfiS|`;*3uQR$zgK$?67Yd zRWz=1qOv)=JBl#9Lb@OuOaS(D>`)t7}K z*Q+&>-=s?&73)VM6xf1&d>oWZ!9p1i{5acWRH@8%A=S4go@%R}_k*UbTa&$47)4lO z)*-Yg%8yKFg&Cr1EousRH6B zLHp?ZD&v959-!Dil?}@>3YBPG7(7mf!R6U8rhBB$%kE)ZyypKFQ5oX-UT<~f#*I&eJ z@o>IyX8A=*x*Z(QnlbFMgYeZf|8;27vyYZ7TtN5lJt1pLYWJ zF&a~u(~PUOI#O10Be|uIWiM!V+`dAGEd7~`kO#Ife4@V5_Pr$T8^r*@ zcRpJIAXfqaORCBavm2||cXaE^J;dl>*>m`GV1N{`zLX~3&y+~S2eM$A_?rN1>-H8pq*ar0P37T-4v*Q3ISIKUw{C4!Js2Z!NL0ny zAw=}TSemN0QQGrB!A+c^wY_5@$ETMXf!qdD&2m)@`ufX76Ihf1+T+R*TrVJvm4kBH zb=C5))CiCi3$3RG;is0nFTRS6b5zf*HOpt#J@T;+ZM95~)=Yf>^27{#yK#qq8h}Xb z&)~GOnJKb;-_5>HheL#_k(R-OJ&H7DO+}j;i^oyw`r6$!ZH<{mkcnISw0eYP0`@|M zX1nQJ!(fLxX0~aC)$Y6#XJFJM+tbTBtB;CsYW&XZ&fK;lCQ*GOfq~^w+{yJ*eQL$ZZ zR;+(-+3?2dxW!FN*4MD9=Lba=8~7xCn8+;njc%^{lnl!O#on?^R*1~Be@ zjZewdX2YEK`(}yB!u6xDv8nG7h*2Fvv->^J0w{ICyI}zMs2Dh(NB8dEczF43(-l*} zRT%}q?u3f&vdW?%lj3gPRH(37DD7v0&8n511n|bpJD0o>Nb28h=HHZmKpSZ`|MnX zk#H~&A6z7~!M0lVN?R9n=M%B7s!s_?MjX~8;*92#4F&_1WG;h30g}L!spc>8DuNan zncNESvG?#F=Ra#nWVv4m`P{(!4rbTCZ_p|NH+V~-;oI-NqKyXhUFVAsTDN!|${uz` zgEQgVqlp*mws$JZ^%qt0=6VE!ajn`-2@^EvzmVBGFZ}YBE)gD(N|D$ZdXg!tQ#hc zkGIvz9>4#sZa3lD0z|caxxcK#g+s5@d)$!tO?XtOJS%=7kJSA8;+q(gr#1qTVR|^3 z``?i?QTTSJ+mY^%k){m25+Ah}chD%Vg|LTKA%6sqcu&544%g64W7ZIU5 z2u--U^ds4gWC_KXqbH+*5_o8^%&DY=aM7A`HA5t$c#BCTBAaEE0LMToG$BNUr0PpkrR zyY~UtHHCb~9Z%zKGXt&V3grq2oidd)rJFya@$jgMWTA{pC;)!}NAqZf`1R#Q_h8@D zIwZ}>8VzfCIJxujI8=?;L6_(yewp<{8!cQ{EOekY9?zkS0vv_LkJ z&jVM-de8AWUw@B&Ng=3f)3!}!r4hNd`W7QxTsN`y-c*x#TDu8%!q`M-zt5lZVgpQ0 z0V27_Diyv#P4`}FxC4}jJ@timYb@wu2OL{6TfD_V6&`zgL4E7HC_Z})T)}0)9i^_w z$*5<*04LrxX86FDEMdQN={{;o^|dPPKOJ!+S2|PldhY#Tm}gA3bCE=+4o8O36}zesh7d0>Z$5U7r3-Z)JWh*t_fto}36Ec8SyjZ{~g zbt#ZrG2H;16-GIf$ef~?iZN>gSC=S1&69B`dcLZ&p(75#{7x%z8l2G+i}kiz z(gSo;kMQD0!z6Q&-n%W?l1LbSe>fQZ@*X2LGjiXy_eAJ~q~?EEt5&PpnJTeORMSD^ zNEjhB$w7amV<@4uIVCSM4FgPFxC|4;pwxuCX0Fv0>5ltM(CL>~oEJn>rD94C&L=BX zV({Bg_oaO_=j#^-3)7l#QRGlbj34hbVKP7vkRHZ}biy@XTiS^XdMVR*Ele=fzxYF- zLiq2Ak_=nf5e713Jue<9sQs~vhxzznVG*~0S1Vd1CVSm7^;n{~LoxGS9f-51e7T|@ znkpp~w}%f(nP6Mxc^BN&@5+Cf=iW5Mw)s}@T9DaW2cgsl?K)7mOr!0a;mX%xIct&s z&ZHFPSaw}e zIq>N&y5r2bvdBJlS%R|AKs9J+IRiv2dIKK774)opMl2t$CuJJyn_*Atn4N;}o$WL(`64VThx{_GGY(dQDkm zO|{9%&(GR*3uo2cO59+xb#PT3VN6~s*R;6`RqM6#H)hvdYnpGxj-=>ccjsfHf*tIcUWZFg z{|Bf=!#tn906^1v)-AHqBf2+0wau=}xbpsLeO)E2q0k7!VX6M$g`K4k0Kb(iOtc_? z=5kQ({`7@p$go?42|jC#-pyu zCP%$Hskqa<@8U!aheE0?^hppvffu4nlEdv;hKToGeb78<0r9uvnXHi!|e+{ucfpfcLk}12(kqGh0it zTgsOxmmu-)jo9l#~kJtEBaX3Iv{SL_~& zzHO=cfx2L_BUP||P^)`|niZxh=O&D*n}L>-3|5>kRTpS;TpgzHtlK+0j0&2*rwOlU zh--lh42JZCFm_BdAYog_ax?a|Ic-kv?r)6enkO2b1|?|#Ex-1BP#AjRlV5N(a{A_X z1Kl#DdjY;PLfjYtiE|=QFX`21 z1?t*J((QV0d`k(-iDF$HAmp&d&EjeOda|nxJ-)O;6#p+&7k*B)P?dp=zyYC{oha@5i9Et29n+Z z0L$Og>Z!P=qwRyvfn~ZbZGDL{e%>)Jl$xIkw2vTdUu8t39iowGT!-j)>Qx;*YC2 zd^1@bIY!s*RoqIno;)ZWsw{5gd`L~$b_}&vcq#>;=7_*kCw98nG41Dfb~Jr`rcUcE zRBL#UyJi=dUX8;OXHk0R6nYILrwSu3hKu=&goACISWwK*f<{4czpS2PYs?IWfVR4n z)hv_hD;DHI0G6)F<+;#u`-)$h^M8UzUZMq$1kauN<8G>^X`!#vCuod#Q1 zq^3(OL+yp)EEtfIQ%zT6)9aw+LTJl3pBgV?1DGx^ejTlTc=^@H!F*w8Q3UdE*nQz* zCxK-#ch_N>^;{n!AaY9M`zv>i0I75t;j!|?Rp<J)YbnatR6mUJ8uLYm}&9wl^ey z08~zZEdXLys3OFi=!^+rr-yeX-G47dP0rA-e0aaVZNCyvDk~7_l-`t|LTdbBr@law zLy*Fu(=z&D(8vp&BA?#5wAkLba)+%7a{0`FWPP}a7H?bp^Lk~gnJnX5xMp2`bRGBz ztH&AFv{P`q39!UxFv9GqGWUoasyNYU3?&!{iI_W0$*Zbbchq0Y#9fzX2`Brwy~oa= zAOM`9(5ZCciRJsVJfAX*`%J?{03NESI_6bqW>~E&0nh13ZKnAQwY6GAAi(u7kH=|R z&H9Gj!5#X-*t|tGN$I(YG!15*5f(L+y#&{qc||ocn-#`qU{0#cy{`T^N`wslYPM?~ zUx@!9Jz|7duDs1l*94hNb@Vhx@*nKl%09XpMx578|FpdtJ$7DY@}lHO#araV`po6P z45FZ0tbk|d#M1e#*4jsRr>M=zmvLWNmFIK&XF6jn7dnYw{{wh_o7poL^l6bR?}gVt zCTJ#K)0vhfQzC8GuRhTd^9B@=#@fm^C$($zPinN{u(||w>wZLIfO+4q zKVAO;8p4uJMM7BH8VS1=1{};U>P{NkMQ+Rd_?Q|s@4!q?esIUSLg)L*_&f}aMz2jU z1I3sv3}Mqj%hhr*!uKolP@f~+l?VR=@N-3;92*no4G6a{>{I?0T+_T^GH4&(eMwx5dm5SGD1$aP%5f$M?qr8)yh&B*4WFiiK@Qd`sep*{f#-@Zm<7i$PAIB{zlv9P1B9!%kSe45B+(o zNN%QTQ7$EB;aB0@zPUfmal2Oux9TYe&pSBYtIgS^f6_RD+2;RBxFsq-;XtB(KTJ;J zP+GQs@Mz(~g4*O?_!6nUBs_F+WAdS${}SdMTvh$(sK0!&q&&~D(Y#0S&eg{Ee8!uwk#Y-4SP~cOTI+#0RHt++6F_{xw@P35ToFKqj%XqsFzHz(#Arby@d-bD?>9r zAQpa2_x`)_H~Tc|$EbZCDO#j?kdNF)k^7R;mq6sl!4EdkKd;A~>P5Dw{!YryDJ^@H z_;0KBUe20f&GViQkg03cTHbPxP~1e(c|B;C*7x;MNcAM@lDB$6BHeT?MsbtCqKY2W z@P=8#1#)Ixf$|^=wdHnHlFbi2+s%*U8wrchpR1`Fc^{IzOMONXFPFK1m9*EiH+=US zsTaHZ9`VMEuOB~;VC?NIlH`-#O_z~^G>11%_E6Vu|qU)e{8rf2P%ZS!3@>+23v74ZsiRb~z>&q&kud1#$_ z{S0NsWUfKo81E*U{bfe!9ZUBDfv2_8#XenI^!*!$g*vAzbKQO28k8Mj;T8a!Di)eC z-R##@w3EEl3PsDkk~f;?(S-ZV9mkei<9`rd)cPCUpK3|9lLp-|{>Z2pG$xaYGI(6= zHCr~M^w|xM`Xx+sZxw=KtfMkwddrvD!xU+R`Jd>UugxNVD6}mX;80>%{w?XDMN2V& zz@C{;0_FCzk5eoR!JP(sy{|=0FaHxmlue>Z^Xqg4HZn$RL;4$u2H$|HDA#aJpe#m z=hWvfrQoxnYh~nWL#-4%gA%5aXL2a^FLq^Tb@-U2*VjSnGL>#08! zshcTaqKq!%>9I;-eSNww$mrE z;gECYPOi!<4yhRe84s8b6I}Q``AAXjI5=DY8n>7IJI&a+FDM~l6TN-!GC+Q^du~pu zPzC%+Cc7Vyk(FTbsgbueGlJ<~v$B3BrpKSEmEEH`(r46M;cN&J`t4SNkbz%SH@f&R z? zb!KQXw0YWPLJYheiXgIfEhzx#uv%T2E4=x({~`{Bwyi5u+hGY4XToX#UHzTod4JMv zMX3Ni9+TgbzhGXj=EC74a4jVPQl-M;s|~mgY<{RHGZMNdt^Uo$0iFZyso87eAWyGb zHk_QxPN#(k>mv?`?2Pe1rSEaG3zcjvPDDY;+RG*CYo_hZAQypibK1gBck?P9ZuIJ= z5^=`d81sSrZEQ`TqJZArvs+o>~+`5C1x%BS3dIIK8NKSAjUi+ttr~Z@(hCr8D}^Wd<&M$PS+E)?>hD#J>;rS&Ic`YW<>0s{7C^ z{O6K1li?mA^}Uu($y1+upSai^LZ~cFvfF^iuO-9os9A4UlMGQO$>vg6bW)Rei-(aV zNeTIT+V7gi2{FLFDT#v!s3MZ0T;DlsDF_HGiH6g`Z~Pf+7$1E}f>Jep+v=2cy)J@x zNxq5Pa)esPcrHBk?+KK>9+bDXRfMuCH1vxOuZl)6->0;&X>fl$Gr&##eEMy-#W|>r z^Nh3lZ`mbJqC&4&{SpfJMa*5e&@yJWP$rpHJM|iBlrdeSgy6fhJDiRrk?|e6+GdCK$aI%j4h=m@5 zJspE!{RHjxxRj@5nSo*MKjYR9tBxGI7ED}a!GG6z& z1hPs2k?W@CW3w-DYpwmZy`}l=1ukV=yQcDXfLxboc84nw7N>opNUpE38n`8OwnN=% zCxgFu+g^Gyq@al9Ze9Sn2j8}Csdr8g{txg(2s~jAeX9%zR=OUlbx2-6&(;)RWwy{J zB~+6$vi9x)YzO8gndO|(h(?r#s`Ax8<9LK?cj@}+@YC4SioAMaBn!`p-&09CCsOhZ zIqE}c{(!=|VEw!LiROiUr>X9)S}p?yi`@sm(IKn-*SShM@S(#-M};dyNoI9JNlMgI z^iYqt#muO-jQ`A|DSgjkw8YFjOJo4O1oP5NV`XILNxB+(<$nXuKrp}AbGR zip9M=Hy|h+gWnzN86#*joWI6ND$2RQZs#@4UqTu;LUIpd>s>~qRnhQy3y{RuH+oh^ z-Ha2DyVAMZI@GLknu_g0q@CY*ZR85%wTM9{AP{&J*XmKr<`qyAExU0&vC_GnRT+?w zioE*wtR)_%(PtT`ZVneDw{R;C;IWXLZDZrEiCU~mUO1xnLmo~&fAxUNP)IM1ax z;aK2&yzU3n+L#kOkDKYLOj?~C_JOTjZk{*H0s-hv zVA8 zted%rX4r5s)OywH(5h6AloQl*SyQR<&ryTUJ5=)~3ME^KvM>S9eD$hs+qSP5&wpBc zrI_-2bCFcq<8KE5dit7%%@Jg>Y|q{&j2}@$zsZJRF^piLaGvF`3m)FUSBLye_sTlcHz0XRy@R#;=xVqEY z>s;|0+Pr`XZQ3C2NBhT)eXCdDFM_Nzy-q7lItPx{A?A6qIca2b*Bz_q%{M_?Yh&{H zPQyN9V3GOOkat=GcR4%l9^1iw7+pV3vQ{?e2)wwBc8+`3ka(u%{{UFqDyrYJ4B$(E zG3j2X<4H8TD``%ntG1~lxnHvxcCJ9+5IX%U=8uT_q;OAdaMzl2Z7JHZ!7kQO@6V+~ zrrRf$`EA+EJzOoidBj3D;|H2_g)%l zZFD_8(-JNOx{4W?;Bs?ZPMzWF-yU2|aVD$%oFtUU(XFtKGRLV6*AXC^*v4k!_2w5jSwC&(2Uc3L*S2wKO8kr?GFb_C62cj&vR*LE}Uah3ImeQ`}nI!ph>?_6oH+(MAd`D?>t?0K=-WXtU zi1=q1=-#~dtNN$I&kyML5?X7T-jAVbakkadh3B0zj@idU?M$-pz4n@t%x;?h08gGm z1gJ0o9R@y?DY$8SvRl8rm5+k2ZQd)FNteoCa8M7reJO@9!iUHmtL)zv{>ZWT&h7Ob zBK{a9oA1C*2t9L*dRNcC5Pk^iz5|j-&IMwz-k(QN_YZMV?~OkeTQ~ zHAZwKb;02J)|`E`85x!L=-0;j&1rt46|(NIkJq$Em++$2|xKjP^CRXu!r5&f(jfV!5kXys{4N z2*Dj|TGn9b3aBm*T1{!GEa>gz$m_HYm^GnqH(j7_>OBo}@Z1nVY%YJh(zGqES9k%( z)bt{eHZ4HC;SL5{nRIpYGU zn}N6m9Q7FKRVI`$IN*25{#8|^*nsai1Fu?7W3H3d=8?Dvcv3T*~$&x(16OM47X2eyBuJR%bnh=YP?{U85usp zuf#F9a>RO8O^ewwdtK+|18C0~6{7@xUm%_b89i#OF?^+t2qPa#yA*tnEN=jFxYm1< zWRCr2h`LDA zNmuVWp1=@!C)S?twie@%P6+g>5H{_^gS5Ba>Cd%2e%i>s4h@&!gKpMcndhgyHq+3-D+&lX3xIv8Rg~d+gV!DDL_{&lI3)3f z;<;wiI%87AZkYS0X~r^5NQg@1PS*Z@wDpA>7%b#;z~ZKgAfTuOu{?iOfW=f& zyEt5eGsqx{vuxzQQc!dR^HFr+LD=fHDq9$v71i%XdFH9SWLoA2;sQlbVc1 z0op<1H7XkDWd+Xr?t^9*6DrV#QX zQhf=siwZa1Dsz@Upr~2=;DvbWij4_7LlA*_FQKIK0l*B+lZ>#%cg1u$8s^lBe1OVO zWqanRNEaJ<40@WmaHDol7#YAdLgn`cBjo_#kZYkL97@j29Y@N3W6AH2N<${%4mN}O zQ)C0?Cm=I&8s_aUMxM6xVE3)z3Pmu5~t2h1v@TVo%Dw{>h33CnR)a+Ep~G1%NMY>}F$IaWJ}027MIxP&Tg+Kqve&m-yWSEZABH?cSdvt@M(K;=gO zXQgK;8>loRU@JGtoe~;2L!Mu7=G0)<@sc04anmySob=H#btI33CJCVbIIRhRJt&n zk+cFbqjpF5)_v{5N55+oKA5W4x}!%CDa&WE;;?lMV631iTmX2_Q(0f3(-!P$OQ;24 zTRTTjbL&+`pbKDSn4Sr)eqB*X+&)$u_2V@JdZRRh<{*z=_0vrmP2BISue_iR^&k!h zTI#fm#&rq^5_;E~={k=iYjd7>uER>W7y+LQMoILp$h+=yOUU$FE3{3Z?TnBJZne=^ zUlu6k$j8fodi&P}VL2}wBLk6-t#r0mA=f(KOq8xI7xg)LZ2UFvkRzKj)=yU1Yf= zV*@zvSQo0Qn8^#%cS0)}XlRaaQE?z*asg5T0K_QS8?+22sk;e zb5dkd6J}dE2e}@#gLY?PXFaOKl14&hlr95jlU&vOOk+lkv$G?f)zn=D4S)&*k%8ao zSXYq%nG961=tmf=S~ZEr>Jb@{fF#CFO4mPgX^q@%9WZOQx`9)6NXu{t?N~a6m@?tM zY;p?YZ3lZ4k3%CQFrl&~` z{{SowF_5(AqXBYG`0G1~>=OZ;{Ad2X$69XLo0EH?e1|*UR?mJQl z$Qv7idEJhlly9(_u_8#S+zvrF$?5M_Vci}_1bg~=)CNB-;|B}~9QvAkUpbR3!GR+u zj-9IcpF=ja)Y4m}G4ILT4o==qDmktJcMG|PKpXj*t(J`K`r`gJJpdhv z6>d?x7{hvTRc8l+$AQ|dK4M%-@-ZBO3j2zQt_Cxaoc>hVh{FNfoK;7Cq$wFaOhun!)v?IV1!1g%w^CaD1p@kE@>Kp2E350eE^1M^uF`IEkbSCdJDr z&u>#-dHf#m)E*1ebZB(jUAo=h?<0gLCf*WwEPE5z7113P+2mrT*Se2b_$%;jwBNH^ zYQU?+s@_x)?ZNMsHSc#mAGfrV&$YF*M;Kq;e4r?)Kcr5l8b3?7GsQ&$m%mna^?7SJoObHi1h7b+{-G(XR2Dp&&gPina6%V zO7VXZ{6fFIzPQq?Og6$dDLm2@cU8||GmO`r-haZ!vb|Mr54E&vqA_uEID|UqfE9VJ z_rjhQ9vZfP5qPz<{SMCDw8GsSAefHipPkKNCA*ReP-g;#1$bP z>5E)R>E*}Y@D)qNpBr_H%Q@21M}03&Sej3_>ocvpPCIN)xczI+b?=E#>Q8&(Z7WK% zBHVeg>bl8qEk{5j-TDO;JIii?Jg>KI)E$DtXmaZib0+ zp`If6uj2mzi8{@$k>R^_o*^Mu7Mb$n&sTXmpU$N52ZAiTHDNNx9j2kHMIQUx>6n<~ z80I*}d2IJJ?iN=*2=LaM2ZB5+d#6~$ZQA2i)LuZZ0uD}Fu*Q1V%D)#sX`c-0H=3S_ z;Egz4X%-C84OV5!+_~VDUagb-Myi~t$4Kf!jQ5dGPma%4yl1$(^KIY?BZ?9i&2~Fg z7rExWX2u^6*k4}hclzC)l^&S^ZBl5P%rJ4EDLWYm5W+b1+l;>nrVxFhJ>VFd+Z7{!v zbVbp8GYb_umFfn%x;g950Aiqv#~v!Scy%bXd+YcR{{Y9dY`bxe0a4Ib1E+jwwecLb z_V=v>Rw$T3Dt_#Lz-!d}F>QM#h`#W;=~rd2l3SvW-kfI`>(a7SVJCK9BiS9VfW9+b z>-Scc8up!N*79+(ctbN}A~yI@~)pq)DMUJO{`yNI?TGBld8L1G`B!* zJGz6Op4F7=I5v~}%T&3yM<4Oiz|!4WL91+qZ*=k&<6s-63_eyT6-&Y1AiA}+x3-y{ zNKeeDPYcI-($+4oC$PRtnTvV3U!AfFgTVYNjFwxgO+CXDLI>U+mCZa)Gg=)H!!;Lk z*}N&^sI9dXjpN$R`Q8`+7rs4z8ub4Fh~EUX&xk$+o>}yym4caKyNXOW$o8*`F173H z8`x!vRGF4AilunQa%<@CfnOYFghywpN>GkVkU{`^W74}JUy&(pjv3PLq4AH#?}1ld z1Zi$!o++6KRanUxAB}ia(~dw~Wd6SO`pNN|;bpJHn+Y!Le5;r*AS&w$Zt|FOzuLbl zJa3~-;m;K6dR&Uz?WQ2J zk(#kvp<*7H&URKf73Q zJ8)FsbjB-A-f<=|k;i(LR_67q5`dGytth7Qn}hYNI2hmna0g#{(1KEOqy`^amwkck zZraMAboofeb5{~$xNRGO90S_1QNCO$12twdAV4#N`igrIxw5ya6vkAyuQ(MG-71zl zP5|gR6+p?iZ&GoBDkJg|%2*IOdeD}GxoTPPfpR(yqcuk2VkBU!tCC0^sU?)R%yXWg z`qe2Jfn{O{$Lm5&XeM?F0el~BYPpnxSbW6hlXAOtH~^2vtCu(dTb}r&(X@MyXDT+6 z*V3BO0N?_8bDCt2y9BT;+t#Yi!T8QW^sJh(-%6#diKLLA!6AXQ)1_yw=cuYDr((m#4?)dCg5(Thu1LFi+t;wF?3i7^VTU6%&fbSy zDGUgE44*+#jm*7pM{!9Q1QJ^q^c5s)#~2_D*gRG(+hftEM(Cax%$x$to@)KOj1@Tm zow@X?(E=kGAaT%Dm{C~#VboU~)8*GcV{{ZU>oE04H2d!wMAOV75x*tl!K0aJ-+T9kPEZ7eq`El8KJk=-=;QYkn)4fj_CpZU#*EQP%G=57g+E^OBqM?j z+;9a-W5bu)SRQjp3}HS}aNR+nzUF(e?1e~HJ4pi=rx^B(k+VEuy=lTi`N%l^YR8rs zFU%z*Zoxf1waZd=HiEfXBIE=+J;1A0;Xo!+^An8w(6JLT?F63S9xCinFefd`ACzLe zdXjC}^=QV*0jDSs8TW#^S2E`{QJx|iAF;ZmCe5+EtD(uR{ zfSm~LDs@32Di>)4@&{k7S%xjl3Xl~>7%=42$s1(gsTlO+S7d3l>~T(_waQXP=@4%iN0*-1P!MgRPouFPUMSuaq~8DTe@A&e{0nhL~cujArv<3 zXMieIwv?~jB^2;|v6|G1$jcX&ykSN?ewBP_tsH6s;1Se}kz0Eux8O5E7lF>+wMuIM#fVS8KcR30!C)~Yso7PUt;cWy|=c<6m= zI$hB&RYwQr2D(eTCutXW#~iZutc#e?vnvdYj-!%l?Qq)mGA3oqH{HkZ^~G1h2PK>3 z?m_9rUcG=sq?Q9L2OUjjG>l0|#xuw`$j5qDxs;X5V+FtjfJO;Zz^NU~Q4ze3eq4;z z7$t4PkWP6XwO}y{PScWl=clz~*K-{bCuy(|hynT^fAFhO-ZBvwd^qjv_|{>$&eBFk zazGtDs$`i;k^$i39ffjAD*BeC)f#O!BL$o0W$V`zeWA9TfxG*l{{UK~W!f;KC;;ou z1p;PvBml*_p4Bl-mh4>fi!kZNa!2y3R_~M!TaR;DuuHfR!u~xCT(?mBI&Q(h_pZ2l zoKto*;si693hm<<`c<1%JIO1MK3;k+y=O-IR1MkBRqvl#(Tgsnix%V#1~XmM(dX1@ z?rmFOl^NvlGsSM%$RcG5-*|OAS3PNll~kXYaJlbSZRZ>Y3ykBQYqc#8I&G(OuCurz zFu>y+WcRLy!gf&4oGW9te+uHPZpW3Av;`m^U&^;Euayf7ump0#hP1IAZgpvTR#Y5d zbsyHQ3)KK%tcR}L^{!eCLODo{%MuioAaVHA@mzwdleCYOu~{i{CLB0mgC<9Ou@tudi2W zkAgaT@H*5tce$06uwMMvKYwx#;H<1c`Mz#zE@N&+O?#-QUAb)MC*HZuLsekJVMqH} z>+MUZTnlv^9OHmb8LoQv^CyfBIi}boCGN2Q05}AW!1p!JU+Sc>W`0MZ&M9>Zpt#6x z`8ndTX5_XyW1jh_ie{S=$*L&?DJLzToBCC&E2AW&ILThkSPjgfwuUHhGuT$GjBJ5M z0U6F%R>`7VZ>id8b26fpJoV{ahLv)|80C&K4RHEUV9|n3Ta$rZhMKP$mcSU`5`Ok; zq7O?P(p^sbPH=`IN`QC)SRcl>t!4|j5xWiC*C${QELcH|^c)=5N2d_s7=8ZYx|3%- zk0l4e9DbB^ijT`F9sER$zPZ7|w8 zMsa|Dy^64^7ly!gIo;fv&9u2#*J~ZXSLJQQjGT^ZWum${^&NQrTdwBX zLC$;o*EfB11dO|e!pD=zHKTiV$jQsEHO^k$Fk(z+0CgRWX7@B&85)er-zu)ntO0Cw ztQ)yJ=2zSZ#sM91S~rrJ+_Cvaagr+@=0+s&HZUh~JrAXG%FUfI>}OrhNx>{xKo}iA z3dX%%yQE;Hm-xEY%~hjn`u$<}e~sQ~~SM{VOK%2g<=q zIX#aCweAm^kGl#mIbUB)R(0phz>YhE&6Ga~SzLC3ynHp_}uEJiqG3Q6^= zEeSt3JPZOG2lS|I!Ei?7)SsAks|rNG5^&^p9cd`L=sV~kU9HNNUVZ7y5O!9|BGb{*e3F$bKUqNl-p5%XYjxWM{Ul0tmK zPT)KH3U5=CA(V_9pVq4VNs44MNJ14O<{be!AXN*KzB7}!9;eo{_HB0DqF%qo#eT7lX@28QqSV6;YZ*N}b)&n{slBqi!+6 z&sN$#C*d& zy=fwWhDLLYagO!1q*)m+5CzNj$86SIspxAY(z)!P1bicH4fxburOX2H_rIPvM zYwL(0AS)26qxk_`ZOy04pyLSNQ_p@Re$hJQHw|?6-efR27PfH=uqXJ5JlB)z{{R+l z^*Q0y{6QqM0NGe4kdWTkC#TY*@wMdt0NOWkSxALgY?4G=jQ0vnd1kX?Hmj*bW|5_a z6#*6dpQU4HuT#Dho6#PNfAM3)zZEr`Jt?J@-%5>qrHv46f-m+*Ku@Wz-^ZU8FFZ4$ zLE&!(+&z*7K`O?e%QKI>@=59KUR|NZFNgH>v9#K^mpN%B=v8|PCb1UK{hHr0Pb(Li zeB_g!05tU3KVLHamE~(0J|fgLuMla^qCjLzNo3!7BqaH_j(@&-l^ro%UxhperhGNi zbnR2cU^G)nzS~VwH%b?teHY%ktvgt;_-)|1btx@upuYipxvx2CAF{?f``6AsFY!LN zawOzKh z>7FtN-Z-xwxVxWIx$|`y)tGU(4itI;*jAmFhi5;#2oyIs#xYkQ@I>Zaq!#C(6gj5u z+0wADYYx$@T4NpuR+2vjp@OAfy{#{vq*>%^> zcHG3Cqv>BjcvHZU$EHS(I*u0{5IE`STmB#LjkcMnnIM5e9B>7CcAW$f`A{{w6kakH z2M6A{r6k?@9kIcvBgS=a0ZVrYjV-txz~l0+17Gl~X#|-ecLlbBsb648rQ6%a9dI%` zR~_RY0@`?r$)i;A$R&=`$^2_MB-njk>Dc&#UC?EQPcjrNnE>xR<2CGm0VB~bH8hU? z{M)nOd1ZHCR38w$4EijgRak+R;AB`T5hnwT zS3@FiIKavE^sM`vZMi#nJ%wo()fhPTIr-NI2hywgd$Y$LwXHRvW*;cxsz{h5e+_Dz zW-VBtxELMjRd$bY+*Hn;@q?bUo>q}yK8t}`P*c9MEf^hi{OmIXL8#R+myYD@>$+5de&F z+Nnwg*HQ~{!Okk|*eprTe~T4bROf+}_3u^C6SFhfhTBu=JJesQ`b&uY6oYz9tA2N}gd zCQ0BEk;V;q9LrqSm1D=?vQ9x0k7a(xmhow3}Nkx@u*o8|``R!lO3 z{CPRRtw>y=p<&SEX12NJSiF;NPzmRu3ToUzPBN!rjF3;|SmZw)F?qXDd z{5R#5A`pGoP2`J5MK?W6q=zv;uRJRo>-@+QbZTkMO9^CmX-uCbqc^Us6?K zqzqwk#WWBYXP(E>p$;D}gVU!@lnL+y07rZ`PH9S3B}T>A6(r=Hr1P}Y$~WhLFnP~< zq>`v*8@B*CIq%-B23J)i;IBUQ#ZpbQZwMrd(8A8^kCl1oJJtJm_Ku{5_3KpaZUM_P z7s=x%2c=m{mB;{r>N=75*9@=CW4bbmj*Pt;?K^{Hp1(H~*`3gBURNVM$)-g!oQx3e zq;NY@?kvlZwZOo0QyAJ>oAX7)k|rY#0_Qz@0au}j%H4Mod-fGt0p~J+3Ml7j<29`c zM#HDi#&(<DN5hq0OfikL64rcYm}!>lSS_N*2Zm$t#LE z5z`u%Ryd2>Wp=>mGm<+F)z0cR+ZdC`Jbf#?y3?cB#|A$@MROXhuu+0`>^NNa0;QyD z&T;p#fGXNt7vOFf9F^!Rn~LxN6dWf}pIWsI(Gn_?xm$uWirNsi z$1LZ4j;`A0fJr2eewD8U%H}?PQ`)&pIhSrpUBLCtUxM&&;f_xuHQyAHIHb;)UNWO( zh8V)*u5(t!+Qf~AS7FlwzH6CV{{SQ`Lp*bzTA6P)g#hFej!sT%V~wYKou$5@X2IMJ zI+MrgSK_}-q=vyKBpmQ-i?!5407iF?I&`fFFM}1&ET?xSrM{)W?9%y)WpXlcgU)!X zk!mZGmctxmXRp31k+i-!0a$>2PfD`)!5NM-g~m^M=9I0u+ZY`?>RX5bnF#y9o&l;d z>Ms)&Y_olM#bAv~Dxe0!{{SkEOSURT<=O^tPb60q=8@S7ZJQEmhZx}Q=sl}C<5kRV z0)fv2@@pbXwlU<8a7jG&^s3TNjzg6Ps+#6?F84asHl5LKYo?KRDZpcl_32qRcVal* ziXFWRFH`jPsLaf=5{-o!;d&a(zL}URu_`mh59v{U#;P4zTK@5mR^84sSXVb?mGB7t zb64)z$;cQ0)=c}O$t}A)l@+3Qc4l0b)T41HnxGO``c*Wxb}fPrzo)fblMdZ6j(YW{ zMHwlA2^s1KTCQs#QPiTAq_OPY)umx*#fasPN_j-QWOk&*IQv3jx1$Dry!{4Yn{_A!2=}jJzG8Nrm#S82i+WG9&=rAXB6XPbed>V zs=jC$`LacH7GuehFgg*~S36)g!!OD?We1#&--UI>yBxBK(ppY1plt;9 z?^_mkDpX*yp4{U#%358k#v30mJeB7)rE7K+Dkvv!LOTlSO6Mewx+#oDkB~nZ9gR5M z><;Sa8F=^Ru;aW87Y@fgiS(z7;k%a@Zg6X%Y;xOO3zu^P83!MSdcwSwV-Lt}-0iCp z&E^8k`2!@9c>e(PRxS0|ExQV%Z*h~FhFVOcaOF=p13W0tO3S%#UA&UaD%HgKV4;h1 z*F8S9pC-UE#H4`Za6N09US~pX+7vDrxeXyW3)N5EHIaF8thp?B8(ScbYW?ixX2Y;- zak);t~qO|){+wezE$P1RrxAO3Nm=W$;C|UrDWJkDxTbCqAIFS&O4KiwGr!cRj7-! zp~2jv)ODm-h+(-|K{?BIsjZ>}p5I!PKuI__4c9-!Yee1jG_}^Gkbsaj&{;vr%}EN3 z;GLk1jidCYM!8INBer;}3lfm3eozNE>qj+#MX_VrEzto4_1edrRIBq$sw2V1Hv`(6 z2uS&00UzESL8+G@N3dge8|qWu#apQpm0bPp-93#k#0s_)bNoFjc_Z9L+=lDH;QP~L zO{%A$9Ag>AXiUz{vL%aZtZaMt;}uTvFnI$%(yx=qZ6+NPgfDNURCt$h2&8AQ^{lzl)aX>(Ga4)c z3Je~(?^UJ9V5IFQpsg1u7<{|?5!`)iKIM^DDo7)d-l`7L*iIHj3y`c^<@tv^cC4F{ zLon<)#cEu?85qguBl^}&+?+RJM+Ee)>SrwCWlfUVBQ-)oMn*dKJ*wrvATtBF4%zQi zr6qD(xUSgiq36mvkq??d&N0W~SFIQ393D8uQ%%mxfC(LOTJ~{%P3>D-K!RvnL1!r6|_EFj6)SabaBRO)BX_nQs-XPZQ9Zmx&emeCmiSXq^!`Zq^Y)j>F|@n zkoafAI&!9GxVeNFgARc5a%%Rl$6eQzqCs(Grj4=37~*S#-MyB%-vId5_WuA0aIO3&k?uTE(Vmes`SDwE07T zI%N8q<32L@n#M0LXu3Yp#Hu?H?kcJ%b6c&NU{^q~2bw>~cMr-qJ`b0xjN zj%)Ls$e12d`+>kd)#dtsg{ND{i{>!T`@-CiJ*(AVzqq>&ZZNXU<(#m|Irpr|Q_h_& zkm60*b|a_KyjfLUkE^AGaD~~->N+{OyOwl~VvR6^)UG)-Np&c+%bm{zY_alVZZdJj zc9X1D8fK@tNtICGp6Ae4pIz8$8pWKKDFVdKKIv?lBQAYWlquNrj~VKE$Bni5bqm%E z6zqZ_#BiwWqqcjRqiLgFDMPaW9^;Db?0gfd%8b%RtFf?mH$z*Hd^*-lNbx`}Gn|Ou zILB(~oa~jEy(&&xvj;%XZZeY?npe*ONayQaHm3}Bku2ib<8U(B9X}eIP0}@c3$3qV zENY|f?a$?1CaryF+FmY!iLf_EAjUIZeMzgHq$#Ui8QvY&?V;MPLasr<{+0D7!mHt_ zLk+xSs;~gGm^^l`mnQJ-h3%v>+sFaVN0-q3E8hMKU$VfV8*?r`_`&*DHAb{(?53Me zEgwcTy^fU^pK$*GFyN3gx~I`K7(7F%n|M*mrUA&u(w6-FyG6Ho+Aoj-*f=E8csfgK zJwYx!_>%yzQr)YeN-NOhnrbbjsp)a}NZebiV*?xt$<}-^EsSXRARZ1Ysn9j}@6-V_ zWkJ9KuIoExh;%F7y%$c6N_^2iayYz2D%`R@bNH9x(|2I!XDFnG{{R~CuLAv>Pw{2B zxcLgpg>l&CzO2@CsI_hJNVvv&b+0edeh@(xv2w1mOAE=lB*r$J@GF9nN?IG^?I@`q zLb4(7&)Ke|5~Q%(xVyrGnznqH_6wSD=ctN43Dn@_*p zIw9K|4o2Kp$v?Iqg_>^!>sNLz%@W7v9j7hVo-5iD=J1Clhd5$p*F>_jD#ngj%&R&9U1CtBvO-WoMRtO)lOJIS0EC4j%!h( z8-_4F$fzZVWP(5k__0ki4mRA!c(;ZG40{@*acr^Yzdijcb?vqxTyjTHDwLMY6y-_h z6{KX|rV?EYNh4KacK7K}NUN4Otx0Y2a8FJ#ROCRU=O9+;+{VQ+yySH6QpdZfAbL>X zXCM-KVw)J}9V+(`I!H@($gL}BHth}3t1UWr1RA?;#EcSsg#$M1=|D#~}Uztl0RChD{cqx2-J+9TGN&?0X+fd+Oy@4aBlwqN>{n6b}3Bx z=Q%j463d=W8HcB(UAR!7?a0RmjAPofXBccL!S$)Kxux0NO&6Bg8Dt!0sk~vy#sKYF zQbqvX$s8^ZYJkM7y@q`SeEWS*)zZGj1%Q$moPpM)5e8yaNF$yqV+r1I&rWIE843-g zu_P1PvgWzEvP3|X3Jx%TT6}I*js^hr=MGd+fR^v?imIo}KQ}r3DoCd>9FxHQFG}fKSsyiswe>E<%7bVG_UTvc!DQrT z)0|d(PI3-M)K!S?8*^c>7+?@Mts2uq%6c#*6Dr#8WLjp2RGm~8I_VYGcdK{&wA8NJZ@d63u7uz7^^m@suYFGk3q@xtI7!ZcCc-~ zbc%KkYZ((+4>7Vf`tey;_WLFZ+;8U|wbV(Cps+01IrOYs=#dx<61dJ!N}i?O<^|Lt zGr91)cYFOS67f~!GHv-l`B?S*YoWP>hEO?;k1PdZY6?S~XDz`erxaQ4Zx?2BH|iZY zTmn1sn&UOKNR^os5xbmMZG2Kq#zJtU^U}CoV1D(1Am_J1Qte|{$((Mmt>y5_InNz& zT+RDuE4vB?eznnRvI#ff{JPGoOIeT;25Va|J0hW96fkLz6IcVuK|gWT1a?l&GA zZaLAc1WIV4f%4hZYt2C;?C(0_{*;W%dCpIQ>LA<4ZBsOG~KQ}d1vdsWEp za#hJ0AB|u`bft5j$KI^Na?C~!-($vWM71+Ii+j=vw^8Yeyl;1|cal1E#tn0DTpR$$ z<~-H7?%R=^FRgBjcRDEb68Of_K;)i+o;4AZkGwjMPkO>jhFmE87<8%Bjy5*a+$DdRuPt%HMe7PJxM?iTM zA`={goMWX+cF=K&W+1s82iC3I{H!z3RScG57X? zHh@7S9OQJZ+X;^HM=W{_aa`53fl7jK2R`+&1?H4 z$-qt63-4NX*DRzy?Zgg;y>m9VJCv~`FvrS9e+tpJmuMg`$3E5985~lDj)E(#(EZ|= zI3b6BYQGiKh@wc?vkn*)z!lCV)(|%YuLKjEeQ9C6V&w1VfJv^nzUL(4bF58GP@qyl zAf5+WMb!Mylo9hD-Nkb!QZW`(Ja;Gg3S(-@FgF!Z(-qRJ_Bk3!oh#odk9v{^BWJy3 z-d|w`cqIMcd8~KUF_Rx0;FfL$Qf*O6ICdUjI3uyClD2}?>S)V&8+J0lV?L+ev#&1< zdvZqq0OG;p6_+lmv6evU820a3bLveZlaKz8uYrVu{ z9GcC0oU)zS9)_WL31U>Q%zEazWVyFDOxuoL17s3?IH}^fE6#SFx%Cx=9m53!Zh7OH zk*=CNg4n>%J#$>nHd-A~lG5g*T?ba`NjN#L)4 z83O^isggZ_C?T*2BON}KLNm8&@J9!cnz~3u!3P7A&mPoEO@yO;#A{_6Uy;smO#~7M zBoetf1E{5U5|S4xpnTl)rzB!EZPFDaagX7sl8fefAkOns%G4EAnCvMfqQOF?vb;l{W9nhwtX3rU8^Dzp%U~^PuQnELFzjq(j zwVgsUN%w{^$9l`Ujf!O85=KYAYLz8>Hg-mx*2Yc5j9Bmx0zp32n=|ZS2^l^6R;|ou z4l(m*9QLf6r3bDT9B0J&#K5iahzzvl7`b zPTU@PR^5bT62TpNYdVG0OOA;~ZTc@cimZqhgdjf;=6VsaMEMpFY z;~44%W9jj>6pRda#dNkY6St;){{Wp#-j_S+K{EBNx@|$(mpCJlTUM5=gyaC_KpMXQ z9DVQURBV7UDxvv^!994byBJ+d1|^6i1bSC1yE`eERq$#0QMfHx;-mdy3_QgxbqHLFsg)ef;lzHTI+WfdMZPBv6*Hup*Z+u>g!TzUQ*MvyO{m%+}C;Io9Q8+QFg$N7{~*6-Z2f9dpom-Vh;Z1!6S!@Dl(w_z}0O&4bh@w<@Owk==41m zq`8eFj5-sOyRYG1M5;#GA6*!`YGvv(&vpz^K*lFIES#Fk9tqdAC>6}hr`u)YnhG*1oaQfnHt%WZ7{+{@I+dn(tTYaTJb@ny1K+`$f!;pp6~K4`?VFVeNc)QU|r zlC38lR)?Buz8HqZ76|-RB$Jf|fl>h^{{Sy~lSI*VOD9oft-$KXfh46#KSFAbyW$TI zq|z0E6a$7}=W`F~S##@}9n@?s_d_ENK5XKOoULeSNw~gddW<*v-kB=3<(Ziff?6(e zJDk?7-OZnfbcxu-46)=4O1O3W>(2Zo}0PP2{f*I}1xfSmO8sc!F4rOMA+(sdhKtvOO>mE}MJ zhHvLx7l*8b_Xxwv3g;t{kUi_md^uwU+(K5BR>CzO9S~X?hg?eVA=RpJgmVM-8 zg^=VQYV@4B6_1>i6;h`&{7EftyxXS=ax;TnFNR=Ci>ZU6vVp({y>K>{E*P|ovB)`L zU6+J4A|?ZZ9P&kTQL3Xf-q#*sLHj3TOIooJTFQf+xyE~n`0w_h@f=B7qLOL*VRjZOru)rC`ga&V;l)ww;EB_O`-y!w&tPzzNE4mccS4%NRs zv^~f{Bw{>Uen6)tt2Lm(908sMZ?&En?gXjhIO$M5rsgAP3cLyww6Y&1%n1>biP1?_DM2 z2nG%}5OOOP;w1%#AP)Yu(H3(_E~Z@lFhB>f6$e5yoOY{nu10ax<2~xDC{_c|*2$S{ z>^)x}De2ayjDX9}T7?H*hNOvrZ18<5(+e8b?URGpb@i+E?VNFu@6xdmx*pljUbUrc z`*!olIj5*t*^W+I<|=yC=p`g>1Oj^>TEs~REtA)!Xxqp^9Wl@hRJ}-O+D6_3W3~<{ z{4#Je`1Gm~%m^otqp7PZ;EXBTk(|{feT5wIxESFU-@K^r#ApP9O3 zb52GikDH8R>+e-#KOxT^6@Fka4l~o~RAp1Q9AmF1ty`LA2k#6Hpw&6XUpYDb0H#q= zQW$^-$_M9FB~Y)m2Vc^!TsO_h5G91Wqps_bgO{NYdPaY;NITOn`&$n8^fjX8|t7|SWj=k=(W z4gmfTa5<}!LzCa|s0hbZAoVq^%qvM)fuzPkI3(cEA8FgOBOOWNqm(KfhRCRt;h2IL zb2Jhfu@4Rw{>cpO|Nkb5l-8 zV8yp*xTwT@6SM+*9w{cneTY_k0;B*z&myhEI3SXscHBGE3m)<^Gm+ChDn`lx0pqR( z4JV-0&3kDJ50q~tdg88$Jg|0Mm$*db(s{P%}216c(wzSssFw6=8*bcSn(uw5Mz0Rt^%!n{maB{$O zHMwCD9KK7T=NJGA=51U=5q5-9G6Cf0wQpI<#o~P6^&>q`(z@dwrz>Y)r>^~k9-{zy z*F$X*ov1!h!N47Bo73dl7nL|UAx{FjjXe2_^KC9b1g|82g<4iZ^fj#E*%s0PVoy$( zsoY~2Y>+#iY9x6gLC$@;jMUA73EQ;e<|K8gx?@PMa028KGI5M_HI1k!iE!kCTO*E! zweB#hxb8XSR~;)p=#@?eNnG>JD>m#}MjhZ1m-$3%o&g`{n&4`&P#GJpT?r*isvb;OSL3pjhM~{QCudvcPUf=D9KaYel^@`ueoxI zjE+F)Yl+q)Ra1l^`Q4MjslQffw#N;sjf}u&EHVZ<*B7cF2d)U@jC8KURQZ{J1QEf> zt~*d)^_z}yoDTG_*okU#+KZ5{jCJZO9pw4&dC2Cq^#H^8ai2=Un0aLLxxFhzW?TFFMsZ5&m&<|+W=81GimDVLI9a=9S;Q`TZh!RmUCN~)6j_o;K9 zgz<`xP`fTcE;jAwj1Wa#g@T1*103|M$mIZr$Qj^z)z}GMxa9CfG$xHpX*L2dI(Id4 z46^qbIT`I)_Tf%9ci@`83;B*WFl_PZ(vDzJF2>ur&Oq(!R$_~L?mPwVf2CH1c)-ev zxf<Y&vrEu{kUMLzrc9UdeXNnilZRo(Ek8B&xht-4npuit4ibzppI}xO>xS7 zPN-A4ryauyLu76o=QyeS&@;I2Zo|^Efg@`IJvijmoy_2s#{>XRaaUB}k@@q+g(XBQY)Q)|zh$s}}pAv4QDa^m>qX zTs8>KPB;|T)W9Dzag)Y+n(K==B@?8$ye_zoQMaxIQ+-4Cgpu;DGgyOBgt!MGPgc+L zsGCtLa4_Zac=YX>)k@nl7f$A++LG>*=FU&AK~(3|-N6O6_fwDOSu<)pkV2PVL)Nn{ zH6T7*u}?unrn(XA>}p)xz;&cv08X=Cf+Y zTx6M~mktW>3XXSwO22P(ag1Zps})B%86&9XtU*2r%N}|t?O3$VgwBc!gPexo4nQ@l zX5=7pdag2i*Ewf%k^wj%@y2Ub+UI^(U^qLEYR$H37~I#2U8})3Q^t8UZDu=%A1OHJ z`PO_g3Cw(|J8(z8)~zFMDx?F?KU&WAG)cY7TbnDKHr}VcX~Ef5n*n!@{i*}=6bFX- zaaI;FfI;AqipFob*$CZ|Our%_`>Y0iDyt(0akK?ff$566(3t_q;2ey9DvaZNd0qj- zWY;s5`ks_2c^UIYa#2pwM*cbxS=S5#u^1f*3VNE>o-#{dWkJFB6-Mv`!t5gefw!;H zi0F4lK1K!dyPm89o=;AHtz=!Dr(*)R?_0M}<+qcZ4WJQ_YZ~Wrl3N9RE20*N%?zprSkTsPCbq*sY#_{&y^K>v6k?MJPZNXJ?m!7F;S2do(UD50uTo$IrQSS z?H6dk8PC6J(MrZ{m5psVN6LpJcgK3^tfTWb5D8@fV2+;%f^T%(ccRvrwhgY^6caqDuaO?AQu38urL%SQ8ACsH_Yo_p|Y?`!f z5<1G*0|%+~u3ECSIY`wAqyPmK#(G2Ejb-Tsy0o(u6c z&x^I2=+Lv?$n7(%YmAb50bf7qpAvjcqIj=d5!}f35!^AEA0#h0#eEgJ1F zpKp<7P>B!9zh6rI9`Rz^>iQSB$3 zU0H=#D5V|Q<7G6bI*(0{F}4X9P#0sfV;JdOR+Xw)SRw-IC1d-rM^ztrkFc%-Rl1fZ zSkX_KIx)`!*0}E#_|j_|YujsACRx+$?I=8|cgNPeD5oc7x%L$rrmT+7$KMt#yici3 zb95PeIis(aZ)^_JbuNDS9+?&MPmlg9YMw3Bn`S6hoUvx$7T zv(Gss`kM2*n}Z|Ds5dhA^{-nEhe@>02Nzk%Su!jC02yCzD#Y#j=kca#-ZzpNa?Wyi zBQ>9KZ0a{inBC3^suNl(4dVd&SFajW`FUEg;JMUJ_dP#F@q1i2e>ZU*KtI;I9V^6* zJcWdfjE|Q!;1z@tWz`^Da zCRm_3OtFCI>QO zcYJph!R(fnJ%x*IFPQt=;a`lc?`_B0n+Uw0n~}$A^&boPhfcIVZk{xIagZ3k6dL^0 z(|$Hy=r(MY^APRSo^$I_#rs3}m_v1K1^j|JMpZ&*6`G@0XrQZ$rjOL^JL4CFW7L|? zNn?&?f8CbG6nnLHHl8BWH57R?>$qJ0@_uJIdd62j(m4e}i8W z^$!lD78-<8#)oJ=Y7kH3Sfg4J>>RbP~$IT_!Ia+fPTXv3K2&9ex;L=L^Zs;rjBZtQ&7`@Z$o z7y^^>jlGAZP`S5Q&Pf3EKT6NqU1~pMlR4XqRx6eSud4r^J_ZBN@d#kxI>6u#b)h&5reYDahaePpPc9obmw#dm6Hm?Z<4@14$bY z%y2japVF^e$W@7Mdk$+FIj{!P+dP`PZz&v>&`?#o@=nzQ3?TpgDV&aLWl~`wsHv z%gD&*-@PQ04(F+=jXvjMPI%^xcP(l%?p49dW%~X#l{*$1{nwM_VwEf`O&U%j3HS3wW9D9WKy67IRI1-ZW)LJp2D$5S3S07MDer8{eT~x zR+c8*0T{^72DK%HnT`{$ap_spC@s4j4h3{1b5xt$&zd5k@s36gMO0-Wim({18CPnY zuO5c0$r%lupf)=C3h#yNcsPl3F_z7OIXFJmp>7%Wj-IC#UKqf^Jb{DHYQGBLbvZri z+vPZxtVKfPY-6|_X09$%lB}n=Z|O}~_H+w?aqdlAw}Dg>oad5B=CX1rBtx@t2Wcmt zml&x8E(R17Uc6P9q9I5Hfgdm!&otP;79rIDln+GaR zJL8jA-X`St-PgTEDwaSUzG8W7^r`AnOsVCnfX9wA@ANdP127=2;lTh@(yrh#+-DgA zpm1RwI6dj5eMX5xkbYcaJo?qxix%Mj0KiWbK@=UFbJ+AXp=~DABpjdij&W9(V72!& z?S@nZ$ZYa4+O};;%7B?9l+F};m=fQ`2? z3cZ2v+O#cXXk4q0lW5M~$FQvHHjY_v*kAy{nzy({<%50haCrS|t_>Vj8okboPhic7 z816%~u06QLbQTho+M$pfckB39C1)c>;DhEyPe6Ot&Yw7CJxrO&&ls+iE{7zM+-b7! zY(8+uZ(c@gsIt2e6;u2p0~``Zt#CSR-U|)D9ycD9(^+5O;Hb#wCy;2lDmFViNeBzm z1Z0wO1zNVBF@^w>w=6TjIj(xz=@JpOlmX}uKZRVjx(aYM`-9fAax_T4F%5-Q$sC;X zn$Eb&q1l1YMX3$(F`(YtpLR$cFZuHqGkO45LQQI1!qK?i0V1WJ$S7Pc)n0ZKp%S|vXskEvoF98 zTo1;y?Sr!9U;;9Is->VfUUsQGan`Oxg@I9%yS-s5t7deta=ckYca8}lvilMCj)OaGP&E5R{-QNG%}Np z4({3S^rx&Oe54({$6Df)+>%FpA#H#Xk@YQ;ka64mDTyg=HjTZ?^r>Y+%0l3Ci~-1{ z5ClRIhUV$VTE(NOM#Tnj&9RecISY?kfXquTW#kizvexARCExwi+M;-5#?1BT*~V+9 zLl+x8H!FZcj2!WfKb<|4ToMQ&v)lElg}zwu7~|%}J{Suq2nfbAj!CUlZc9!(l-dQ$ zF4Cs}0tOG@YE-r=#~>avlh^523?IKc)P~2*zMhz=1+Zq$NY6u>*O0-bt1>2w5w>y( z8RM{~3sE7A{JW3gT2Ba)KrxIQWPe&oVaq88Xa|xy8qr3}Ln&Rdn%k9SRwq46D99ev zOKpReVpwnoV_E?+epblr!kcw!LwScBuLnPO@T{8Imle>@*ti9c&5Vpx#$ymxC#C_w z{#6|0f)rx_V3X42d1Y4;ndY@)AzT0*yTW|P5%HGF5gVnLtGF>)5$&RKeP}@CxOZ0 zx}xv7gQd->xVN7%Jn@Wzc%_>65%=WuQ;vVavDSA3A%M*iT(-;;&tfXMk~W4Nv{|^g z+_)LR?mcTh;^mP>I+KEPie#4sg7bq^q$RVvC+qy`Iqn};<<`SyxL`*(B=f~pdCQPM zC3*u^3i*wKMsZM>FoUldtfeyE8Si4hn8~}IPfU)K838%={u5G&ak!8PKBkz^6-PBHbV7BZ})@Cdl9L}Adq-qMW=)j(o zZaa>7rxe|fOmIao@)Q)>PkLM2&evna0J7?so4ow+O~2ZA%F~d z6|D?}4dVcG#&KNiEwuv%;PuUFLn%033aHOK=B4d(rYz`fW;@iL2V5;_L$o*pr(Q=& z!_#N=1&>YzZCj}-!S`+?V~(P^DmQbkl1&!8hC(tnhxwNWty>WZ8+OyP0D^lOiWu=A zW;q~Z2cW9~RmySqPSKOrux{^D(xn?{iGr%J0JaVR2fq|FOUYawoO{&E8n9jDs0WO5 z%`cVaE*KIyiFL&~cJiqWGe;}|`S zUxVg2Dh4}_m0gr8k{c(W^{2tZk~;d1wXZ|YlS^}RPsacp`IXEAsZdl4s&RaP-+ni>x=CRQUSy=3CCMwFz6-ur#*EQStF6kiD1kdvb<7OBh z++*In-pcDG9hfg-E3fd=ytfj>fH`F)O8qO&#P*YC)C(m zO|9w#8;gelwyEkpDo+5~X!<9`h_sy}Q%zFAN}R@Ws@dsYJ@Mzn2TjpDJ*8V*Y;?CW zuuP4+k39Ob0iv+rMv46yh* z)?%$3NfM}4{u7G%N5uNE)u)hpZtW86VdFa>mCDk_aAv&hP*I#k@It#ex9%GUBM%CWL4^2_qEKVJ3X9})aN z3{Xro_YZLL5Z+{1(3_8wdFt<6`!5crPJ$!h|^5&}cH&g#58 zlXj7&F#0Nq;^_7<)1zS?a{bi4A~Vd0yn73Cg0 z@O*aSQ*CM)Kf8{CzKai58#H{iYE>q$6TzapxVw{S`J3LfZ#1imNR{w9bgfgQTH0JJ zh_0lQ@|8SOHB0uIKPUl!xXvrKr0&#Wk2W->z9w@<>&zQ+0Uc`Ymdz}iM+c^Av>I`m zemMkZfnCRiJS8lyvJ^NyF;O=dqM)TI9Y@1&3O=)}!D?e*WII*ykUi_a_~Y;^RQPk@ z+kJla28&IV)-{?!K4v`t?_DRtJrL=7&8*W#xCC-|CccRMw)`1$@fY@L(66i)%%4fU zN#w(FS8mdA?O#7RIag77CVexbY%e<0{MNm`hTR782c~OJ!(JxQ?5-nwh?ZgxOyeWg zurPdHrt>g%J1*+GD{vTcH8j?g|U>NdGO7@-}pC#oh9vrL6GEOkL_CLWbQ^1}r zF`YKz3oS)XJej}+z3b`td^@J=npfEGE#sErB-*ls0E}0_{vG|E{6;PzyzuF0=0Y7n zJfHGw>wkq8o-($(w$nUEVD?uE05YlKLEo=>`P@}G!E-`aN6_KrPP}bWJhDA2!5V$m zjU2Z7*xT>GEP7X__&WVRwV}u?H{gsK%!@>gErh#BS0J2>l4|dQwYW5&6n~|lYe*61 zc_hHv6cd{96eBv3Pr5s1xp30-K0*Ds{x4hj@5fgD8`Cb@TWtZ^B`J`6=KJ4Va4Y9a zc-7_H7j`&ojPqOmGq@Vxj(kCSr0lrVCzTn8EUd(iew9``P(UQ$XOKJB=#heiR98dg z=u^CIFk6MdE4X7JLEsv+umO-aeF>?dhht-5Voge@OXOrJ>bU7yPhAg6FtX7Uq==Zo zDmLSu^+s!Kh7F8$1PmJ5bSl7S<>`aov##R~Ng#v$-1Ml2W<;TNrsq9z4hd|K-9=~W z3PX-gFfwslcQIhG9Wj!70a;gDyuwQs0AMaFqAOc7&yv$a0`4Vk_~4VCD-!w)l6#&x zuAbr^U!sc2xVGTuj>5X)tZ>df&Qk6KRmLkC`q(R$UzfH&!n(`bP7ene@7}R4ZApB7 zHPp2^UXJHAE>(ye{uLRQZyoCG>@1SxV{K7khRGQ@#TM=)(?gZ;`A{%>Vy8*E20UavaGqJR8#z!~@tvAmI$8Ip*rn6S(dj%j8Io(nMSdG}mdsMbG zwa~Qh^ENPf=M@nrXE+Vl*wT#jBLlW++Z%IXcXr7YJjJ9{aeD`UQWD*phH zv<~DRqrD-Apx_?-cC7h}O52{iup-Dy4cOz3^(2vQLA7y=<0Gw23aK0^J%@8v1Ykr0 zoOdAq0807UJ#{|DCV!R@RfbgOoEl?Bid&LbIm>kwc1StKNM13X^#rScppn$@d(<^^ zRZ_-Xzzkb-g?Yyuiq4$}@G0PTt(jp1Y1+Y$8OB9Ynj#&E8+q@|ZyijfE3HgfqHX63 zxZ|d37K!6vNEjV!N<{`nJp8TLaZ&jtw+xe>;=5rd%Vc?V756E_8S_3+AD*VPppExn zXC8o3+SvjbhSl}&T9$UBAm9LfDavLrhjIvD#6ij)PB3cB7Rtc=dY+YOVGIhcTrVJ= zm2L}087GCtKt1axE>vq6tCWfaDpYJeI^KOR@s3?ZOj{|A6je6%MMujcCBM|pq09mm3N#4+B3mDjZ7Td zh2&?U1Emg%xoi=+dBFWCyGGRryNdEN+P9C94?@CRg=O3b-Oejk(&PZS`Ac!lbLltD zoSny@J!#>mt*NglkK=}jEXKBrM_K7Lhjn@AvMlUiPJ&&v2-p-ppE_hb%)jA!39 zsc&$lfZy|x#zucy+6^rZd8EzDORz|0%C11l9Fbc#mv~*EHv@uCYUJ&%)d^ly9tZ=a zYFk~ZbS&U5G1UENy_v|<*z6(Hn3V;C5(3~J4R7iCi@Z#O=TpHWsINbc;EXWZ2>{_c zR>iKMVZ#!<@-x@zQ#shu5xMA*>Zlw2VP*hum2m2askvVgcV6|v+G-8*vk)+O_p6Jj z61jE&=K%MvXIG)rsdYzKbz_6Q_Xaos)MHQ|bhD@($9m?H{{ZG2akr@4dQ;n1BY(F! z>?;>lJ&uUbwye<9ulF-<8CK-(>T93W@77rg;}Nb7(0MeM8jzA)mH~G1$DEqQy}S$@ zkC(pT*06PLp|`OqY8On%Km|j8jdD8F?96gVAm`;ZuX%O1cFdOk@NO%aylv-m;m@h# z6e^mM>F8l{V56@zyP`H50M@6$EePIo-|k!a`TjDSxh zRZ|f`#{|}#(G|uA2CGQ{$RPKw)hisfxluE?o^U$iuEu!C
    3f)dXx#-ZNI>QrO$u z)}_AX#y2OoQMdz>o}(3|3}yIb`7_RHtP9_7UbsCgM$|R{UUB-?4ocb`5rQql8QNQE zVmZcZQU%_JTYjYQgd;1>k2>JO)C+50gCP<3;h{{VN|k?hZyS+GVnkF9mW zIs;1D7}45@+l-dv5PMY7TL7DazDGqJPrYfrn5qHJGuH<-EOv<)&gO0Ff=^oPj1{yw z-(wZ6j|0p&$5-UkK0z2_eq}iC*Veij?a;hsc{uE9yw<9#f)3z&n%kDgGmiH%Je4Xz z1a9Q8^{D)j3S~y+CkNWK8VL6StQa1dJu0k_5O{uZ&U;bI(8kTPJwR`|a=`QhwGyYw zdiCTJ$F*78v4AHXy{WRqBmk)Zp0y2Fn;7?TZ99nhk5FqaXFJFDK+ZANwl0yQ8Qe+E z10L0jbPi7A&Uy;w*xPhQ)3GIY1t;FA&u~E_KQFFo#>0RLVD_rBL&*$BUX`RCT zUS^t6NaSF9cdHS{yr{!x*k?6nJ7#dqbA=zBV(NL1 z>Xt@hSOyD|w4R63n)bm#!Q(uiTHl7)%0BKm2cBvPtiWKZpd90+VeM1VoVBpJXkope z1FjD4N3}%Ie9R9x;8x6#1blFKKS5Fbm}C-04;4|Ums7*7Nv2}S30=5eIvgAfQ+%Zg z1_}1fYBUNTrqPe$=~0_-ISfh9euA}g(DUU?%zJa5nFqFMf*i;&JNB&^pvxTaJ!&aX zfB?exrFWpcpK`jP>ZI{jRauyvg(TzK6&fe6I6ZS$BV01B0playp2)Z+iEY7BqaAvR z(zYZ5yLiaQxT+}@7+_$N*0inA?H?!^;2xEZ$5b@f*0cw^F|=iCHJ+fWi;Bjp{9PSHC2tIi202CQ4FqwR1HpvNMl zMBN^9oF1J&3Q>c(-3hesb1MLa3XLL@)EdjahkCIpzMFg3MR2FfWB?yvFy1mmSpxKF*2h8;z0%k#T&k8I|%ZURU0?I%2QT?#F96sHtr$THa( z4n_r4Dr4+elY{G5r;BL-4X4tokT6{Qq;&(mbwyb4aT3167twmMg&T?_CL99z5q_{i^Pe4cG+oPg>fuW4~}a7u7^=$aftwbmB$K4AlG^D{`_0&dzrad*abZww-tk&}O|~!u~w)UyUc!Kd`N( zeOls1FAQo%+#XANSIf_pLzV7&Ri!CZZOb z69dx~*=XKBiYT2WxOKGy7-sM7>0FnKJUMe@yN@$bi+oq=tTHPE} z>Bco3IsBRQSHiD{x|WeVQr@WYQAXW}0nd8&Jzmnnb84p9T3x{v*nGeqPc`HI3i!=- zG|0{Ektoa9;j7TRIjGI9TthK(pyaG=*9(5n#E%zg>#-s^rMyD!6cr?D}83_NM$SE0OVq@=e9h^GDdPev0cU8uyoy( z36G&aTF1N7cP`Eg4x}~!_O6Jek20)v(Bp0+VqCLyKXd`e`qowC860vm&$V?E*tAG- zj1l~KkMW0TZvlbkoV0^!sYHZ<#yxOzP{v5l)}9!t@>%7fV`2~n_@*c(_kED>r=%ET%LnD&vETq5!i#Y?8ztct1(#Z8R|*>D>mC^ zkzGniif~GvIK@jGZJxNu#xq(`*k!rOJu-xKcML$N*HrBN#XU4WQujlULr?_l$TfgOi@7 zm}A3W-~o<(Ysi#reH?Y%&XPA}RaOdm=dDzDlZ6U0asea0d)Bn}`{Ya@9YG}YH3ZQN zg}^-I0(q?UIvQ3orHO*$s*lvw8--FwCzGB#R;|+R&K!-Sx2;i?L%&YhBONPMqtxb= z?9rCVx_mLf9COm6XpAQWmL&A66EE)w+A*9FO&Id|{{UOtK9$ve%X5*dj<$_qi*oam zoB_>g+9ETn1!4ilI#n1$DH!HG+0T4dy`!qixCdw(y}ufl?&>J6XJX~8r3VVNz zUKZs}K3sGItuits17HUu<{dbzk*H9+Q~)qJ?eAQ!S4UckLq)J|cJtUCGf|sy96{HN zpI-H3$AxX@b_m7~YOiuKqJQ1Fi)dzhJX*&&)PdqYiIP5^hK`zm>5?>(l1~6%@D@eo)k7LC)O}oe4 zV~z+tD|Bb2uE~pUjAghTx_&iC`TY>`;PUFUL$gOWUb1btk=QKz8jbf!NgukYk?R>q^yComD&XK^tTMSp}1hM}KchmJU?;W4}!Hsc|)raZ)ccc6sBF1_fJ*6t5~nV++S3nQIELS0sk} zz#en>RrsT3P+1s%4oK_oU2sY47jJU9TkK^R1@q9Jl{|K&le_{zBxjnr6kC{J1}CTk z^{JwSIr9-pl6VAHZ8)c(-iWN0XjC$&Rz3QRQa!3C%GeSffDUVBI{`Eyc8#RUYc**NsecUSG422yAd)5B{1$-p&SH!(h zE&My7UFvL3!qFiL2<}+$1!VPC1yM!&%=4F0SObyB019!kVmB(}6V|@c@NfJRk6V&B zu6$wQD@_(Q$!j}d=gJ4va4XgH@7N#VC5j-ry4N)~AZ5(LF`r;NR}ArVX=y1M!OB}j zv-4(4Mv&owByva40s*tSmFygfDbLlRB%E3s_Yi{BP`yzHBypmQ_`nO6IVkL z*tA5PZqM+JhOQ;CRRxr&BO{8kw&@TU9JfqolUCzbP*s@Z_U($~l&)N;+eT-tsAm{o zsP(Akk1ox;fCoS`&uY;St2Ws%FnZ^jt2AJ62Os@@^!%tvb3)a6R&mZ7PTAjl7Zdt)7as;t(Wu~j(fir(@GQWbjShV-g4Tk-|~W7LYM zRJ+t2Bx0;%Yi9+!FR80A+qn!0QPU&6IiV2D2s=)C8h%s~z>?>jR??Q58OAE(qWk4Q zKF2kqV*wzjDoE~sol}4olXEFRc^p=~ji_{GU>gTM#*=o`yIk1Qtu`nG9Fd%g-Lkjb z6fqq4AI`JvVh#WpKPdy80BcgqbRd>bnQ%8_h83DgyQ01V{k&lYcZ`FA2+nHsF@kVI zV0Il1MFdQNTO;P_fmb#d_7XOdaB_J1(aQRpMx;v%YRteMK_C!MPs*%D4hohGs&F>0 zKRSpIGEg56~Mo-Rh*rs}Ynuden_3)3rh4uJ1~L*p?Ur zo=?)cqfHr9#Wb!}kQ^VIB%j8qPtmcH@9S44ak-C7_o{O-DYd@n&q~!o$nt996^in{ zR08*_rz@Ht*F$6!0vSshrMcIZ84JP|i$h z7oVkfUIf*l({=l4r8^*286nY!s$Q@*z(f2Ncs@_=qGPkf@J?-x`7`&yOhu-4{ zZ|7WwhpI#HXT(-M2C-Nt@dmKUbqT=B#Tn!-duP3R7m2y=@$yN4qqnVc+I@uAlCDN0UUB?}E2H>;%J-K}3G)kXVbJZ)Y99!pzY;Q` zP^+AE{Oie+(D$PrV_M5du!#-L>`^nkMOCEezTkS-i}>5Yu-$6He<9u{a;l+nK+hHI zx`w@DqFpRf0e09WfLw&Ga(!YO!2bZdMm)A#qF1Aae(tB4ijAdYc^%Kf>sxhqk|aT% zbM*DEE%9ZQu8_v1+*^wI)5Ln*v)q)Bk{FZ8$jy2R zQfouc<&8aL$gg#r%zU!Qfc8DBHeGR|I1ETU44TQhzua9&&%I&Id}MV19faWL`PR{g zwCHlqx{l2Dzl7ctzwvd`P8I&i4-Y3npG?=gXdVudEkY-Vouq}qU)H>H!v6rY6|cgd z2>Yo>M{R6}oItARq zDazqXw?UkAu2WOiVDTlR*vP_5V0dCVW7yZ0{?s?tSH2e>Hq+%;H4AB%%u)B94^S)5 zej9vFmr{};B+^SEATVRW`d2QkbH(V-S`^^brnNoCz@HCq#(lblBjM*<+lHxr|_r+*MzMUuV9tigrL8oRX*K&#A7L#-b2NSkDSa2a{Dalp9-| z6Kz#dJjYm_u4eu4FOKHC$Kzh1C7;8mMPDx7@^p;@E_X0Jv*}*5saqwjmzuzg^=^cF zSI=J^wTU$?Lrv11neDAm&H_GEGY&ZQrIu6nn55rAvDGAAjAa7Y~Dtt5Gr9z4R{y{qpUPebP^tu-WyH4(AK!a4c-)xjAU z2dNzGJXC23+DmO!Cxy*jf*kyyj&Le@7UyDi(4%u|r!3f0+@60Lp>b?T+!?ob9f$t_ zTDlLiorQTqI4XIl-o=bzytByeI5lyN-i9t+4n|ubQI6D*aNL}eS$FmxVK0!M-u~@& zQ`su=zc68d02PmMVYvtifH^y=;~u9SN$7BQ)(oVwJu-S%cYk75 z7k#({=NQ2s{c7i~tcoAFFiuL3O4>0@0Q^7$zu=TkM()>Y9;B%1PjgszcDo!8yTKX7 zc6WAT3<=$n!kWdrvo22nHts7$=5S3U&MxxY6+JoXFgbr+7q#n4UXImqL@;bPMus$2c{iZ2)1CGEXBNs@yg*ZouFkySe-;O4~~y0#oPiJ626IXp|$d zGBA)2ls9TwY|9q;aqZf=7&P;RY+xrQt$${r>%+Gok4nN`XG~q5hZQBFx5`rouQgSy zvc!@Ge(4>nues9l&Bj|DPfE?X)5Kv^F5{o2Lf=DV)6n#lMJx+rBckJv#-frl=Hn{J zMS}Q^WXZJeJxHu=uBP{9huSiP1R;Rw z>+e;jknPK5heEYZOO_-O!47a#pURoNfh^21$i{ja5@T|G2(Jn{H#lL)6^>*Cft|0O zok6Qta;`{kn4Yzlb1%z)M%-kNdg-TRjyjFDI^sY<-MFwljZ~iSV2Fqd>)x3q!hlEs zG3%3A(_M@M>(aYaE^|7L)-+?eGGLyg)1juxI_@95W<5ykwUU>GT#etmCj-)~OK`4$ zu0rFbZxv%FI~N{NB8=lW>JL*)Sy@2{cHrQH-l!$cByZwV>UvX!%W}EO`jJ}M*yfb( z?r8}DY;+y6YEe56lpUwmvKn(2`$x7#Iyv_S^(XPB-$6NP=4~y{BoZ4vYH03DmgH?t zfL1z5xZsjUcInMqhH}R_7$X@KjGHxG&Dbt-!w=MPjw({Vbg|trMfpHpxKo2y1@2?qWXU7~#Cumc4bsR6-GD#5YEyJd zsSHUx;dol}=dP!t30WNgy1-Wh=OFS;HLkfNzV4fVtdV|FAH9OZZ}~LwcFGU?Lv961 ziz-q^u#mG5NyGG@OB#We`GDjo&1XkBDgi7AIQPe`J~;%8dEcCZ_{Kn~IgoyqlI(_ISM}RdWx+yWl@R2Q;(H;)g^5K>SSEJrF^sVHhOzj zJ;Z#-8IA@B2fcI?p+mcCV2-}^m3?j*uvb3dR`8NqBL@rW%u9%hHWZfk?TXF0;FiZD zfN{lb-Nm;(Fgn&%+kh~71I|0v>Q`W?-B`q)Hpx8?U`158jFmX$vz}{Cal80UvhS ztU@Uh1D=GAl~URun|CP(8T!_}ss>(E9P}htEar`42Xghg0kn+gr?zWa6=f@u17oNa zp8!z1dFQ4(R)j0T1&eOyK9$DzyGK%1*uMxWyfT3;m ziMESI$)Vj4QUK05&ow+CxmH26zm3^*_q5+QF6t6SQHDI}b{<^=CrA zE`_UDisK5qdNJwwR-L`D1Lhq#;7X zIKcbdb60HbK3;mBgE+=2ac&m_A&BUxG7Vpb9k?tG?@V|8mC%}q+ij5jn{)#h3xkk* zQ{%MH%DCH%f$oZgz8UCx|5#=ziq9{$ytJ-*B% z5g5nI#den#8&%{Z+~9T3eAXVJV;eU;58cIMQcGizG}*~qTOG)%069E$&%H^fczWwr zy-QnUGRZO78b+myx26Sc*yuBBSCLvlZ6uS(L};KS&1&S z`4loMDBElZ=s()`u4MV7qKvE8jVQLyDgB@S0AR~`Y@pUWex-w|v|3^u61_(A+v#6d z#h_{44bs<5(X{)0Gf!2*!)X{nk8|F;VxS7-yk~y4a1zG@zrACauVqK`JbDwATFaQ@ zb({2yA#)}_yI4)ADI2)ZR&e)*i0Pt(zs&b}& zg@>aB9a-4TsV>2>@^SZlD7V$2WmI-3#F5WR;%+s+^k>@W#IVGG=U^RdVC^kNhD`FWX0y=;|F?jf^r6;A_s{*RHha?q;6j?NO^` zQZ>UM&rf>MkHqaVx!OQ0@-aPrl~I$io5QE0cPsec;D5uPhy_34An?_xx++jz*^eeb z52;?JzH{-%>>Y1sGf&{Z614G2|Ppa+G7X+wAu~a zncwT=xBkj&*`bT4U)_33vDXa3OWm%t?!Qyy*?vX?Y z1J{FAqFt&+Fh@h{QV7GoK{)pnN!hC(Jz6~1L|+G0_C~;!;(EJ2#>_cb;%Q>F8@j^w3(G_K^Ta zNl-W>)~%o{512=m4$vQvN3};|Zm;vR5u6>k>sr?E7GIbzm`@9i-qlFwl6#@i0;O}g zmjf(4eJb6mvxQa39Fv~h(p$mhuq>nyaDByFjTxV40EFd=oaEN(E$WQ<`B0%4N=|ux zrN5Ovh_DG#>W5w&O6qs2SUVZa=NGnCn3oh$EHnjTCAa^Wl1cqEOMBFf0knX)n%qi3G=5tQT}gSn_=mBTQ` zan#gJxP#6ITmxGz5zSW;+ZI_c#Db(}t!Lc6=G~GGJ$R{Skg&iwC!xhsoSp`A>yGtp z98;}*2t(~|a7TKU)_gfU{{V$ll!hQ=4`E9TgMplL)7GJ@oc`6{Lu%RZ!~#xx9@VRF zaur5-^{#p;Laq-^pGwoTljho5uxi&eg-+(}yo!yL{A)%j{Kwo_k~;ChtO#c1esDqK z+O*)gJC~4hE1FBG*9pCjhfkZ#UBrdwpzB(&-T7l(ABAc` zbO|8ie`asxQDke)bz|8+5o*6_@ePfw&EDu5;Z&eFPPO;n#vcz_UTHc-)yGzykP~UyU8fp zinuSl@1%SD70!5Th6*4)x@E-;A6SvD6P1O_=`ahzA6&O?$SRtRx7eOio82 z^vztc)Ggz@k91MUr;gQx2so#h!WKABP&pitm=v(#m^_ggl^LN53`g zfAG&g5xh4Aymr}gbH@_DznskX{k|7!r00RTkzSg+A)29*7 zaETyS`4n^m>s&Rl6r9?WO=$Z{ZAmlWuO9pw@m-g~=C_kjlJ%IZw>z>}sOX}+Q^8uS z+6JhRHt3{{z~r6>(!W%^e`#f^X#PdKD6vR4Fj1WPX1_SUX%7vr!|#Z&T*n!T+VPG+ zA1GiwYnzr1Jdr(!;^w5L-;wr5?Ee7cBXes4Z`&q5@o&9~_N`Y?k5c{XfUHhK9)i9i z{hs_{w{03_Re{Z0NC^yuc)#-=t)~vT7uur!vaPKJvcROEyEUIz~?7DKPqj!MT2~~JP@Su^sNY?U`_|$ z`EUnMrB$>o&ibx|P}-iag;T&EPW3ZepL2nX59wCzpc3JqiBEEKfmUOTv}K6M?UB~B zidz};X?Anh8hWuINJ4S9BcG*Y-096Ak#=Vu_14R5WNs5Edgq)9u5{K{8$gT>Mk3_V2Jd58G&_`Stk{A$=e=!O*a3n-2N>e5 zSy(X~rac91S?Q#($jXkZS?cs1%6583$_n90HKw{6BV=KKUT`@TwPmKFgOz4)O!TcN ztW>xJG84&F>s4zq4qbF?f+HDRXC!k{!=^Se7mk<%y>>C_zGyps>afokCay=LnFj!m zY+wp3n44!KZ=xPJJBB{#&TC%VOaS9b{5|p=!+Z5U)$0=INrz&p8CQZwBC{`aHDcU>xMPLred=6p zXr}r*(xq8R++*0Sjy|7SWRj`e&Vf!q$T`J6TWnONrJ0j+2`JeL zRE%@m-nsom0rH*_Mo?NI~dY`_Pe-&|C391~X5=B`fG#z_<_ zp~tUId(zy6T(DxLxgScc=M1P`8~fPlP}R|e`kGKM!N==b79^`5;a;OPk!w(10y|8y-Pf~8*#=!1e&FG#7M^&QZbQK zlf8v0b}C%m?_vid9epbR7Xe+taGaQVXg-ErtEtw%$Ry>%{ zhO%DdWRrjaq>gdP-Jeh^MdoA7_cs#cGXkVGe@c_>ISi+v<381kYT03ff;~-NSqB4? z#a_&t+`Z>-Ae`iN=9MI8^%>yRWFvNeg!k`OA`OBw)}gV-eG8DW@7J~}#8T~EIQI0a zXyq6yboK34VmatZ9V<4wol#v)B#=2=;Xv*^YSc5~$2g|11XrV>{* zgoW`N<&<>5{VK?l_ln86Pf&51%UKvNEJ*LoTS-U&oa4A11w&5S7b_ZVD-F2F1-@cO zTAn5j*ibus%luVB7Y{Oq49a;Gb|hs5m*r9U=Cf&AaNU+d?@R(02dMR;WWm@8*u-NT z^Gm-ms3i3Hi*PBx$UwjvX ze=lfHMdzB#mLq_!J@^=;mr~42n8-#2K$khobjB+ZXo`|sn(4I|h&WM}#~zi5EJfLh zsBHDe0=gqDE;g;Pg?STX07xBi=~U%Rlg>}AYE1{4CQm9#Ro%)cmd z2SeQTs}MoTWOM0Ln8rZBBy-5CFhkg!f-|2=QlDa@1h*x&fCHVtzolP=2H;c?pI+4z zFe>aja@_$O)#Zf6ka~6eYmu~Q;)&yrEDkWkjyu)cbSnFlXD0`aDhS3KAmlLb&0c{> zJe)TeQAO;uFt(+ec%M9HuN?HPSX6mqIV0|jj&oEk)6Brj1#YL(v>_o>pku%TaOa<` zbG=@M@zTtXL0V}M6IRm^@t+&dgV{06r@TwMZ2UQF?CpjmN!nSQ8-c$^AA8u8FPf0wZlw z2{{KHD&%TI0tR@`N_DzAC|s7n!KoS$tCr3W3%9*(8MB9JZqHtTjAPcNjsv%l19j)US&G=m zFzloNKJNt7?;q~*otgY|TBgy2wMGrvD=;sNDLGTm(y(r=yw>vA7F>dOuCD4eXrDhI zBe2bMKMTAhHC)*2f0KxclMqd%@2@`4( zWLrkq{nBHp9;Uvy)AcAV;zW_c40R`p`L^H2vFV?>g_F!Fw`u4PZ_=`Le~VLLr2(P? z_iDmSfv&DF?#h(;O4XyElRKgsbo`SrL ze0;oH2rZ?!2(I`n-7r6hd*-;$i5@&UmWcOu?q`xW**uQ?xIW#5dNr#&WL3^eaa3i@ zbGrWkjwF`pz@Ng~`DL9aH~d_fFn$Vp4cPVBEw!l~PM zg`kILov;Ig-oAcVX*Xnj9vc|qw>`T~@za>`JB3_)tJ6O9B;F%^Nm?kbJgxx*^%de) z{wZ15qp4O=!cGw?|usah=;7W1fcwvi41_ z1?~BsjP>iE6s5zd4Y`o<>G;q*NeogeN5=92!Rwypyo%q%%XCz%g;)%@9A>n%`}rm4 zGRO$tI30K=v5r0ls%J$QTm&&*5EGnc@hCltCo1I~Wnu*1S^RRVb;r zj1z_kJNniAA6$`OaEHrX$7VmfQz&bAob#Ht$6fJ{;Gc$mIO*}DIMO^=0sA(tploB= zCG`i_wR|PxPX_CM4?IP2p!kx-tTh{VDh7U8hi60lN_}hYD7;hV!xH(8s}tc@Yb<)rfLz0uAq>i>=<@o^{TN94tWEwdh{ixgK|^V5`xTt zZpR>xdRVgTS=VR{v}Tq+kTF*vx3+Op>{W~?8-eF1wF%iA?G)x^MI}M{9<`r5c~>j) zYE^n15%;T3ZEj`CtWmXv*bRh+ZvDk{I$RAKs^>WV@T}{5W08j2*;ou8t!&xA zRDi_gvCq=FY1y208&^6=5OJ2?03Uan+KBmcec{01f!e5P=&p(plLX`{j{WOWDE|O< z10D(EBbw}tQ#hwS#PLL}mv+j5kf*IZBl!xT01?Os2A7b)V+4#6M<0j1Iyknr6kr38 zPgC`+(z4Lyl(iim*ZZev#sK8w=~EmCh(-BxgOks;YBHsm0H*_tgH{XyTzuP?`=^T1 z=1N6Ng%V>9!{x?13ZXi*s&YwPxzA&Y)|DE6m2yh;+&fl$;kJMZ?NNi8qLkl5lhwx6 zA1p&w;p0(ZU3>_7Mj!Egr&#iHqlAJJ;VQ#-K02*mK6sjDY;hDHO z2lO=*t%U@x78-eZbR^_uHz~u3YV%uPq$6n%; zmtt0ft=kR@9AngVtr#T;%HP9|qqo+nZ3BV{BehQ-0D+(Oaal(h*ygWCjii!$U{?)G>~_KFp`!)cqbbKh)OM{~SM$^}WPm}(^{g~j zVUT%Vm^Iq?Bg5~i+!9ogox8}vtf|MD*ttzoi)`8O?br4_^_}d5t4APWbC5-Tn0zkP zEj~5;1iH}RmpZ1Jq2Sy;eg@=W_2gIQ&y0LG4wI!UDnncqOPg~`#7lC9ulo7Rp+_Y{7196iLN7f+B=w^47uf7zG-|T z=f0ORF!MfL%5%uT=DkbyqOsC%ykBGDtqORj(ELMcw+SMB-T35j-n`?()?pGzeBH4W zI|o6GbUwB4c`bFK1615Ju1U@Z>sY#^ ztd}8x?ZK;-*Bi(U^LtfoWM^k#(>2!x%RNt?sVl7+6j$>}wMRJQ*GZ+`mnyF=&#P7* zn`paoKKE~W>U8T{8~urK7(zJSI3l`VD@`;yQIp-BPLpw9$Qn!Z0YKoMPqli_g1jN4 zc$Y?+Td*|8a$7js_|7@$Tyvz} zwB~yBlD90N{ZDH6ZQx6rKN_r-^B|Tc`^E8}U@PkAu62tI9b=YeB#=bAw_?5*(R?TI zBIe;_wp)alu|n$DC9}|1(Ov?&_@SgmuwJA$(Z)n;6plBOjqvs{{U{ide2$#&Vh4jFcQOd0gsKxJxzKK#rxe;OYo(|`@9zS zh`wWmeZ^0vYvHYX#9F6}@6q)ehPm3=RLLqU3>_)Ds-u4DJo>Mb+?MS1ui5j(kEiRg zM$(AYn=Hqj-rrjL+rwJBTv)>>-q1Q{4au+0--Vh~_WISU0h~BEBc*-i;3?1cTm+UV zhz7&l*Dfute{-qyIeeOhL<>UcQX-qyUDH*N4# z1v|ELyB$Sp*~R8zh$^Fy0p!+wkMQM`xA9}4_N|*VRA54{CzD>nS{!Pvv}OBcXwG&P zayEc_)~qN%10NwAcfqQ5@ovNX*~UQ~1#CfRp+Hl?&@RP}^GHGPCT#eZ$rZH8@a?Wj@Z*ilP8@BBXer8dOn#{h^ z3hr>lf#9he{uSu+>E(B4x!{r7v9Gl3?l>TW*A=CkvS$>fspXe?Sdqy9ry1MRHO}g~ zF6DIvQ@(MU^((z39$87_8>9iLIkLHz4p&q!7cv~>WIY4VWWj0m($L^mAspO?S2T#rdrBlmmp z)vKeouqP}47ny+`j;I?EqshBD=~pAORwsZFM?=MF$!5|F zk({5_og^WK7y^3%=~+E>HB82PG<0Bu7Gd00MdqHO4i_DF4_fM)J&*E%j)3F&)^?)^ zb|8*}0FHSzHtJo^1iZchN}}fJlfsdDpmNz4iSw~e| zcCJLV)cc2IX}gpFte8?WjDD2KRdQ8^SMOwZ_Nv>-ae;tFIX&qa+{y_f<@KcWVv~wP z*<<8#tOr6X15}Kab0ZMV$jRtED{|sNxG8*r)Q+`{tV$Uif*C+6GC8Sw9(`9GQON2X zfJZ70Gm4JHm74p{X9swq+qN!^NzbU5V8kQ8IMeB=&AX-6w0V`v*& z^A(?Ehh+h>d+}PaL(F`Z{3&U$t)A-!+GNtW=Os2O!q<;}S*z!RTui`GZH2F^;@fTy#ey-OhI9-;hWmv*eSK za0sjS*bdu!)^U#;h|Whitrn=`l!%%4V;qA_kLGN5^r<|P+wsLo3_D3~K^*cb*Hb$- z$HET$u;#R3Y_=G4k6Nu93?FbjH)B_$flG1MKYF3NmZHhx8@BcXAc~zhAhvP_DX~T6 zft)iF&0JJaLmkIC91bd5MzMp~M2xZi_pqx7g#f~2wm1~^iM+65z2}IBg)~M-vhlzINd#qFbp&)!6E#Ex@}0nRHf z=FqQU$m-S7%?M$%fX6(X)_ue|AQ8atR;QrcTGbr1)@2y8jlhiNqI*B$Dg$FGJ!^92 z-)RFOf&T9~s13LX$^Zq1ao)9azT;H%IrgI`LQS)W$NH<%V|ED?|^F>%6xBuNeF){kn#6`u4}xxtq49Qe6!Q2bPL{ zQU-DlU#P2A#~Vu$OLfgujx3$3GoR9~MmG{%kjIafvv$8Rs=Lt_V~Rc7iOvpjo_?Q7 zwPpLik(lo5(*TN~vA*w>fma;!^HuvWBiX!^AMG6A)~SMe*yt@|Q-&BDdB>%1S)p}8 zq@g1pUwX>ZSygcRN#h)ITb7o}lB|K*SPWws2Q}3V45aU=ZXCwT&gDNY5A&&*7T8xf z3xJh1x+{>ONj-Dx?N$;KwSXAKbj4~b+jdfd7Av@N$DtLX(U{a7#4sR|De+kp$^h9U zeFaW!%0@~MM^o=xrFKh_ute^KPDW2VNXa6c#9%g9s094oGHMAC;4IQB?!el>@IIoe zYMP9CJ&Rn;nIj)6#GP5Y3{q~|mXcetwC=iwr){So2hCyTg+DTZQ`=Z z8+6zc8~_e0hVW{sf?Y~b@ai+M4I7MYjC2FiscYKnM{y?BK4H$?rvtAw^LWX+^W|G3 zfz-aJ>h-@I{gV^#T=t=_ zyeM~l_2>cbSkt1>&gATOmtHM+6lr&=2Xg1qvakGFF5_ldofWxcC+0Qh&*G+* zRz{O{>|`J1Syy-KBk;vWPtBf1cfu`cYa^OX8P|_hV2UW#!s;0(uqxlsbDgxp9?_g>}4=&cL%VImaW~v@ASaQC1_e z6(A|w&wqO2-t02%L5EebT&R{{XFCMPYp~X#2mfQcZVSJ^b@cmv5AE0X-|stsY5S_Av8vR=Kwd z$qmK=k&}=+AE~aYIEAr|7tE3e1Lkw<)DOm~>CnY<8njWBz#Gf=KDE@trIxnd7kFF^ zsx!CVxi1#2-1MVPT?H1RGNLxvMgSenZrdu`B7|jApW_?>ilZIBm2tfglp_JU^!BY7 z^!V?so6crz9zZxF6h&LzGOf&u)@ZZChZq?J$QT&*t5Mp_XJZ>-c`B#x3X@B-S#IIC z$(^K+a)2^G9YLuuYww>EcrtshsRzKpTK@PyV53BOL>^j zXgyT&Mr+WaRm$|_wk8!hUY$w^-~d?gI^wL2iohKD@l@d;$e<5h)oB>8A1HIvX&5!p zd+2th)N{kUh51yjI3028QT?6M8H}E|Bcb=JgUjEv42*TfH5U$d6Uv_1#UzR|Wwgu4 zGtY7=Hnt22EJ-5@4?~K-BCvENvVV&_W{`p9jmkp~fdUpmwc0 zC>Brqpn@^f|XBR#ZGL{(6Iq98}B>(%aQrZ$rt?)}f6G z2PKcpGm(mL0yQLtagIUiD%7>HHW129x}!G(oaen|UCh!WVL{2j=lRv!jFkm?W0f6E zXI(P5Dn=OdkZSHLYI9n+#!C`0`3mE8MFcs{bAerz_%FN>kVnmv&2tx)-eVMX+qaB& z_NwM7D;%Vjrbb|(mM0YGY>KJMZO0rA^}4nN!tx75E9+ZXqq1_%m%Or zr#rjVX0jV_2JU|DIr`UJnpd2woS_4t6sJo7AD1BTGAggp3Bj|7I(8&{t|SAU-j!Bc zCQvYNap_&t=!_d{50v_hel=3(N#08NWCi1=S}xHJHrAaEQ2HUs)F1`04i96#wkiJ&c#PVI7PH{B(UH&K~pYsfyrL|jc!=@Uhh+o{hbRi z843kr$!R5|j*@~f*dqrco@(qrH1~g|x)bBv+FjLXX}y zaseFInfMP;(d_lhFte$d*a5g>2fl04ek|(IX?`2Jx3rrVGa-*?Z@ZEAt7>%lb$gsu z>q<`D4>s|C#UVe4u6&Dyk~MO?p0&(sI^XumHz>-JDacXCz!l`z@jjn&+vna}Il;|s z=(jSgd*W@_80%YgIjqll@F&L${X4_M!n&M`E|`*e){;tcZP@iup4IAF2a5#KKuIiw z0!MGHd~2v*7A=v;uR!>B@d!9J^GL}u4of!&74!L?7uqE_pI4LPRVVCa)am~KX)74+ zwZnA~VzMrJa1JZy$!#P?B>r{oemwCkI{l&-i>-09`IvM^xQFD&2Wo<;uv zWlvh|yeaWlSkZ1Hk|sD_17`;v>b;kOqQAIU%ZR}1xb^&N-#!_B&6*ys_E){RW?2T} z6l5-Y*ELyFdPwV`3{+j<^cnEm<7!W-!xiKX31U|b-`c*8(7aD?s-j68O#=na{-FC- zex3U&>7F07No=JOstw`ZFi$n9r}#_kb2JEyo?bFYU!~CD|lz& zrT+kj<-3aRH;tpr3IJ$CGla|KUfV3T#(Js}>kV|uc_}9H_zBZ4- z9u{fAU$kur7(>y>z&P};Kk%NLCZBKitA+B>er9vn59eHei2O${iS=0}az(lwkfNM! z9;8;-Oh49V%=!^5L#I!cJC%~+Y3`<)=2JY=67J`zbJW(ogulE1$(F`I$4bhyw^VF` z*atlGirKPN$Rp(nI%AS+?V)6>j}fk?L28P?lAtN%@yR~b&{@R$)v=TVCnK-5VOftb z0M1wribqd+=`7X3`J502M;vClW2!T|>TT(ff^tYiJb=fF+O>rzMc{1*A&IQ5FamHJ zEWa_wTIj76q*IWqoMRnxTI?L}p!BmSp-Ehye${dtVIL?_(bu3IDp;W|QTBvU&Iso< zWe_3U+dv%gS`Evw1Q3NQ@}4@MTF{QsB-+6cp2Ix-X<>u+oQ??@0#OBUy~bc<{!i{)H^a1BQGN_V+H-!=nQvC!pmIIGPyaB?@O z91iu5b*6$jBy?_i{x#m-*bFxV*bXZq>d57HF7DYqt6N#+c=f0AbVLG_7ri%z5SBmJ>J!7~|fk&7y-M z;45t#w=aMH09ASo#*_%#oveB3S<>ljnIHlI#~ju(O2bUz{{XUflaL5JhNgdKsEoR( z+IR=jyBTazL*aIgr`**;rkL<{s0@Cf8s}=}iCbe5(!{DU0Z!%U#~jx~W2fy2g#a$eOLpcQCFyl3Y?tQDMoNmkD z%0l2_y9PWOf1aogGF!OLYA8YTH>+fkwNQ(R>T!+$HK}til*b!gMt45?1me8LxD}&b_ z^zj=u*3L&9`c|c#vgaiO6WI3rYZmMgT-uJdwM1n^Qb6aP^{oZD3^F)8jQY`OYRbg( zjB}2)sF9-$gkUi1+)`H5e5EqG0UI-(;8Xm+F+eC=9B^^@)SQM3#y536eT7FLc@{!c z9jET&HC(!A9L>E-Q%0bU!16_B+R^U;B!=N}k zR9xN=B1o_}8LQAh_(DKX4nZEi^(1krAPj9@q*cX$kho)xGg(SjH&kC?k=l{Y0XfMv zVmov!dgB~suEPmu8%NORtx7GvT$8lty<+8ct2T`%bVUq*FvswZ^O}E@rO=$Q>UN$7 zwLC(_v4FVlJJpEbEOIu1>+4+ZO>B1iHGPQI1t&i?SEy={A_~~shCM;6NSg$B%N~T| zIjNR4B0a~4?s}XW=W~5dn9}OX=>mi#FX8?*VIXpTVaOT4^s7r28wa-_RfsLw$t471 z9YrTS4OKl#(Z&}ej4xdFs|jzl*K2QK$pBQQ1y|bKwh0;O#ap%mW3d5T9jl(T9PZZ% zQ@(@k;6T6wl2?qJl$3xcPBJ<0W}@Tp)FDuOe(p0yI4p5g4+ zkwO%O+mKHgsYSaZGdh(GlA@%JEud}(@aY_f)6bCJOuR!zhvLz98%GgqNDXvdN;#OzR|zerDq9wGk~B1diJQS&@sj_j@ZsCLfQgcWaI#PclW51v(Xb3ec3&tmwc7M>6+Jq z6*(+as}2u5nynh5;~=w-m;udb+b&BkR1D+{S3T~o&bX^e!`9sGP@gVwobiF)tt2d} zRY?juXQ?$ZD((4sVmVSXx~#3cJ7;c31LhqoK4#8@mGmHrCT9+KY;--VQqln+1dQ{X z;+Y+|bqIF0e>&2&v@!+xh|7J`+O2D1T5GAJX&SNIIw#A=sr9aw&MczmB#t?(TU&7- z&4Og-f&9g8>8Z6Ju3aZw&q=-j#sGY)g`QW zh>T<&K5q4=V{GxpsQ4SON$4@{U66~|<#Q@SYbMf8G5kPus|#$YkG&&u4{T<&A+-l` zjua8s(yXSM9oRU|akWSDu8V3)n|d7lwxQ!HkK`dCy(lab9jVqNfXYDy2sK!#7@) zVzDHMpqn8&9f@^aAIHF}a-VY@9$F*WzTr7?9g>OTiMN4U!>V@AszXvGT$2``poEJ=|A2`n$ z9jhwV;wLyQht6<##dKDeq!l4T#(nFSw7F6`Df`cI<&58Da(+=ZF@`(}>a;uN3=83< zI2Z%o`x??Kf=&K28o z#!lW(=}Hr`)Vb1AJ=a3ftuJmNySI!b!$uUcovNe171qb$Ssva6)1 z&UkUu;~for`TJS?6_dnT47!e$3ftY-ui6nvC73A50QwsGr(e^p^ziQLBOv7M;5QYI zb8~HfXe7FfT*ChVxY|xf%m~S?9Zp&EUt`aW7T1yaI~Bt`F}ua(GpNr!4PK3iT&m&J z0C#ogy>@>ZJQCgt_=$gI}>7;a(WS3O9G;NsvQ079%_}o7y+HQ z>JLL&aGyO@SOK@VI3!ld^*H3WOcb`%EW~7ixO5+dSdKioNj~u>80bKzhzxC&Y!kt5 z*rkdle0371-5Kl6U6R=6YT6ef3Jc*>0l){GdeRaZ%YaVaFnST|N-^duY{%4erWtnt zI<|RH#yvT#oz}%$LcG{mNfm`pZgN*GJtP{*90B66cs+SO~L><^pgnQPD zL_S;eIm^31t0@4MAH|MMV_n0vlDJ}i_o({URe2Yb!9m^c^{PK&-60`B2d)QGO+9R1 zv%bb1o|MuIwsJWDe-&(5Xre`3h|U}DXN-H+{-37q3ZyplBLFY+u9DA3BqL!+&vDLc zq6<>JowPXkv=uO}W8e<`NzDhtT1QF zwPE3?vuK}c)OO%bqYD}7#a)tGoE2&)>{?43Ux&Ia%19LIvw$53{IgF(?_MY3eNiR3 znb0RafbU(8h-JRj?hKNRN(oBGY+!4}-l(b-^;_i;l^H80%=;k9f?~k9}vMsfVB9#5zr>7O! z{0Y^xeMb6E3V4DvO*d4;DR%z=dfrlgRvy)r@t@%)vG8NX(&>7cGulXe%UiS`B*=OY zYl?VC*~$p-hBjAR%&q;VCyA65B=tD{RW6%!5>XyO7~qkbcl!sCuBntfX!A>;L=O+=#Oq0UD=Y9mdx zW2f82v$eLrib<80O_B!Z(AUx52>fOCc&#l<2g9k{Ivn<|ku=>&q@U+u^Bm_D?SBn5 zCx%OZEr$#TCmed$4k9frPg@6CGj_T9G2yQeL8@3ayv&ROf`>Rb^sLLYf-OPGLFG3) zn}83cc$b7cRPZ{MkjW9q!nO$>wcP3cB$HFNKfN-G5hB;CR4TTOpWZBzYaVOyL&Y&WrjushEJHFdai8~it~S9FX=wosk;m4l zOLE$U?31=P$WC%QX0&ZlBz7`4m(U9R6A4Z4l%<6(ATRQGtX?@($$w{REFDvU5Dvi4WVQhT&n^y zPaultZKgqj12FCm20oRq1>yxDXCb{fu9)qigK3>MoZF>R%be$N&j90!+puPm1aq{r zcRtn2TV4QmmH-@JcP6(j?v#PF{oYTZtrNJlM^9}bQH9zEOoP-_xEMPfpl=7}4b5TO z-4B;1p1jr6oJPh)BWMFBJk{(?-*ajf+JG#BEZm;8rEj&>fD8#IXdT62L2$&4r7%AC z9E#Ypx=>Vu!8J(EPockQwc}oJz;dIws}d;M3aA)40CQBWY-0FRHe3%{lqP}@}%?>-oj5) zl%CC9oD@GMGnL?qsd1->$pSU!sV9-`iU7_)F~8}Y1>P~8y^ngUbpUafUzqcfYo2ED zXDM^1#;VGL3_H~s;oQ4-Hy9g8u7dV3cNI8c>D*Ra+fbY_a0fWzxtXT>6>aUlRSSUK z*!9h9+FR`kNXNE+oo5Ldl}ds(@#sx#Y2{>G4eOs#!8IC)zh`VhsM;5EU?1;Rg5f|M zug!y=DPU01hTFRs1DqOHk8@?V6~{R}4L+Kgx7eK~9%c?Uj;g$7hmaWx;{!d8MNwOj ztW=}!St4gULEY-j-k~~pWn#xC9Xe*TZKGyYG5`VOkZM_NcLpG29+^EW zHjNSa^AzGjr+3YafNK03Qv`BPIjo2QR!z#I9DP0OQrwa<4l~I5*B>$TvZ&q5sUd<@ z&In`l=hCEiX;*NScXRTws0_>r+rzF2`ufyUOSEs`u{j6R)|{kdqjH_x$7|t>HvU2F z?O8VtPVPt_P6cUPmUqZwm(PAGkxm#dB#ivs39R|KV-{h7!6O8pN=I;mb_WNu%=yne)F5Gj z11m$4%v9$C@}&hv(YNubDl4Nbq&eC^3ObSNR$z@!A27(r9jdf01CH6~D*dkHIl&`8 zjb|ow(~XNzpow;ZGmh1M2+7)6K*`1c{c5~8`@Ij+wJoAx-zX=HEG*Cp=DVY0CXJ(TBx#~H?YS*1zfjqO5h$2Ngb(N zu0?%|(MF(+s?v|;R^TCBcBwe_s?hBx3fsBPSG8Y5<)ZF2>!GxjoHWy5A>ngQI66}40Yn4!ez^G&f6F{RXhQ-eeC?!g-+_GSjIV5D7go4Me2YtgdYBH+_@_@jNf%$+LNxnnVKQ|}&RxPWtm%{BMLxMB*oUjG1LzXxZ0-&9QCMkgN9J0eqqIEuY0ow z$n9ZhcWnR$U%Gk&T2SIL2j1W*Va-&6G-hT1DC%n6v|(KGcl17lR&^E4De7q;5wT-} zNB|6DHG18EU@*Dup7lZ{EOxgG(S1j~Xrw#9&ngHfJOFXpxn1qC(;dwSLrfO~C5{gq zX0%ZVIXr(+-l;>CQgebjW2S3D!Ib2DtPcR5)GJ=rI=Wo7ZxXY7tHI}RJYu!&qK%kH z1~I_EP4y1RjOLR^_$=|}ZFhx|eDJ!V} zN~4Sc!Odw~MofGVN8PP$pm`#msirQX_LlfNM1n^_&hR~J8^+N~bA2l$ahPIJx3LGX zuCo4bBHeQ6hB(Ux+m=yWKB;vz)vz<7u$jPST#g5N`CP_N+gqVAZcgW&Yua;O-$`(v zC0WYt zt3vr-G0bZ4J;1kxMo||fv5cPl)YvNCc2B(L7C$Vw@BoOL4EYgCkn`O2cYf&(6F8sM2H0S@ju0aPZwd1P(Qc8)+a zkm@D~!31YLd)D#MSm%;YQPMMsm9hip1of*kYY!4K2FidrJY(rqJmi$CtAWo$)ccxS z>r|33+kwxZ{&fv0C3Z|xT8_8ZXJfcXRfkL-D`!sEC0Ue6yMqI{nDnk)V=%4)0tY!1 zqfwGEz&sueb54X_sU1+N;?>#eb{hWxl>sj>A1*#c+()HuXxiiCN*M~04(Sg=>5B3D zZDgFGU8Ba@T(*QM!NWL_kdL*4Ch_e^cU9<}CFR(I%q4LY9E zH;%`ocpJs`mYS+Y>P`*|5s(M1eRJV0YfU^4MR=w28VANZHDqOw8TaT{{ZXLg;h&M)aS1#)s30zUL}xUgB%5AjAZ1u z0=(x~GTX^-Yvq(I%0N(d*F`RgHk~Z98^&Z)jh#WyTDNUy4yProjDOX?&;HW-Qk{Q) z-ZZ&V8?d=b-*UR!u`2z%>EF9 zQy)=$S^b?JMjDys%>r-1M=55Cy_5T10uN#?h(1YL7 zu0a`)smN97(~8y!qX{xwNQA8Hpp%{lrE9?o?ral}am`kSA%)K;2aTj0`&OO3qb}Yu zJxzB-XmZQYlG~LT^~h7fts7<`#s+=QCZM-X%bnRHJxA+Ol42-9${yIQY+)|N?Zkqh zhEu}|9YK%)`+@8SdaRP7F)Q-($v(9pkc@O-2h3Nws1xvLcQ_Yx|6cdmmbCx7AncPM+|*2pT?g)o{&erP!$t{Avnce z)x1Ne={BrceAiKupl~b7wf_Jb-D;AQP-Rv)NYG#b??P_&NaC+v6qTDb^?wstTQrFh zHO!#r3cbB^Tz0kMR=bsBnO<1f5|BVL0rV!F=195wRI6?3iOD|IN^Nr2PF>dO7EVBX zb6Uk7HC#;PqAo`)^PqES4Wt?W09W@*4*9Ix*{tCiQ65{6$DO#Yb5`+`jvYor0DgYi zt}jsWMa9IKFP`0cRovrCyE;vCTuG&MN8OGXpXupbb^XxfIZeT8J)J2Amv4?s;V%1q_8 z0`Zg1Dx2ZKUB5qwF%_*>(P9b-?pc*-~u1^zY9D@{qo-4NoQgS=9% zZz9P9kXsxdaad7481Ds0;=e+^B=|o^_~+njFBWMjADu0zl5K;dcL&^8#hxYje{rQ< zy2}>U4S-Z}_}4vpNv>$E3#VU|@=tS(W4jIaPCFWKV89mRjNi?xLOx-;IL~U~tSp)CPylw4I#pGSo_`Tu75hf`s%<{v*TddSwvt>ZxozrInE}Q})YsJ?0Q?B|I>n{Nq`NK1 z<~JPuDu?_Oli^HP{sz%Jccqs}T)&pfxk>0ftBPHzfsk;dlaPCg+0*aciZcem94mTy)uj53OGCV|)I8D2TxTCz zzXih;%VQk|*6Un_o#E=l4Y}G$$ib~EeL)7+3^p$$uOhVAm#Npobff@;;PpApYFb^Q z73ITZa0W-#xT`%)T0&K@n|Zu?HgtubCN2Iv27JJPyErTB~|OpdgM11Rm8F+dQyPkU_xR zRqn5YE1)W%{GrEso?)oc%J&;P zYfFqN2up2jVxJ_3Vg-HbPds!!^???o!AQtX`-Lo;(&T)_bH@UkeF@OemiIDb3=mEU z?d?=$)D%cd9uGn9>sgXsl-!}Vvz&~cqt>$LzsJkw{D5^QB-BbnOH-kJMLMb3jCZS0 z-kD2{!*SqawQzH4*l(1L$BY5T)~xAT+cyMmlyQ?;w{hE3)2$~_7tG4aIKv)IST}xP z#tP(Q4%N#+sttToeW1dZ?W{o&*Sp0)3 zIU~}o`PmpFA$>bmG#49`eB3Qsg6+3%UzZ~s_pMh}%-*)KaIj_FoM7^C{V9s!Q00i{ zimUd5kDb60zcDoo*FI>-g7r4+phhg&X_83{_-| z#&AY*axgnpu%rwDyPn;v8Cf0F;%HhG>NAd<~FxS`IS12*@C9 z82tU}R8W}R_s%+siBmFXx1sf`NTuAn0lT0b!0(ES*wrhsh>Af9q-d^TiVRHlOg5L1ad_+_5{Fxn4SsgQN*Q)AbgoooO8ewsR$BA%;j0L&Nw_(hKuAWg=3A`^!BNvg=BISF|~N^F++M-#!>E8+FmiW zLcVfCb;UeH+f?VCfC2i|u@G`b?Bf{r9+a}C=geS+=zGzk(HKb?#?TZ}PT~$vwN$yc z+UF~{k9yj8ixoVm-Sr=-Q1sTsyJ!?bAE3|?0 zo}QTZrMHQrRVjiAAfCWfyFEe|S`pg75g#O=QHs>HKmw@w_YQDrw&{_AIX?V@>sPJD z*vhc?+&k7S+1%`ebtJYVjlg3kspv&(*+dzD%7Vj;{82eq~i& zgDNmZW}V&9*p-&0=)*bt%m_Fwj+L)yf+hfSj(2y@xT+TIm5g*G*9b51%N7RbR%h0aIoSMAFAWlIJmjIXUyw2%ZVwUjZyJw`=cw>w=!e8)NIz^_J{ zIHv5jHLL4k@cM zV#0Dm0NYT4Mh7F(wb6h@YRN;fOsTr6b$7pblu z*Y>;kd#QMe+d%OB#;M}HTIs}a+i5n1mPS5>u}R9x=5BCHR(js4BWjaOBAMh!Wb(F{ z_Nw4=Gv2um7T>L%v`M%lX`P_r;^{)^3 zpM7_w>en;*MN}rn1o9i&zDpB7Z8>s^8b4C5sp4B`r!qW_N#R!<=DEwi90~1YgClCN z+<52luQt`ZOLeK;k1=)t#X##<^h;wk)KKg!@?jAba$UOsJ!^^(x5n*b(xVqWj`qeu zcWX0TFc7#KS&29wO5wHn?IH7$*5FEtalt<;cLu(=u+)AAd=JoUYD0n}`%`6&chBRO7sap}pXAa2}dY0;I8nr1>N=e@%61azkPBWNJw2Z2#W-e}5z za60F$Iyt3cV<0MLA*-@WO%Ee|StKe`InO;Rc<{>tAa`Sw*$s0=;-^Dsri42 zd)6&XcrA?{*#2R6oCp&gzAE`C;ufo3+>lSwq z{h|%F`*6VEZEnLA;Nqm(c1O|Ro7(5A$KyX0XqORvufwoQX(EWl!E`bN9Z6dCUj^!# zM!N&t8&9#{0GQkI^PaVHz+M>Az9Z;u4dgcW^Mw1Q@ae~Fbj5MLDDdKZE!Cou8Ffu2 z*`!nrcs|o^+3C+!0=eT!$~@87+ErIOr!CKDOW3Vol`fTco_7qIj?VhnF%hyV<0O;T zsOa5 z9QXrKj?UmlEMgY{k#e#!oZ`L~f;N#C1cxiTYY$&a{WJK%;ilHU8|$`~HtiezfF#f-%%rxtIJhT@N=GD7PL|Wi`1fati02q*O_7`^77`HV+lM zb8F@&$_~-X9N^V4ZdHa`1rOfFe_HhxnzMHseK2eMiYB|6=Fg{WT1J212krj=tilqdy|r z&eD*0Z<~>v3bb4_JGugR$gIS64gf$`8<_VMJIIRyZf&^E257dH6_At8Wn}=a!ZXc8 z*CtmA#JR=-j+v@2aKVdo{_=yGvuf;5DVFqJzgo$rcT$PdX(MXnVoYOwW0sa@YZS0rK#0Ln@wh8-n#t6B zV4_n8ny|&m2R(k3=bkC}ffk!#Ec4yR2vi|_(~^G*@oiJ%8c96iz1h2sNz^#(M zyw3*}jd$gx_nyJy9~XVKr_;2MZYNdC9Dg%jb9b!YTdbeDAc2-*bIxmmm*R!hv@^wG zOfpZ8GEhEaS+`y~mN-LACUe&v>vXJ-5#CzJ?QS*ez*rT0H_l6co|Tz@;w|xvxeh^W z4_e^wejvT%hiTZOjyuv@c$F^X%)o8#4|-Q@YAn~EUJ^4SHtZbj^v!2Ybgs>o+s|WF zu9^vyG;%8Qou;v-n4@hOBzN_z8qu0_UX8_%Ur|+Lyeu1&yBNtms)v}tNo*Q75JCIg zXK13sxipsm42*p<)|g1(jy(k%S9URz)EY)3%^-~N)OV(=E8j*_nliu+q~@|OqF~$% z9PmYNk+hOd4{TLSn_}fhcK7K*)J84cvRy9aAe9*)de&r-x{w)2HK%o9C9|0$9S%tK zt2S}LsxH&=&FSwz%tdBW1`pPl?#keUf<5b@o5R}yY?a4)&6`ai|NpwP6fNOwrRsD+N;M(?Ct&n-1sj^jkOzjEu=sRV!Uqj z&qH6SnlFYljV9PfV{066{{XYjX`UqTR*mA#9^*^Y^!RQp=3T6Xa7Va3jYVuVD$(U< zeF~MS%bMu??eLF>2ieh*;dYX78EoL!sQ6dG)|T=at`~n91J<@YS^G2G{4&-J=71&C zbZJ|5*$HQdo`=`#Q`n&p1(W1u2dT!Jev@u%Q-iZnrkCDxlPTN{#(u$9l^1$?V%e0*Q8T}^2IbO|Sv zyLt_$2lcP4J`w0I;g1LE7dMKqLa;NFpWzBgCpGjLTqO%w;Lg39i%)a$w#nKkHb_sM z8!|8--cnSL%vPPWggTZuEIafSmuY2yBy#)*7)<^ADAJFzhPYT(ES=%CN^?-K(M%NH0KXAzEpaZ$&53bPVhur<=OMlQ!s9q!4AE;`_2 zn$WYYEfe zP&P{=X{u%sl1V3_Jt=c^3p3DS)RdJ+ZgZbnvu~)97z30! z1XmSlf3cQLXg?|vpZDO1d$Qu4w*b;8jkApe5ZP;7~Sn$Yg-}Q*oSfG5Hvq-Md4s;*GxV(P)vP~fWp;RC+wJ*+ zkj!{2F;4q2W4L|u$0x06$!uAlfZvZwQ4UTqli!Y&<8#>ho=cSy(_%OWpy|-(>rpg8 z!6kO@>sreLNx>(cea%$4w*-!GdK^=XwA9nt-qtakZ6|K!40%4LnYFO&OJla<(yv`a z2p?RKPkPV0k#}_=xWF8ad)Gu~bPko4g=@3EGswW_1FdCCHY6t`WMoy_#xcZqXCtWx zt!7N%<7otAn(L+5;;RP5SK6Q+PIK0*LvqRj^b5!YX0ln%?Zf3imTE{v6_MI20l}s-DAdDy^@(5gFt;GsPiU=fk&uYR_y1Cm9qQ*l7Y_`GB z_o+p}ErM~J9z{j9V|MwD!g$Y6F-Oc4f_HI`#<^|WZcCv#k-WwPa7Q>jO*vJL0O~m; zo+_r|j56K20oJBfSyyuqqXRiTY8vVaSJ1MHi2?H#G281_@Cq&%1}6=UwN@nE9__;! z;~lEV$2e`kcckQR5_Cin_1<%znx=_M4uxDEq~rlmD~THo$s7agRulzX1_l2B+V-TG zs=Im?Ae2bC01c-J>f*H2)$6Jyk0LP4TRA;FD%30c zjF-+jo|&dwL`-UU&qAJtr-yO_xrWkmR~4*ao`x<~V5_STV&V=1Y|o3u>@zU>{Z>$Amf}?HgY=S%MpnY z^1{0k19Z(@5xlq=CZkXHxs+BwR&{vO>{VFV=(JS zE1I@QR#2tOWDl3Q_pOUITVNt~-%6a01UI%Gg>k$afz*eFtj2CZ`>oFC;OP za=0@Qx!%1MPF+t5wqqStG;dGhYb_St?x!!YcwoZ-ekY}Twegqs-PSE$_eAhZL1z$s zuc-wN`0fyq$JV(|+FRpw)RVV{beW0(Gk0*OmOtDdO8KDkTBuy}-D;B6vrk>|9;xD; zNw0N%Lg!PvbC#OsLhbt3=#Tsoi{V5c+M4ggO-9{Y`#pZerxs87YUAf{eTD^odU#jE z8i$H?m^AG+)?3TTm@IKbyyWyX`@Qfx;Z#2dehc_(!j{pjH#YW*J>0+Z(&5*0=jeF+ zE6L3(`x;!a-JMt}UfQm^BHxLutf0NRdDjw7-eFLAC)E4b&Yu>%4JG-xo)Sz+E=K%i z)w`V6uz1^ExV3p2_T3_5_tkP$$4<57TF;Mk`w7F}OoldH&acS|y)j=K3XUr0vFy~P zW5l1~MZKiL>7s4Kmyj_#MtUFqwRAoR(d@hzr0ZTWzKlsGiyIp?kp|N{0wdu1b*%3f zd{mC}P?{(TvN7 z(2Uc1*z$Sx9ZTXbiSF+%WowD&k))ndGJct=H*I&}$1MZ81vm_(f)Ay4{s7W{u)H)0 zM0@MvTXOXZJ63;>wf#F!wHC{547YA_z;aM}n&{?=lBX4PcjEC9NzJmy!~Xz`R|#~m zPR1EgNGt~usp_V=kBGWur}mm%S|W(2JOpfo&nCF#)LKnINRg~c5AfCPPf&Y{WL?>e zbB{{hQI#sHRP;}De4Zy0?c&t+B|1p6OceyM&pm}!lH7TQG3k&y(QSM7t5ST@tq|Zb z&hKiuWiXN%EhC%YHPyQ<=>x|}jf_b$h%Upui|rnR>W4#XG?dsfby<9q!kDG**u zD>2Slx)JGF77^}*EX(_#Hy%1w-}p^DBjLCeH9)SyP*no%W?uEilAO6zZ|GEIDt`Ah zjmsa6`u>2?-Pmi=Sl#D1fkJKJ9PBx*kZu&THMm(&df&o*hXpdv+zt$Uy|LJ;COyG7aPdf*U1G z2<1YSCnuf0l_M3EIsn}de0>deB%8I&TkB$Y;YLtc6jRVIHK%J68L$D`2PL|J>sj{E z?Njp(2ORbK*5#;Kn63z5ypvrq@-dMjtFAVNE6}!i9+f|kQ3xyZDd%-bZ3C%Xl~4iT ze-&9sN0dMX%AT3sU9s54*E85GYqXu*@LHg_&i6eZ(>$!rwB z8P7`SNXhG?D9R4tNl>722V+&G3-aWL2aY>c`P>k}v&hKE=~UeUC}zVFbMl|(TS6(A zw`~YZ6x)DLW0O^$W?*`dJ072fO?5KFbDio2cCQ51E!66x01_3rIpkKnx71wr*qNqg zk+!zbPXyJgNdg=@X=T{)S0!0enF*p^JqkT=3^xWZEb_BVx#>JpR`QHn3J4~wbeyEAPhk&gXqQYnSXZX^yk=aXDaQXRncA6~V$q~2wK zW5+?B-qk7gBh=nh-}8)|oM6(3@DE)5YDj@4Pw<}Jl{3Y$f`ENNswZto0_|Mjjos4E&}Nt8Z&(?T-hL7oSvYUsQ<;z@in zs6%j!-)D9SEMVgU*0BU2k~7Ub##$pA5P0wW>Q=0oM(Fzs!CLe)TElk)!IXehp0)IM z!(WIk8G$_CEW`%{<0ij9{s{QYEX|}(H}4naP3PsseJA1j+4RZL!;+^51B%j7)7?Dg z+Lf92MuqW;`@@n(%&m2&%0XO?*UqhP<-7jq zj57E7R%W5B>OKVVAbUw1+dJ9cdGnNO$WjHE%n&(1hN~s zjkBu=;@h+Wzuv}iUL*0x<2{e;Wv5&Ca@R+<)jU^nrdX`*vV6Rs^|IrhPeEKbj5pS8 z&9XiG207teq_=4L!{BGbjSs^b1Kw)aDQl-$jLUgD1VY{NO>>{LzwK>lru;7Pou`Hh zLt!3^JV|`x5hyd~3M_+2dv)7_vkj&%FP)uwaf)8rZmV7AWa57GFQ5_D)D9v4L zSQjiGEW}~D=k%vZd%-G49C~qB*Ea#3TX|dz=hmq{rO(QH{MEXV$kol&zmg^+j=g;; z<4`VDnStklo-3Re${eoa^9%xd(;HCv!3qkf?r}qs+?1?!E2%U{cay13>9#t|PFIb{Pf~vEbozd@BwyWyGBG#i-^@+qQ*nLE~`m zTt%Lu@AGdC-Ff2`cxvq7TOd9;!Qj#DIvOf%>UIl%u&{{d2a!!}O;jvDOxqd2L!6Sl z@l$=VvUagioZ}o;POhf@%KDl&S7Q^3mFM4HVo|?nq;?b_-+V4Fg=A) zxtOsh%p;yqb{@4p(Y=av(nF<{LqX)}j8=AY^17 z=QU4PemPcl z-MxtD0-RSBWpG4C=If8W(zfkq+5+IH0DRqzWSUxB*+a52O`9nr0PXLdzmIwfh~z31 zGh>sUm7>udpfTuix4jZZdZ+XqDy$CX?#HEN+=%|}c9Y(;CEo9Y(4K;*+#RE7!8z^TyJ1sfj;HQrmT2%XgIRcAY|v0?aej0 z+@yU4KHWUCfWeo)y-v_|Dh>y?O3qR_IUCWG9y|bdbDo2}ShBV_IOE$DVmm+?SRcm~ zcG}$}1OiKrPZ+6k^Eu@aBC-I3!+X`ZEP-qy1@$=VR&A_#+~au913fEB*4VfJ4ZNHW zK~r?}Gq=5FQ-;L`NIkF{(ya&!NUGTiah4US6^a78kYTvTsi~gZZUV$SymYLkC9&BC z(U#W#03cEO!ZUz-)mbeFkd#0WADchYw~ec^kgmN7(e7Z$ z5Ov%!l6uq(ODeZa^&K%<(m)v)?D=~h^_wNTdMR=v?FUrQI}F)$d0Y%v+nQYuJ} z@)Y9)WFDC`c{xS>-q#(+y-Klc+mpG^N?IaQWU!;NAm9vVj@4~ZlmsAc9FhlmY%mg3 z@z1Xnptj_$0-WcAo`cq~aysMOfIuB{ij{F8SjkW`%O2De&T+$Z$mo8xJWvd)s38gH z!>v-ZtZNoY0{o?v0(xyc3{}`il1s+9>ON7NA4)A^Rsg9W9?UC77!)$F0eR&5QFd;n z%dtiU`S?Hx=Q+(>F_Dd=v0?Xs;2z?h@PTr`1I8QW9jb?owZY-P56Ly5GG4jD06s{^ za((N%l{r*u$380+3^hJ!J$oHBhKTbj`LaiBt;lIxX~sP&*zm!U7h7#c)_Ig=BWA$% zubUIb`i;%|%O%vT@?bvZ$-wPe_8vLDigkGI8C_0r8`8aK(2RN?8;H#7)s^Dxk45pG ztFL%z40l>}xu_q_$d)E&yilvevGF^eR^M>i|T^yb<9wpE&Z1n@Vq`^X`ED!$x zUc572ntcycAsnKv;L#3*S3-j5k2Te)CwWPo?Z?Dh`)iCP>wbM|B>10tNZoPrXCY5o z;qGoN7AWOIy^3eljOL##dks{my0h04;$6ZhB7UO@f9E($hn+HDJ^r?TeAwiw(oYMAidbA$aqw0GN&%`UHQRT|2af}ZB=ANGr z?#d#G2;-BUbL(C?CaSxGdBpLIdQld*MnlM~x#FKBdLeVoFNpS|@d|frHNy}SfO)~G zzu`ZX*b^eYc^Uq-<7upu+#kk+tjajw#ZR(Zq#n|L%+F?r;u|3$=g#lpUWTkiX4j+o@SQdsl`xh_HE(;Bm(os9(jb2GJ%#9<^MFYhqNUx}Qba`1aC3Rkb4z z00SxHA57PGq)Bam6mr9L71l-zBkuZF#WU;vXa{iw9_PJm_*=y~t)k3CPIs5L(s>0StdE+;YG>Tab{*o>ljXWqVikKz^V zo?Me%8Ks3bq4hn@S8Z-hYf%j>gr27-H7T~q<+9xO&kXDL-YwLA(SAhml{kcOtK4F$ zd|~*Qo*3}8!&_XRJjJ#!2N~(t+PU2aS6fXXWQtZ!2e&ohpBy}0F1M=-VpK;E+p&M0 zTUOX2`JK-$x{`fTc`m1sq?%SP?%a}1cHam73HX!aAB*igKjG~@YwOwFSNCa^jY;L3 z&y2eVmVnH zVknp2BxbdYZ60ZC6P@I#$A8H3KiRYPW$@0E@o~HhqO#s6g_UnSQ>>hBxw_z`x*p08 zTzXgA`m#eWoC65TbRhSynEwFanl`MT2sK|4>ZOje;!DXd?q`(bxGr(erF{Y7eL^_Q zk|`3#!0mP9d)L8cmHn+(2q*zZ37QC zDA6eeP|xB^KRA0sb4E57k|vkVryB%ke$ z*#rUi7M=VOKZ!C8T6#8+}y5%X#JjnI1a!{z0jlTz*Yp)S%7KS`E zy_0zaaszGP*UmcJvP~n&GwztPZgP6_(!PiAeY~xIs_J%fmV0|vkRT&1k<%UP<~?Up zXP!ZTs#%WS;OCJ~1s6HVnPv?rSZo&-_L3w?^UEu3+1T*Va z#%@rb!y~0__^pI-f}m~PjMuMGT5*SSJOh5=b16J(BkS6jQVeOiOMnYm! z#u)dlnPCi>+!PLj6y{$^{z!$?)?s5V)yEKKAqtCyl>)|^cb!m zOM-M8CYECYEw41Fu^Pm7U3 z9^u(a9iyG6wS5ur`^6q5@LrDh(pt#`?-`B=*|GBxjGX#ZpRsm_rKYy=YVdi=()ndu zk1UbY*T4SQKM$ht*M|H#tZ4CW(_?0~yD{{Pw<_)IdRGF9ty`4!qY2^Zsb6#DnA6A- zd9rzvNX;a&6OztONi?2dkdOvPKuGF+Y5XSa5E0Mb1FyY87Ys)%Nd6l4+)`FJ)3dmN znB%EnFh(lGJNA`G%PRH)ltQc(80788PIFVo3t;jvcq~s}rE{%UnX9<_FP(!IP!A+y zk?matsOCM`IV7AK$8@QF$vsO}$R1Z5Z6mLG zv>#+_yoMYA02%eoHW9Kdz%B{E#YSh_87{2AoNXBSYq}S)7fW_kyTgUslpy5s)K+w} zF=j@>=LJe&kH)laz;Jf9&wO>Pxue26?&x{rt#v^qxtr5eR%y30so<(C`$PVIiz9+e_)W8Va4)~spzOp^{5aAS(u zIxAbM?p$LWRajR>5~oa@@x?(qkjFSt)1LLKdJ-a3eeSr&O3S$c`haoQH7upMpDtLQ z!1t&?Juov?if4W}%|o+=;~DC6N1P@UoPRnt5#4B$ zHQK74SnW#)3}kbPX^|y#P@c%ZRSp}T z-Kk=;e1gN|=NYXA8|67tp;+YOsi_tuBw!Jb){V6@PQ@!&_DlD74D_v-0oVY-r>Lre z91t;(4{r5jHF}~ zVp`pcxZW&+4`v+&7PBoj(N{y%#pD}H{`p5kTOmsZ9eBwCxI3{XhpRTwRA)H$uHQ+y zTj*9`dUY73{t3t9Jq~$R?^4n&*7iJden$O*09!NoOQ zp?{PX$;K<1@NTLEi5cKvaNRktR`B1$tyji(DISq%_mfNaVug1%N{2NSc{5iRvN`r~ zEIW{{;qTJ6^bKfU#pFAU=y*Nb+OVe6r_!$GwY!Q)CXJaHB~q*yb;zu5ww*IpUD*i4 zVEfeQ)zMVs)3-y=uJ*cy13aEH(z0g+w(P46=N;=-$wl>|&Yegk?Z*bH$!5F4sU>+V zao^U5D`<6cC#jvhmnC-r+i}fBxtHbY3CSeYwz1om8DKdEqL$NWW+%&RbMH{t)H{`o zgf}@Lcg;m4rcKxYWAv*A+>ww8=N!{g$%Kah?L6ldle$+lQM(x&vJ}G(I}uuz&H~1y z6VD`ds_@&L%yG3q{LNd2ClUo8QV*qJChT-ZDA~7|u)xS3o$*_Cm!B+UNnCy5-nrXU zZ!BPPeesIhvH8aJ1gEYrc&=GblT)rVlRA4#{K=ioyQWCywPU#`dJw2M+%gSwG0JyF z+qhAR(v8e<77B~k^D!u;Zhrs9$GeM?di=>iT1hPcN5>z ztlOw^j80erPDd0#sR6B!)_6>*<${{USv(1%^4_(;nR zewCyq<%vhRX~7314#uiWY_cI@4_}+N z71>T!TC;|5zK1VymB0v~`0j*o!A<23`X&PdKrQVng(rYfo3^0s)-b5&-5+l|WEU;^Zf=iaXO zGxl!!8EF7O02{Y)&0K&502Kj;%bfJ58*{ymbCZl>rGgFu0rK?(jMg(Yj4bR}idRPxz%lKC&{YeYbqnS(3b^Zz_4EBtu!LQ-F{Jt91eGLrJPOIX z`IxXc0Of|>Ptexo>c$Qgat}Ce^_z6A>yi#Y$Uu0lW1;BMrE{O2d~h2qynq(7=gB7+ z1pC&l+&?P?%H(o$(y3f3upz>d00oCy(lX`H^=aYnxruWV7X%PldJ3a*hap&nBy{gv zS0XeU_Z_*&P%;H&&a3x!lEnS&bgr0A;;V*MGhPA|jDW!4W|)z)9fV|pImKFF5Mw+q zKBqM3pxO=r$nJaBd}n2;^BBB6t~%Zv#yICccQt-HH<3o(amLo~Ot*{$O~WnM*0kdr z*>iwMBacs7Ii2)AcBDB`1U99%khoPOW4NsgXj{vC5IG!TrH(Q|Q_2o^4&tuc4fqO6 zMg~dSiqFlQ6Sq);*Uc z9JRUC2&Jkq&9eeAfd2r*bIA1Km&*A}OaneM$6?;IUeVkJ11E2;4_X$`hx@xgAd}Pq z?^53~vo?ogE6MW8y7b2&R97(W+$`#+n(T_1y%bjVG8Zb79ch`rS9JS z3u;YR#1L=bsZcs&oY57p-pUe3W7id`ZB&OUO5>@=T8=ndc-xG7j=t2JR|J_HQ8ANg zCj$+G&086E01Tdbe=1asqU0x2lkO_VlrpSN;16H%td5kLAxm|L;Ejiz_vuqXAMbZ6 z^cf!crZh!lFR->r00W%W>m>6^WNrWuPI>#y=7(?Dgr>pYf>FNy0(7k z9sARC_*F;E(DWqs?N;?s_G=kkNn_bp)}1uxH56+)k);PYJrT(Gm&R~u7j0)8izVX_ zLT%CT<9*@(02CcU@mLujED1cH{{U5X{v+`e zQ`qTRl1P$8B6I-ZJ7T_~l_f?tTc4lfF%repb8k+EmTNkDY1)jjf>-9?`%=Rv?!g~; za2wXQylWJ5?7e`3vMzWT3Vkb@hC?6+g2S-ly1dRC=xynD>>Ma;9OoqTu7BbhE69?e zIc}phZ6+4vuml`>^sJu|NG_qtegMZOnwO~7r!xi9pb@#;y|YkE0c@!t9%)?pP6!zk z$z%+;3*V`yYiMYl#u*A{4T>7&f{f&hcJENI1Y`r&n8zca$n~eP4N3gMq-P`n-i5l! z8R^tjQ!W7quc)RMBm>_$q&ryA8i3DSFdZq6d`KZ&k4mAu^(UWSS`>qVa&b?fSh}}T z44ucGywkqg!AH%z9nDc^IW&2MCu2xfWyZdFSmfj$)eN!&fwe_eW+VfgQf}aIPADCT zizZZbu7=WY?5#91w&`vGP=C6;&2yH~?wNCw>zcPc$-0zrgi*CddsBN^irSq8mGck@ zIRmA4UJ+llTn)n@^!Kkd(~)I$8Nl|hOYr6`?Z(~+9Fy9fiCoS{ajR=74xUhg5;Ver z$3Nj;J?pnGsOz%Ho!gtBuTAluu(rBeD#*aFBOcY}dK67_sTK-djyS2+$ZFA7XWk$1 zOOM(9A0PZnJ}T8MeEl~>Rhdz_Up)QK%NehwKj5+cHj_d9o-_{*Lgfy>tfEL2vHQ4` zz6kWrE7<=4;Ge$=7vZPCJsw$L@^7_e7jteOF$eC~$zSkVyYkxK!ksy?(QUi9E896y zTh?~>S43xqPD#!6W~b~|@m?(#;NFpCa;#D$5s1)Ws08Dl=Dmww@!hVYr!>~Li7DhX zQT(NSh_4U*ko*s6sC+Q7wYemTHps5Y_X#}nUb*8h+1l$$)2=lQCsZ-X{Y##hxsJ;iO+IERIQ&a`eZcuOrv>Cs`S7=2=xTSSxY`T=7)8 z-kGahTU}Ys0Uvz^QGxCop{_D(3(LnP$&YyIBP9Mb>C)2Xoarw!nehjS8dhcVS7Mxu zb@~%f=uIW$>`9PAD&j>0KQFkhxO_KTh7(9uRdK*5S2a@OMY_>iNZ|xR20@Gy)7H9d zqJ*6HISD4!v|HmXmBYkiKPJ}3MPOWLHXb39$h?g$FWrgrmwlV>Xr!DMK0Xi{RBRmy9N{VuH+vU*Swd$>PI88^vx|WlyeT?8b5LQh5 zq#lNk6gt~O6b$Io0y0qNHDg)TZZ1%nC1+(E5_?xOVp~zX4D1Ri&&(^wej!7d%MqwzBbikRQvgjZHEOh+m8L~>)(oAC%4e_nWfq%kr#Ol z(;r&+S5o+iZ>IRJ^Ix}UlWQ}w?(2@6`ikgrjk#B;rXDFTX*H`iJQ3kx;a?Bl-E_RP zm=;_B{C6YTzLV0m%_rk8!i{UfGPj=hmJE?dtGJ0k%8~RUzA%sCB)&4%HGA7v5&fg* zniK>A{WJ8%d(Z62;&$-Qi6dtN?1os-D)YFXPtLm{r3opfIYm{cD7ES8e7yyv@S(H0 zS2uR<(8!^1Lm?pkJXC>q9l?usBN)Yd5A9vxRPaZ~oqh{{lTOv6O-|e|8S^-N9^BWI z+u4L&qyV7c9Q76SmcH!yXw6#b4T=HI(~NVT{{Wp_hS+&yKfG>mame-*9s9Qz7R02a51md+L zMG@zc263J~xvtuANosR8Vax0 z1Kyk3$mN=AQl_P+yc&F)a3qm?4nXc}$^1T|{bB9%Wmn*WP1ho=rjHIz_=i9ASl#Co?pQSc71YnYWohmtrT=o>wFL92< zjN=*YQIWwtM^jH2b_bv|fdY~-l6q!~_7V`T^xd}tog878fuF*aRObVydYUXOc>YwH z9>^`XMIaz#gIT~UkzE)Ft4#c*(-BRC+Qwb1x}_v}|Gl6H6FCXSjC)y}}Va$7k$ z&H?F93^wlEc{!~4ro`D_x_RcLX+&U>cZgZY9^4i04kGe2%Tn?9YvfzyO#dp3i8??3natY*& zX1vDUU6cO+_32-sY2QO{#nvBcv`dK8VHc9UPu8+LEv+?#{!wGGjtD&~sI}XuY3&OT zaywTCs9QFjdh4`|9x9sbR9^8tT|k~QBJw*CRp)@I9CYdJR6G%@t@Xc=BZ9+#4R6gB zeqsounKJBVK)YNL0UfG&Wt!6B9YV?cyQrKxu;Anzii%|Nm~O}6S{hZD)nyj!-dSbg z&p>I%MrTsaC+ZjMuIcg9!5U_*3`;H4UnR~utco$uv9GJ4_*0=jfi*7;YPL~LX{bcW zIyeV#BEKyE0ALS^n*RX9kBfisjYV)phNgVKEzS_Q=ttJSSY*`Z@kW<5x|3~T0l$PtCG1G+&#hPHTV(n{{Z1F@4+97o+a>Y;xQU^(}_ejtiJ={kn% zi%m~Sp4uoexmrdTQTo@(b~o*3IOlFS_O9l`Q%n6krwrkGn&eI09de4b(Z<}{NucUM zMgkBSPCD1nUjhCv>b?TjtaTkKb%IUXB_#pM5rd5M;=BXIQoYI|l6ORKze?5cR;(hL zH8NuzaoVQ6DAbFLwqvC!MJBgL=?BLjgFY7c!SFj(_=n-EV{76K8WC}G8gjDd0OuU^ z=D$4k*j9Tqn>i{ok=)nNz5)HEej)rh@SdTeczaN@{>aoKD=n?e0q{u1?Dgqh6{*1T z+e#;p%Pa0@Yyp-hCb7fDRH>?R>9g_^SDTu9@9K1Z0lf3A3N8s?AM5X3J;jPMWFu#; zYtOzK%JAIArBnrNg-Op9>knl9X55BupFv7V#h$GnekVIEwmEN=M;NFjvE$`d1GafJ z)IFZ$A(S3)8z0W0HZB#uP}l%u)EmkPY;zB$1!Wxd$>$lNEV9jyr~}fvfu|Q=nKxtm z-_nvTF%XfBw6#cT2Rbaut{HKT#-&SNoR#HI1Y@Oa{{UugEP8XuIp&45DS^tbOjJo5 zL0GE<3m6Hv=57uu?X+24gpi}KJ?YWgC~`5L>%1T5SM8u1*p*TPbnjk$M4is+cj!qJ zTn2SG0|YOvYuiD%s67gR3v*Q9M2(Z?{o4NkGg@#acmp9wBe50c&2rkurB7YS64)We zSg|LMZ(6@;Y_4(}ws`4HfP$pp0(czutJZe>3@#UvKDEx?wr5gHp<>qEBXu8mvEwV= ztV<9i`D^n6cMy70lX8W@RpW!yVx@hhf|G`BNl}50)i%4h-ip>Uni9xLrqBj??@upGjtyveDcOSq#!2XECV@bFWOm#JKPv2m&UwQ^izz5jjFIza9Zght46cE|8R&Ws z#$)z?;BZpVp*^c?K3@!fhN``p4Y_~^9Ff|#OhA#8 zF{+$n)~npaLiu}wgWU8U)zKO0V?Sh`tjKFL+kuVG*Ko~IxwlqK00GAvc*pqG+?Ko* z#!tEVt3G(bpd%oIzy~?}D*2u4jg=VRV+P_D`BbX{cv8F?8W9@>bpz&lR<0Y+evT<8x;xjw=phPh+7wks^XNhCB>&lTj4&l&MTGW&o;; z_3K#oa14^l0V5~d>07A1k7kRp&0Jf8aItSSn|6&HA1*0wJoV5gxYo_p3w?lI62_|lEy zv^wfWE*B}!7$`CV`qNZx#@<2cR$c<@wv<3BhY0($*x zM$z&H6nnO79vhLpLn#290&8B*U6KHJLGuHOnW-dsGJ4qAu?1Lk13aGfy>AZo4y5h+ zb6Iw11|-}u-`cjJVxcw_2r+^ilj~fS9=AFvQj^@CHB*7G4mcokYGDX@4n9>pfKNe5 zXrz<#9ofOjtH~OY!GOR6k%N<1%3CCNs#esdw&N@B?^W*N2qY@GJ@%d}VMre_10-M! za%!Z-BvuMB*_YO;EKMlvW6B(>Yzw=&TB^}tm&gs!@x^J)Xi)A&41c@Qt1vqOz#I@V zGen|_gRw?fcY+Dy+tb#f^1vmE?QiybRk;z7a(3sYN2Nw^qjxIU!9KaEOQI{ET}=6v zSY!syae>Avx0b8BX(55g=Cr3qUzS2hT=f1~st*andY|EA(vwLQdyP4ek`4|yQaSq6 z<8Wf2oDq^p?^Vex${Rd#K&v+LsSXB9V2}q;D;Al&TDf5&!-3RihUi6TS;7!6%DD%y z>rq)@`T>k`Ta0^((})5@VO5nuIUeGeAqlgrbY$bvw4mXaNu>#dt1c$gxWm+0K+$Fs#?pX&B~U4l~79-NzUrtV@7M9=^3%N6b_V zdehvrAx!h0I*@8P2e0W?UNRI8SRT~`quY^4Wmd^8j?~6EH6*;8W15Sc9QL4SGI8u_ z;5Ko`N{=}Lo~_Tl0u+!q<2dU~-cJ;aFlbT8=9ug+QN=W5W1MEB;d;>!-s(TjDIi3p z{J3&H@!(_9mM(e4MJWbDj(sWduH*NxPo*1)o0?$S!IuEnbEU~E$M=9xD~8j@k`b7L zkJh?)bv7`pai-tKuSATRxd)4Ga{&y&i0N8?0Q@ZeGWd<5>8L+>cYPFU4p$m6|!aeu*Pygu5e!|wy@=($}p zQFvuwGl3xEC-A76ZjPIOEd0>+c%0vJmbso(%sK6v7|ZC>L;izoLk>fm4iGx%2zsrZbDB-J@{cf_7GlJJ-joRN@BZ?~_m zD=%E}EVnB0szo9{-dQ^Rb6m*2K4VE52-A)f*JU_K@3G4&%V?gH;Yn>Y_@KSi3~Hz{ zHxftF70rA^)-3&CRP}rQgYIard~$#!Y&^gEjoh zspgXGbC7>Z@s)kDWDMuIuCK!PY`01?z#vy9B9fB1-Gjt9%_j6d$oOTgE4F2klx-{( zyPEnZz}ov`bI8WgesYcSh4tpXO894bR4NeC@Gu7eoOQ25)&3=0>DFmy47;L24b+63 z9{69Sc(A*khuK1^sRGySJMp^v#FCE+_-<=h;!KN~nXw~h_(!HI;eQpTs%Lm7^Ca@v zpvFKXb^6u@t?>fp@8Tx6sZVml?HAHAC^#E4^8SLoGT+A%)5ZQtW})B#2K1PqlsH`#4CxD)C;KZyZ|$$0~N= z1`h|@iui-YkEUMSM|Eo&tct_u9mh;p)nBq-j1G?_oy;;U_cq|5UZqBJfNE;gge^N8 zVO2)uO8WFW{{Y*r?g#k6pxQ#p#@|b8ec0=@hJPbpKEPH{7#V&PeN@N}k>TyaBb3I3quauISUU(B{kyV=oSw=`b#a|;wY!bbU%Y%Y)2tAmNFq$`^N)!yr12K3G^@G%)+Isfj@hE^o<1q^ z=yErglU>SKoS*Ac>H0kPk`0PmJxJ!gFTmdjFFZ>+m4KAaa(NZ)x);GcKS9|g#>OZ& zHhX)0YPnKco>QpyNb^sIUkuek-(LKYAl`5}`c=P(-ZG9CYiK0eh`Rt@K3eI1BKYPl zBG3Ci$VC#SLlonu^{<@u&1PHsmUd!Ksqb00%v4piBh>X-Zlz`{dEgG%tce`4C#N)x zHW=q5dr}9>bvQn>BxtP3k%&Tf9Qt;qvE0CPJ#$IB0QEnG1cuHJ&DbAGHry=GV6eg9 zgTbLj*4jR9;F?l52L5!N#~l9vo+^Y*w~@|ERI3IP8NuugM+0$?xC6CZRt19*oO@E( zG-OcjQ-Ux$eQRe*h)E*kfJyFaILDlvbK4bSAkavJatA+3O$*TKZ&9sajlm@JHCydq z<1PvHroGe8r!tapf%(=$Ugk6;VD$ZHZCc^8(Cjo@lrA#Eis&51;I`e^I3)4KaJntX zNw$tbARc(G(WEj)2nqqzNU9PEU*ZOLVZph6wakpo4 z&OAS;ww->BlY&66WkN4>_@+z%!;Dvl-az(OOr&6`;=Nnp?xrua-z~ml9u7Td>JnF1 zC!P|W2VT_68Ja7lAYnDcLO6MA;!rRf~0;``p4iuivv# z=s`*<&t9jWQcf+aX!bs^Td1!sEj&SEh6O>CDErEK*X0lV76-zRXnz8YC0p26Wu^}n$~$Ee0f6&|T%P|2J&dI8(sxW55wB_|O#3QtdZ^qb}T zO}e<}jz9f%jh)9WH8K1rVAi^;GICgk;Pf@_G3ooDhJ1+}sL323dh!hpPqS(XyK3$u zCAwF(>6XhatR^fra1PVJtm^kYEF-dMl)l2O&OTr{Y~#H~`c^pFr_`U~9<|XWpDe_2 zo(TT5^s;3jfx$fceih1|w>#}~pBi$3xFN@(=bDCHHH)3Aka;JjE2@smouoEFKQQf4 zn~V~_sNc6Z&ougi|r3+bdC&b))1XQg&iY2`^QrC4K(b*LJ{db5Gg zCqDj_R=%T+(aNo_2Mi5K4Z9ggW*;^<$0D~TvoNmWgRV#;JXL3bLmXfO-1Qa1QZ1d- zwkt;-?Xm4amMxYU;;zC%o?GP{61{4+)58M5e@c-ZjCmvH=L8z_Y9^0DosCE&210X{ z9Anb7>U2>_f9f0bZ)WSoJ?0I~F|miMU~KQ>7Xj1kUjf=jDA6E{*_q$?F5U}rh} zO-~%V@VO#FPdVx5wUd%SIfi8RskQU9pl&LzYzfl+liJwOMh_I6s9l;Uh4CFBs=N$*WSJ zDnUgBhw*k5S)&eA9zg#0YT7Mc;!4P&ELaCBT%3H}2&xW%J4jg^x1#i|YluSO9d|GB zDd~>YNt5Qv0;AP0HlX~-C)TYP{O4nX9Sf(2VKVp6#zDB!T?@u@^) zNQa`gQAxWM%iWRMKnp2#7#}FlrEl9s9^_7gsLOC`E)b?Y!4+691Rg$>uVm52Mpx!; zoOG;`yCufT#VA0JcE;S<$UoMtAS|JsK-w~MR8@g~2-*e#&N!_|6c$c*2IB|Q-m&&p zTAIQ|1uBxB!(Ux*F>4ZQBEP1Q2iqXU$}SJ*yam7CnDji9@OF z)2nSxCi=(BjN=15;F{)c;#lQ5P%^j$dRKpa0;pi1G6S?T3|Bd*+F|g68++q}ShZ(+ z9gezdQ=5`7Mlpfhj`dPT%V2`Lxd8XAE2xN&Alkm9)fr=0$v{aedCz*P22cht4r(Q)h7@TzGqSS0C08sk!@u}e)wR-; z3K(u|4CDD%8*OlQL;)p$t($qyF(+OEkz5k9-1Xr?QQaL!o>{(NPdt0pg}GTUxxfp@ z*15Q^3}rVGL14J+k8@h_U8vo)caefQ#y#shTcObCw2j62R}9Jl$36c53X0-Ask?v= zL*AhmD(i#8u%Jvf=OYd2OX-XoL8tNhfJO+&cYTWAeQH!TCUR= zm=*!>KH>YnTF%1ea@2FVlV}HaIU_wPyB)~Vau^(Bj)s(6G^_v_J(PE|i|!k+Ko}cMbIn_0dQCYR zuw@9r+>AiM{RL>nGQzx{Eb zx7DNE+lk(yzRHwUIHeQw+SMIdIZLU#;yrz1)MpTrgZB$_kEJ?IakV`#rSt>!89LUPEs++N0|H#h0Unv9@a(1F zmeOnza#N0TT+XlJS+BKS(#XxU{JA_2YQJTDiPGmdf8qesc5G_nwHqh2W(4OXpQp8Q z`hx=GW1m{@b(rJ5MV=$c8D*{mTSks@56kqV(k*OKkBJ9ElSu3Yt(knm(2hymY1msCa;_UB zV~k?2TtXD{j2@Lyi392DNfd~H#V<}rQA^da)KX+n09faqIixtc!H~K#~e|xir1GOb;j<4Kb3u({{RHi zv5s$!I$gx7cEcOUA3YClE8>ij!yJnHpZ*EKXvy&&D}Znk6M_yhbNs7HOW(1}iP8t` z^`*#?%rds%MnM(wpZpX9!D;aa;0KCy;*TZFFq^0pbMvPl*U^?2&mEvHyGB0>^WTYg z7TS)Pbrk5XB!%O{bU7HV$y2hC=SF<8O#F2HpL|awejj@_c1KPCJq9}0v02=`$pD?( zc**KBUp`&w*Ix>LGWdtXjJr{8*`ik+QI0_e@vlm?)pZ9T?Z7`cu~ZM=Tn7Xas_$rr*U&| zU4bpTC#`eBoRZYqtyHxp)NfK?TY|vyLB>U7T;HPS3%EBOYL?opg)sLfIV5@3C<6tYei-W0YNQ{V-=&djJ>0J z8fkp9C`5!3I4z#FpLYkA#J4#es$&$8;RZn*mOUxAjpW2bvX�n#M^%*&1_Q8RYE% zfPHXHA-EFbBN*cq6t^B^U?~7+9MoQFfI#Ppt2r%9T)Gl8n8@dEQAv_ta^$b2HXvCK zT;rjjkf&~PJqJowGriG%(r%!s&vWZnT5PE~7&zcoQi6-McsQ%k5g}94j=18nlosfv zC$VnQ0P=tVHR#?1@SNJT=&KRkk=viZ*CpZI6Z=Bx2lu*j-n~ZS#nAX)O*+7q=Tl8%!mATt`9qxb z&qH0_$wmq>*&I==I+a|e?%C>IN~mB4;-@TqD2g{AV4R*Y?N&UNk&vkhRP8w6Vw6Q9 z6%QaT4)1EHK^<;P5*J1%sNfvc!EAi8TL9zkf!2mbbOp#?W7vKbWk5ii%Rb|`0CCp3 z)OJRYnnieFbA!2X1_lQs>+4c9M222lBRM0bXj|FD7&Kvn5?P0(NcQE?g8l6Lze+h$ zXQ55I+~@A?2GYSYHt|?ez{oPYombRn71v)|D=A zP@`vddJ9x@lfk?x^8WyMM+e%fJONfhc^z?{mC{LUk`a-i={!Gi0y>76s;&vi8RS-H!_R^(aPVH=6@uRdhnRW%X?`Slq74H708WIe zu_dG+4tVLB=4bfdb#~EN!zY&#fU3FTsx8GIA&pK|nz{5z)il2jSf#as#EhdGm-^S9 z_}}6L%LK5YP!C2^_r1+?k$8u7iq9p+SdNU`{uSmvHt~s^kd2)2k3mVc&M3u1#_?vk zCFRSLDLmI3Ex_J>ZhP}gy}xN{-xUx%40oxa zjIsRnYhMOJx2nNBp@_nj5H!3^&nttz; z^aP5H13O`uVvjO)Xtfb8M`51zY9WO?vJQBv(6`IObM&hrvbpX(XkzMGiwvN3tEj5D z3~F?-=qt-+e8}CoqQ7?9Q5!)RI>t0!-60!rHE7p8COqNJF10S6XmU-um^pgyWDy9_oqv7tRH2qmOabf9>4EFb=rms@Lj|{1eOef&SU>oE{I=Zj0Pn zE+8($?)nO~IYLTNCzdk2C$l<_*(2j%*Zf7Q=$e|PuBmN1*<8Xi#E8UkUr|pCI)mS7 z7qKjs*AW#c+=fONV1GLJ6U8GRG23+gfN+jMQ@bpc2Y-1lYpc!=h zvTN}o?k$CuRp6XwxHW}E%#}|2`khoK$o-q!rsFov=CddO ztQ-MOJ`PJ`z9X1ROe*~0G5SPrJSsv~+)v(sXWj9`Jtfs< zWP}H+9z{lkNEkQHcmtlMyxFFDF->YtCL|CDI5-$RO)PT|9gB528&4x1wMC`?=WjW| z9{#l=$r_9^1>~MO*96s(yjiVnI;m5;aXjastq3kbauu>iLDLn_T1dO!Bw={>tIIH0 z(;qO&+B=HLMH*b#Nt{MDF4K}r6M$;Kln8?DCHiAMs{~AOfWZcN4cqBbq=A8E1wieb zf-6|QQ9X7yKGWrg1fC8;ukh4uD#;@a*%->M-lshCS>ja)HpV_~diALmV zAH~|MJW|N**q?sB^>A&F9mTPp3mRs^SZ_Hz@=a;XnY3eafsX|`h=CxUywf8al?#U6 zy-!-a@vLA48$jd$I2BdgFIEama(#WPH&dafC7syhRR9t;16D2WL3R0o0Ps3ysXWSY zmI|xa2Lhvx?jTN1Tkj0?#Y|6nxlkP)}Mi zScTpX891nMR?zw?71Bjp$cw^8(pdBIo|Qu8)nrrmfl+;*(Hn=)G{7_ZX1twPO7J#aqh?rRp}$gpjr35<_XSjJ0Z zixX3w9E)3IvoIi!T7${n<97?5)zRGPs#Fos^#s)!Y}t8L2OTS>HC3#9>!jR_!yeOx zz$2|#hC-{7yc}eIT9M)V$AD@zjDeClJ$)%UnjW4T31@a`T1xMQLd5m?dwpwa#~xyZ z3{;Gttzg@sP#K6`K)^ilTXu5s;8I-jje6-+uv=wqEsD(XorPs)1J+H<(>KwE-}JwL{% zTig<31=|d}S(N?JR#rwvS0m-g&#CmPgK6q`wW)H6D-r=GB=e7IsVb=X!x-B+l;fO314J05%jF>!#9IK6bj)sdNK|P}yK|N3Lp)UNqVQmSc`;{E>N*24V>4 zaBym{iMBT5haCYKrf{WqWL6(5kcSPDGQ8%iN{4m$} zm;hAu+&z5_M4gS}sZkUm0o1yKz|R9UeliHhZ2c;!Lfd&Ef#J}8o0*1q9OIzpgIrgL?`70)i^#=<1cXkj^{(RX{w*`Z(@Nz<%!6uy)km#) zq?dUz6NV@6de^yx!+RyoEzg?A;@x@jN8v=0UauPuAamH)E2v&HO@Fpuouem_iqMkr zeAeB@Iu;nsbNZdZX&mErL0n_CdRIKO?qq3tnV#9BCmT*hL#bc1aI&e!Mh#%t-1%3s zp&$(Nj@32g(R`3jI#ljmx|ugEiHm0=(yiI*CM~Bude(j1j7jwUY7~&8W1#h?sLsS| zZ1E@!+ZYwiYPV)dNiDkus(qk>GRLoKhFLO86T6yS2D_5N!Q2jlr{!cPILYbjRW0TK zpOkg)RuVw+Imq464#JuSSqZ-*k~-vZ%`At0K?gl4VSMloJ5;#y2Htt;LlH)Fz#J2f zl~!fL6O0r2Rn}sKhJOmJDxBo>J*c*Tilugpk5AT^K;ZgQ++q1AibK%SMU6Zkts;QK znp_RMo-sfp9FCOz20k?dCY;I$2ACfW?@tT~IN)}tu_SDH1Cdwlaf(|3V`~ApoF4h8Bww4Zev~|=m=ba+fw=&5qWXdsCEUQ1^{>A_;GK3j@f5PK z`?078J$bKy;02`sjx%4O{{Zk#h!wRv&_GbggDiR;z*h7=Ba0V)O%K!boynRc)QV+8({-dkSc&Nki~jB(z%9~53As|hlyK^Oy*UGr(H9#*XU#r?WG z5hjnXXnr%cT#(;nx+*cZ`>aptUU%XD02NJrVH{~F-;ABSSK42+kA%DRlN>MQfF!1{w&NcLAMW4MLPZ@Z`?f-B{*^pw@tL+bL}Ltf)&ZLQz5Gc;@i z5(9gG`s1k$rH79*YnoxdW_>)k> zD{dr{wwUTpLXLCJO(RHEK*vGOD@3k&@^>|@ZsXneK^f%M)xFy81xFahYmMGPBpy2T zts4p2LAQA$&>C(nt8^hWZ0dT{N{XR!e(pykn!>xB$}m9Oy-jIJYN_|OjP%D^qjhS7 z_;MS8iiDAJli1G;RP63KsS}VoZ$7mlg8_Kw>DHQKY-O?3f(2HL$diMf#BokVCxE%< zze@6SAUtjIx=NlEU zig+V(dW?($E6I)Y_j3Zrocy3yaiHI8R<`D2D?PfV3rap!A6oV6VdSG^Wg4@Kyjk=Y zf&Tz&{YT*Tqis0Q*6gSsypCYnQ(T#PdPRD zxvFbzeQ;ZFlOw3<_*EY{q&(vX(v&jAI9g4ncSkyvFODiq_0QV7$66P}KaRS#t>KG< zbE2iZHqgpf0F_>G>MO~HbJrr6pyV8n!k-!f%rbG-z4}o0aEv=2GghOmQdJtY*|(wG z7^MS_M}F1x5A5q=ZN{$wLW-v;&jWWtE9XloRyoj-mE(b5TYL}GL>d&=U?^GDS2*jA z*{$!Tj3M!((4mLR0Jd32d}QXOjyTn`xNYbLIr`O!Vpt*#8EgT`6y}G_eZZW7oOaDP ztq%K+wzM1AZvjs#2U@oh29V$!DDFAMHq-8a4UwmwX&A-~<6@97IQ10< zr)9PhLljffo+|V^_pal?{VF|j9NCsq8A9$Eu6}QIo${k(d{^w8KRm5> zQeLM20E~6-B55t)lQBj%e5Z_x^ZV=OxMIYTX>}XpaXUF|?&hcyxRadH-*Y<&xa}nM zry$%1bLm2%Ve9NF^`)7Rj491l<79AKATCAu$4Qa%!A|EuTuzy_672oDe!zQ?oM@k&1@KmB{3BNWdrD(!vNN5$;VP zZw(xhbYPT`Evu=*Em$CyCK0D6khHtb@`@=sdMx04Tye7((VLdmlkz%=eAQu0{{ z$ioBq)!RZugQo|PM5?@P=bRpTQY$V--VI9BR$WfI*2doM-Ei0-V~X?t02o`FJxn1a zarLg6&O)(~86b><&OxqY#!l}%EW{JH1kxH>l(fk=ONKr3UZJ8sbnr3=7~;H&!eWwx z!LLs6+}>`TA>?csBz3CT9riQ)TX0RQH&r?O4SBm|oRf}gv+Lo;_=eUepy8 zWpiIg8IcBd=c%t*@XHpn3Zp!8it?=;OF9wLJ?qwdHyW+GWA5$a-ktgxy~k@4D=FcD zQMU)Zd8deU!y$Q*4neO%)Ya}Bmkc?^O;9>foNO_c?i&;<5v}e^@Z$K~Y0m+WZ;u2i z^sb)f468UfJ-{6+gwT}e9w&_$ksQYxk3ehDOs5#nd~@7V+d`e5r#Ennk}xN7k;k=n zKL~y$Y99>zO>3%IyGP}?E{cBg=aF26`~f6#FzUpU{?D~T5ZfR*!RdqPPo<3YKVx;D z4`_e3XTWP4yD9c-cCq=^cVLalC>;(uWQu?M<8qL%(mFcuda0Py-Yw^$UYsVJa^r$U#w^^<%OP`oT z5aT}e`8R*8$*FkDTDzIcokH$u*pZG|$^NwKr%q3^D-R_&tM0C1Xu<5Rz+srfbJ*g$ zy-Lw9^hrokSb$WHYm_jE?ptsqAH>&ZqsV5nNJ$$=#t&-cTb*)x9&qt3-L#Q7A(ta2 zv21;P)PJfBJ)x)%oTbJ}$2#-XRA zgy0--Kb=>&Lb5wAVcXKVuK{ZY;?zW2cd~s5Ljz!6j#N-Tn>ur0Y5% zw2|{IvD>$)D~>DBc9Xbclhb{C)$qSwJ|6K+yplG{X?{r#dS|9<>Bhv5kjn8eA2N;` z(z&Lr?0c9=^Fqv9RAavbBNZ${LJrZ$4M85ZS=R3sbw9=!%lW zt$shTS8BPesK_gl124?xrays+grh`!gpOk{D^0_z|u2J<5F;r*g zE6(0CP5#kj$0f7C=QKFCpenq&ot#>eWDXQAa(#Z3_^#QD65|Ku$mHg@==EhFBOm^? zUH;QCzX3?jK2y}zysxN6qHOGK?$pQ>63U|#ua-taVUw2}$wn&TtYiZgA=7|&nO z)w^9x?%W#~cTb{J6CU0!Nn-lw#Q^vrkvceoMd$CR4!c^(jvi+IO7=i&1X-j7Ril($>ifTn?AL; zaL461Bc(*8t4YaexnM%evKCOn^aPKJIahnxgui z6pi~-au2<2PG=QZ*zEM{q{1K|w_mMv7I%FVuuw-NbIoviW%`rLbnWR~9ktd_fJY}a z^iDcl_$bwBo6+4i@)?+O^KKkt)~+jw88OqY7mU^B zcJ|){WR~<8toO4L0NC0wf=5GJ)2J*X86P%IYA+!MKsm`gj`hhWV2t_BUh2THEPg@N ziR5Opr?SEmj2@U3)ZE6(tfXWCz$2;8TF$$*ZN#tuAp4+n%^cbq(~55AGj(PoZbk+gq_* z?a2oK6OL&kgA!w489$w0v$x&CoO8%y(v|Fc5J@2|;Abnih9F~}m2TQLQh6jE26|M< zZM6|qG2cJqQwTTaBF7oQ+t=`k08`T$>5r{%%zVxv*hyd*m6@}Sa0OP}KvJu_cgv75_?pm^?k5495rgb~ zDwN@mEJ*_cX*fBqh&5|i`MgH=MJaOgG7K>X<-x(KpDQyrA(xOr<&9os1gi`ZPBD(3 zjaL!wlz^p4I0X7tw{@ZC+o;kEZ{{-;+kwFQ-&$nKlBmw)$546`R^AX$V;i%K;F>`L zZO075pOj;0u30{ON4H`4RMuAJTZKkq>ANkS;-_fT?k95d)b%v&0wb*5 z>aj$@zR3}1!RUPly>;QK^VHX&#f+)!so8Zo4-@N#YpGz50V5;2&@&kM7`Mg0~yVI5?re1%U!p2L95*uow9MxGJAb1I^yf?Hu=vu z#zCsu_1K!=kO|Itta$DkEcafWdQ_*-*K-q7Z?ozyS2#UKy(3(+q3!L8Zm@GWAaZ#= z)m|wuxhFMfcM?YV+pz}*p^?<^M@m^3l1_cOs2t=9T}Fp9ow*%7X^cqcy$E?eo|L%b zC$Fsxt%ZfM;;dS!XK+1pRbgyN_|>a7+c9CDyyA}`GU_fEj+o}ARy~^;JbKh_y)nj@@ZHB6kvG401Eae&(w?ZpU-!il2KPaq@xG_o$c-cJ(yCt0In188uv~9rIT9 zWSsOJ>IYMdfk|jl67V{H6cd7Y{3+eY&(foFj(XEf2MwfVmvI~p2ct2TH=anUG4;t|e zq>@cBbSkBe2;#pz{{U!T2oD4NP-uKA%JEh^u(cgIrhLAa&36!Oz>+!&&$(didyLj@nRdx; zH+;Nw?^o7iBxG(FJb{i)eBD@b%INy1E@X%$OcBQ&aZorLhdB1D6J>$#7~9gS4E z&z^Y!dkplfy*}yVO^v`j0h+sqEyx5`Qd;O~eTI+$I6MlgFEV4){&hQ!af}01<^_u5 zgN$%$64W{mW>&xe4)oPUX*1J~c>O9M%N_t-$D!t@f;XAK3UYc?B!hDPl><+7s4#tr z=DPH=Hqaal^Mj7{Q$W$=g#_}UPcRTT=sV!n#;1QBm6J~UTWaA{@y&2mpS@_Soph<+ zR$cggpdS!;iD8oxTieGa)X9wEIMA^_rF`pua{At_cY1kg=4Zei26!KpeV6+tcvkns znum(6blXP0)J~Z!FvI~rGx32|zisb;I!D8Q4*W6HZ8Up*6I{DVt@Rjfhyp;02x7ju zBxbv?mElfqo86v{BMT=QT)j`5ei8gTo5lVhw}|vDz#}6yq4CSb7FT{EZx3iu#|D+9 z0SwYY*%woR^S96*g1sY2u#e%t!5wqObAc7}sIsssO0kwsGQUBSUo^v(kCIChmUGme z=j&dk8ueuAOJ%V0ig3Wvr-zTm)!*oYX;#M=6*?dt4m0X)g z3=47J>raoKG1tC&RC!V{w}5(zv2Pyq;0hZOx*o0NI&CLCYt?=l{8iLE39V?m?y=$f zr!ikf<035eap{WklAt&}N#d{SF}(gBaTIZfj??% zXnZLoJ|%bL%^K5m&HjOw_ad%YR$0t20 z%%xud518}2fVCV9$gSKrIVXTSijyk;05CZKaxt9Mrgu}lv@2Z1rHDBT(<7d13sQt8 z?65rX>s=+n4<)$yNX|RgH>t>90~^5Tr;o<4oS#G6!#lGs*bgv(ps_jNb*TJ9Z~p)i z@P2HC#`QSB#aq*3CPJYw}zZA8_lm2^|ayyFSH4BflTsvcTHKN%3+OP2>yvptK zvCRmepK4Wzv8|mqNs{5$YHsxyrj^WFNQ+Of^9bXL>~x(F1P;mo?eAA~KMxp`7Xh=+ zBc)BMYKf<>mI&UX0FlzP+e16KJ0d%`iU{`Y1FsixG zWKr1E-IZ-LBe|HgjK`e%R0Z%cO7G4w&q`*}r<#?f1PANF7B~ySRB+ocHURPsokV+HVv>;PIBmahizuq2&JnR0M13isI2^cO0GvKq~w| zzz8RhGeW-Oww52_4Mo~$C31d7+yeHmO42nGf26@S1D&7}1$m9i8@L=}01TchW58PP zlMJ>}wn`t9*ieOS4#M(WKgK7Af*AQOYf|Eu^&Cu8DZ~PPY_Lhg@_rufSeQM=Sx2DD-B1ZY7L%=opHL1XE zEu>S<7a$Kx=)Y(G0E_yU!M}(aX1ifARY?NOqmAjFL8jMWx%#2;kKxq*Fz_deJUX(p zz9O`krKmZ1rHu4dAKbzHEAf}c`X&DWg1l{cr0Ouez15||LdfGBgNpsd@iw&o01!MC zqkKZ}j-e&H-`a~i$F?JQ4bz|DAousL&u`n8_G-J*ZgfpX&_{W%-G+OM8+S8K6l3Rn zWaN`x)#Hf5-L-YMe>8Zoz8@3Hle7E0kCk?;s}zR?i0l3pwWP`-lY(0vtJZ!K{=`2R zejsTU_ZI#Uy0*4+v`=}67oPZTarjr$o(ul~f>vMKEE4#)#&%W>fLaR}T31%|EO0Br zl;Z_<&wW#r-J*}rZx?C)eXpFk+=RAqT)oA))GTwfpO=tDe$QyX@J+9S+C`(wtDR$8 zz}((s{#yI|sw%zD>|y&b$QMqR!-mdTNZTUb$gPvp1fS_#uNy@@S=9_JX|Hi?elB=c z@wDw#RfYjL=Dl$b+EOwXB1Fy?n*CDnZ~POx_HdHsOY1KW-D-;yylgJ7o#V>&I2f&I z^k3P-;SADQP2oKj)<{?gp)eWce@>*-&lg4(lX^2+cpOD*!ZB^HBl34o(Qob@TF%nq zR#w0;M9fFv1${yA_San3{5fW1(seJj#GX?FXC_>Z_{DwQKgS;gcqd8Iu11MrqrKvn zw$q}uL36h_1(Xk$@vLtPe%IDF+Qy+}cc;f1z~G~y87uf#H1iq>tNur;hsrULPEn5D zX!*ZO_;KR>RWk>MbxBkvShcGS-%9GVui5*@dXfOX8oPiJ2I-2f2jXk#h`(w-4ZKCR zxn%_GUJvD5_lo}jY_AV!78A5~@=HEHcDe8GNoE*(T|dCLfX6q>$#0rGtv_V{03W*K zTG*=NJ7v2Y$@~T?o}v3Gd_xeQ_?Fqszub!Pay|XcR+Ih;1$6dEO|7#sGX^UBo_#Bt z*MH!ldb?UqmUi&K<^EZ7mQn5vWb-JsbryB3vlSO@su7ExN;bU#Ic{p zt#Z1r?6vVm62-g|dng?m7e@UvQd)n(LOeldt$EKX%^8WJ+H?1hMyNFp+rPznq+;GH zr?JZdXN`t`$*kp$O=|{rLockJl_PJN<-RQVdE(CrZ~ofwzOknuY;T&$_JiM$2*r8* z(+PL9Wn?)kk<~qoeO;jb+kPvzaF-f{T8tn9%WwnacLzLIORfAp@Q>|j;Z0Xi)AZ{< z4*2fI+3sMxut5^skTd1TqlV5p^%a`03CSy2owLGLqfOLylveh7{l~<{;Q2}e93FCN zoVU1Nl;gHd3n7vmwo*Zql05y_2Mj*~D>n78K?HHwno^Ft98;Cm(8+ZyU@DW?d(i5NeUOBJ%|1B}N|UtYbv4Z> zH>v4Tskd{hwbk6XOatk+oK>-?JE#&3{)0T`xj3D{Eg0uG1Rg5%S5LI%xIAMy{415K zGufuineUhh2hADVxRKhZ+}<Y^tT{mD#tt?dR1mS7%mPm&fe9m71`z1scW0|H*6U0+k!H2 z-!;+c_e`J?LvlJEab9_8e9)`z1p6B3^y}=z2_;D!`+8T>#pr&1&i2mtdjqr$r=uQz zm7`}nImmLG&rY}^xcdv$3$=P2Wc26Ox(f@U3mhqJ-91eWqiS<|Go*q~Bq+&dURj6n zeib^+muFn>as~nR^sL3XW``KVoRWKWsY{}kEAuG9HODyhJvvoiLdDG6NXW_QkaJ6l`T$E?1dj343a%-$*7{wViT2-0FQeHRUJq?(?azqJ+_}( zxFBPUji3zUrb(&AzwXo!H+8N_q_szNH{9ngEsAs-hy?ST;#zxQroL;E0k|j&T5s! z0Y|CGImH*$_UP3zz?_mFlT54?aAdy;N#M+_Bio1 zRkSC818&0<$;r)56+-0>2Ve(Eh%OPBx?pw#y-K@*B@_U7t4*y>nypiv*ayk8f8IG@ zDhVOV`Jco%2en>~GFR>b%aE;{nrxAS5|XZ<@^>D;g=nX3Pa33Lp2l3U;4pFWw;+m% zZG#>GBLf3G3cDl)gYZ`b^4wIm)>}!{sUGz1K9qh~rtrcTuZU#A0de=4J{b_9V zFB7p-2rh#uf(}Lp(AMvX?v16wLZE^ax5|Ah$h6&1+iIG`Y#f>6Cu+Cx1I2wV1`>@v zchvc8!fDmyT?l+rH+N2WZJuU^7O!y6bV$Gib*hsxh>JEj=nr~LMnD@ReAuju+p@{GkbQk> zx|BOn8}P(nA4<(v*h=$SF}I&&GtSdgnR3})v}_Aejq>%+)|%fk^yAi_Ajs*+?NL8a zGm+>hWm@cr@lU}Z8e!zpj+o6CMOY93Pc=QO6@I;YReF3!4l~k$G;Bu4W;+h_j0%&E zbJm#)mP`y&v$FsUue};>K%IE#eN9CvDmdWcoL?j6Jawk9EDy{GrM7^`h}-}N4~mXJ zLUWp)LBf?kH9+K*Jdy<)kEWzddFKY0Mowwx7|uDSIH$2lYIVkNY4`+Yn;6R&Lx$kHRky4NE|^ZO0`P?j7-7kvyMiRtnC< z42|8smF#>`O&(44vpo02DIzq0?b=BrBavQb;%z-HEu=?M!PJanJXf%5aEAnOzc>f! zTpqn>+gr@rg!`D}n)B;wtc{@T_dhzmCiqGG5#x*7bsy-LE$6_&a158u?z<>vG_OkU1R)J@Z}_eRV#I3sc%c&!K3Y z!vj2e@l4oqJLkPUn&D zTFkRh-1P6qTJ+zCnqrwm%@JeNC46M+OcJ>v*Yx=w2 zHa8I(o-tdVJ-PcWzp0<38a>>t8eH zJYy%)yMK!R023wn!SO%EJ}|q8LN%M$o+yX>vyY-L;4xfOmfl&({447y!Bc{X`G!9e zEM_8AruAVNBy-ojO3nAj8%IiwSLMMtKD90nY#uSqZ)9)?F_D0J@=a)4L|F*H$81(} zKS09+KZSHUJ)oQcj!$X?^e9aOB4_V5Ju2ao$?)y-@wrncv8@~XBBSLQ?bfJkN6PS( z?iZ7^9QNj=jwcGYURoI$gUEU*t2XSw7d_7Gn#+PFmB9ldwGL4T{U|SErSR^*bEMtH zacgrWwZu#c$rE7b{443-h99*tFCCYRArhe>S5km{z#azW_OFlNx?~`Mf-7%N)L0O}w&Pdp0xJL9K=uRLw>en@TN z^AbB`8&GE_*0%f^`!mmKW1m!Cv&7v;QU!EIJd*}PRhNKn!sHAN zm7k}K$%B$lp{=OlE6``qgGG}Ep;7`>vPlc*Pg=VSg=OTDr>C_<@B+Y$xjjdv1~M2N z9CpPU30g3bXs2a-VMzLNM0{{RHS z_^snhXzn~g3V2sdkcJI>_?K_{gOOif_#^%aOW-XIINMtB7OARE7i)+%#H9YD(o#q{ zUqka6cve`6-MM=BW10!#{!^2>3T`BwiQMV6d7+3oYXf)5r(+ob&ipN}`Ir#;LpNc$e%? z`#$*F;eW#$?H9+l5Ve+|fTonKx=1oP+{1uDO-xaif2u6O@aG~>oUp#zN{jOsE&6?XumMJCN!y&mVj+phYDyCshDX8ju7<{^= zTRT}EiR16uV%x)d&E$ce zMTr+AlEn6|{{Z55#{FkOvbTd!nO%`YqSi$$9OEiT_NNSFqokr`{f`vy3XJ-W&&M7g zx6y8VJ)*}hi)DCOQdn5D*<;iL(>3w$#E*x5B={HcPJMsGH<9>@Pt+qn**b;VVk=|c z%wPHF2SHk21wJ-Gu4=~O=0atXOztC<`g&Knd`h_R@5J8&Y91EU7_2uRyn^O@JHs&L zU-Ru;v9EU3N9p8ywCFl5Iy*i5{%6Uz{w~t*?(Q{P>&Kc~f$~dnA!+CO58+>G;$iU{ zf5J-~`d0A^lBA9S72o(1_DnS*~v;5yU{)hk`-wO?e;0ZxdZc zZWcR$%n2D&k_C4+I-a58yC@d-Q=9Cs5Md3l3xG!))eAoWcyVM$mfCBk94We#wokYn zYpGyrJ#l!Bm_x5%K~{eqHM1XIj1h!>33lV+A}%t*EP#7-HTCn&B(e@&*+;GoM)TP#WTs`n>m$avDB^q0NL^w^Pi=CDf>74Rn>eMZGC;HCC#eG8ze!~X_2;^ zS6O|$i6mDzKYN^$_}3e%+nL%%EOw5^t5+>-H94M+9}!-a)0OUdz0@94&oSmnWoev) zk-do|ezl8p%k#Gc_O6>bvgCt+2m3~(78oQh7x;63U&zo=tBXLRSny?NvU=Tred-0OGZSN1IxUz1hme zbG}2nf_WZ-wCwLU5DcUa)q*lxB<1tQ2U;SzE6zqM=o9RIe$}@-yKDZVa3F!5#~BsV zY5IZ;Fk(=i2(L1*yun?+H>qRS+PZ5URE(Y2R_X!hYG+aGIIgFmTVIJ-97x2RZBvYU z)}_3|1UMy$?cTVJKKU4ZLL zT+OiqWlwhe>n`qP0hyQ*&4I^$!iDB^#!4j_NlZTBk~z-=4|=6=%<*vBlhUtE<&Dff zX&Zyie+tQ+nU#PHG5jK<(Cvj@RzWK$`F9*Atr4>ri>Vx*Gt(5=bpEPaS2{^#3@hZuaoRE0I=sjyH+5E;;Jg6AKttfs;7D90t z>}nc!vCTYJIxaxP0nf|<;B*94!2ojHkXUi``c-IMWE+&@10)gpRhX5SV36U585|G( zy({UfI9#sDBaE)x5s}}w<3YC%g;3ZB029Fc>dY3;8YsZv`t=ogAxRWA7jYf?R#BN2 zze6G&BM9FwKXjk#Q*`W`DML%M z99uV%10CZyBOPfcg>9iE;S>VQ{dmP|3t{srfXaFTdRHa!M^^sA@a@4;8RP;rQR;vC z)zt*&H4_@GQ>NznBZ7xg{@vHL39tlFMpixVk&Jb(Bi61O!(J{J0PIwiIO4h;4_X#C zm(eH)vLFn@lC{V9y@bELPP$O1Re_XtvPicwAx@} zaOqhRu3IBJedyJKEm_JG6?2s%pzTmJfgkT4J5*|XvJQBr$TyO4iV7#f$@2rpr9&cs zPSJpAisc&>H=3*u9MiaLSI0D?tt)Uyrqva=9+c(hZ8Y?!50tN^O@Wu~$QaH?sTDH? z`G!x|wLxrn#&epUR@{Vi0CuTu>_(R&W(PRyP2LIqp0tePZwDvZnlXdUDS+(brxeK) z7AGHGX-+YYp7iVuq!al1(+;E#es4}cI)wD8oqC>_s5?-!DIw7uII9m6Gj;1#;6J<^ zX0`-j;|CaQU{gtn*vgO)*lvQODo0M0eprUp7{hlJS7}^&7U9^YC}p#BuBF^^gR z0;^^hI=_c@ziZbKNC#?`{Bd5PaUH}8kF-ds&(gS0g*L)#`x=I2|kM9W~6>(e59-JQZHm`Tg)$#N)#{ z;#!t;ibvcRr#<SGl^>FDBG3-Ol@qmoD%1CZcopj>mNj zGQH+|*NVSsyRR8sO0YyUy*LmOFTE>|R&VKCrmc0RYxbh#i0yC3K4d&AkM@VHc?M28 z;-wcdr~pXV`qvb&tD5PZ>Kv}|JBxI^yhHX|Nv=B^k`WB@P^rgJy=WcrXgH++B=2DtV zN2&B@!GDGF>e{`rSUlK+bA!n~)uH=i+$6sc^j`+rZZ=*Pum(Y#gL5~`bM6-czK{Ku zEOeQCCf+QZBszVayWGy$;RI?~x%?~SJyQN}8hD3W@ipNsb*$dWdd0ehWAZQHxT}ig zh1usuTDh~&CeWIDe5fF^2@$1A5wu}8ZMy}D+-@8J%cYpK{gXD=fFM;Onwcuu$B>+cNB6nAQN zNIpg%bdT|`Ncbh<(PQFEIOJt}V8?Q|7~}a@&Sn&67`UG14y+|4-o@XFKMA!RM_BW; zn^`VN2QfwoKZRj&djjib8x!?j^t;peQBj##dfPBE0$r_5BXB`HRmYA>Ke zCI|rW^s7aSD9PO2u~d*0eCL9B2CPRQT(RMQhZWOp4o1hu*ngM}!@g-=UJ2V(u8Brj zI4jWOwL~Pw0b+ecD~!JrZfqQe^fl<74X__&Y20Ihk9zZa8AOhuyB?M5ULM;XmK%0k z)YG-dY_F_B5>~)2qd8D{u4~2T$?)69z-Dp4uBTIN%1$u8zV*iV+EBW3FFD=@PebcN zzd3_IT`v?3nov}r&CqAVHgljFgw-QCC)at9e$OV zvUddIHEARsT8!d=*5^TCeDTOI!~@1Frql0~U;qiu2t3ybZ76rf2pIdvpsU~83vD9# zK(mkeX`VArKs^@UR(}uNCE8ufV=6ZFk|!$PfE{ao>-MDayIHNRrllFc+4iYn4K6xY zi5thcxOrxko>G4E8q?FF^PC>0r;;t*l?s!m@Vgyd-^4!_>TYJb@gAh^f4eb3pP;Wo z@E`3B;{N~&N9EjJKD%eTEopq&;~4o{sQhcmF6BrBXs!uvpjQ2lhS~I6jao~{E$yLT zjEx}k8IM2~mm;-|KCw|gWhQ!jpBe0-@ssP8c5Z@YR4~ZA#(Vv1U&Wua7Ay)ym6g=w zi#~D3-wN`l|z6Z@s;GBHN68jpLTQe zaa?S(yzjV@Pipijyd|dIMZ+`%3}tz&seB7@Zs5d4%xCU}7&OwHC;-(z;7O2~G$>1CySBbTxk4!Z$`jf+7#CYsybIbDLXbiY@@aHB#xo91ttClfb&H z;}JkeKAyEe{50_dtO3)QsXV^mFgRfuCDc~TF(dOfd&JSsp5CC$u* zfl;^sSHB*$+xUOsHKw~d!>4$1X$+0DOFNPW9Fy1&tx}E5ol97Lc~x_mtF#8Q+x4YEXp9DsKoIR?1z7Wfmx`<_c3 zEfoR7Ff{o}bGDW~a=3s4xG6aFt~*_Q^JB2Dr>uS%Lw&f55R1tV$Of*<@KeK(LK^DI zIj1XJT&*AY<6#zM!=D38CFxM#E1_c$j~DsN>$Z^zVXx z6}0mfZ7pwGIauUkM^Dz8OSn4Cy%F)QnQ7)qrG^w9eXFXH2@E1QQb`yN1Zqxe>xg_G zp=pSs*TdRd=AkeU zX&3Vb>9XC9e@gbxgjzs)+r@0#n}>!TINFB<=iKI|rZL7XsHNz?&fy#!Z+XeTpZQq%6T#o`N^gbU8`R^v z)b&kMT#7aXTgX-*-|rF0uc-V9@Snk73+)o$!yX&cw0O{C%z_cT{ao|<*I$!a_p!9x z0Cx2?^HuS+9m#8+nA0?gV}dUWf5s zOLh2oE@UZpqsG9i?#bkFniQnfq;{$?j?qWUA0K`sB?w+-I6E5|WqVlc}2AP$2*)#G=1(=?<9$Q?6Xk);-{iuRI= zw2p&Y*KRdkpJM~tlO51>D$Rnl)rF%U800sX5XN^AGe`$P7@fV1E zqC<-a5*VN9oRBM>*ZdLiBTiJg@Z#!`+yH#J<-06*b|ebtYYzS?YIROk)KZLWyvz>? z>i614s;1Fc_B#eT*Vf+zFX4ju6U7k!0BBvf-5spQ3l@IsA6`3G!B<`&o5NbpTIKGc z1eoN{QJyni<>6nBHae~SmY^8h>LL|}e=)#T3OFLT>e7nUA=1Qqyu9A0=?{h?x6*Zc zYlEiRUFlEqJ-aUB7(c`_)~|d@_(P?5lGy6{OmTVeDKBX_#B(7ZGV$$R0q}$NgV1Nw z#Fv+;bRh(?@4^5&2`9l5wvxsKu5)*NljMUDXV$4c6@nE+Mql0hfEaUbweZ9dK) zkM_x-ytaqz5nVN=IzhAgDjCi7+l0^neg>TB!iIm(i9>U>O`VOCIG z8R+S9+7aNYTDmBulhpmiR;)qdJnX>*e5a56g|dZw+Z z)fxShcHbpR?LiowRxPVv;;B7%nv8}RMA_yeAwJDGBfW11{EPrEsm7nQ1}Y>2p$DyBu(1&{2HM9N1JbnZ^qr_xp#@KD;~n!!%IfBk zi|leUY5Ny(2Ml@v$g0M{*|2$RbtkB<+T%#%5(xt*o`$M6k_#ySk<$Ql^`@rYjF$&{ zBy$4A!5Hcfdax~oWCmQQ7|QZ$5?FW)ZG2GP9>BIor&OqdmS+=)lWjMRo!&@d~ zDggsO#5!iE%WE2zCxAO1xUQb+)GtMhS+207JA%ES0h7H#Z*i&8*gZN25 zF!!d1M?ry*qXRUXmwyMK!0t_4cRB0Fsl?q|m?U634!FUr=VEsO!T#-b`ks}z2EZNo z>sIl#sM{OW?+GLf7DMQK_< z%F2o{(38{aM5bd1+3Ig;?5YE?Jn?{fS4nAehTxXS>)yFrSPCg1`JKgX+fC)B?BSQF z70E4K?s^oLE~igrJ41|seNAuJ-U$HvsxjY+;$XQ}RSCEpgUPKZZ`%O5O}W9(3{Pt2 zlpAMsDp>4=+BzMff@gvT25FMr0Q|PqJqYy`gKMZURwSLh0bWLGJG=87x!=!Xr;ny9 zHBI+ARa>o1Te-k*nDTfBu4;ty7T~cb(RyaHrPR+m@OuH?t9`v6aRjjkjC2&-9lhfH zv{TTxH2k`^P%ol=^1C!k}T^Tj`9q8r4b(UM6) zK*OGQ5Go*~kg5ha3_U5aO@(p0APk>cnhcg4246$POHFBGCtsUZUbP-r0CL3gPds+5 zI3f8?;6f?LInGUI+K>}F!oT-VQ&*9cI;ka!9(^)vk;&YpR_exur_9W~9dJ(mhc%@R zBm`|Lky{J*Rl5_@-mf7?IbWGnW7O9) zmthGzv+KrB-IMj^!V5IN6k z_3NETTg5ZUC{h%#J9rqcmb_c6NvvyEx2(kZ(jL8l;18vHnRPB|yzimmX4U24$Q56!%CE9x!O`0b8K?mo{W zD~G7(v^uPG}3Z?{b>wxw?IFYDk6|+p^EqEPTqD5el=c#d)RE43Q6Ls6H`vv z9P#Z?9%*h|M@Pf2*18De4H!7b70&~L52bWgj!Y;+XCtAeDUeGZM<1P2X!_xDYg$Ah za#s~fKyq*~L7v-`N?>4sdE%N>1JLo>tU8cEG=Xy7p7kYmJxAdEnQI+FeS>IaRb$uI zy=z3ax0Ws2eA#-A+iQyWL7<~}HaVT04aLJ?s-Ktv>t2a#XqIDQ#Ljl-E&Q`wl_1=% zdDFX_vCivPZ)2&079wT&fd{2C;t!9tKO5QD*j`JwO|n2%(SGZ=>h0=kPZ8M^MV@HN znF;DEl)aoNRg7ajMP(X#TIEF}lhzV6ib+BR+A=UPUSTsAm6)95lbZB@6&H(7lP$}2 z8Lv2G+t#}2t0T6Zxki-$3Q(n~Pk(BBXi3g7{cBTOk?c7Gv97zpz7CUIoI5Gj@4yHU@~#)G1Sz%wPbVFsN!-~ z`UG~$V6cG$V{1q{sq__1tPh>#D8N?QTRAz;HSJ#%JSV37EYft_RguoEbi6>z^Lw#A zmB9F0!&iFM=#CgzDI+qT0Qan67tN{1&vkR%d^h6@j|u+Bn%04AS#JD8sV16-aLU1r z(=hhH1M#mdYea(AYJnI~6?TroyMGw{mcq+L(rrO#^ynLWglEi^y0`SMHbs*8wv{KI zoib}gx!!@z(d=aXiKm&c3l<<(Pp0^G9WKl5my6|-_jh{wn%MB~h2w$-ySdCrI6?HT zYsY>pE?Uk4268z4Xq`n$Hd~3=`W#=4^+eXDc$GZJSLO#F%Dn1pnY=%$FWFn?1919R zZyYp&A6Gr=2gDX)dw1HWa`H3Z>0FXIhD>J|tD%I$ z!Slj4XQHdrsT($Sf>8T7C)^Gyq|kzgBbv{#zHD+%4;if`kT@&bu4~b`gSuv9pvE?k z4{=Ou$^$ZjBTNcl#3b+0|~<88EsGq>l-O6(U?A`m;U&P93OjPE44xj^4^5=AB|Yf}Yg zVx$vHX6FW*M_P9_u;C#^#%gqsvhvtpYO1{{#k+b?I~PsK=s1rZ1u95e03Hu+^+XoQjyPhs5E+f8-k-nQ1@0l_tZ>QkGUFvIu($)~2PapW`+ zH`C}$3;ZB)f8P^ zH{7t#0Q$N9lx$6n%_`F7><6}o$%AlTwA{W2)K^b&K7--I98=#uqo@qCf%3%|^aJ>- z%(WjCU+Whr(#eQpBg%m|NWka-tcmXCl6H9{EbMYkE3&uT_9(s}Y0foe{41QF z$6CGnZ8NyfTp!YxMDQl5txS=_Y~;2v#e0v#kJ)7WvuvyWr8J|a>p24oaVi&;qUCN;y)CXmg?49NJck#s&Z@UF9>`z@UOyM7HvxF z?6E@%ZfUMCta<7)UN!NH_RbL{#+Ts3_H=xs+!MQZy3u&YViz>^y^g}y;Mama7`!K1 zxVN~zWXjtH1-kSnwRJZdgfi*E+Q}i)?WFmYZC9$1(4O`2Plr53d8>GWZCg{glIrF8 zFDn+WQ$G`~gb_s}NUIXzSRN{GB6&4E@iZ+0(#!2v*T}x9jJf=44^#M!;cXc}vsq`8 zA#!o~{VV407W`4UxMxVD&lpxG`d2p=yLGEvD3U^VbCc^)@3vnmvGm#apW*wN8+=nk z)CBo{Zv0fbhs2);+*ve2-c$ib@Kk5;_2#~Mj@-_Fix}z+U7FS{0MtM$zdF>r73qPv z_p4mVU9nj=W6|dLo284{W3aTE8zGRbHw=FY8{%D>EMn3YGNHpeu7Aj{9ygzCpKJ~7 zpIYA1JU4l$JZbZ7C!RXz-i}uFxI0H<(!b$8n(1~%p-9eEN8ZV;Ehghq)XStwM2s_* z$qUUh!+#Gx%@Fe<+Q0@UJb_-RpxD{k!?GofS8D$7_03X>irmf1n`B}5f5EpCt6bcj zfG`D{lHRzlD*dQFD;oelA9#JlQrv};Ql1~b6n&%mo~FHj;-AEuUjTSE_ga?WM6nE8 zz={60L&B*3wegpLEN(ni<5a%X{&ekT2-^}mR-8RfN2KF#yx!5>rUT)wO0R!upPErs0dzy*Gw`u=s}`tQa4PWtf% zo1w#D0}&dhR#VU)%DVjl*7XfS`t5Jg zBS00mxWcE<)(^*D+8MN+Iu8%{Ys4o0C{cdd47@3PV~@kVarZthx!13?tv24~Nz39w zs@&l5fmggm`!$VIOSF4?X)X0XFMOtF+mJ``6I7uYKO=s39k)D7!ny{n@r%bAXNUCI z8TB1j0I@c<9BqC6r$=&-A?9zieFCf_lNDR>?4Cpg%@m&bC*83 z`qkfrUlo?yTeiQ{ZXr!SOdmUlIIh@rH}zZ;HMmz3|nwwWo)~g4We7qw?dCQ-dI1bDUQ$3X;Xtl{@X! z*1j&T4$^;dtMPBg&GFCT{-@%GO^`~l+gheDOfm2Y_a`;kX>yBeXq6WTsk8;{it{f9 zd2vi#uw+s4Te7Ht> zq6X;{EL(faq|)D*i}|jh5!O` zTR7-w7a$e{V?QuZc>2(n8SmJVae<2FljVAyaCcf2FKoQ{fCC`llU)7wo+TIx7aS9u z*HUB%2?T(8sUOO!Tw9SY#bDeGqzrx)=TzTQ(5CdU$IGL}&Pc&O)7F}{2OE?z8OKhw z*QS~bhvf%$GRL(k)0tcpQZen;xaCsr&7CR+6_%EP_b4(R;I9I+G{CQdjzQ@dF0wz1c4eB{uV#bRaq?;E@Wk`15Z9HW5tsBK< zh?2XB;A4SVB0{Ge9!>~371OI)9)upmoCPXK9{9#7=;hQfQME@co`#@p&OUAwaB<$J zk0loYdiJVU>P=LdX65FdHn}Rx_-7~5urD;FZKI9Hj8}1aY!2iO$~R;Haw{V8$&`_| zdZ#}x^{t^c_dY76G;wli%ES@K2Mv+wQ`^R>gBS#!3F<{`O>WXRIbx#?^5UY76-O#i zV>t)CU$oP64`$S~BZdMG%DaK*6>=yWBP)=4;P5IyyCDD!73Yrm^{2+|<)_G7w@OM^ zRz)b=az(-&tB;uabf7w+0Jj;=eJYvUt+iO5dgrAQOY^Y=GWW+!Vy-KyWH}>IZp!0m z+wZ%ADy_})jFw_YY}Q}e81TTekOv2kY9^Cm1Ak6BR*5B{4o=&ajpIy7XXCKWa%t;w zSTmOkx1c@iAl!v>f+@dh05Z1LOa=>7<8@;mcA2KvBn{?4$@x{W&$ULbC1!SFSardw zFEEjnoNiqFyk`cbNkXwX0eBpCsFkcrsM^%hh>V3@%00Roxfmft!wt{Mq+klqhC#p_ zoaExHq^jRD5=KDzMRCox?-Qmj`#l+e5wposs|tZq=_X z#dmT3HrI`YfpF^~M`YLv@_DbGZ)GUQlFQegwdj8kwWheeTSYq}jdIxQ^{+d-A&Kq= zex!TX)L?1*I(L0fjm+zNYSvpL4_03?A~CxorD9p$U>KN?I%Cqduf}uL#@uJ7E0@$2 zqnNs$dz$o?r{{;H2l; zpK%zJ0)PYUR2(`#JReGYGwdfPudN#n!x>sOBR^Vj!>=3>RvIxl$RnjwWihr7QA=`% zGHv3RYE>cAo}!{4gU=M~2udj3nkkJ9UZSObX@FpgbL6+RD+4UsuGU;*p0#0y0mom^ z)ktzjO1LscTc@QYNfWWbBy&)1=YdkrI6Rzs6H$ORjz2nnV%%^eraDsY135oIQLY2^ z?M`yI&ssppWjP|4PSHyL0D77Cg)~ywQ(Xp@!|dn?9Xgulfz58|BpYx6`Mv4fBwcsh zPdpwfv!>#E4wYfRSLd8m4tHY*IL%AbLp>Q)qXf22b4?0E^ffCSAL~*+-$`$Q_MTApRpoD{gtOjfmQ@u-aX-f!J3Qbr=BSjGF7dAjjqSnp#cE@6fT-Ju2VI}nO#}czUovJ-gpr~NAZNLygJvgtW ze`gPbuXq0d6)p5Y#T)FkiI+KV@7AgpBCSqDU-(t>bRe>%C^lDgdTT%Ap1ct^w;?YwE?87`jAId+|bNd{Oa z)~cie(%;E~B#JVC5}*v@-mJ%G6|`>3$1E`H+~?Y`wVVF{GD8i#t@8|$M*_HG7WHQ8 zIvCBm;$yjFXKblGc+GVl8}PdEadI}G;R7CjDv!hZIc6^TB~CDS{JlkA@fNopk7#zV zX$tTcsHZxSp&NrTz9jgDEjHFGSRAB;?O?Uzvpe0p?gX*0Q*@i#nj~smnnzjN{U^AiCT(_3xb4Jd5SI9)_oaPTA(WdL0JSO0AL9_X46U zPBYi8MM37C#BKwwDtNe1Nd>-@M6CuDGH^j2hJ@UD^Vt0=a=dlq9@LEvBrTE;wJ#uV zsSUIy3&5k0d0OeX}%Pc0$M&YI^w$+nSbFQA%HkxgXn4MOEaaN zqf9qUR}JC^FMLLN3hQpCA30-@o-^9GokBw`beXxz{Mz@?<6rUQb3 z)Z^GxqT%tfJfJ?64(=HBKJ=?A0mU1N!^9FZWP|?kr;w-!b|=|tCYjr-5v|HlV=o?@f+Jk(Eb0)N!GafFFsgNLCcuy?eDVvM)sIWQ3~*pB%UMew9t8GBIXs zvE-6^)Md%{WxzZNWKccK!B>`J(x+q#XBq~>cNN)uInk}9 z)RJ4ks}g*~vB1SNglKpN;J&Zo`NKnJBSb#)?KmFhy$1hbGp7alYr+9v|`7 zg}gekv?!CxTP=)W3cIWR)E1r{vu3h|Qd5#*Uz)&-s%!gz_T%L zT=uNma@~T8Nc5kH{{S5I?}(RDeY;SeXm=6ivtdB&Fe}gPL(eGV6`qN_gRw2~f(?KCow+GjW;uN`T14O&p8QJ5!8=ZsV~1ndZ>b~SKyNquJpowMMmDli5p zx+eG7=Oak%5IJ0`jFX;8_O2^l)g{$$yts3-C*`ew66*eA`Dua9Fs7^ce!|u%8s_QO z4ai=+)bm_Q4Qh424}2cFfQ_dK5Ko=F%Jyv@*GkeYQF5PX$=#pQyc%yFMW>cn+#+<( zx20v>d`h^LfHw!q2RY6SM>j(GF10?f8pWA>j3PGxZt2HgrDbZKB7)qr#W^JiAO_%Z z*1lA@_^WdpW;=%^NB65TZ;CpV!niXw)1BDpX)C=Llq_!iY4JSXF!5X(dd_9EvHjyH zCuxztz*gVE_#?LQ9gMqqN#n>PJZF<$W1y3K?>msvJC`}HPViCkE>=kRWMv}<86vTi zxnzv0c0XnQ68uGq=fk!U$mNR02K@CHuSK86_He|m#~|y;*n{cD$ z4bWG!MdE2Llt<>0n|NWyYtoBSS7_q9j+Z)b+9$;k_^06Kk96Ben{1jjzzj!M3!cA) zd>h~o9Y+2Q(ym@qQT901fH`77$2In3(4ALL)U2kHd{&Ry93+Ya-_^NpeZgCp~K77g}x5xwVy`nK&mW<{pN% zPm1NeR%?ecI~*MJs&SV!*2h*C7fvy8p65lZ__Fs_Y#Cgr9Byvjm6aZYrr&5@zy1mf;SU)2H$m{;r?21HJ8RdH zTTN$T4#*J`Dx3SC=U*0CAVO6})X2h))%Oql6z}5}pWtz-;@(*2wF)5>9e`E2Y!5 zagH)DI+MXQ!dqMzfdF6;)OM>{X0e4_mMjlZ*jJ@3j!0>t>sDH-bs;RO19CCJHPTt@O|Xr}BZHd7T-`RA=&))EH*Lr)GQ=DLYVuyJ zak29oEB8^GBDhUARSg+d`G4B%YhF9S^8DGz6`Ng6>CEb2zIfb{-3NZTHE3L`pj?no zSjTGTBE4>`M&sAor(4h743o5j$m(%il_SixJLyl9=sfmsnTOruVxHdBGP*F|xq}hk zll81vFAx%{aks7;zok!Yd=HovmpSN9f3117cK44)l$zBWu*N)+6}t2Ft1A;O58pfj zgzzgm3&9WqPMGA5d94Vp2kyeQ% zjos@Sdy+G_;Qsl>{?JuXsx3{6iA;eKLIbL(8@r2`al%zj=;uBPQ!zDLa6zs9+( zO_i0GZ#n0lwcQVYV>Il}OHd`ZV3p4xb*#pXkTUuV=Nx9X?@%eaoz^Y=#{ho`+DVu%Pr7vGR--Jh<0bLb zR!P0a>57{hutJ0#Fb`Vf zQg-)F^`b;=8zgyB6}x|pOACY1xC5pzGfZRzw?x~JK|IrzB9W<9IP4pmiAl9?$3$e- zgW2D1?hkR!e=2-e1{C84De42;Jt z*~kO2sU>p^Oy)oWsbiDS)j==^f@mYQ=)RxlA$W{Y*KK0c~mpf5LRjVp+a%TnN zJLSB;x}DVg!>R9FeD@+YVi^8)tE)L7lzhMwh92z1x8Oav14h;j0r#khCyv9t zNXh~0k8D&7ahx1>=972ORvb<`5ubWO!vqo2r8Nl21ZIX|{{Ysa$YgELIHVM`l=>Ec z*4~OYTaY<9tV6)9jT7gIlirJpTN-kWtMZY}Rh2Q%w`#R=1ZWs%t}%+L?X-Fm+KZVo zzaw`&`4zR`>ksWO5$Vt{1sdT2By<_gW3rFE$u-*iD6?CS6xxDV1O`$Ee02S2xTLf` zhq}2%X-M0*JOk8Xxs7$c(J)3}NcpnIrD;j`814DJ+o?6qBvWe|nxJgPI6HaGaz;0H zJpN{#%bp(a!|RvGQ!g29pkSQ){VVCOhhG7e{5gNAUw-bw(%M^@WXB4srHId_1ycQ= zz7xx?Us}c?ml81CF^#KVN&ePPYw(lyMe*I$qZp-=Pg@l|8+@l=$KXwRv8JI;<_q_g zQa=`TOW~^Om)Bv73GO73Nk76^ zE^K%o!k0cN)~z(lXqm1q)uy>%sO-oN z;t2KYUq5RQwAYU!0kriay<;`Z?#Npl=BIq@-db)apCt#vG>DPsF(Fj)LG4&g#**e`b1jk2UfwQ^5or{8-BQ?NhxLzD-w6(fIU97$7)u|4)X7eVB~kNBBOO3-otMD7?Z|W za&g-SzrAz%uByP4hdyHDVR{O?s_G(nogmIS7U^94=ddhE_3K>G?Dj4#Eg73Tkt-9H zVmf+Ob;i&MIAi*cdegc&QUVni<-Kc~*R=?&p=CpdJxzAOJDWv0Xi~q`7Tr!5H@#q7 z>Wujj=N_i1++4lOlE;q1q9+yT#tCkA#vG!OSdw`(|M{IL>`4;>K75)cT&(miEDzagsS16`;{=3d%+Z!4&VI z4}C(yAtF3y4Y(1N?OII{hd^lGc2$Q?yj4vZlwNE&T#o%STRPsuq&$iS=5BC$Qbe08vF0SOS%KGzG}! zldrWjCQPygTmjE|YPZTqV^QatDIl>T^~Zl))TqH_9XP7{jVN+6%>ruXo8A)R+lsWl zAh>}%xZJKqV1^^TF7kSwDO%xTY40Ssc4uwJJxx9-L|}T=Q;J>Wccu*%0HO!Sx*djscokxJEU?w z0ih9QceXR;QMN@~9`)#c8q{=c0et;R_8DX!FhxCU#Erxe#97)=#|yt4)>X~g%6c;} z=u2jyr_gp?Pop)zjk;O}hSor+2Lruv+Q-Fz?Eu?lI3u9qynSR1_m@7kAu)hR0251> zKuI03@kP0t%z1J#p1or!-^!V^b;n%f#M~5Zy&UrgVUKL#OU1Uf zaylscM7hQghjV{{iIUaeX{{UGOXbU&CNZ?m}466-^(oW3taT%5)4QB;(%0IKe#2CC6;)cK1 z?PjqH2ElbY6haBkK{f3E02RM(O((-X9l5vg)yx{_h-Zxbjyr#v8*}~n8{4q;ubjMV z;@wxqwo<`&JXY||n?xed5|;(w)RMRbbe?uIxdZ(8 zy>}TTD~>QdY6`x=KDyBn8b=0a#)^DE6}9}a~hQ`Vk`Gu z?5nrs1E&N30Iyl>zGRFul6n!=p}4(SSdovHjiBU;ulCXkbMh0FE9+hAozk&CShl8` zI7s@EpniW!zil8`Kw*>}7t*m(QnC<8!*icXy%gcFNp5)NslwY6EK-xy^tmBrW+w-q zuQg8U*h?P^#^0M9Vzfa%V{F|RIZ@AQdPlvOZOV`V&rH`FZE8YkocH!*VDAN+k4JHu;xs)yX}o<*k-U&&tCb5yMd03u$C#$EJloyS+y_%~)+W$vdzx zPdTlmgbk-4ob!{?p4ROeI}}pS!3uH(GG!YawZ)dy#?8E(isv;eCIR-0FFX(NuHyIi zY86xhM?!O-dgiqhF03~4dE=q0QfpI^X=|b9cky{-0tY z=S{geZgoM$EeBd*4$uiC@Ns}C7B4RgjFFrGI{j$#6!5LJk8E>NCfM==Hc1CKti762 zI^!j4G$^)b!5}kZAc0ZJxj~jJgmMQMtATc_s&(M5Cnsvr(Ef+jq$K#ZbmATZi%o#27&H3ka?n%oYP6gJCrCKQArwIUD>4`bewGi0p9AJU?52+ljwyI}BhNLxK|_)rL9_olZU`K3KLrkVyN6j4mD zJu73w>=mTQ{A(Qat#1#o61GJ&OW54Fk8)%j_No%bcel4aD_!9U7{)p7Duk#>$tN_o zGAZmlV*@>fdRM`~w$o}CZZZ`FN>5yq+Pv~O%MsXm*P?h9L2IPAP#4UTu6ZC-%S1&_ zg!F&6JnmVS^{2H~Sm> zD2MwR%Kj~)GjBYsR74ZlB6{F%R z-gp~F@cy3ew%1ykESq2Ce=HNyzeD~d_`=)5o*cSGogH3! zjeraCf;v~oU+_&26() zk?@yCjTEGstn0Q5afXnbb#H1_B^ay7i)*7eT~fnO_R1t`aanXE^><;(E@v zb*kzzUfgXnIXF}N1Jb3}{6&A_Jx)u@>DpNspOwc5I{{c%R|^u!^JH{9^Ij!dj#q4@ zwb;pm#tXZmjAt3*ywk-R$Der18*NNrAUPSWpAu`pM9@O}n-~KeW7q3kYTGpOvyge` zBDhrDO^Z(Zl;$EvIDBO1r!CD&+#U&94f&W0C_m*E6sH)=f0hZVpJY8R`tzc@1|u|I{~bf>0YHMa;vk_ggH=v zW}F5n0~79ME*iZewRq=0xl{VPvSl$HbDvUA$4S)brbkjM5X^wMMDEsR`n{AB5UXhP&gfGf&iF zX{~2+uBvgK4JkV-o27jb#~+ui74#p8e`h;esU(+0yK7Qhg@WUh1M6O4to$SKE{<5f zp7TZzF9*yq>sZ3HC$lt_DZ_Meba$&)8g0$16_yu`hfvB#^Qb(h#&(~|w@k|8DQR{Q z)MA^`fViadNktS4QfQ>3y&(!HJW^7gY3Kn(B`$cR7Zbe)Gzy*H@GYC4al z9e5pR1UPp0tB?T_XN&{QRa6J-QcExkwNE|i+?FNG{&boC5!=$CCz=?Xnr#CojFktI zO_hfj^r*q~?Lj%CaImkJvRt8!+pSBKu#h=+j6* z!aLzt9)ud;{6YI$c*j|lTTMtbX%)9eHMu54J%~MxYfcrU({VJ7I*F+*534>0{?5AU zc!J{h#;{!YZ%NVB=hv_AlgozE1m)Bd!!u(8>t8DV)Sn(Me`p_!_r4^xhwPpmutn3f zODteRWgp6%dbi#`TASjZ?N{-0;~$3Yd^h6{9N+4iJP5vJl7)pQBcYV29$_EtSC*oJ zoTwaQ73w6Dx<_r=Tk2uzyxcPmgw-0+)l?*y#sz0pmljyCQrB^T>s{8PFt@P`&9{Is zD~r*g^KYXB;|Ddj;(M%f3mY(fFPMpb`Zy=b6V4{>?EgSlMzMNk1BRP0MtGzXk2L zh5rC*4ShUQrX|ON=D(6;x`hM4V|fnWpP=B3b6)5Bdwey~e`jxn+MkI02Wcgvc!mY= z{lsy$VTL(*GG{$V1OY}P6+BGR=Gf+;hlK^qqrUgt{JgLO?67?9z^OaEM{0%c3hGg& zKJxR5w-u_~C^`+BYYqzXj-xcIO20d*-lkHRn5PThxPw`j@5Z}6A@+4 zPH?B1^J`sQhI6}<(477iq`n{#$kLbdSd3)xiu0#N$E{AXX*(V7_K@0mWGR8P^O5UN zTa^P4;H|h7QG=eitQ8w-^*VjJ=yg{bvD(hg z6k|Jk{V`ehdWkBeu^{qD;MX%Yu2q5|9P!hwQlD0kkCr)1bjN(vYrRN7MlKc|?j%KIWD3W%X4~^Q&T-POi5;>!ocHvoloCaIXM3~Q65z8b8QKr0QC5+Ia^PV| zInD)hF=`B`3Eav~(8T=0v~Beb&+_D;<1Bigaa=Q^&q|$W*yv!C`J1+*Gyebx;{)2X zB4HUPIXL8FIQKQr+upf9d;q7Z?N=bVK*6wA8Sjjm%~96RV`W>bH&Q_=mkO-Few~d% z?8LUif9MV+vb`z_nrENzj56l>q{w_BAS1EYg zBFSycM%}};Z(U4G>c?)y?0<@~uFx_#Q@jE=Tng!hI~;SUn{4IpB36`~pP6{if5Ne^ zEymIn2~(0!Z1)w@+{1>!#s?cuU&6Adw_w-<<|Ln+rFJMLaLx2*F+4+WJQ2=18n5O3 z(4c1-+&X5quWkI|aH_-}xa(BKubBS;GV-UK9AMWce#tGiB%VQ11snw5MSE2Z$Q%LXa?YAn0$tAm* z<2*vB@`(dvbs=l2j8svn3N#Z~1<;+EitGRG_)RQ0YUZVo;f49rU9R7RRf-XN(p3y5Jv7n=}axaJYs@QF-<3$014)h^ra)- zjAns>>q$iifk48wGzP`XbBqk;vVqNN_80L{LW33Tl6zhU|)oJ4j`Qrn% zTxnHe+l|DY2c=M)lh=|>GbPxmIT7-|rFsvCqBgo@3__q~+@l=i*PX6syM{g+a{xg4 z*QZ3kyF?)EMG6#ltSUB^h7~2LyW!BXYA_e%?#?lumHN~BCD`A$z%yl10?rCUK zNgrf>!Z%KQQLNjl-E=1h&jS$SM^HS(wY6U0QH5j7~Kl}Zg3 z;Ox&&m>T!*iT?l`#+&wyE5n;)xKEN>r5`ML9glNbx{4_Csx3=@5dJ3VUkt4p+QJz1 z9eL9W7I3it0JQb;=DDoiYr2%WhM{oR*RqyposL51_*c+X?NUi5xRzfnr+z$Cw&Uy*Ubzid?3jzhdkALxzaT| zNJR=p-sYC}{6sPrgPbmZTF1MUnlzSR2s{IvVyS7Ns#hs$x97@WPSnP5PbR#_#MbCMJY{O>)T8bMwwDZMo8^eBY~nvVB3eF9<|n7 zXvEGwRRbNmesxjw_~Hcu661v(MSSe9D<4TtNa3|F4{5rR?3%*b<27;=PmQ=Ix$!nD=WdjzOcmaQH$sr(7i zE`D2U%Zq34xCRx&>pueZOI^)m(cT~&fN;d;j0*ZD;@C#S5IxB6QT>Si>;)>=&hK2- z@WoV)t>|&f15LkoL*yM>!aAmnF^=xWXixh{aanC_=y1aaIIpyx%~gq!JluiAsvG&% z9-;96072FFi=846Pt4LrHZeK%73f157PUC#fuGrD$jupCoOGt*zKqsB0_gW`BUoKc zXxaOc4azwD>&^U4@QYE=BlAR%%Lisw=kl(&R)tT6oO7j8pTv(k#yikPaaN|Xk|$(k zJCxw!qG%md5~uO4Oj9DFoKS`H<_=}T#F_T*)-2fawzO!O$_R)j8bk^V(NJW)!G89PTo>sh*9qKz7d zAfH;*kZ<{iJC7&UksBD=m&896M{6F6z9iL`OGgg2e{6p&Fz7(fYW3@%j2=Dsm*Fi3 z!(KP>74EO${W4!SPqUEmyzm*w<*}YK(!5W^c4cHsl)x%^uh9Ph*vr6P0QlwbLs-yf zwu&DR+FZwU`je?Hw#&K4EjW1E{X6$381h7kH@ML8e=1wwCtkV+NmUNmW?#rOO^mF$9zE zS@w4S0J>tp0#8n~*4JlUCw`|q)*D-s^JmhSZ88ZN&(gYyEId$Kuta!%b zk~3D7nR4uBM5P8;_pJz=?$5tkYQPh!o<{?%NgNq&bA{=e(#f0>c9Cr^FfdLBw`!PQ z>~aqT4oy=$Bsuz&XKam1mU7XtYr2z*HvZ!6$B1>s}X8BkTy@LtN|(Ah0i>e6y%-9&5{5(BXx61ns+** zQKO}gQwrG(Ksg!BNSe6YjlkgJHP0p31$ke(delpFLXMuiS1hQ-^g5wgtqz>)3|J6J zUAR2be`<0t+#kxhq@0!`IVPn`l12*<0plXGR5^4;s_TFD)b3g9oV9M!n!LX$OZ z!!FUtepPU!9On#rd)B;H zLPb{HyKx|a)K?t@>x9b#(Brq#wzT~~DddMk$OE7?o1(9=vaI`^TFRgyC6$jj9+e!# zHze&K@srxJBD+~PD@e@WPKVNo@5xXUly7lIvNUy7iKZ=b+jnDV+A?@GR%rIOLWijI zB9yTl7svaEc*DqB=T#tMcTd8#jXh3xJMLtQZQ(vpGENS7G>c{#$r0rD=k=|~>_eO+ zd@e!br@dN^?Oi*Q>Q;<{83mpOqQn~#-A1RgLkTDFmx2JD@|zVG*jD@Hv$6Y}7y zwlF&rR^ro07%RUAoQ}UrUd%nBGgi!%1Z4(taoVKV6L1XOdY*Aw^IEgH3WbOrbC1)# zGFx4%A;4BoQ;L^OmZjLmWCgN6A9L?jqzjpLj(cwP9+jze5apL?Q`C;W^_Oy`k%kqA z0dQ%1F18msC|piX0ALvBe%{8YNiWJiTpz7kx^Pgcfq}~r$I`PUm@e{8=D+|Rf~ir{ zLS0g5qzJ?nQX8C+)7qpAVMmatZHt_KHBuXdBq2gL0E5!1c%JobbSsjik*z%@o$QS=CyesZbS9Y@~oEEjnZRwYa3A?eYo6DC$4Kg8>U7)RHb7* z^)=^U@)PUV-l?}F1KYJaIX5Rfd-~HR8QR3)&`pvW_~?3`)lz852iG+*U|eSz9VsPz z@)x}xg)Is!0%wjhOB{qaY+{_`g4n<$)F&Wy=9^=&vl^|`JvkkPW=j~0DnSReTGB4W zQiWr|HE&t4Xz?gtmAT@Ac6Ko~m0`|)wWDblnuH%ps8GlTMhK~GSjQ(lDFYjE6C#nG zJ5@z(r=@FN0VH_5@90F)J9RTFl2%yc3!EMgY*kX1y<-<=6HCRAUic%z zUM#oN!o`1YXC!!G!E0uWQFSYuxNQ8z z9J-vd1N6mwW1&J8*)n$LsPA1eQBU1BrF8|(xx1Xiyx^bKq_ZSku{aD*9-S!=10FWu zbPL{{5(tzr8_wr!eSV?mhHuqUYYtifv1IRS7EK7U_oe3Hi$d*{M|%KGEdp_cfV1IXWJgPbNl zcJ#$@>Xq3FCJwJ^(%(9xkg+K&2Oxem#@}jt%SQ>x2L-WOn&*h7yLPsN{T|o?7yblSz2is+~to`OrnbQwmSlfD5iiYqKX>=#kwg{ zNX<4#3iRfmX)?wfIqkxVmfWs>asc$rX7prgnMC}(c%wP1w@V91cDQePtnif`N8wF7 z?p4H%@ZgSXs?aXhNmLW_WMhitf!cVjEiU8Am~)RqRbpB_TH0~s<%q%SS(=^Kn2rpA zcJvs@HCES9GFY+51Eqe9{3`HA{30I-{4u3@ zTV*z@bu%dIB%d)S^A+&-!M}$y{8sp%;r{>(+YyVqm1)W9u&2!D@)i1fsp+V$*6@O` z#-ccebG1}peuBLGQ_{@qpzSNPd8Njayd39_$E{~cXhswO7@i0`*Li(pV|)M?wgKdt zz`L-(`?>Gan(?OEdLG;+w?`L$Z@HK@5S}pI>zvdr)R0Ed!=~R)O6>J3Sp#EW5%lM& zu5$V$0pnId+XJn0FMCy?=tie9If)@}J0k=(PB^3xef*XLFdJC)t5;EDXt;F z_|$GdRSXGnkC;{SChk*LS0OO;Qo)EnFBA>Qy;*QOlgB>QYBmL<8*oP%=}OTT&iMlc z&H+4TsY=_4uEt#PGcO2pgOk?0{{Z4DCBB&Ddf=RU*Qh1COBld7>OmL=xbKL%QruWD zC{Y+>W2e1$(6=&Z;ly8-S3Yagbh&SDTg*~&-*|Vf^3%dLLeZMyC3V}7aniT^JKXKqDo*;?fEF1^iOm1BxLDWp3IXAR;$IOI#)J8MV3g5iCSpgUXRS4rv{-pL4pODmy;-`U16p{E=s@g_+jqsaxLgy52BcY_Cnm|2IbN>MAr>Vin;-eWHcc=1k)97gklkc!O z`qato$p)ZM2VB(A?j!-h9rH@$HL0g*@{y6(sI6EqBFhZ=fmwE}9IqMeT8zRwa!9}f zjBrgc9LBRI`?5OveF10S#w;vO!2Y7 zHQHU=CA4wILB=`}#be!RDR2yt923qdEl65!RI}BZFn64a+qAq{QAy-`*D*bmw(LU# zO@ih~7;4cKgSJ?e*mb*VffRICv*X zmp-AgY9$pYv?p`*t$rwcKJj11Ek945!sAbaMY}qEq&HKKEismsLcNJN0=S=q+AaM4 zD%Z5jUlrZ>cShH5X11BE)CQ8=xxfVUBp$WrUMKMGnBF_md|3viX{krA!upSs1A^AO zRAjL2laX5AvxkXoJbm#UEv~OTn^tEw;dn0NILYiYT=f%Hmud1tHK>JwPnJ*B9)kzs;KH@cuW0Jp7lDRV~W zRvouKR#Ng6)Zutuerl<8Y6&4np}?)vYzbWagaC8anJfZ84#G(8D%0q6&$-LBvnkFo z&kK%~EKuV+j^6dBJ*zB-joBQL(xVp2jCUy@4x+b5n<;B_WengK+mXjTF;0;LL>!Ed zTD~9+k=G-wSCZKGBL^Q$(q?N#c4W^MbKDc0)k3>QGJmCOO&MTL7XzuPQpQ5yV}aE7 zq-_~AQDRd$2R*5!vJNqk)~tDMiZXG8dpGYMt2V9ySDn2otolyS%tDR5 z0|I$HswA(mqQ6nsW>Vzs7$cub%X!<)Jd9(~wdYnS<+3tygW9n!QDZ!v+4QejQdaXh z)mL&vyYk8mH$3j^&1u`;?Tlca4sd-d060K;t8f7|IF*P1bsXeVcy#&}tF@`q{{U(h zISjji1Ofeh>UGqM?;-bKec$U`s!qTXcrVcPsXXixlZOOg4@x72x^^4HX>+AbU+xT& zJMBE5YH7GE3EYDxqZ~Ka-mxRN^Kk4oG2ny!D)p!e-#!RD1sy=E`n8Dm_cR28cfx=h zpeMaa9BvsmIAC}v2WpBqRBXXG2OytX(TWk~gko{joK<~Z#$MY}&72I*oP&-)&JKO+ zW-Ck(q^WMa9D$mS!q4O^LX{m3ImL7qmf|Jaz?5tpw^~Y#_6J(aQ!#YWw35Fvw+C-u zV^$MSV81XwcR5~w`c}V^xY~Jb!)ZN*SQcEdP&aeQrlDjnX>$qfo>>8GDbH5)s<)Py zIbL@Ty+&((TTQCXj1b+fZOJ^jG^wljcFKwyIUPFZb>JUNiShFVN`EoKg zl1J-ZPN1JCzyldL70z6#Op-}+*X8M2MxSBIrH+2~JhAz9sNj-%`c_QnR|K4n0Rp$L zV#}4=xiQWcPf(pGuOO zwxu*X8$HE!+BNJtt(2Ctf2`YuK9$SM11Q`%6t;IyV>pp=4I%Day0m*MhmFA)Jx_Xt z(_sX12(9_mHOnzN@iL4P(y+)eGbk4iAPQPaDBJ>&jMC9XfGYNm3A|h! zRT{gb=j}rSBzB-rW22CP5a;h_pGwNSY-b&PI@XlTLJ`mk%GlR8aYm|1W&?^(xtZMf zKG;X5+oXs6V;5pOS922NmLce6J6_9VUosK z=W-e-<6Lw7=JuPM6W)tSZfDqXs9AsjepTZ(N&=`~nMN=VTIsf@Tx9uUb51S0 za?D8Uno!`NTyylRI%b(JrF8|Y3i8b>g;>>dl6wlZ;$IAEJ`>b_&wmG#CQcV2v-pnm z)3ExTm%^Wt>gklI{oXRekF9zzneOCefO4k=++g;tI>%AQF*t3y=O z$PEHE2SbYUUm0twZeG$BCT8K=upX5(sk)BF^x)?7F?>y}oB8~da?qzATEQJDNX-CZ zy{JV+Sst2Ps=@(^S`Pw%b62rJMHC8X0*WZ61C@6$9<&rVCm931HkDYeK7H zN-r;qzfLnv=x1ZxKVtoN`yck2@KbKuF65TY{*HtX*1t?I>;xWcL3vgxL-p%llAp8Y zpmhHLj-CR!EJ=@9x8!@cAJ)HM^{7C*yWFH7F^?zSy!!CFHH@r|8&b25P}^0bBZHnu zu6FGeUO+}d@r}KB>s^kexJE%@3GeCbE1J58C|M3h-gkAcHgL9$9k8oy&KpsMm6>+n zH}N-0<}acMv7ameTJ zHDVa|1wBaTrAHmVn9R}u9G)>(&=C*HxyJ>4Dy*ACH*G`gv z7YZ_IKG35%0xpmKv0H;4>aaI0mlE z;wPO7A>0m58`6{4R2FW>G4USdB%UNj-Hzj-u4cwQGq*YISA0!7++U6S06J85Y9j}s zIO&=T*=k99If(+PI3tl*(?0Xlk6N{PIdV98(bRXgrD!N?eRki(*kl z8OPVP0~|R#@lV_jBPSlT&;cFuP9LQN4^Rq&&U@7G=XUHIXQe@q7dgr4#aXo{jAS2r zEGBB(0@%+^xB{isE`nMS(Bp%iY4%a_3E)62OiYcg!M3+rEB|Rt7N_{awq_!j0F0*h~cHpBOdQsR-}!Q z(aRiHF%m#OTFkuAH-b=L_8F-yu8V&T-M+o+YSM8i`=Fk~(w)fjM-F0^)2y?+eibYH{BJ@bFQ_$OQE!!j<_DQ`-?oNbinP3 z!En|HuNWx#w#yd zw`syi;PJ@T=&?9)#+*&~`tc?lzpQ!<>GxmJcBenQ}Y}ZdDR%YSj zFvE~rEw>zUFPS79e_KHPwFCI@gN4L*xAyQ}HIVb*c$077HOJ6(WQHc7-1O z>z(jKMfA4~f;Wym!0TBkIIEjcij0jz5G)HEWOAdY(xQ7%7^3{Z^}wx9FKOg)*QY~J zuraeXbByC154BWP*|gn}i13oeGNXm+I28c50B#?5xfQ24+A+KD4oDxRM%KX`k;uk9 ztEZ)z<;mVxMp%hY0Asl)wO5|me9ycy?OKvA497c(03T|vMZOe(!8l5?f%e z13krb^XY9LBMiKN4QI<@q%H?j&S`0}tX{jAhBg@r4=1OkI9r^r9Czox(zIU8=Wgr_ z@wcE9!E8&FINh9&dc~u%oV2k`ZO$@AIp|L{Ab_aA!98(T5dxeA1bWh<6(A6H`jJ_* zbws2fEs~&)I(yZqpe__H2X1@Q;{mc2PbaArr)z2$5}cl#)V{-HmNuJX$?55e>GaJn zcRLi1)~jijIbEy>+%cSF`kpN2J812S0iibXie2C@0;UC-zY;DcTvh&SQzR=KQ zD9?YTdK^}fxIFFv;A7UR+-R``We9PeeJD=*gNft!5cz61A;vli#J+%qU{?fmuA=(b zyA=zN2{;~=&t1j=!j4Ed$?acV?DRY+&dkI)G61X_cNjgfP6)^XkU}0#4=0*g0cK^v zAaywPr^bplq9MYJeATRJ*O=$|2-MF^noL04?0PV==2;-0|8W8M9IUVvVUf8sQAO^wYjtw_O zuZW*%eGO|>#Gf%3BY}?9t!|*mjl7eMrzW#4NK&L7{CvTewDdX+ z9uldr;NX#;QT48Z)&+D>Lv3HW8nE=jsoAj0%8s?sTDB2OWPyRn=kcy-D?6=P0MalRAi?>7m#X_=*4vPIeYk#;a~v{*-#H3{;KEi zCGtX?a<~OR&o$IvL<=w{4aoqGb66KKc_m38t~vwx*71n%)aS1X%+AE+w{kiYSQjd# ziNhf|&U;r$bh|hO%X%M5!?=XZH*5eC_ksN@u9Dp{FR7kVFvZS$53jv*o-c(=C<2hg zpO~L+E30J7o(h67gIFFfw=wCfDFK!#75@MX@^f7H+I-X{ZidunYKb$zH3+<$rzG+i z=A8){$OPx5YIx61YkfvZ6;GDOa{VhF)a0BK^skLxXScaKw;qGJ^s18g9DPBlrf{I= zBi^dJZztdNqh<{ujCTQm0QRcV4cN~F)bG#?;Coag;jw~g+d-lR`@~Qkm%a^HHrx_= zR1Fyb`+Cy3cTBSd*=7pduhOhdY_j~r)6%mC%UhZgM{=eo#{6(i43@hUH2c@ExW;mX z^Y2<0YaPn@u;VBAYKEg_A#*C$!bg}Qrw6&>yAKL{I=t~VrE6hh47!Eo z$NH;#W!%NPXVSi%(m!OAYpPj2!^Vi9eXZ`7<$!$$Qhh6=`!5kQKqM@vhBb~`;dFO#YWJ_NN-NQGFZdG+RQ7O~lJLHLp;4$f%_dO@W z(0FT3c&EQ!zi}oR8pKdt=vFTi&iRIL9+hmMlg|ZAW zDR0L>3t3?yZ?_HmsU$*7n+I~M-+V5veT`m%&obtqzUSV$$2XX!{TJ1k+$VvU9 zwWuU48Vh((?>RZ!pX*$NDZPL$2Gd-xbJM4Y&N6*-SpE<3Ww(Z|`vFC8(f<1nfYvMnTY`j-3 zlv-uGL1hdmuErpqV-A=dKop*`u?qW_{u;@3<<#3&@cx!V{D z9F;ly)%bbg`-5w(>C=OThUzB=9*zxu-)k2FNn)1+62TOoQe#tG^<#T7Tehbys6JGJ zG8FTJ(z)GGEO|_N|glLi!QfxaSM#YZ*4qTKQPdo{X#b z8s;yfJDB7yN6ZQ28tSz-1h&vNo;M2SH4KCsPnbv{f%F~gj!{r|JqmJY>Pe3lw)aVIZDdp_Ua;rNY(MQ@JY!B&{MDG z`#rPoZz|h4rEHeT#wtS;k`aJ^D!*r;O*v2ywtM25LQKexHg1YdU$xTYl&{KpJuzL5 zhu|6J8{H1x_!ZE}q1xz{!RJtjI0W^pvWwJ?ZFD%h9}T|U(t;PiAJVV1R@!_$2I6=< z@lfjiD~2~IY^MW^;djkq5ZVLpFnLG-cs@W419>w#2iH z)j!g&gJ9qf&YLR~LC|{o;;i0bZ(DCfJ9AmLcL2L`eL7V2(6XGbxsN1(YARm2q@#00 z9cTi8F-khq1_Wa?&@eMk>PV)JDT?Ei@&KnvmB{NzDZr31*Xu|JA>0pR>sKuhHaW?v zaf6n~&1hIC-lNynnJn9lSz`_x01Rgtu47cXH&;yA$Q)+6JNtoaVowTjz|C?yixN*< z)T@mOgL?own(QrN7TRhIeg12ev5(B1N4<2{cLVn@j4sd)XzCJu3Kv$q?mQ7xO6?1b z4sp$I21%pH1+Y(1S@$pl{5a1_d!s$IBDav|2d`Suh02h69-{`cRT?~Gez~jA@^hLH zT-Snr04F#el>3WBxI#b-aniHmVls2|=C4C8(mHWeMVW(lro0Y%u6d{0%jL3;K^4_p zTBYnfD9>UmpS-a!z856-z^Soovp1l-^DR&lyN-jkMS48g{S?-2n?IC7oM3dVONJ6c z#1K1yO+MsFHhl;C7G2ME;y)31YAH4iV@aAdE5R(hfm8ngV*#ptx-hFGM`W4K@+KI3hko_XyVL&+GU{B$Azxpk>rxz$Rmbq;fo*2v3?&R8Xopt>%WnXhOK--jB1u! zw=b3xDvB~e^ri3}x0B&pa`{$fW+S-gp{%5=j;JThY)B5x1%f^a(asf0xd!xGu-I3lEl74X1r9dJD;OdXbne3tvj3ZNgoxc;?T z;>iv&gFP!Px#5=m~E z9Ar~ON~+oAy5t;IO&#!BmEnV9U=xAehu*D?IusZIc9~9Q*42b6Bn^{* z27mh1o7~Z)wntN;TYy6aJBI`??d@KJr0Ma=9A~b3j{! zvnq|MMh1OBsB$xsT}=pWnFa{oi~zW;1&1uVkIc+>5zykF2rz=ookjpBky5HSA1>4_ z(6aRPtW#~=$?3R}!mY87%B18kLQP2a?JB+(1v(DocB=|LMr8^HcHy12|F0stKkT-GJi1KU!ccb z51Cd=Zy95T60IC3v($Hs}&jJu6tIMt8M|f z9FdA+TA0@?u2>xOsn#PC4Z!@z98}JtXcE^$O4>kGK?H(+nXRii{J@~+YWjBetQd!u zNFePEmC5PFXj)tZ1$N-$Ao`l-=SG%&PQOdI0!0`B`;Thgx4cv?qn0cKAnja5z3$`; z+_yvT_|}vft1l$=<2m)LB#T~WVFlti04U({K=1EUo1-%2akw0FT%3A|+wzsl_dV*$ z>Ws%Nf)5#9#-Y11(z(z+pfShZUZn6om7jHXv9l6(x%=BqX346vI~F@a`Y-dWtK0qT zGFxw64O~{YY=)B1n(lceV&f`=5L*?`PjDo8BXE7V@9k1vTsds3I)FzFRb;u!NCM%B z%N6cDt9Ue)qLs8L-ENSa1`-9p2C}YEi3;2hdyYT-b*V1WTW;jXBb?+_3DawZ#~ctr z%GIi=YEy${Bu|v?Dn<`Zrn3A~7@tACKa)&*urqg~REyP|%t!|fUzzxK50I!K%k8al3=3X_G4goAV=CfRU2 zWG!ib_EuxeGIRs$S=zsWF5*)qx~-D$x0n%)|6Yz*j ze*uou?Gd%b;-*;0{OmtLUzk4!d@~=6ek5pGRKR&t-XWB?-3S;K&$cV~cf&si^q+=4 z9@O;PDOPM6&h(uw{{Xs{LU$_3j!kmEv`4~E5?$!SS@4U=afacc9)Y+1$J$RgQGn7DeHPI^>Gzrxyg4=Nz0|wmoA|@uU~G zJ3P!GVTFirM|!Dyt3(x&7cm3d8O{$wTvnTHI!?;5^PCN%kEpH5&{)Q@O8Xl-h>+s| zQ6|xGwuk12?E!w;r|li%Y2=g5D{vyn?S%ssgJ_}f4?r{c()>Zb8mGn|8)^!{)=f%K z8G2wG3{qR30}c*3#dD=|)RxH)m}G_E^VhXT5AhMtKssaIqz(_u>Uk!S+l-zDdeONr z-C7;r!_gdRbCNd|9J6B;wX14{B4tB?{7es8=6oJp#WKVhn1O}Ha&ywJYbq@yf3*;s zMs}L=F-`NFRTsT;CjRH_+wSgP%wW7A^zEAR4;^@c^&6ikIU_k>PI2vBZ;N&IOKC1- zAR_#TqxioH@|mSG%JMhfW0O~hrFYFEvV;>{%w-f(6N>as&;t~-Q9=ODXrK&HOah81 zpasn(6a$(!5V#$v+qlwIi%WL7eXG~4HLC{fM5sx}deqQ7E2?;(RJYS~n=6e*{&vK6 z_R*JiKEP3JVBc#mSN>HJQ1V2og(Z0Mq4WWoRIOi45-&_y@X5Kl;Bi69xzNIG2 zo9Tkc#n1vc2R$p8)TRK)5V~&1&DOTHIaxStD97GB^{#ID_DJBI^ec{l*Cj=%+fG(7 zE?hG)1Qy?%5ztjq;1k0UkXw!vdsU0~Kf*V2oQ^V0Qz{}%zDQA$19U&uvGqG*?zAU_ z9__ar24j!N`Y`&|Y)_q|j5j-g!Tf66G8OB+0UQOv2b#4Np8r}- zGnS0`R{6ZyODh)l^{TPypJ{M=lTqAU6beVuuIU=QFtGCmMtU0dk>tCxb3yPxymdQ% zP?7<6-fVS|AZ^*g9jaX6n8>nZxaTERV zRh?ZHS&F>x&<2eTG3`~MH@?KuHKm&7S>st0=V&!YRPjU*TZpXkWnuFYI0xFXb*%`j z0(dtS1CUNgtXq75K_pa^yO!QuM#LPG$v*X&D;9E1Se{I9K^dxj%>|?elYvV`I~E3t zD4+$!1EHXr2NW`FIR<$qo}g}~0#~+0Dg&J3npP7gjaauIm#u5rE(aqZdscO_Vn9bV zw{8WzZ2f@iLUtj$nY#VJbx4BazH1t+UtBfC%dt5FfmP|6tr4Z5#9r}EGDkdB{Xw_g zGh=BTy($d|2;-Jae86$_spJ__#N?j7l+wAIdXBZ9%NRX6in0|ZQ;g#ko01fBx7^k1 zSpmY3c<)BU?m;9R~TKuY_)xbR-7 zb>e@7UJ2AF8 zqp39{($JjTXFIXaTC)tlI2a&w&14&Z8MC#N`iiv#n?^I&(zNtBS~jic45fN|`qkB# zv5mJdJ+Nyc8OO@JH#~~CW!|~K2N=SdT}azf@Y)$zmuBawz|Xx%ueHDjX&{V_n5uD2 zj!KZKIS0K?vXyU`h9Kkv!KOCRX}IADWdLVBwLU`f6r8R(>MEK@8FB_n>R!0#G zpMH9Q=}yGj`w4UcsUY!;b6N6`k(?&(GnG9vR_2fh+z@feJHMr8$syRdDo;$F^^~r5 zQGW3R&A8woQ_xfjzr6XBw>T9frCGs0HaN)RH4C;|X~$fUJBsIREe}>Bk&Bi9oP&&3 zmYBpo*B}AV6V|eUS8NV2GgfUb3`_~Z!Sv4+oR*pz-p8Y8a+N@2Wh@Bk+wu7JZn%A_sP(Ue$+;Yc^)^7Sc9NHHl#!ln)_M}xP^zv-k6hVWiO25psMCui21_iatT023FMyCf-^jYn4Bof5rdOiziD{~ z4hScwa%)#kjE$~Wp~>2J0Bi15T@MO0w7GiD&nKW^fx)edeK-KFLgWsV+c-nGBb}p` zZZlg}&|yI+3jY9m^{gjdwWB&6EsBFlNj8v#D)ac!CW;12@q@yipr1hmLz1H4mj^o!d0;0y;SqXOhy?`7*)ncN|{!%s;1clilpQYIO=oF za=txL{{RS{q{MF96CMUDt(|u&s`5xbFzH<9jiK{ADXFN*Re_m-?~h8(rEX|i=8&Y6 zu6*luyWkv?kO%~ORvd_8lOxu;OVQ-pBV^!?GxV-z;!W&*b6!4&V%!qxk%0_&t&Km# zcUJDDW^9g!HGl?ADtmazI5`8>f!Q6bJ}$m>3iBBg2j!4%$LBuS!5nPqs&E}l$ zjNd1y@Aajy(|0h4XwN(mPLf|RVTU8VX@64*?eaz}2|T^epxqKYXL zCfZOjMHFlSMHF|YfGDDh04So0U=&eBAPOj=ivXZzwJn{av?OB{mOAszYQUvJ1;#Kq zp`$q-yZbxawYIH$ss$c$#pJ^w>WofF{Dpqk_;bdqQxvb|#xVE>JPcBK}G9zd274)w;*0eZvuNB35wul)+258i8E$dw; z#tEjg)Vw`&0y88`@s>GLGwR7GZQ#>*=95c+#lkQD)TLxE*upD|1t#wCZ(S1ic7EIt_xaOE} zI4T%)`c#r~oPIc}<#D@kBp#Tm+(&=l4N}iV({*dRwO5sVv2F?Hc5-oC?}>GpHG9df z=6#FH70&=wT|I}8LB`SP{cDQx_lXRSY#?9<{Io0ltIeDo>e$Uw=a-Sr_>)>Xwc!YV zaGWUh_pE&8iU7rTMJTHyy(E>8QJhgh8K7ZB6jQhb6j9AE3MitB08yOMiZB2e>q!Vf zz^htx=H6}Nt}#_>LqpS~)b$u`p#i0pf*>aYB;uXzsHLj0dGDmTx>sg7$m`a=i}1`I z7}tC+;Q9P`y7b-~(2R%5)29dbOxv9lH$um_uN}GYL_Qz!Z}v8$t!eSk8z_0L)xWJMC}#3Fo$+_pS1!hwQw&JA-q zh+()PKKbcgb?{NUcF?K@?DhO>mDEG|jDTTONBJFBwNHYP()D^*Q!6UCH2g&lJ}C*z4=ssbaT6!^}HH9z#QPy=LOVQ0d4WYku2aw0Q|@cHGC3 z#-OvZvuOBVoOS1|NhP(vn~2o=mZxsPbGp*3EOm`NnL$IehEtF8n)6Q*X(vX#bsVWb zDX#wj!o{tuZEAH3Lvf7l=tVcFo~hjPnOw-^ns0CGLv{RVDIEbt6i`rO z6j4SvrXfJ*tr+K}B`S^FP%DqlK=!AqN1&%}whFJi9D)-Ofcd zlRXCNo(BYo$=IWh{=F-q$pGMXKD3dOE4*jQ0OOP1k|y%l@_h$1_x|pBcc{)=QG+ z5lH|l#OL&+hv+><2TW$BwV%p3-Lz*k#zDhmjL^{ojxt9)(Yh7vYl#H0{GXwzK~Z6|iLxK=n{Eygl^fu|PJxThP&$oF>E zuI0Sa-uX-@ig6=H%laRsb=FX&*MS!n&uz?-^UzYe=wu{{YHIkmNG-EzNsaiYj!~SbWjt zQmH7**~@;1&6<_j66ZUC80U=EMAsn*1oi3dU023kD0pMyMz^M+EfjNku$%#y+m$%3 z1+JGPIVaM*jgHl-v3agla=frT#Z3jk;Ee7)vsle?OMIkt;8c-b6lOb*Urv;hDW; zfES?0>r;KG7|SpLalt1C=}zq+QP8(>KJmHOa5^5fkuA{PSAm0^0Z`mte7%Eo=eOfo z@?H}rLkylXP}#K=XQ`lWatH%z=f8SB(!8<82><{&&1bB;m>lHw;+)NZMt=7o=cQox zJxJWpl0d3HeWTQWDpj1Taq{P|HAu>13xEzV2fg0elWV@aLMAx}qf2k7?5NTn(GDq0tDFs|uYTPtlzniq7<`{x;8tbdh&HKbV1)G>jYEylT_b|CxZKH*pm$vG zE2GmGDx3vToD^O&?kkP5c-2cYe3{1`PHU{v&y*17rx|Yl09yBFR@)gyn%L>I@09}J zE=NPwx9k{Tf;JwCxUO#1RoFH}nCjW>>04H^6jf*8LCEJP9jl$yZ&ODEbarmU{O#$6 z#wyFi4qb7z^SEdAs#a1bm6c;5UP$d%7BMyha7fP4&{s67jYO$+2?0(w6a?TLgIRZx zmgtNNV~=X+fE!d3^YS(kS@)2Uy%n>Q@~{5@Ua|J+F{)R39G0e`iFCsJ+j2RqONVR~ z93Na)O??WWVYm~LdSqs>?jl|pNiKLiaC7ff?cZ>8wbap#)p zG@F*&w{}?c1azm)9J?J9E)=PhfWD))YW=zL_OIVPM(;|?w|4Uovj!N+z^zCn*mo1p zraRVdc6*v7+|ae!2pw6vr?;(4aKxMf4^i9NtH2sUNx@8Kj@4yI2wVPH4^FxIRxY#Z zX&8-ds<{ib`kZG2+PVJ#6e7vty-zKYU}evtKHinmyoF&TDI9mMYsE!j@W!bqQ0^fo z(`d-%quRDxg^!(lRXW2QQ7AkPeznSz-n6y*(|35x4nLQ3U;?hQ$7HAsi<)=~#J?MYl|Eyy)H2ePhkbIG`9S?kd6rP%#^<9zf{{R;6KeYU3E%GpETm(W7L>K^m z7_XrJ0N|hABacb=uc+C{KEbHzj~NZ~1}btZh$4~lkgq|seLB@IANY@0_>tlZonKqk)xnVcn@@#y#R7H%)cTs^ zTFTxcPuiuGNI3zx8T77t)!h9GOO&%LAj;l#*ld6Z4NRS7T$7Lc{YOYiNhmSOp)}Gk zI;5pLr5j{41C&ry7=zK^=o~4{2&EZ~bc>AcMg;x*_x(NkKit!8ulv5PbDi@(U4Kk{ z+9CG#g=C95PkodrWo~{ zCae0d%;CKs5^GjmTnAR(spG^fp(hrWY{z0Ffe&v|9f=xM(qDgx+4Wq}I8NV;D-`Ev zKtx69i+#c4ikWAr;CX}aYrkH{5;c^~DE{&_o6E3y;54$7_*plhXq@`R7mnN4t$)li zb@=r7Fq;j+L(iMS)q|$Tm`+ymXklD2|HpZtS+7noIF=zROq=25g*&Yp-6}kdz$%mh3SXSToLt) zoXyZY%Q~PRbGNULRmcD^@5@D1chK*r*{=R8an=0J?zT5#_o`yS!3QFKCk!IM9f1Q2 zM-aFO?4Tq5QCvbyQEJyimBUxsbuJ4B9x-5Sn4A=taQd5iS$mY2_>CkAVJr5HmgVOm z&zrs1C2dueJ2JF6#~Swgp6iJV+Ak&Zn2%~1_|!}HZk`afoF=!Moo#--%V{GqAj z{@Bz^Z~LbYc18mC7P7dz`N|R@7eprWtntFeWZ3x=w}^l1jd;8m`Qa^pJ>CEv_`o*z$}z9 zCKPIH@}$%!`b2&)DZl4p1Ro~!dLZHNEQ`v=Re&u@-9{LC0qsodPQ5hQz|x!-eHmKD zRfh5>+31l)VVZS3`0Vj(dRcC9Z-JUZnGzMu^3c6!_nRMBd**0HU8YV;|7~>&4JmCy z)X1X==-VkZsq*gLFsL!2)(DAH$~qS_l!l9f<)B8Ic!^?1%f`90PnZ(`GRMstm5+G* zyEX&Il%H&Kroi4d`Oxvi#I&ROIcv04&bDH3UAFpT!ma?ejHTp_AaXM)uJX%rx;i=e zMt1RP7he$y@4f44nS8DqnK_E&40hZDySQy;k%icuOo83Q#*sw>434q<~n6fa36Y(2Xq)D?=p8xik>HJ~vMeoG$V6}10 zm%;0&6SgV9SRk%Cz=N{<@PA#p1#|+yI37Gqz7o=?4(X5tb4X<^jgLgl)mY~HV+MVA z>#wS17zXZX<4Bw@`N(y~g}^mF8%AQIYo*PBp|4DrmB3uzOYA9A3C;8?|9Ei<`>Z>; zpwuM4@%b(Nbh3h^AB>q|)BfP+@n58@)zqGV)*t1DR=|WK^RaU8O3b6}TY%Z7b?MlW zcrudBzr4?1 zPc*;}pqGsKGDHK4*GC3c7^Oi%_~vY6LA}P#QlfGI$tHQXu3q)48qQY%SYTkkB2v&l z>c9~9AALyq7Zn;GAkTA;ijKOhW_%mw2ek{VI_-|cmO*ozT@v3wW}wp)&BAYtXoL)* zf#M1FzFt>&><)~&Ay>e-a^QoSPF(pZO;PH1Y zc`DC$r^!oei|lt=z3lD}17E=v$S&Q@(h+Y|CUWRqpP_I4@9f;Diaq`@&g9a^hI%s% z?7F_#RtpihqQ5AzA-`N2_^$SSy_gm6({K6Xe{)1nBwG0V;Gc6Ue{}x`V7i}9_8v>t z1+3>bO&AJNcB@(6yzyIXWr4(&iT@lH(YSir@M>W|kLW`l%!#SHoyBx!u4P6dZT)D1 zsL}qL8HS56c*1fk-JxR>b#Um>W3wJRAS6BgkdNg(6GB9YNrKy|Cv&a@}EUFn96fiYn_liqe1qUxNNRh?rZ|QHN*G>Lm;&`rV#2(zQ7u3;*`Rx zCjae3zWPALluJtp5S34Wr#QkZ6nf zZ>=WsMi>U!ow$+qc_tfFN3zTxQ?4aWFW7yB@La_h4`#=0hoS6n^!5Z@R=V;=Rs!h% zU8<%*r+r|N`Tfd#BS^b4Hl2xHtYrOl0p)@VNA-wA` z#RYIvz_9bh(`K@Pk0Adrs7YDgh~codV@htC@~_9Qq;Rj9tUcSX@}kN84+7b0swk^Rh~otR4#yy`Seq-m+>C$Gx+NGGr_nx6ElLv_mnLcE}k*Vk)_|Lk8ZBR z9|SV-zfT*X_V1QY!z`m{!h6MM-F`fFHbPQOwb2N>9W>q=w;Gz)I>N6y-4x@u34(Oj zbwmD`vVI|P1>nW)3Zy-X+!}$=$W<~{>(JKuJ=zjfT)&>s3NbX#>7-nbDA!0G8i{oV zM%`CzvWdikj-&m5?pfEjNxo!oWWH}T^s5?_3p1lSlU`r^Eox!cZ8l6sJcFhGxl-Tp zFnU;z1Co7Sn{cCzyA|wB|6)f$_=_onT_fM+xN6FKUh?Xg-yU<1^>xG@;>amq>u#qa zBLh~XXV&OW6PK)xXvtreDOgUPz4_#Qxg{|-E)v~IUs@*GJ~=Wcu5rlWY%4s-a`3sW zBMc?^Sn5c(^SkGwr0_j&8_K1tXe|4g({q01~mocqHjbo zou7!ZeJHzHffrGF(Oj**#WYqWVl}FV3Eq$Oj_~-+5LI1p2KYPap*b<}78N-(dCp{@ z<+6s6Zp*^^tjzGST{#}a@{`1!r&7x(F;Yo?7>gT7T<%bLZT}@PJ1d1!Tk(n|cVR^r zohz=mj?2)d($c6W<4P?+Zk87$}xN~F)Q$kH>TWJ!DD4^0?xX1@(9n% zVCBC#mlI?mRK4j_9(7i>s_wvyxms!$k?#T%){&6c;D23t#2deB&kj@@I}(bg17^J~ zcOPJupYW0%rT4#mAFg{U{{`#0XWi~T@2i6@`5480ggCNN7Mxc{e9qY#4!^)A##++D z48*_fn6SM75D}wmnEyTE^9)%vb!3WIk0ajZ>pUBLf5k_k8z#{n48z;nJXJig7WkJI z;iBO#$@UBMXP$iJOS_tofwsy+{ppR^SHyBs9F-z`2I#MnLDkGT@;;Jv0xNh3{rD#i z>g-OeR0p;J)85(iG!tpw{ay5!aMM(k^@C=%0aH=YK`s1s>De!kbf6QIEK2EeP#iiSFwK7NPI9Mk4VctY!A68;_|QBgS)npQf82`u zQ@E}ANF=3&Sc-o0KR`WYWVqZZm2P@~afU^E_Ek6Vkl2IvH`x{G&txJ7C@X-?@?wW? zsNg)1-L8y;n3wcQ>ZamY59IM!F(?^KSL;i(^$@<2J5ZQz=)~6oi&zgSnfxK3)gpYd ze8HA6SH7YQWNrU*d}689z6q!?CQrfLgX7E>iW-8B%cROPgr^^R{1~@gmM|}uY3RYi zOvBSbj-98BZg*qbAy<75}J(;9_z>Xiq{l=ew0B!Il3)s6W{eVM^x^- zh?9N^wXNyloCIV#_y=LXtfgN=Fa|5_FS^u=u^qg6WI-k zm1sU0%+3`dUD1=DWwtku7QHGlA%o7>ByxC3t0W2knJTm+=$0yV-3GvBt0T!j3=u>b z`E-d1uHa!%sbLPa)fTTj&b0nsROQS)~5BsJ{Yyw5!BvPRAuIV z+P~}!Vr%%iM0ZI5oc$3bsC=liu!Uy zzbY0(kFj=)j_@4)0KG}%^j7J;5tWeSA!eQ3e3~L{cZu5@Q{;HmE!Cp5ms0WzBgy<= zM()^hqFC)`O6b(+wP_cB1FIAUzt z7aU39Lb(PT=Mw+Y@@srR&e(@+QU<``-WxWa)&(tM0p=;*sZSLGHG&FgrBC7c`%c$x$;YczRrIYu6K@0$6Jq-v>sP-IaF#AF7Jg7Z4!fBj?u2Xtv`owEN_$#^dcXpOty_@Vnx`Za}bH zXC*GDnR;D(Guc|nI(8=%QhhInU3MtZ8kWde>#V%;zt%c)D%+4Ra^-V*c;HJE!u%0> zZ}ax_}}O6s63&u83AMyt}wO5=%+!r&IA*7MA}iNt`h*A&JL{2MKz9N^~ z^XPQ|X}6C86CuJC!lAJq%!oqV3N(tIMd?$Tv!Jp0l_Wtql`**<7R83I>M*xGDN#56 zrgX_MV8;9XRs&c}%!w&sC<_EJSO0?rV#<{;tGJxDz9YLivrA{k-OIXA?qISYomZkm zvKNahK3{5Rm!>}o(B8uBbklHmHEPIw4G*n?5Zmi&o}aDsMoHl9CXvkIoaMOtvX~e{ zwQg$`Ts$rY5$CS_r3FYZd1v$^(=lgZbEm`&u|2ak>M6}I;wQR7R>^zc%N#kORmZyt zvwP73ys5b1Ul=(0`BAIVeBdwnm(Y0W59={E2?5y=rwd9l8atpSh{X8vN3MN7Q^s?p zaUDOdm8-;;(}6k_SrE+8{DF;N1~jUh{0Rs-pT74e|C94q65t~%Q_F4OR>Qc4T)%d^ zC0+H*wSbI~sWG5t5^r2Od#$Ns1rD(JzIM!q@d{TACUW6N50@2GkGy^)Bb|1u8_LyM zD_s%XCP&7@3R{YTeTa2tM~dWXvNq1Qn`Kg?k}{>Z%6`v3dt7fZv_jN_mB^vntUOa(Z*qC9S@mD_t8zB;l>Q zme<$@U4C9d4Wd#a9xLB>uu{p%9b|Si1q)KgG-4I7Hi3P%4oSx4j);+VLrhX?c=pC4o}Y~pC=``PY{ zc6cCm+Pyv7zXGOZVRLI+B?p;ZTShtC(BF|@(qy#}>xoNdUmS4lK zFL&N*mL+H#agbimqUiz^Qh@N#fO#N&UReQu-1m^nnz(_5s^TP4`@9mn zZubImiGASuri8y?;R8*2%3DeR=ek3UCaK`CvG*QgDvMB?)l#WhzU0%mu=Pb8RJ2fV z7~904n^OF(be%fysZ-#al8|8dwr4wINm3}TJ9hD6;>^(_)&3uV`d(woniCbab0%37%j;0vA#?T78Olr!*=kPzhp*rMDUi{*cNI%h`xHmTm2|SRw7hz)i(sc9y^6I zH}46qlG;hhr&75%?tgf@5OfV-t2V}z1PN+7ChKaJK8mBz-{&soB8rMvr88(HA>wf> zO!!}jlpjFEEtc|VPHuoniF55l)1J>CqfUK?kQ(e%y}5J^qw5xx%2ZkSE}%D$=+P{bU(+C!=jI) z26Gn7kk@ycWH)+DzvHH?3`8*rUy~~|7;8Qa`Q<(^-2(N=3wliUS6SUA=84NY>-k*m zNHUEYZG{k04z^5H-M>2HXPWzF;NWaNPqOah7usF(^uWNp-uM)+d+>S3-b{O4{p63< zyl|uthzp)oE_?d=Ze<;4%7J$1|J-dGa?CrU>&zZqq0adiYDQi>8p*;43T~zmt!h?-ulY(#aA-kt`5wf>qVC;Ui}_`8lQiY z&ZR0b1@k3~2RNbaIecCi~gw-cr9I7K>_BtITVHb7Kc^_dI_ zcac;+xxUbWHe6Iuswh`#jF~iQJMPtmDu51+#Vtt$xiV8UYz$!5D^zLMylAn(1>e^M z$Vy7$frSTPz;jN)^#$=DRw3S&VS3AO4%eh&_4%K50^)w~mhAJ8s^kKVU$VyE$EVGi zvOMdx6uZMwk9&1viR8e`DT6aJEy1ew0K*(LN~zNQ`7wdZF+p>&ECa+1F3v7Dnzb&W z_vZCL$1_3K;F%L7IN;fZ1(L=jay{|27U3--sE*~+AQ9>bO~J}7Se7hYr&*Cw3Mg3} zSQd|kb&R`4Umx0gp2LN2tIXB@-g$MqgL39NR-SUbn zdHTFC1gWF{bWF6zPmG_j6I?VqI=}!OD}9awMHmJNmwqJNs@KG&23AaU`oDse&g~o8 z*IERBGcY%dFwp zzz5%=J1M%7^<^H6D~{_p?wdZcT^vp(`n!?l43Y_{dAXGAb_6jh8xD64bHDcd3*6_?u*~JFa$;5EZ59eS z(89wE+BTZIApK+DkX@es*mFp-C)lJR>S|1nuGLEzkbC*#G5@bl(Gx==PICW+7z6$s zVid~g<|BTlo7-N>rxHS#V-u7$v6@>|S;W{0&(@hNHBhELBEf6XMpm6m>PAdJ@~PGx z%hg&PXZ^7WfYMjaQ{D$z(-TP^O*lb zFoD|}C2-w?WIU0Dxsk}fJTcj6#9GM~(C&xS!j~xV&vD9iJ1KKz({$7XW6)~Zn?~k8SE@MLIv}-C zM7HB24KArePH+h!$Cv}neP+hs%n{^f zo>ouhu@qaiw+&j~PY5zs$0_r9qM9`p!C9X&+-f=wuKhu^$h9HVc}lz>dxPi_)-a11 zeEMBlLS6w&ANEBka=2s(XD{BwLddc zl;@hR6>w4z*sA0c-H8S>+>Ali>qMik>Gd+YHcG}(+6A}gUHBm!ofKe=0biVFI3vA& z$$Ek?hU#G^=7yNA&uA|uakx{hjmHYFigFzWgul8TFc+6I=>r`Cm;;3|>IxxIzJw~Nh}qhP_< zsrR~NNH*J<0LuJ0?Ob2!>=qLK6}+ga0`uW3(7d>qlM_`3g`V=%yz*2|Je>5hk~#%} z1o|g?G`b3Obsy^JB7Q}NCrcwN#QmGOzvieyknmmWuFUk@)4n{RuS%FfEqW3Y(6(INxLk$t8WHwJ&lmdFJxlYo zLBiwhbtl*Fbd^l!IdZ~=B8Qxa7M8F{#}Ox*2uk68&nJ@?`~7R1|KDVQ!EkDj#j zP;DjegQrco&x<4psWHP?X9xGzPrPd00nOA)M;f_cex)}{D` z(Bpc_d|FeJJ_D1Qo2&~*W}9Cr7oC@I7XCfMWvlm!#(=@^US{Pvvsu54r_9uH^E?#Q z*`L4DgRV7ys1Hf>1-Qy)W14us;4w}xzCN(LhHKq(y8 zJ==tN!9uF^H*tC6PbPx~vBy4b_L5cg0X?#{x{ZUjT~*M!Q!z?`Z3ikkzwkM- zXBX_v?7_0d_ilkN^;`??6$k`(T|Rfq(O0IrW$CFTTBZ>W%bO}hl?69E;c1fmxTPFa zu8^P{fTrdF0TM08pR_!}`^+rAopLnIhL!KgHk%Y!nUAA~pE-Gs? zF#Y1nLrKtFlh~1t>J;rb75h!$4Sl2ZhzzqQL-0_Ob!5;+`MzZy@|C>hEmy^Lzn-W{ z1iN#N$udm1pR`Pc=5gB1AAsN6RK7>=K)DgmhmVQLUKs@%ETK^aZca`FP46t;ei$w@5rjw#OCf*{H9*N z9;wqL`|!`2wTym1g<0?E4zqFEICwC>+Q|kXMBZ+mFbIsh0B=1H<<&XXE4Rg5z*<+R zOym-;N*LcV*zKUp4W1^<$S;zB$<+L>P@Jh9?>X(CRMHx*B21s_gSyxsO>i2jOND=$ zA+NQa@gg6lWO#Hi&cpgHlRJ?kKc(oxX{GVz3gj@ly9O z13mFYt;hG)bLGybK`1x}N8 ziF5J?k>HN{vHpB{GrHz)A=m5cmS-a`FE~jA4>rG_#5y`Rviwy zp#|>3jQnDue!^33BADHs!B@(}XVGU9&^v-_rqck#zU4_=T*@_HV149H6eqIfpETd5 z6+^aXDnS%tobU4Ewf||}J;!UJ%aCpT3~2nf0zV=p=2oR!s<~F-G%$~XXbZ9S((I+& z<3NhmIs#uTZ0=PgLDKN*XO?eGJ{yXC(PY$Nxf&I=9(|e^&fJh%{M3~|*IH8q<)rx| z7#s_mo_(@4Aroe(vHr`i0(X+jX0&4HBFG;U-&Oi)!Rl4yB3xtPjMu79LI}B?=0tl9 zD6tcCv+1gGRzX8UmW2G?-gFxJfxJKf5f$2{Hul;=k+*w=f|3IkR>YH6H@FC&8M!0w z<(A9)-iTj!Y+xy-1~+ zG0XQC9)&*m*nGe#6?8k*Or?~jIo~FY+AawX@WS!LVt(`jgrtWIJ?t9b?M+MZbujr% zXg909m}Qqz;6<$@J5R-@r!$Vx;S4`IvwV(8C>9>buDaUVWj`%m|GKVXP@I&K;sMn zL~hqkv&>71DdC&m(i2 zl7=pPbVln!$R_-%w$RgM&V+C?pkH9%QmjT+#*fm#{Dnt>d`6)644VPM=5OAoqU<&C zThX6#drmX!sm;3vk+Q$s;?;a^q#jxw#DmohCWxnM4$^sQEyeZ$txDtX;@aFBS7i+C zXsNa5DNF^zInRKDy!B9?(q{Uj>O|U*B}uzpLSJ|ESim>wAK&Z69q6{4n7_rM^My?u zOJwr@FW#-;5Qzhk-f}>4Z!0Q7_jTO&KH(NMuBPWIFXWfQo_i%Nhlo$mXmVbO*Vbrm z6)Jb$dJMzm7Nu}dnq%<-hj|Y>NpbrOs$9r?Tye!PmL<%k21HXNXPThl{p2V!b;S%W zY_O`PND-4V`Nw!}Tw?QnwYAiShoI(HqHXF6k)VbADPZ7caJ7sY=c%9YRQ&`o%iV0d zJIs+N^1Hw8O9$c`kLpqT3>dz;fvJ58lr`8XxY*d#Hm8;DIafitF>3v6&v2!wq(6-CQsejO%Cx`Zn=-(%M!bev$^b z^zV-p&bbeVIf^Gs4Jf8QzKY*(s+&J=tV$ekD8DMp&GAe_9X%6T z0TIA}+mXp_3ija~Wn&v`AJSRbKhRhi_DDFdqd>79*uWez3-7YlCcllRR({BN(L08F z?bmeS0_~@re}5!siTTKEQYGC5R=x$EapDMP6a!IJn%jLfj2`V6DPu*vQqB5a;4T4BcN?Yeh^WuEZ~Ij@;LGhX<>cdfE-u zOjBgra^IVc*0C#a0jP{DI}Kf@f9>-&PP6z(0v|QPvnuQG0Y)q9&TtMWNe3~Ce zd)^e{M;(7iw-n~zkyR|`5<~LCfYN@dRR$n(yOacv0N6q>m;1h@WOBedTG~H4Y#N~z z=|7Ikd&~CtuV7(QUjy~&fVC{9V20_>c2DxVKkbPpsTzfF)B%}-{K=LDOjP}xnT9N`DYUgV__WX|BJ&Q4451W zE_Yn<#bW@m{q@LwCIUp@RgRIBmS@yL?ne-B1tF%V5eHQl|&MF zmaGo-936_Cw25(o_bLn{8EQy}tOJ1m0zMfxZ%7EP*idLBAvY3I~!pDTSmW`@@2W=}H4g35`Sz*EgTs|yu<%lj@VH4Z^|^#SENagp zBdPKM7ctx%5@UIABLztEhn;(rjB=|W;Y4~sO3&u>Hr5DF;O6xn$cF>I?#EnSwH!|e z=OPPcJBEAuZLh9=UXeP~aT(QkE^f0LMF4PJ>#Wc`%(}=-@HuqSEUU!VU?4!|e%C@> zzvdT(kz6#oG_8T1_{(D!{r}9+ST&FfaYK@cJuZKN22jkYhc{0vP+M(|aZRD9=UHCP zuDy8YcX=MQvbMUMfZQE;TF>t?Ye||}E91$YQGt7~&=w*qYXwQWRPfOtdqyHOapt;k!xXV7e=I|wKhPZy z3SVxmXc`ft`Rnqkj(9FVNo|1_f202RY4T#%(1M$GZ#8P9EeK*R1q2aFW?yD*|Wy_ z#dgLqS{#FMm5=WH51>BT-_#LQcYHn%3>Y)|t@O*&hD!ZT^^i(nb%4!xH|DGOE?=ZAc$?6Q9#~u0=cVbUKD@rW@S>SMzoY>Spjvv(`@tX6SvX~4bFP&B3A z5FM$GVW^2Ybk3yh8t@I9dyDcie7f4MKN}a1PQ(!-#mVDvBk}{5-C`~}K%;>ws~t{} z2GBL8(jI9%08UCzv8KMD1LU7+bh*YEf{P0x$)~clcorTMJ!_jHpPqDr-INq?y*qu~ z{Q~=r)$NalQS))2sa$kS`d_}wwxg%ON* zE68uadq(41gpoWCyTQQid`Ropo^Oz=y{V4l;CG%!Xfo!NV2Y zn;3suRhypX-03v8@QZ=|f+BL$rh)3hy}XYXPzn#&e3YcRWf2y%yo8JcM}x4dp}p+o zZ)uF$!Y4R>@W)`@=>Gs6n*j`eJ!cAx(A)E6-k1{S^NShOI_26dX)ABpiF4bGk#zxQ zvQ`WG_0tBf4!-A;x}q_I_?_HC!LsP*@kXn^nvZ!G{@sXw2@Xcq0K9fioR|tPa(3P^ zdf5f^8{|gRBRbyIQ~jQUjc?x2LQ?S<62Abq%bNzatl8RUt&lTRp-5t8%?X0oF%vTi zVLPEG(VF`YRN{Cv(44;*DD(04>M9zB54?pzVcz#|OS2pJ;pV5zTm*%)ESB~Zu&Iwr zeUG{aS<~L*IxHJqokGg`Y|JfW%Krmcu(Q+ND`;I*mRy*yfidHrMjMY&*GJB?YLE1Q zbE;Lb+TLYN!D~b2+t7VegGL1WQsg2TV#>r%)Wvx-=#lVI33fNT*ZL`O1b$iG*BlJl zGZ3Ywdh7n-6J2cD$n~(TLG1cki%OCyn7F} z1`U|B&vkV|FZ|!^(}DL9YpOD2+s;k1eNxPy*w3sapeuX5PBfuh+2xLgqEX$u?kZlp zolpaps0LJ1EBq`7y)Y_d?(69=$DFzN7_1#FJfAqw`X%CSe!fPt=0>UGjwN1CVRew; zk3s#jr5mu`XQ)vpQc{)%DM6)I9h!p!6;-O2FWc~c6mI2Ew>C>_#am_()x8n_w8UK) zqjdK7SN7txdirP|mH?NA;w2n`{+S!8U)me(y66*i|KWw)UW4<}G%UrF*&JpRxx9z*3`mW!ztUKtmfN#tMswt$CZzVXtdF`%pVqF)wHf{9q#OkM2; zIiRzq@&hq1B|9}4Zeyiq-t|4u13EPaZO5lh6nuC7&MNs{R-Hh!_Jr+$lPvAhw**|0 zh4~%r?^wQa0o4XEl`+QKSGk4X*iIX(T~M+w2loBUDLwZlVt>-}%j!82WmVC|?mt@w zR^`)p{^)i9DZjlQJryMf_3;h*|H$hy`zQ0;JKRU0BMKjL95TLk1!j&JQQ{{x6(jA{B_uxT~X+0o0c2h$U3`BD1vj*<1g&&uqE2eBECd2G+~AuyBcQOU|FhPrBb&y1WoO6 zV3*~o)Y?%>KXb=8nmRrEc1ems_o1?v?IsJpng?3>64bT2`9b;4X0Qh**;WN^Ra)_1 zW7=yi8=o!t)lnBcEcgSOn? zm7R{w)$NoKljrJMhy{_$o}KRo`k<(!RosNlhfFz73fXS9fitCl6?0C#zo$|%ctt$c zBK5Q?)OEy=^6=Vrmi#?d<}5cqu4xe%=Ho}f+S?!(G9WWu#3&1o*jIm0vcoTf48B4U z+SNzhKsV>P1haEjn4EsR)F+Rt2RZW%zMe{Eh~eFdnQ^IAq4~NzE`u}^t4UNwzA698 z&In3Ym%6I1bQ^x!jEBoK7{sx+>Z_MxyQ-Oeh)7Sy`QnP+IQ}SO5f}Hm5Y0FABVOk# zYD|h8eyb{bd|eYX7L>fRMYwKvRsBVilv_w71SE@REgI}M(CZfl?Q`Q#xpwb0`d=Ynpl%<7P!X!X&Z7$IKaT|($cpF={nRMbzOz_QfwlvvH{iBWWvv*SPx6bQd_byAVMUI$7psv}mnp#I) zOB$F7XhCQ>bHw2&y|NPuOFz#TsGcGACskIjA|iXy+nAOQUpve!r%E6!9AjW!_v>>v zezo<%3)HIaUH!+@pd5YqU0k(5ZDY z_%Qs?YB{aFHAT$N=PPWMTTMBtMS22n4gE9^v?nEATF%~vC2=@l26wu4JqgSa+6cxK zTxOpBspflLzva$9rcULPTBd4)hLr9Lo#e}-VqrZ;DdI?AEJk)myoe*zIxiJD%c#$> zqCm~P(1@sHusU!i?`8MzcfwI>1THHjg6&-f)}&o($9x)|n`InxJ1lfl_LgHV#d)RA zlB9O%4k}#|8d?ai%SDWH`^ZdrWYV$rNG$72yCNXBNgvz=9_&;Y&X z7hhtl&1hWf`UQ_Q{(3}y@m-xExIZxLSud~#QuEP~pUaqJ7W4j$rO@dw=(tf`_3yc= zW;P?IVv%;8LSH5||3GfE3CKxW?XZ8hjo|r1Gialh@Q9H);vjKOtlMMbC75EtOtr$M z;uO7ZHz$f}ON5LI$2sZ_(9_kF0HcLepMmTO;|zuhA}f#d$iQ+HLJ&h<+W9=Kpnb(j zG}lz8UFDM7SEPmp@cVzo({ciU%FiZ@fTr5QB z=fQcaYdJlIxfT#riJj_(PY5si!+amOY8Lkg`s6D+$eBx3TE4BHhkCtYNTw!79ZW!< zwdd}UWd%#%gu=IJ7%Y9^!g>=TMjrM){S)iow%I4sYtMK5FlzrRU*idKOv@PI2W+)t zJBcaQX8bz^=}-JF|8GHuiMlgw`8keRu@Q>!5<20PL&LO-7Rg)Y+D zI=Ehw-*^hzv=08*GwMCdnGv&73*MG5C8g3X@63(9Ie!A$5tOXBRr&FZ_|w`J3)WXbssMm6xPIYZgcT;UKQ!M}xesQcY!NyrlHM;8_C%yM{bMBtI|hYxkMVa=&PzQv@q*ovTmpxrfg*&Z#D^_OB;!hD%)VB-Ddz3 zBnvfVix3R=~c z7=A$}Y09VGe{L=b0?Th_uC4MM_9Y4NWbVY_Ld^onz8>Z^jFiDZs1cbk4zNqZDJW~b>`>BkDsZ2F7Oj=sSdp^Dr+jv zA`4>m2wIsE++xz#g=p$3N|J9QQ15i(A=p}Io_Rzi(Ehv#X`Jn3ujHU6oSXI~0-PNL zCZwG)n2EPZyJ($l4|ayFUzpH^ugoRn>z5_=O%Yi%Wj3m6t_&n^t;u4y=`dX@LAk2( zJ3GGlIScpPT;2xsoy(Y@%cC*NbbF>0SP-UE9lx)5nu{X|g~LB&)|T%c`*o!=$W{zr<@d25h6$ER&pQP>z(28z;v+_* z?!6?OW8eVzkCP6l>ai2^!GKN#2K46(DXkBV-B%u8Q!KxY=!nz!WQPMl zW$v&E{yZ&nq@ku15w>VR(QFtXiYD zKj?Id$S`FSuT%`?Qu-U49Seqnkh33TNZ1hrawv11`g`w=z`fe_{7pbC0DAy5a()<1!r4MMt03}$fnnUL31@`Sg$(?d zJ}}w!+r0!YZY=b}anG4>0={-P@ZK@6RSBD@D~N^XM-2b~fs@e7!Us!;9W;t4Lv4Si z*?vj|ZDTHRb#{)o8uGI~9ODw}4rnf-M77j!=c5mk9=?0xhf7E<>6|1~4k}H9?mdux z4>&j92D&__IpUQ_#}P(q<%?gd{D3V7dCfLE)KKDa-W>ATF8P+{1A(pzSaTsZ0fRgO zM#7kx*{d%M4!;d>@Sz$;kMY(;7IMS&&752IN4c|=o{+6JAL|-Ff9uui>nYK@$=+@D zb+{CLnY&-N(S!d9=OuQt@Dk2I(+obwXKhd_Xsh6c;ktcutpGB(-#_T4uZ|txm=-5W zFWd0ab4L8i?JzNFa|vW}Ufz2$s(;j^O}|q%SMMWez~&}p{}ad*v3Y2W>SiRQoj9-v zHo{}w2D3wQoA#!1vvUR9R-2y}g#X}JX6J;L<$TxL`hNjN3c2;XL#dlfHi$7vXB>v= z!`8H2&QV#5JDh@g3gY}ts4k(a&6nRAksc30j-*#*JIUyeDzoZWvPZbMRE&T}Jo;AN zp>USb1zv~c!K#{cD{XEZl3ltH)C#SsP9%35h+*8V_JbG4af=kzCJY%6W;^o^U z@M*G6u`UNpezjM=qe!JA`EfFkH)pL;k-5kjtB)U=OP)PPtyPl*0tN@CrA3SAFdr=B zas4Y}Nx2go9COFLViI=}4;3}O^w{|-Gr<)0)K14!b)@;ww1~Tvdx2c#?w;{vk&*3P zcZPL@kcg!t(1YH!^{cN~m#6lnBDcjb5Jd2V>YVayg)6WOwy62|DCZ&GU7mpveItIXFG4NXhTl)}Y5i4;1kG zdUc}0+haoAhye8+Yi`o+eknedL>*o~Jw!O+Y-b zPeJMHRmSUygZg%>n^Xgqz#N?S_NCC5V;4}jc-%Q&8@Q@1g!Ey4Afb^=Db|I9> z7X)=$FLOl9>M3a{mN_}}tz8>On^wF?V@4#Ak~>s-Hj_51c924)-2OtngTnqBheeD9 z1I)+H-`+Kp>T)BRr9~YGG`$scyJfdTP*?9CQ&*4fq{#VPb``0y6c9p_oE+3rz&=nA z1}Aq~!=C$`_wIN83BMEAG(;B2$s}+qqClKUxa6EE#c{t5+D4jma`Frel^j=SBQXQF zlh`+>ttVrdX>?)VMJ=t%?S2kd3&&cnx`V=Sz_>w=mx|T9kSybmmHh`pQB4$Yv;Y`) zQPkHo;UToqj&)ad9N~!I;;W5HX^4yDaPY`Jl-rBP= z1#qQpCO+TC(NZQnOjQrV**3*2-S4f>nk5h88KjAPomD?2r9 znFDWcTJ$L|cSEggQb-;_o|)r;(yo7JkCjS*0LQ&uNOraX0|y^kvlIbYnVT(~Vzse1 zT}&6WSe1YTamH&S#Hl1&Eb{Fj5CJ}!uH@Pz(i7J!laAHQd_`4{!^8}My+%7z(#1z~ zd0iAyQ*)>&>p|v<06;N88Kt6?fGDDZGe+PBlOK&O6u>B=iY@^~2Z2H9OaRa*rOhD; zj&nt5TU$q{#v@kQaz5Za8``N!3q>O<4Xh3bG_C?hyVwf*SN1~in9{s8d95<9nRepd zFjtbe%N+hy@&|@Axpi$?3wRT7lR6}cgMXRTUAL%0r}-9=`l zV^svSXFqjkwU~j%Fb+A#YQ(*@VxaJ+zI)eYEL(}%r+@H~+PQ1x%et2VvVLrI_N`*y zLpjGoi`1f3mA4XclhU~>;k}2=vjgsd&NE$}u1A}}1axERT&?n%9gp51mGm{}(QZ1k z%BxK~qmtAa<1V<|%6Z39eNAFtPQlLR%w&AK1~7f=e^65!Nrm~Fg3HwVS0jHjt3F8` z%J#*51qXdu^H_-L(N6O0Hg+%_w-d%|Dp`vhmjIKJSD(t6d3aTZ8C0mr&1SvPcR3&v z{oa-A(^?)iLr6-^fH+S70RFmFZO*s>vyezR#ZrQ8xLgCCxbId_20MY;Gtdn4T0M3- zJx5$hsUB6fc_~m$7~iXO?aznM*GB9t~me{1fJCi zbw;sT7#gc);lMfOvQJvSs2#Go&Rf1}hH`UMYZPf|e>`pu03Nj*%y)8g&rwt9sgxu5 zjV0V$55KUfxi4~t-nkj21K0|fCU){M-kvSPjt^=FaxJ{$0;Tdn!RIvf8wOZ_J2f?> z}xkhh)u!jYo@gDznYG(IXp1q1Jbj#9|K$5w2_nm9FDy!Zq_?}B_mIjnMQJlioUb7khID| zx4)sP*I{!XJ9w8ulR?xT7W;>kZ&6wHsAP~XGtGLBk94o?UByvU#5iC(SDo6x(8xy8 z4NFF`mYSLl4Yip#1d)MU{NF5{Fnud->TpPlJTF|;8KCn%VbFJ^RnbXCSRVPS>+;4} zjy43L5|;AJw(||vj*sK+NX|2Wyz(;U@mA3B3;A-N^ zi_~L2ln9z;7~Bc`J!z`p*PQ1)Di1hggWvR~sVyPE+O+o6EKa8c;EzfOBygabbYLP4 z%ilF3k&yd8F2bl*AxNJijD2ZdKb#)ItZo~+FOyRc~&DMJ%twP z!tD-Oe8xer1K%~Huz3XFeQP=+vQpXaz%_kX{hi#f;Yp^Q*qKYhu!*&6hwiz-6|1P( z09cW^^PXylgCYP=H++ye^{uN<<24hLc>Hugan-%)(QCPo3rBpPp+6rYzq zhL%QEPzV`3)J9Bl!zZW%y=Km+`Hx()79TJBB=xCA(wOb-Rs6+alh&jT4gmYZ^rN)RLmA1CV!3U)+oy7c$5zCTOU|=wFp7m}v3gZBR zdjZaBns(0zJuy}mO~R( U)TTw=tivogI5l>*#uwE8*<&4X;s5{u literal 0 HcmV?d00001 diff --git a/ultralytics/yolov5/data/scripts/download_weights.sh b/ultralytics/yolov5/data/scripts/download_weights.sh new file mode 100755 index 0000000..31e0a15 --- /dev/null +++ b/ultralytics/yolov5/data/scripts/download_weights.sh @@ -0,0 +1,22 @@ +#!/bin/bash +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# Download latest models from https://github.com/ultralytics/yolov5/releases +# Example usage: bash data/scripts/download_weights.sh +# parent +# └── yolov5 +# ├── yolov5s.pt ← downloads here +# ├── yolov5m.pt +# └── ... + +python - <= cls >= 0, f'incorrect class index {cls}' + + # Write YOLO label + if id not in shapes: + shapes[id] = Image.open(file).size + box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) + with open((labels / id).with_suffix('.txt'), 'a') as f: + f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt + except Exception as e: + print(f'WARNING: skipping one label for {file}: {e}') + + + # Download manually from https://challenge.xviewdataset.org + dir = Path(yaml['path']) # dataset root dir + # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels + # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images + # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) + # download(urls, dir=dir, delete=False) + + # Convert labels + convert_labels(dir / 'xView_train.geojson') + + # Move images + images = Path(dir / 'images') + images.mkdir(parents=True, exist_ok=True) + Path(dir / 'train_images').rename(dir / 'images' / 'train') + Path(dir / 'val_images').rename(dir / 'images' / 'val') + + # Split + autosplit(dir / 'images' / 'train') diff --git a/ultralytics/yolov5/detect.py b/ultralytics/yolov5/detect.py new file mode 100644 index 0000000..3f32d7a --- /dev/null +++ b/ultralytics/yolov5/detect.py @@ -0,0 +1,261 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc. + +Usage - sources: + $ python detect.py --weights yolov5s.pt --source 0 # webcam + img.jpg # image + vid.mp4 # video + screen # screenshot + path/ # directory + list.txt # list of images + list.streams # list of streams + 'path/*.jpg' # glob + 'https://youtu.be/Zgi9g1ksQHc' # YouTube + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream + +Usage - formats: + $ python detect.py --weights yolov5s.pt # PyTorch + yolov5s.torchscript # TorchScript + yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s_openvino_model # OpenVINO + yolov5s.engine # TensorRT + yolov5s.mlmodel # CoreML (macOS-only) + yolov5s_saved_model # TensorFlow SavedModel + yolov5s.pb # TensorFlow GraphDef + yolov5s.tflite # TensorFlow Lite + yolov5s_edgetpu.tflite # TensorFlow Edge TPU + yolov5s_paddle_model # PaddlePaddle +""" + +import argparse +import os +import platform +import sys +from pathlib import Path + +import torch + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import DetectMultiBackend +from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams +from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, + increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh) +from utils.plots import Annotator, colors, save_one_box +from utils.torch_utils import select_device, smart_inference_mode + + +@smart_inference_mode() +def run( + weights=ROOT / 'yolov5s.pt', # model path or triton URL + source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam) + data=ROOT / 'data/coco128.yaml', # dataset.yaml path + imgsz=(640, 640), # inference size (height, width) + conf_thres=0.25, # confidence threshold + iou_thres=0.45, # NMS IOU threshold + max_det=1000, # maximum detections per image + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + view_img=False, # show results + save_txt=False, # save results to *.txt + save_conf=False, # save confidences in --save-txt labels + save_crop=False, # save cropped prediction boxes + nosave=False, # do not save images/videos + classes=None, # filter by class: --class 0, or --class 0 2 3 + agnostic_nms=False, # class-agnostic NMS + augment=False, # augmented inference + visualize=False, # visualize features + update=False, # update all models + project=ROOT / 'runs/detect', # save results to project/name + name='exp', # save results to project/name + exist_ok=False, # existing project/name ok, do not increment + line_thickness=3, # bounding box thickness (pixels) + hide_labels=False, # hide labels + hide_conf=False, # hide confidences + half=False, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + vid_stride=1, # video frame-rate stride +): + source = str(source) + save_img = not nosave and not source.endswith('.txt') # save inference images + is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) + is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) + webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) + screenshot = source.lower().startswith('screen') + if is_url and is_file: + source = check_file(source) # download + + # Directories + save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir + + # Load model + device = select_device(device) + model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) + stride, names, pt = model.stride, model.names, model.pt + imgsz = check_img_size(imgsz, s=stride) # check image size + + # Dataloader + bs = 1 # batch_size + if webcam: + view_img = check_imshow(warn=True) + dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) + bs = len(dataset) + elif screenshot: + dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) + else: + dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) + vid_path, vid_writer = [None] * bs, [None] * bs + + # Run inference + model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup + seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) + for path, im, im0s, vid_cap, s in dataset: + with dt[0]: + im = torch.from_numpy(im).to(model.device) + im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + if len(im.shape) == 3: + im = im[None] # expand for batch dim + + # Inference + with dt[1]: + visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False + pred = model(im, augment=augment, visualize=visualize) + + # NMS + with dt[2]: + pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) + + # Second-stage classifier (optional) + # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) + + # Process predictions + for i, det in enumerate(pred): # per image + seen += 1 + if webcam: # batch_size >= 1 + p, im0, frame = path[i], im0s[i].copy(), dataset.count + s += f'{i}: ' + else: + p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) + + p = Path(p) # to Path + save_path = str(save_dir / p.name) # im.jpg + txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt + s += '%gx%g ' % im.shape[2:] # print string + gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh + imc = im0.copy() if save_crop else im0 # for save_crop + annotator = Annotator(im0, line_width=line_thickness, example=str(names)) + if len(det): + # Rescale boxes from img_size to im0 size + det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() + + # Print results + for c in det[:, 5].unique(): + n = (det[:, 5] == c).sum() # detections per class + s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string + + # Write results + for *xyxy, conf, cls in reversed(det): + if save_txt: # Write to file + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format + with open(f'{txt_path}.txt', 'a') as f: + f.write(('%g ' * len(line)).rstrip() % line + '\n') + + if save_img or save_crop or view_img: # Add bbox to image + c = int(cls) # integer class + label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') + annotator.box_label(xyxy, label, color=colors(c, True)) + if save_crop: + save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) + + # Stream results + im0 = annotator.result() + if view_img: + if platform.system() == 'Linux' and p not in windows: + windows.append(p) + cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) + cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) + cv2.imshow(str(p), im0) + cv2.waitKey(1) # 1 millisecond + + # Save results (image with detections) + if save_img: + if dataset.mode == 'image': + cv2.imwrite(save_path, im0) + else: # 'video' or 'stream' + if vid_path[i] != save_path: # new video + vid_path[i] = save_path + if isinstance(vid_writer[i], cv2.VideoWriter): + vid_writer[i].release() # release previous video writer + if vid_cap: # video + fps = vid_cap.get(cv2.CAP_PROP_FPS) + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + else: # stream + fps, w, h = 30, im0.shape[1], im0.shape[0] + save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos + vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) + vid_writer[i].write(im0) + + # Print time (inference-only) + LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") + + # Print results + t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) + if save_txt or save_img: + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") + if update: + strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL') + parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') + parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') + parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') + parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') + parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--view-img', action='store_true', help='show results') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') + parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') + parser.add_argument('--nosave', action='store_true', help='do not save images/videos') + parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') + parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--visualize', action='store_true', help='visualize features') + parser.add_argument('--update', action='store_true', help='update all models') + parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') + parser.add_argument('--name', default='exp', help='save results to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') + parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') + parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') + parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') + opt = parser.parse_args() + opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand + print_args(vars(opt)) + return opt + + +def main(opt): + check_requirements(exclude=('tensorboard', 'thop')) + run(**vars(opt)) + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/export.py b/ultralytics/yolov5/export.py new file mode 100644 index 0000000..e167b20 --- /dev/null +++ b/ultralytics/yolov5/export.py @@ -0,0 +1,672 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit + +Format | `export.py --include` | Model +--- | --- | --- +PyTorch | - | yolov5s.pt +TorchScript | `torchscript` | yolov5s.torchscript +ONNX | `onnx` | yolov5s.onnx +OpenVINO | `openvino` | yolov5s_openvino_model/ +TensorRT | `engine` | yolov5s.engine +CoreML | `coreml` | yolov5s.mlmodel +TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ +TensorFlow GraphDef | `pb` | yolov5s.pb +TensorFlow Lite | `tflite` | yolov5s.tflite +TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite +TensorFlow.js | `tfjs` | yolov5s_web_model/ +PaddlePaddle | `paddle` | yolov5s_paddle_model/ + +Requirements: + $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU + $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU + +Usage: + $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... + +Inference: + $ python detect.py --weights yolov5s.pt # PyTorch + yolov5s.torchscript # TorchScript + yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s_openvino_model # OpenVINO + yolov5s.engine # TensorRT + yolov5s.mlmodel # CoreML (macOS-only) + yolov5s_saved_model # TensorFlow SavedModel + yolov5s.pb # TensorFlow GraphDef + yolov5s.tflite # TensorFlow Lite + yolov5s_edgetpu.tflite # TensorFlow Edge TPU + yolov5s_paddle_model # PaddlePaddle + +TensorFlow.js: + $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example + $ npm install + $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model + $ npm start +""" + +import argparse +import contextlib +import json +import os +import platform +import re +import subprocess +import sys +import time +import warnings +from pathlib import Path + +import pandas as pd +import torch +from torch.utils.mobile_optimizer import optimize_for_mobile + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +if platform.system() != 'Windows': + ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.experimental import attempt_load +from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel +from utils.dataloaders import LoadImages +from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version, + check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save) +from utils.torch_utils import select_device, smart_inference_mode + +MACOS = platform.system() == 'Darwin' # macOS environment + + +def export_formats(): + # YOLOv5 export formats + x = [ + ['PyTorch', '-', '.pt', True, True], + ['TorchScript', 'torchscript', '.torchscript', True, True], + ['ONNX', 'onnx', '.onnx', True, True], + ['OpenVINO', 'openvino', '_openvino_model', True, False], + ['TensorRT', 'engine', '.engine', False, True], + ['CoreML', 'coreml', '.mlmodel', True, False], + ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], + ['TensorFlow GraphDef', 'pb', '.pb', True, True], + ['TensorFlow Lite', 'tflite', '.tflite', True, False], + ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False], + ['TensorFlow.js', 'tfjs', '_web_model', False, False], + ['PaddlePaddle', 'paddle', '_paddle_model', True, True],] + return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) + + +def try_export(inner_func): + # YOLOv5 export decorator, i..e @try_export + inner_args = get_default_args(inner_func) + + def outer_func(*args, **kwargs): + prefix = inner_args['prefix'] + try: + with Profile() as dt: + f, model = inner_func(*args, **kwargs) + LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)') + return f, model + except Exception as e: + LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}') + return None, None + + return outer_func + + +@try_export +def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): + # YOLOv5 TorchScript model export + LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') + f = file.with_suffix('.torchscript') + + ts = torch.jit.trace(model, im, strict=False) + d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names} + extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() + if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html + optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) + else: + ts.save(str(f), _extra_files=extra_files) + return f, None + + +@try_export +def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')): + # YOLOv5 ONNX export + check_requirements('onnx>=1.12.0') + import onnx + + LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') + f = file.with_suffix('.onnx') + + output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0'] + if dynamic: + dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640) + if isinstance(model, SegmentationModel): + dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) + dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160) + elif isinstance(model, DetectionModel): + dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) + + torch.onnx.export( + model.cpu() if dynamic else model, # --dynamic only compatible with cpu + im.cpu() if dynamic else im, + f, + verbose=False, + opset_version=opset, + do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False + input_names=['images'], + output_names=output_names, + dynamic_axes=dynamic or None) + + # Checks + model_onnx = onnx.load(f) # load onnx model + onnx.checker.check_model(model_onnx) # check onnx model + + # Metadata + d = {'stride': int(max(model.stride)), 'names': model.names} + for k, v in d.items(): + meta = model_onnx.metadata_props.add() + meta.key, meta.value = k, str(v) + onnx.save(model_onnx, f) + + # Simplify + if simplify: + try: + cuda = torch.cuda.is_available() + check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1')) + import onnxsim + + LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') + model_onnx, check = onnxsim.simplify(model_onnx) + assert check, 'assert check failed' + onnx.save(model_onnx, f) + except Exception as e: + LOGGER.info(f'{prefix} simplifier failure: {e}') + return f, model_onnx + + +@try_export +def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')): + # YOLOv5 OpenVINO export + check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/ + import openvino.inference_engine as ie + + LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') + f = str(file).replace('.pt', f'_openvino_model{os.sep}') + + args = [ + 'mo', + '--input_model', + str(file.with_suffix('.onnx')), + '--output_dir', + f, + '--data_type', + ('FP16' if half else 'FP32'),] + subprocess.run(args, check=True, env=os.environ) # export + yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml + return f, None + + +@try_export +def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')): + # YOLOv5 Paddle export + check_requirements(('paddlepaddle', 'x2paddle')) + import x2paddle + from x2paddle.convert import pytorch2paddle + + LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') + f = str(file).replace('.pt', f'_paddle_model{os.sep}') + + pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export + yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml + return f, None + + +@try_export +def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')): + # YOLOv5 CoreML export + check_requirements('coremltools') + import coremltools as ct + + LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') + f = file.with_suffix('.mlmodel') + + ts = torch.jit.trace(model, im, strict=False) # TorchScript model + ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) + bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None) + if bits < 32: + if MACOS: # quantization only supported on macOS + with warnings.catch_warnings(): + warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress numpy==1.20 float warning + ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) + else: + print(f'{prefix} quantization only supported on macOS, skipping...') + ct_model.save(f) + return f, ct_model + + +@try_export +def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): + # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt + assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' + try: + import tensorrt as trt + except Exception: + if platform.system() == 'Linux': + check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') + import tensorrt as trt + + if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 + grid = model.model[-1].anchor_grid + model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] + export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 + model.model[-1].anchor_grid = grid + else: # TensorRT >= 8 + check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0 + export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 + onnx = file.with_suffix('.onnx') + + LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') + assert onnx.exists(), f'failed to export ONNX file: {onnx}' + f = file.with_suffix('.engine') # TensorRT engine file + logger = trt.Logger(trt.Logger.INFO) + if verbose: + logger.min_severity = trt.Logger.Severity.VERBOSE + + builder = trt.Builder(logger) + config = builder.create_builder_config() + config.max_workspace_size = workspace * 1 << 30 + # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice + + flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) + network = builder.create_network(flag) + parser = trt.OnnxParser(network, logger) + if not parser.parse_from_file(str(onnx)): + raise RuntimeError(f'failed to load ONNX file: {onnx}') + + inputs = [network.get_input(i) for i in range(network.num_inputs)] + outputs = [network.get_output(i) for i in range(network.num_outputs)] + for inp in inputs: + LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') + for out in outputs: + LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') + + if dynamic: + if im.shape[0] <= 1: + LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument') + profile = builder.create_optimization_profile() + for inp in inputs: + profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape) + config.add_optimization_profile(profile) + + LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}') + if builder.platform_has_fast_fp16 and half: + config.set_flag(trt.BuilderFlag.FP16) + with builder.build_engine(network, config) as engine, open(f, 'wb') as t: + t.write(engine.serialize()) + return f, None + + +@try_export +def export_saved_model(model, + im, + file, + dynamic, + tf_nms=False, + agnostic_nms=False, + topk_per_class=100, + topk_all=100, + iou_thres=0.45, + conf_thres=0.25, + keras=False, + prefix=colorstr('TensorFlow SavedModel:')): + # YOLOv5 TensorFlow SavedModel export + try: + import tensorflow as tf + except Exception: + check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}") + import tensorflow as tf + from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 + + from models.tf import TFModel + + LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') + f = str(file).replace('.pt', '_saved_model') + batch_size, ch, *imgsz = list(im.shape) # BCHW + + tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) + im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow + _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) + inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size) + outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) + keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) + keras_model.trainable = False + keras_model.summary() + if keras: + keras_model.save(f, save_format='tf') + else: + spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) + m = tf.function(lambda x: keras_model(x)) # full model + m = m.get_concrete_function(spec) + frozen_func = convert_variables_to_constants_v2(m) + tfm = tf.Module() + tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec]) + tfm.__call__(im) + tf.saved_model.save(tfm, + f, + options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version( + tf.__version__, '2.6') else tf.saved_model.SaveOptions()) + return f, keras_model + + +@try_export +def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): + # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow + import tensorflow as tf + from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 + + LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') + f = file.with_suffix('.pb') + + m = tf.function(lambda x: keras_model(x)) # full model + m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) + frozen_func = convert_variables_to_constants_v2(m) + frozen_func.graph.as_graph_def() + tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) + return f, None + + +@try_export +def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): + # YOLOv5 TensorFlow Lite export + import tensorflow as tf + + LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') + batch_size, ch, *imgsz = list(im.shape) # BCHW + f = str(file).replace('.pt', '-fp16.tflite') + + converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) + converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] + converter.target_spec.supported_types = [tf.float16] + converter.optimizations = [tf.lite.Optimize.DEFAULT] + if int8: + from models.tf import representative_dataset_gen + dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False) + converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100) + converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] + converter.target_spec.supported_types = [] + converter.inference_input_type = tf.uint8 # or tf.int8 + converter.inference_output_type = tf.uint8 # or tf.int8 + converter.experimental_new_quantizer = True + f = str(file).replace('.pt', '-int8.tflite') + if nms or agnostic_nms: + converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) + + tflite_model = converter.convert() + open(f, 'wb').write(tflite_model) + return f, None + + +@try_export +def export_edgetpu(file, prefix=colorstr('Edge TPU:')): + # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ + cmd = 'edgetpu_compiler --version' + help_url = 'https://coral.ai/docs/edgetpu/compiler/' + assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' + if subprocess.run(f'{cmd} > /dev/null 2>&1', shell=True).returncode != 0: + LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') + sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system + for c in ( + 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', + 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', + 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): + subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) + ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] + + LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') + f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model + f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model + + subprocess.run([ + 'edgetpu_compiler', + '-s', + '-d', + '-k', + '10', + '--out_dir', + str(file.parent), + f_tfl,], check=True) + return f, None + + +@try_export +def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')): + # YOLOv5 TensorFlow.js export + check_requirements('tensorflowjs') + import tensorflowjs as tfjs + + LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') + f = str(file).replace('.pt', '_web_model') # js dir + f_pb = file.with_suffix('.pb') # *.pb path + f_json = f'{f}/model.json' # *.json path + + args = [ + 'tensorflowjs_converter', + '--input_format=tf_frozen_model', + '--quantize_uint8' if int8 else '', + '--output_node_names=Identity,Identity_1,Identity_2,Identity_3', + str(f_pb), + str(f),] + subprocess.run([arg for arg in args if arg], check=True) + + json = Path(f_json).read_text() + with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order + subst = re.sub( + r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' + r'"Identity.?.?": {"name": "Identity.?.?"}, ' + r'"Identity.?.?": {"name": "Identity.?.?"}, ' + r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' + r'"Identity_1": {"name": "Identity_1"}, ' + r'"Identity_2": {"name": "Identity_2"}, ' + r'"Identity_3": {"name": "Identity_3"}}}', json) + j.write(subst) + return f, None + + +def add_tflite_metadata(file, metadata, num_outputs): + # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata + with contextlib.suppress(ImportError): + # check_requirements('tflite_support') + from tflite_support import flatbuffers + from tflite_support import metadata as _metadata + from tflite_support import metadata_schema_py_generated as _metadata_fb + + tmp_file = Path('/tmp/meta.txt') + with open(tmp_file, 'w') as meta_f: + meta_f.write(str(metadata)) + + model_meta = _metadata_fb.ModelMetadataT() + label_file = _metadata_fb.AssociatedFileT() + label_file.name = tmp_file.name + model_meta.associatedFiles = [label_file] + + subgraph = _metadata_fb.SubGraphMetadataT() + subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()] + subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs + model_meta.subgraphMetadata = [subgraph] + + b = flatbuffers.Builder(0) + b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) + metadata_buf = b.Output() + + populator = _metadata.MetadataPopulator.with_model_file(file) + populator.load_metadata_buffer(metadata_buf) + populator.load_associated_files([str(tmp_file)]) + populator.populate() + tmp_file.unlink() + + +@smart_inference_mode() +def run( + data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' + weights=ROOT / 'yolov5s.pt', # weights path + imgsz=(640, 640), # image (height, width) + batch_size=1, # batch size + device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu + include=('torchscript', 'onnx'), # include formats + half=False, # FP16 half-precision export + inplace=False, # set YOLOv5 Detect() inplace=True + keras=False, # use Keras + optimize=False, # TorchScript: optimize for mobile + int8=False, # CoreML/TF INT8 quantization + dynamic=False, # ONNX/TF/TensorRT: dynamic axes + simplify=False, # ONNX: simplify model + opset=12, # ONNX: opset version + verbose=False, # TensorRT: verbose log + workspace=4, # TensorRT: workspace size (GB) + nms=False, # TF: add NMS to model + agnostic_nms=False, # TF: add agnostic NMS to model + topk_per_class=100, # TF.js NMS: topk per class to keep + topk_all=100, # TF.js NMS: topk for all classes to keep + iou_thres=0.45, # TF.js NMS: IoU threshold + conf_thres=0.25, # TF.js NMS: confidence threshold +): + t = time.time() + include = [x.lower() for x in include] # to lowercase + fmts = tuple(export_formats()['Argument'][1:]) # --include arguments + flags = [x in include for x in fmts] + assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}' + jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans + file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights + + # Load PyTorch model + device = select_device(device) + if half: + assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0' + assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' + model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model + + # Checks + imgsz *= 2 if len(imgsz) == 1 else 1 # expand + if optimize: + assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' + + # Input + gs = int(max(model.stride)) # grid size (max stride) + imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples + im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection + + # Update model + model.eval() + for k, m in model.named_modules(): + if isinstance(m, Detect): + m.inplace = inplace + m.dynamic = dynamic + m.export = True + + for _ in range(2): + y = model(im) # dry runs + if half and not coreml: + im, model = im.half(), model.half() # to FP16 + shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape + metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata + LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") + + # Exports + f = [''] * len(fmts) # exported filenames + warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning + if jit: # TorchScript + f[0], _ = export_torchscript(model, im, file, optimize) + if engine: # TensorRT required before ONNX + f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose) + if onnx or xml: # OpenVINO requires ONNX + f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify) + if xml: # OpenVINO + f[3], _ = export_openvino(file, metadata, half) + if coreml: # CoreML + f[4], _ = export_coreml(model, im, file, int8, half) + if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats + assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.' + assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.' + f[5], s_model = export_saved_model(model.cpu(), + im, + file, + dynamic, + tf_nms=nms or agnostic_nms or tfjs, + agnostic_nms=agnostic_nms or tfjs, + topk_per_class=topk_per_class, + topk_all=topk_all, + iou_thres=iou_thres, + conf_thres=conf_thres, + keras=keras) + if pb or tfjs: # pb prerequisite to tfjs + f[6], _ = export_pb(s_model, file) + if tflite or edgetpu: + f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms) + if edgetpu: + f[8], _ = export_edgetpu(file) + add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs)) + if tfjs: + f[9], _ = export_tfjs(file, int8) + if paddle: # PaddlePaddle + f[10], _ = export_paddle(model, im, file, metadata) + + # Finish + f = [str(x) for x in f if x] # filter out '' and None + if any(f): + cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type + det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel) + dir = Path('segment' if seg else 'classify' if cls else '') + h = '--half' if half else '' # --half FP16 inference arg + s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \ + '# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else '' + LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' + f"\nResults saved to {colorstr('bold', file.parent.resolve())}" + f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}" + f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}" + f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}" + f'\nVisualize: https://netron.app') + return f # return list of exported files/dirs + + +def parse_opt(known=False): + parser = argparse.ArgumentParser() + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') + parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') + parser.add_argument('--batch-size', type=int, default=1, help='batch size') + parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--half', action='store_true', help='FP16 half-precision export') + parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') + parser.add_argument('--keras', action='store_true', help='TF: use Keras') + parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') + parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') + parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes') + parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') + parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version') + parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') + parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') + parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') + parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') + parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') + parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') + parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') + parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') + parser.add_argument( + '--include', + nargs='+', + default=['torchscript'], + help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle') + opt = parser.parse_known_args()[0] if known else parser.parse_args() + print_args(vars(opt)) + return opt + + +def main(opt): + for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): + run(**vars(opt)) + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/hubconf.py b/ultralytics/yolov5/hubconf.py new file mode 100644 index 0000000..41af8e3 --- /dev/null +++ b/ultralytics/yolov5/hubconf.py @@ -0,0 +1,169 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5 + +Usage: + import torch + model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model + model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch + model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model + model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo +""" + +import torch + + +def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + """Creates or loads a YOLOv5 model + + Arguments: + name (str): model name 'yolov5s' or path 'path/to/best.pt' + pretrained (bool): load pretrained weights into the model + channels (int): number of input channels + classes (int): number of model classes + autoshape (bool): apply YOLOv5 .autoshape() wrapper to model + verbose (bool): print all information to screen + device (str, torch.device, None): device to use for model parameters + + Returns: + YOLOv5 model + """ + from pathlib import Path + + from models.common import AutoShape, DetectMultiBackend + from models.experimental import attempt_load + from models.yolo import ClassificationModel, DetectionModel, SegmentationModel + from utils.downloads import attempt_download + from utils.general import LOGGER, check_requirements, intersect_dicts, logging + from utils.torch_utils import select_device + + if not verbose: + LOGGER.setLevel(logging.WARNING) + check_requirements(exclude=('opencv-python', 'tensorboard', 'thop')) + name = Path(name) + path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path + try: + device = select_device(device) + if pretrained and channels == 3 and classes == 80: + try: + model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model + if autoshape: + if model.pt and isinstance(model.model, ClassificationModel): + LOGGER.warning('WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. ' + 'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).') + elif model.pt and isinstance(model.model, SegmentationModel): + LOGGER.warning('WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. ' + 'You will not be able to run inference with this model.') + else: + model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS + except Exception: + model = attempt_load(path, device=device, fuse=False) # arbitrary model + else: + cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path + model = DetectionModel(cfg, channels, classes) # create model + if pretrained: + ckpt = torch.load(attempt_download(path), map_location=device) # load + csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 + csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect + model.load_state_dict(csd, strict=False) # load + if len(ckpt['model'].names) == classes: + model.names = ckpt['model'].names # set class names attribute + if not verbose: + LOGGER.setLevel(logging.INFO) # reset to default + return model.to(device) + + except Exception as e: + help_url = 'https://github.com/ultralytics/yolov5/issues/36' + s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.' + raise Exception(s) from e + + +def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None): + # YOLOv5 custom or local model + return _create(path, autoshape=autoshape, verbose=_verbose, device=device) + + +def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-nano model https://github.com/ultralytics/yolov5 + return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device) + + +def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-small model https://github.com/ultralytics/yolov5 + return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device) + + +def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-medium model https://github.com/ultralytics/yolov5 + return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device) + + +def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-large model https://github.com/ultralytics/yolov5 + return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device) + + +def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-xlarge model https://github.com/ultralytics/yolov5 + return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device) + + +def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device) + + +def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device) + + +def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device) + + +def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device) + + +def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): + # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device) + + +if __name__ == '__main__': + import argparse + from pathlib import Path + + import numpy as np + from PIL import Image + + from utils.general import cv2, print_args + + # Argparser + parser = argparse.ArgumentParser() + parser.add_argument('--model', type=str, default='yolov5s', help='model name') + opt = parser.parse_args() + print_args(vars(opt)) + + # Model + model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) + # model = custom(path='path/to/model.pt') # custom + + # Images + imgs = [ + 'data/images/zidane.jpg', # filename + Path('data/images/zidane.jpg'), # Path + 'https://ultralytics.com/images/zidane.jpg', # URI + cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV + Image.open('data/images/bus.jpg'), # PIL + np.zeros((320, 640, 3))] # numpy + + # Inference + results = model(imgs, size=320) # batched inference + + # Results + results.print() + results.save() diff --git a/ultralytics/yolov5/models/__init__.py b/ultralytics/yolov5/models/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ultralytics/yolov5/models/common.py b/ultralytics/yolov5/models/common.py new file mode 100644 index 0000000..aa8ae67 --- /dev/null +++ b/ultralytics/yolov5/models/common.py @@ -0,0 +1,870 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Common modules +""" + +import ast +import contextlib +import json +import math +import platform +import warnings +import zipfile +from collections import OrderedDict, namedtuple +from copy import copy +from pathlib import Path +from urllib.parse import urlparse + +import cv2 +import numpy as np +import pandas as pd +import requests +import torch +import torch.nn as nn +from PIL import Image +from torch.cuda import amp + +from utils import TryExcept +from utils.dataloaders import exif_transpose, letterbox +from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr, + increment_path, is_jupyter, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy, + xyxy2xywh, yaml_load) +from utils.plots import Annotator, colors, save_one_box +from utils.torch_utils import copy_attr, smart_inference_mode + + +def autopad(k, p=None, d=1): # kernel, padding, dilation + # Pad to 'same' shape outputs + if d > 1: + k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size + if p is None: + p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad + return p + + +class Conv(nn.Module): + # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation) + default_act = nn.SiLU() # default activation + + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): + super().__init__() + self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) + self.bn = nn.BatchNorm2d(c2) + self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() + + def forward(self, x): + return self.act(self.bn(self.conv(x))) + + def forward_fuse(self, x): + return self.act(self.conv(x)) + + +class DWConv(Conv): + # Depth-wise convolution + def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation + super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act) + + +class DWConvTranspose2d(nn.ConvTranspose2d): + # Depth-wise transpose convolution + def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out + super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) + + +class TransformerLayer(nn.Module): + # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) + def __init__(self, c, num_heads): + super().__init__() + self.q = nn.Linear(c, c, bias=False) + self.k = nn.Linear(c, c, bias=False) + self.v = nn.Linear(c, c, bias=False) + self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) + self.fc1 = nn.Linear(c, c, bias=False) + self.fc2 = nn.Linear(c, c, bias=False) + + def forward(self, x): + x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x + x = self.fc2(self.fc1(x)) + x + return x + + +class TransformerBlock(nn.Module): + # Vision Transformer https://arxiv.org/abs/2010.11929 + def __init__(self, c1, c2, num_heads, num_layers): + super().__init__() + self.conv = None + if c1 != c2: + self.conv = Conv(c1, c2) + self.linear = nn.Linear(c2, c2) # learnable position embedding + self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) + self.c2 = c2 + + def forward(self, x): + if self.conv is not None: + x = self.conv(x) + b, _, w, h = x.shape + p = x.flatten(2).permute(2, 0, 1) + return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) + + +class Bottleneck(nn.Module): + # Standard bottleneck + def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_, c2, 3, 1, g=g) + self.add = shortcut and c1 == c2 + + def forward(self, x): + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) + + +class BottleneckCSP(nn.Module): + # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) + self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) + self.cv4 = Conv(2 * c_, c2, 1, 1) + self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) + self.act = nn.SiLU() + self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) + + def forward(self, x): + y1 = self.cv3(self.m(self.cv1(x))) + y2 = self.cv2(x) + return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) + + +class CrossConv(nn.Module): + # Cross Convolution Downsample + def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): + # ch_in, ch_out, kernel, stride, groups, expansion, shortcut + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, (1, k), (1, s)) + self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) + self.add = shortcut and c1 == c2 + + def forward(self, x): + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) + + +class C3(nn.Module): + # CSP Bottleneck with 3 convolutions + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c1, c_, 1, 1) + self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) + self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) + + def forward(self, x): + return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) + + +class C3x(C3): + # C3 module with cross-convolutions + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): + super().__init__(c1, c2, n, shortcut, g, e) + c_ = int(c2 * e) + self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n))) + + +class C3TR(C3): + # C3 module with TransformerBlock() + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): + super().__init__(c1, c2, n, shortcut, g, e) + c_ = int(c2 * e) + self.m = TransformerBlock(c_, c_, 4, n) + + +class C3SPP(C3): + # C3 module with SPP() + def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5): + super().__init__(c1, c2, n, shortcut, g, e) + c_ = int(c2 * e) + self.m = SPP(c_, c_, k) + + +class C3Ghost(C3): + # C3 module with GhostBottleneck() + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): + super().__init__(c1, c2, n, shortcut, g, e) + c_ = int(c2 * e) # hidden channels + self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) + + +class SPP(nn.Module): + # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729 + def __init__(self, c1, c2, k=(5, 9, 13)): + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) + self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) + + def forward(self, x): + x = self.cv1(x) + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning + return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) + + +class SPPF(nn.Module): + # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher + def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_ * 4, c2, 1, 1) + self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) + + def forward(self, x): + x = self.cv1(x) + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning + y1 = self.m(x) + y2 = self.m(y1) + return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) + + +class Focus(nn.Module): + # Focus wh information into c-space + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups + super().__init__() + self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act) + # self.contract = Contract(gain=2) + + def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) + return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1)) + # return self.conv(self.contract(x)) + + +class GhostConv(nn.Module): + # Ghost Convolution https://github.com/huawei-noah/ghostnet + def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups + super().__init__() + c_ = c2 // 2 # hidden channels + self.cv1 = Conv(c1, c_, k, s, None, g, act=act) + self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act) + + def forward(self, x): + y = self.cv1(x) + return torch.cat((y, self.cv2(y)), 1) + + +class GhostBottleneck(nn.Module): + # Ghost Bottleneck https://github.com/huawei-noah/ghostnet + def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride + super().__init__() + c_ = c2 // 2 + self.conv = nn.Sequential( + GhostConv(c1, c_, 1, 1), # pw + DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw + GhostConv(c_, c2, 1, 1, act=False)) # pw-linear + self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, + act=False)) if s == 2 else nn.Identity() + + def forward(self, x): + return self.conv(x) + self.shortcut(x) + + +class Contract(nn.Module): + # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) + def __init__(self, gain=2): + super().__init__() + self.gain = gain + + def forward(self, x): + b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain' + s = self.gain + x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2) + x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) + return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40) + + +class Expand(nn.Module): + # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) + def __init__(self, gain=2): + super().__init__() + self.gain = gain + + def forward(self, x): + b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' + s = self.gain + x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80) + x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) + return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160) + + +class Concat(nn.Module): + # Concatenate a list of tensors along dimension + def __init__(self, dimension=1): + super().__init__() + self.d = dimension + + def forward(self, x): + return torch.cat(x, self.d) + + +class DetectMultiBackend(nn.Module): + # YOLOv5 MultiBackend class for python inference on various backends + def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True): + # Usage: + # PyTorch: weights = *.pt + # TorchScript: *.torchscript + # ONNX Runtime: *.onnx + # ONNX OpenCV DNN: *.onnx --dnn + # OpenVINO: *_openvino_model + # CoreML: *.mlmodel + # TensorRT: *.engine + # TensorFlow SavedModel: *_saved_model + # TensorFlow GraphDef: *.pb + # TensorFlow Lite: *.tflite + # TensorFlow Edge TPU: *_edgetpu.tflite + # PaddlePaddle: *_paddle_model + from models.experimental import attempt_download, attempt_load # scoped to avoid circular import + + super().__init__() + w = str(weights[0] if isinstance(weights, list) else weights) + pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w) + fp16 &= pt or jit or onnx or engine # FP16 + nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH) + stride = 32 # default stride + cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA + if not (pt or triton): + w = attempt_download(w) # download if not local + + if pt: # PyTorch + model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse) + stride = max(int(model.stride.max()), 32) # model stride + names = model.module.names if hasattr(model, 'module') else model.names # get class names + model.half() if fp16 else model.float() + self.model = model # explicitly assign for to(), cpu(), cuda(), half() + elif jit: # TorchScript + LOGGER.info(f'Loading {w} for TorchScript inference...') + extra_files = {'config.txt': ''} # model metadata + model = torch.jit.load(w, _extra_files=extra_files, map_location=device) + model.half() if fp16 else model.float() + if extra_files['config.txt']: # load metadata dict + d = json.loads(extra_files['config.txt'], + object_hook=lambda d: {int(k) if k.isdigit() else k: v + for k, v in d.items()}) + stride, names = int(d['stride']), d['names'] + elif dnn: # ONNX OpenCV DNN + LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') + check_requirements('opencv-python>=4.5.4') + net = cv2.dnn.readNetFromONNX(w) + elif onnx: # ONNX Runtime + LOGGER.info(f'Loading {w} for ONNX Runtime inference...') + check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) + import onnxruntime + providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider'] + session = onnxruntime.InferenceSession(w, providers=providers) + output_names = [x.name for x in session.get_outputs()] + meta = session.get_modelmeta().custom_metadata_map # metadata + if 'stride' in meta: + stride, names = int(meta['stride']), eval(meta['names']) + elif xml: # OpenVINO + LOGGER.info(f'Loading {w} for OpenVINO inference...') + check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/ + from openvino.runtime import Core, Layout, get_batch + ie = Core() + if not Path(w).is_file(): # if not *.xml + w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir + network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin')) + if network.get_parameters()[0].get_layout().empty: + network.get_parameters()[0].set_layout(Layout('NCHW')) + batch_dim = get_batch(network) + if batch_dim.is_static: + batch_size = batch_dim.get_length() + executable_network = ie.compile_model(network, device_name='CPU') # device_name="MYRIAD" for Intel NCS2 + stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata + elif engine: # TensorRT + LOGGER.info(f'Loading {w} for TensorRT inference...') + import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download + check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 + if device.type == 'cpu': + device = torch.device('cuda:0') + Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) + logger = trt.Logger(trt.Logger.INFO) + with open(w, 'rb') as f, trt.Runtime(logger) as runtime: + model = runtime.deserialize_cuda_engine(f.read()) + context = model.create_execution_context() + bindings = OrderedDict() + output_names = [] + fp16 = False # default updated below + dynamic = False + for i in range(model.num_bindings): + name = model.get_binding_name(i) + dtype = trt.nptype(model.get_binding_dtype(i)) + if model.binding_is_input(i): + if -1 in tuple(model.get_binding_shape(i)): # dynamic + dynamic = True + context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2])) + if dtype == np.float16: + fp16 = True + else: # output + output_names.append(name) + shape = tuple(context.get_binding_shape(i)) + im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) + bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr())) + binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) + batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size + elif coreml: # CoreML + LOGGER.info(f'Loading {w} for CoreML inference...') + import coremltools as ct + model = ct.models.MLModel(w) + elif saved_model: # TF SavedModel + LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...') + import tensorflow as tf + keras = False # assume TF1 saved_model + model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w) + elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt + LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...') + import tensorflow as tf + + def wrap_frozen_graph(gd, inputs, outputs): + x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=''), []) # wrapped + ge = x.graph.as_graph_element + return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs)) + + def gd_outputs(gd): + name_list, input_list = [], [] + for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef + name_list.append(node.name) + input_list.extend(node.input) + return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp')) + + gd = tf.Graph().as_graph_def() # TF GraphDef + with open(w, 'rb') as f: + gd.ParseFromString(f.read()) + frozen_func = wrap_frozen_graph(gd, inputs='x:0', outputs=gd_outputs(gd)) + elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python + try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu + from tflite_runtime.interpreter import Interpreter, load_delegate + except ImportError: + import tensorflow as tf + Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate, + if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime + LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...') + delegate = { + 'Linux': 'libedgetpu.so.1', + 'Darwin': 'libedgetpu.1.dylib', + 'Windows': 'edgetpu.dll'}[platform.system()] + interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)]) + else: # TFLite + LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') + interpreter = Interpreter(model_path=w) # load TFLite model + interpreter.allocate_tensors() # allocate + input_details = interpreter.get_input_details() # inputs + output_details = interpreter.get_output_details() # outputs + # load metadata + with contextlib.suppress(zipfile.BadZipFile): + with zipfile.ZipFile(w, 'r') as model: + meta_file = model.namelist()[0] + meta = ast.literal_eval(model.read(meta_file).decode('utf-8')) + stride, names = int(meta['stride']), meta['names'] + elif tfjs: # TF.js + raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported') + elif paddle: # PaddlePaddle + LOGGER.info(f'Loading {w} for PaddlePaddle inference...') + check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle') + import paddle.inference as pdi + if not Path(w).is_file(): # if not *.pdmodel + w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir + weights = Path(w).with_suffix('.pdiparams') + config = pdi.Config(str(w), str(weights)) + if cuda: + config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0) + predictor = pdi.create_predictor(config) + input_handle = predictor.get_input_handle(predictor.get_input_names()[0]) + output_names = predictor.get_output_names() + elif triton: # NVIDIA Triton Inference Server + LOGGER.info(f'Using {w} as Triton Inference Server...') + check_requirements('tritonclient[all]') + from utils.triton import TritonRemoteModel + model = TritonRemoteModel(url=w) + nhwc = model.runtime.startswith('tensorflow') + else: + raise NotImplementedError(f'ERROR: {w} is not a supported format') + + # class names + if 'names' not in locals(): + names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)} + if names[0] == 'n01440764' and len(names) == 1000: # ImageNet + names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names + + self.__dict__.update(locals()) # assign all variables to self + + def forward(self, im, augment=False, visualize=False): + # YOLOv5 MultiBackend inference + b, ch, h, w = im.shape # batch, channel, height, width + if self.fp16 and im.dtype != torch.float16: + im = im.half() # to FP16 + if self.nhwc: + im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3) + + if self.pt: # PyTorch + y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im) + elif self.jit: # TorchScript + y = self.model(im) + elif self.dnn: # ONNX OpenCV DNN + im = im.cpu().numpy() # torch to numpy + self.net.setInput(im) + y = self.net.forward() + elif self.onnx: # ONNX Runtime + im = im.cpu().numpy() # torch to numpy + y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im}) + elif self.xml: # OpenVINO + im = im.cpu().numpy() # FP32 + y = list(self.executable_network([im]).values()) + elif self.engine: # TensorRT + if self.dynamic and im.shape != self.bindings['images'].shape: + i = self.model.get_binding_index('images') + self.context.set_binding_shape(i, im.shape) # reshape if dynamic + self.bindings['images'] = self.bindings['images']._replace(shape=im.shape) + for name in self.output_names: + i = self.model.get_binding_index(name) + self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i))) + s = self.bindings['images'].shape + assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}" + self.binding_addrs['images'] = int(im.data_ptr()) + self.context.execute_v2(list(self.binding_addrs.values())) + y = [self.bindings[x].data for x in sorted(self.output_names)] + elif self.coreml: # CoreML + im = im.cpu().numpy() + im = Image.fromarray((im[0] * 255).astype('uint8')) + # im = im.resize((192, 320), Image.ANTIALIAS) + y = self.model.predict({'image': im}) # coordinates are xywh normalized + if 'confidence' in y: + box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels + conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float) + y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1) + else: + y = list(reversed(y.values())) # reversed for segmentation models (pred, proto) + elif self.paddle: # PaddlePaddle + im = im.cpu().numpy().astype(np.float32) + self.input_handle.copy_from_cpu(im) + self.predictor.run() + y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names] + elif self.triton: # NVIDIA Triton Inference Server + y = self.model(im) + else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU) + im = im.cpu().numpy() + if self.saved_model: # SavedModel + y = self.model(im, training=False) if self.keras else self.model(im) + elif self.pb: # GraphDef + y = self.frozen_func(x=self.tf.constant(im)) + else: # Lite or Edge TPU + input = self.input_details[0] + int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model + if int8: + scale, zero_point = input['quantization'] + im = (im / scale + zero_point).astype(np.uint8) # de-scale + self.interpreter.set_tensor(input['index'], im) + self.interpreter.invoke() + y = [] + for output in self.output_details: + x = self.interpreter.get_tensor(output['index']) + if int8: + scale, zero_point = output['quantization'] + x = (x.astype(np.float32) - zero_point) * scale # re-scale + y.append(x) + y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y] + y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels + + if isinstance(y, (list, tuple)): + return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y] + else: + return self.from_numpy(y) + + def from_numpy(self, x): + return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x + + def warmup(self, imgsz=(1, 3, 640, 640)): + # Warmup model by running inference once + warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton + if any(warmup_types) and (self.device.type != 'cpu' or self.triton): + im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input + for _ in range(2 if self.jit else 1): # + self.forward(im) # warmup + + @staticmethod + def _model_type(p='path/to/model.pt'): + # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx + # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle] + from export import export_formats + from utils.downloads import is_url + sf = list(export_formats().Suffix) # export suffixes + if not is_url(p, check=False): + check_suffix(p, sf) # checks + url = urlparse(p) # if url may be Triton inference server + types = [s in Path(p).name for s in sf] + types[8] &= not types[9] # tflite &= not edgetpu + triton = not any(types) and all([any(s in url.scheme for s in ['http', 'grpc']), url.netloc]) + return types + [triton] + + @staticmethod + def _load_metadata(f=Path('path/to/meta.yaml')): + # Load metadata from meta.yaml if it exists + if f.exists(): + d = yaml_load(f) + return d['stride'], d['names'] # assign stride, names + return None, None + + +class AutoShape(nn.Module): + # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS + conf = 0.25 # NMS confidence threshold + iou = 0.45 # NMS IoU threshold + agnostic = False # NMS class-agnostic + multi_label = False # NMS multiple labels per box + classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs + max_det = 1000 # maximum number of detections per image + amp = False # Automatic Mixed Precision (AMP) inference + + def __init__(self, model, verbose=True): + super().__init__() + if verbose: + LOGGER.info('Adding AutoShape... ') + copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes + self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance + self.pt = not self.dmb or model.pt # PyTorch model + self.model = model.eval() + if self.pt: + m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() + m.inplace = False # Detect.inplace=False for safe multithread inference + m.export = True # do not output loss values + + def _apply(self, fn): + # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers + self = super()._apply(fn) + if self.pt: + m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() + m.stride = fn(m.stride) + m.grid = list(map(fn, m.grid)) + if isinstance(m.anchor_grid, list): + m.anchor_grid = list(map(fn, m.anchor_grid)) + return self + + @smart_inference_mode() + def forward(self, ims, size=640, augment=False, profile=False): + # Inference from various sources. For size(height=640, width=1280), RGB images example inputs are: + # file: ims = 'data/images/zidane.jpg' # str or PosixPath + # URI: = 'https://ultralytics.com/images/zidane.jpg' + # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) + # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3) + # numpy: = np.zeros((640,1280,3)) # HWC + # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) + # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images + + dt = (Profile(), Profile(), Profile()) + with dt[0]: + if isinstance(size, int): # expand + size = (size, size) + p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param + autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference + if isinstance(ims, torch.Tensor): # torch + with amp.autocast(autocast): + return self.model(ims.to(p.device).type_as(p), augment=augment) # inference + + # Pre-process + n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images + shape0, shape1, files = [], [], [] # image and inference shapes, filenames + for i, im in enumerate(ims): + f = f'image{i}' # filename + if isinstance(im, (str, Path)): # filename or uri + im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im + im = np.asarray(exif_transpose(im)) + elif isinstance(im, Image.Image): # PIL Image + im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f + files.append(Path(f).with_suffix('.jpg').name) + if im.shape[0] < 5: # image in CHW + im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) + im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input + s = im.shape[:2] # HWC + shape0.append(s) # image shape + g = max(size) / max(s) # gain + shape1.append([int(y * g) for y in s]) + ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update + shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape + x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad + x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW + x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32 + + with amp.autocast(autocast): + # Inference + with dt[1]: + y = self.model(x, augment=augment) # forward + + # Post-process + with dt[2]: + y = non_max_suppression(y if self.dmb else y[0], + self.conf, + self.iou, + self.classes, + self.agnostic, + self.multi_label, + max_det=self.max_det) # NMS + for i in range(n): + scale_boxes(shape1, y[i][:, :4], shape0[i]) + + return Detections(ims, y, files, dt, self.names, x.shape) + + +class Detections: + # YOLOv5 detections class for inference results + def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None): + super().__init__() + d = pred[0].device # device + gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations + self.ims = ims # list of images as numpy arrays + self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) + self.names = names # class names + self.files = files # image filenames + self.times = times # profiling times + self.xyxy = pred # xyxy pixels + self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels + self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized + self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized + self.n = len(self.pred) # number of images (batch size) + self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms) + self.s = tuple(shape) # inference BCHW shape + + def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')): + s, crops = '', [] + for i, (im, pred) in enumerate(zip(self.ims, self.pred)): + s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string + if pred.shape[0]: + for c in pred[:, -1].unique(): + n = (pred[:, -1] == c).sum() # detections per class + s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string + s = s.rstrip(', ') + if show or save or render or crop: + annotator = Annotator(im, example=str(self.names)) + for *box, conf, cls in reversed(pred): # xyxy, confidence, class + label = f'{self.names[int(cls)]} {conf:.2f}' + if crop: + file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None + crops.append({ + 'box': box, + 'conf': conf, + 'cls': cls, + 'label': label, + 'im': save_one_box(box, im, file=file, save=save)}) + else: # all others + annotator.box_label(box, label if labels else '', color=colors(cls)) + im = annotator.im + else: + s += '(no detections)' + + im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np + if show: + if is_jupyter(): + from IPython.display import display + display(im) + else: + im.show(self.files[i]) + if save: + f = self.files[i] + im.save(save_dir / f) # save + if i == self.n - 1: + LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}") + if render: + self.ims[i] = np.asarray(im) + if pprint: + s = s.lstrip('\n') + return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t + if crop: + if save: + LOGGER.info(f'Saved results to {save_dir}\n') + return crops + + @TryExcept('Showing images is not supported in this environment') + def show(self, labels=True): + self._run(show=True, labels=labels) # show results + + def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False): + save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir + self._run(save=True, labels=labels, save_dir=save_dir) # save results + + def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False): + save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None + return self._run(crop=True, save=save, save_dir=save_dir) # crop results + + def render(self, labels=True): + self._run(render=True, labels=labels) # render results + return self.ims + + def pandas(self): + # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]) + new = copy(self) # return copy + ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns + cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns + for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): + a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update + setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) + return new + + def tolist(self): + # return a list of Detections objects, i.e. 'for result in results.tolist():' + r = range(self.n) # iterable + x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r] + # for d in x: + # for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: + # setattr(d, k, getattr(d, k)[0]) # pop out of list + return x + + def print(self): + LOGGER.info(self.__str__()) + + def __len__(self): # override len(results) + return self.n + + def __str__(self): # override print(results) + return self._run(pprint=True) # print results + + def __repr__(self): + return f'YOLOv5 {self.__class__} instance\n' + self.__str__() + + +class Proto(nn.Module): + # YOLOv5 mask Proto module for segmentation models + def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks + super().__init__() + self.cv1 = Conv(c1, c_, k=3) + self.upsample = nn.Upsample(scale_factor=2, mode='nearest') + self.cv2 = Conv(c_, c_, k=3) + self.cv3 = Conv(c_, c2) + + def forward(self, x): + return self.cv3(self.cv2(self.upsample(self.cv1(x)))) + + +class Classify(nn.Module): + # YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2) + def __init__(self, + c1, + c2, + k=1, + s=1, + p=None, + g=1, + dropout_p=0.0): # ch_in, ch_out, kernel, stride, padding, groups, dropout probability + super().__init__() + c_ = 1280 # efficientnet_b0 size + self.conv = Conv(c1, c_, k, s, autopad(k, p), g) + self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1) + self.drop = nn.Dropout(p=dropout_p, inplace=True) + self.linear = nn.Linear(c_, c2) # to x(b,c2) + + def forward(self, x): + if isinstance(x, list): + x = torch.cat(x, 1) + return self.linear(self.drop(self.pool(self.conv(x)).flatten(1))) diff --git a/ultralytics/yolov5/models/experimental.py b/ultralytics/yolov5/models/experimental.py new file mode 100644 index 0000000..02d35b9 --- /dev/null +++ b/ultralytics/yolov5/models/experimental.py @@ -0,0 +1,111 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Experimental modules +""" +import math + +import numpy as np +import torch +import torch.nn as nn + +from utils.downloads import attempt_download + + +class Sum(nn.Module): + # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 + def __init__(self, n, weight=False): # n: number of inputs + super().__init__() + self.weight = weight # apply weights boolean + self.iter = range(n - 1) # iter object + if weight: + self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights + + def forward(self, x): + y = x[0] # no weight + if self.weight: + w = torch.sigmoid(self.w) * 2 + for i in self.iter: + y = y + x[i + 1] * w[i] + else: + for i in self.iter: + y = y + x[i + 1] + return y + + +class MixConv2d(nn.Module): + # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595 + def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy + super().__init__() + n = len(k) # number of convolutions + if equal_ch: # equal c_ per group + i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices + c_ = [(i == g).sum() for g in range(n)] # intermediate channels + else: # equal weight.numel() per group + b = [c2] + [0] * n + a = np.eye(n + 1, n, k=-1) + a -= np.roll(a, 1, axis=1) + a *= np.array(k) ** 2 + a[0] = 1 + c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b + + self.m = nn.ModuleList([ + nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)]) + self.bn = nn.BatchNorm2d(c2) + self.act = nn.SiLU() + + def forward(self, x): + return self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) + + +class Ensemble(nn.ModuleList): + # Ensemble of models + def __init__(self): + super().__init__() + + def forward(self, x, augment=False, profile=False, visualize=False): + y = [module(x, augment, profile, visualize)[0] for module in self] + # y = torch.stack(y).max(0)[0] # max ensemble + # y = torch.stack(y).mean(0) # mean ensemble + y = torch.cat(y, 1) # nms ensemble + return y, None # inference, train output + + +def attempt_load(weights, device=None, inplace=True, fuse=True): + # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a + from models.yolo import Detect, Model + + model = Ensemble() + for w in weights if isinstance(weights, list) else [weights]: + ckpt = torch.load(attempt_download(w), map_location='cpu') # load + ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model + + # Model compatibility updates + if not hasattr(ckpt, 'stride'): + ckpt.stride = torch.tensor([32.]) + if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)): + ckpt.names = dict(enumerate(ckpt.names)) # convert to dict + + model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode + + # Module compatibility updates + for m in model.modules(): + t = type(m) + if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model): + m.inplace = inplace # torch 1.7.0 compatibility + if t is Detect and not isinstance(m.anchor_grid, list): + delattr(m, 'anchor_grid') + setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl) + elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): + m.recompute_scale_factor = None # torch 1.11.0 compatibility + + # Return model + if len(model) == 1: + return model[-1] + + # Return detection ensemble + print(f'Ensemble created with {weights}\n') + for k in 'names', 'nc', 'yaml': + setattr(model, k, getattr(model[0], k)) + model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride + assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}' + return model diff --git a/ultralytics/yolov5/models/tf.py b/ultralytics/yolov5/models/tf.py new file mode 100644 index 0000000..8290cf2 --- /dev/null +++ b/ultralytics/yolov5/models/tf.py @@ -0,0 +1,608 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +TensorFlow, Keras and TFLite versions of YOLOv5 +Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127 + +Usage: + $ python models/tf.py --weights yolov5s.pt + +Export: + $ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs +""" + +import argparse +import sys +from copy import deepcopy +from pathlib import Path + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +# ROOT = ROOT.relative_to(Path.cwd()) # relative + +import numpy as np +import tensorflow as tf +import torch +import torch.nn as nn +from tensorflow import keras + +from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv, + DWConvTranspose2d, Focus, autopad) +from models.experimental import MixConv2d, attempt_load +from models.yolo import Detect, Segment +from utils.activations import SiLU +from utils.general import LOGGER, make_divisible, print_args + + +class TFBN(keras.layers.Layer): + # TensorFlow BatchNormalization wrapper + def __init__(self, w=None): + super().__init__() + self.bn = keras.layers.BatchNormalization( + beta_initializer=keras.initializers.Constant(w.bias.numpy()), + gamma_initializer=keras.initializers.Constant(w.weight.numpy()), + moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()), + moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()), + epsilon=w.eps) + + def call(self, inputs): + return self.bn(inputs) + + +class TFPad(keras.layers.Layer): + # Pad inputs in spatial dimensions 1 and 2 + def __init__(self, pad): + super().__init__() + if isinstance(pad, int): + self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]) + else: # tuple/list + self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]]) + + def call(self, inputs): + return tf.pad(inputs, self.pad, mode='constant', constant_values=0) + + +class TFConv(keras.layers.Layer): + # Standard convolution + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): + # ch_in, ch_out, weights, kernel, stride, padding, groups + super().__init__() + assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" + # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding) + # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch + conv = keras.layers.Conv2D( + filters=c2, + kernel_size=k, + strides=s, + padding='SAME' if s == 1 else 'VALID', + use_bias=not hasattr(w, 'bn'), + kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), + bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy())) + self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) + self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity + self.act = activations(w.act) if act else tf.identity + + def call(self, inputs): + return self.act(self.bn(self.conv(inputs))) + + +class TFDWConv(keras.layers.Layer): + # Depthwise convolution + def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None): + # ch_in, ch_out, weights, kernel, stride, padding, groups + super().__init__() + assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels' + conv = keras.layers.DepthwiseConv2D( + kernel_size=k, + depth_multiplier=c2 // c1, + strides=s, + padding='SAME' if s == 1 else 'VALID', + use_bias=not hasattr(w, 'bn'), + depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), + bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy())) + self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) + self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity + self.act = activations(w.act) if act else tf.identity + + def call(self, inputs): + return self.act(self.bn(self.conv(inputs))) + + +class TFDWConvTranspose2d(keras.layers.Layer): + # Depthwise ConvTranspose2d + def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None): + # ch_in, ch_out, weights, kernel, stride, padding, groups + super().__init__() + assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels' + assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1' + weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy() + self.c1 = c1 + self.conv = [ + keras.layers.Conv2DTranspose(filters=1, + kernel_size=k, + strides=s, + padding='VALID', + output_padding=p2, + use_bias=True, + kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]), + bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)] + + def call(self, inputs): + return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1] + + +class TFFocus(keras.layers.Layer): + # Focus wh information into c-space + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): + # ch_in, ch_out, kernel, stride, padding, groups + super().__init__() + self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv) + + def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c) + # inputs = inputs / 255 # normalize 0-255 to 0-1 + inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]] + return self.conv(tf.concat(inputs, 3)) + + +class TFBottleneck(keras.layers.Layer): + # Standard bottleneck + def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2) + self.add = shortcut and c1 == c2 + + def call(self, inputs): + return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) + + +class TFCrossConv(keras.layers.Layer): + # Cross Convolution + def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None): + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1) + self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2) + self.add = shortcut and c1 == c2 + + def call(self, inputs): + return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) + + +class TFConv2d(keras.layers.Layer): + # Substitution for PyTorch nn.Conv2D + def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None): + super().__init__() + assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" + self.conv = keras.layers.Conv2D(filters=c2, + kernel_size=k, + strides=s, + padding='VALID', + use_bias=bias, + kernel_initializer=keras.initializers.Constant( + w.weight.permute(2, 3, 1, 0).numpy()), + bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None) + + def call(self, inputs): + return self.conv(inputs) + + +class TFBottleneckCSP(keras.layers.Layer): + # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): + # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2) + self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3) + self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4) + self.bn = TFBN(w.bn) + self.act = lambda x: keras.activations.swish(x) + self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) + + def call(self, inputs): + y1 = self.cv3(self.m(self.cv1(inputs))) + y2 = self.cv2(inputs) + return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3)))) + + +class TFC3(keras.layers.Layer): + # CSP Bottleneck with 3 convolutions + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): + # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) + self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) + self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) + + def call(self, inputs): + return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) + + +class TFC3x(keras.layers.Layer): + # 3 module with cross-convolutions + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): + # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) + self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) + self.m = keras.Sequential([ + TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)]) + + def call(self, inputs): + return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) + + +class TFSPP(keras.layers.Layer): + # Spatial pyramid pooling layer used in YOLOv3-SPP + def __init__(self, c1, c2, k=(5, 9, 13), w=None): + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2) + self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k] + + def call(self, inputs): + x = self.cv1(inputs) + return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3)) + + +class TFSPPF(keras.layers.Layer): + # Spatial pyramid pooling-Fast layer + def __init__(self, c1, c2, k=5, w=None): + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2) + self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME') + + def call(self, inputs): + x = self.cv1(inputs) + y1 = self.m(x) + y2 = self.m(y1) + return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3)) + + +class TFDetect(keras.layers.Layer): + # TF YOLOv5 Detect layer + def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer + super().__init__() + self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32) + self.nc = nc # number of classes + self.no = nc + 5 # number of outputs per anchor + self.nl = len(anchors) # number of detection layers + self.na = len(anchors[0]) // 2 # number of anchors + self.grid = [tf.zeros(1)] * self.nl # init grid + self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32) + self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2]) + self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] + self.training = False # set to False after building model + self.imgsz = imgsz + for i in range(self.nl): + ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] + self.grid[i] = self._make_grid(nx, ny) + + def call(self, inputs): + z = [] # inference output + x = [] + for i in range(self.nl): + x.append(self.m[i](inputs[i])) + # x(bs,20,20,255) to x(bs,3,20,20,85) + ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] + x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no]) + + if not self.training: # inference + y = x[i] + grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5 + anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4 + xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy + wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid + # Normalize xywh to 0-1 to reduce calibration error + xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) + wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) + y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1) + z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no])) + + return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),) + + @staticmethod + def _make_grid(nx=20, ny=20): + # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) + # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() + xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny)) + return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32) + + +class TFSegment(TFDetect): + # YOLOv5 Segment head for segmentation models + def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None): + super().__init__(nc, anchors, ch, imgsz, w) + self.nm = nm # number of masks + self.npr = npr # number of protos + self.no = 5 + nc + self.nm # number of outputs per anchor + self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv + self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos + self.detect = TFDetect.call + + def call(self, x): + p = self.proto(x[0]) + # p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos + p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160) + x = self.detect(self, x) + return (x, p) if self.training else (x[0], p) + + +class TFProto(keras.layers.Layer): + + def __init__(self, c1, c_=256, c2=32, w=None): + super().__init__() + self.cv1 = TFConv(c1, c_, k=3, w=w.cv1) + self.upsample = TFUpsample(None, scale_factor=2, mode='nearest') + self.cv2 = TFConv(c_, c_, k=3, w=w.cv2) + self.cv3 = TFConv(c_, c2, w=w.cv3) + + def call(self, inputs): + return self.cv3(self.cv2(self.upsample(self.cv1(inputs)))) + + +class TFUpsample(keras.layers.Layer): + # TF version of torch.nn.Upsample() + def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w' + super().__init__() + assert scale_factor % 2 == 0, 'scale_factor must be multiple of 2' + self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode) + # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode) + # with default arguments: align_corners=False, half_pixel_centers=False + # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x, + # size=(x.shape[1] * 2, x.shape[2] * 2)) + + def call(self, inputs): + return self.upsample(inputs) + + +class TFConcat(keras.layers.Layer): + # TF version of torch.concat() + def __init__(self, dimension=1, w=None): + super().__init__() + assert dimension == 1, 'convert only NCHW to NHWC concat' + self.d = 3 + + def call(self, inputs): + return tf.concat(inputs, self.d) + + +def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3) + LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") + anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] + na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors + no = na * (nc + 5) # number of outputs = anchors * (classes + 5) + + layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out + for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args + m_str = m + m = eval(m) if isinstance(m, str) else m # eval strings + for j, a in enumerate(args): + try: + args[j] = eval(a) if isinstance(a, str) else a # eval strings + except NameError: + pass + + n = max(round(n * gd), 1) if n > 1 else n # depth gain + if m in [ + nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv, + BottleneckCSP, C3, C3x]: + c1, c2 = ch[f], args[0] + c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 + + args = [c1, c2, *args[1:]] + if m in [BottleneckCSP, C3, C3x]: + args.insert(2, n) + n = 1 + elif m is nn.BatchNorm2d: + args = [ch[f]] + elif m is Concat: + c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) + elif m in [Detect, Segment]: + args.append([ch[x + 1] for x in f]) + if isinstance(args[1], int): # number of anchors + args[1] = [list(range(args[1] * 2))] * len(f) + if m is Segment: + args[3] = make_divisible(args[3] * gw, 8) + args.append(imgsz) + else: + c2 = ch[f] + + tf_m = eval('TF' + m_str.replace('nn.', '')) + m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \ + else tf_m(*args, w=model.model[i]) # module + + torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module + t = str(m)[8:-2].replace('__main__.', '') # module type + np = sum(x.numel() for x in torch_m_.parameters()) # number params + m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params + LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print + save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist + layers.append(m_) + ch.append(c2) + return keras.Sequential(layers), sorted(save) + + +class TFModel: + # TF YOLOv5 model + def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes + super().__init__() + if isinstance(cfg, dict): + self.yaml = cfg # model dict + else: # is *.yaml + import yaml # for torch hub + self.yaml_file = Path(cfg).name + with open(cfg) as f: + self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict + + # Define model + if nc and nc != self.yaml['nc']: + LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}") + self.yaml['nc'] = nc # override yaml value + self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz) + + def predict(self, + inputs, + tf_nms=False, + agnostic_nms=False, + topk_per_class=100, + topk_all=100, + iou_thres=0.45, + conf_thres=0.25): + y = [] # outputs + x = inputs + for m in self.model.layers: + if m.f != -1: # if not from previous layer + x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers + + x = m(x) # run + y.append(x if m.i in self.savelist else None) # save output + + # Add TensorFlow NMS + if tf_nms: + boxes = self._xywh2xyxy(x[0][..., :4]) + probs = x[0][:, :, 4:5] + classes = x[0][:, :, 5:] + scores = probs * classes + if agnostic_nms: + nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres) + else: + boxes = tf.expand_dims(boxes, 2) + nms = tf.image.combined_non_max_suppression(boxes, + scores, + topk_per_class, + topk_all, + iou_thres, + conf_thres, + clip_boxes=False) + return (nms,) + return x # output [1,6300,85] = [xywh, conf, class0, class1, ...] + # x = x[0] # [x(1,6300,85), ...] to x(6300,85) + # xywh = x[..., :4] # x(6300,4) boxes + # conf = x[..., 4:5] # x(6300,1) confidences + # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes + # return tf.concat([conf, cls, xywh], 1) + + @staticmethod + def _xywh2xyxy(xywh): + # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1) + return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1) + + +class AgnosticNMS(keras.layers.Layer): + # TF Agnostic NMS + def call(self, input, topk_all, iou_thres, conf_thres): + # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450 + return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), + input, + fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32), + name='agnostic_nms') + + @staticmethod + def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS + boxes, classes, scores = x + class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32) + scores_inp = tf.reduce_max(scores, -1) + selected_inds = tf.image.non_max_suppression(boxes, + scores_inp, + max_output_size=topk_all, + iou_threshold=iou_thres, + score_threshold=conf_thres) + selected_boxes = tf.gather(boxes, selected_inds) + padded_boxes = tf.pad(selected_boxes, + paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]], + mode='CONSTANT', + constant_values=0.0) + selected_scores = tf.gather(scores_inp, selected_inds) + padded_scores = tf.pad(selected_scores, + paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], + mode='CONSTANT', + constant_values=-1.0) + selected_classes = tf.gather(class_inds, selected_inds) + padded_classes = tf.pad(selected_classes, + paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], + mode='CONSTANT', + constant_values=-1.0) + valid_detections = tf.shape(selected_inds)[0] + return padded_boxes, padded_scores, padded_classes, valid_detections + + +def activations(act=nn.SiLU): + # Returns TF activation from input PyTorch activation + if isinstance(act, nn.LeakyReLU): + return lambda x: keras.activations.relu(x, alpha=0.1) + elif isinstance(act, nn.Hardswish): + return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667 + elif isinstance(act, (nn.SiLU, SiLU)): + return lambda x: keras.activations.swish(x) + else: + raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}') + + +def representative_dataset_gen(dataset, ncalib=100): + # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays + for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): + im = np.transpose(img, [1, 2, 0]) + im = np.expand_dims(im, axis=0).astype(np.float32) + im /= 255 + yield [im] + if n >= ncalib: + break + + +def run( + weights=ROOT / 'yolov5s.pt', # weights path + imgsz=(640, 640), # inference size h,w + batch_size=1, # batch size + dynamic=False, # dynamic batch size +): + # PyTorch model + im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image + model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False) + _ = model(im) # inference + model.info() + + # TensorFlow model + im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image + tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) + _ = tf_model.predict(im) # inference + + # Keras model + im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) + keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im)) + keras_model.summary() + + LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.') + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') + parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') + parser.add_argument('--batch-size', type=int, default=1, help='batch size') + parser.add_argument('--dynamic', action='store_true', help='dynamic batch size') + opt = parser.parse_args() + opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand + print_args(vars(opt)) + return opt + + +def main(opt): + run(**vars(opt)) + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/models/yolo.py b/ultralytics/yolov5/models/yolo.py new file mode 100644 index 0000000..ed21c06 --- /dev/null +++ b/ultralytics/yolov5/models/yolo.py @@ -0,0 +1,391 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +YOLO-specific modules + +Usage: + $ python models/yolo.py --cfg yolov5s.yaml +""" + +import argparse +import contextlib +import os +import platform +import sys +from copy import deepcopy +from pathlib import Path + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +if platform.system() != 'Windows': + ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import * +from models.experimental import * +from utils.autoanchor import check_anchor_order +from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args +from utils.plots import feature_visualization +from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device, + time_sync) + +try: + import thop # for FLOPs computation +except ImportError: + thop = None + + +class Detect(nn.Module): + # YOLOv5 Detect head for detection models + stride = None # strides computed during build + dynamic = False # force grid reconstruction + export = False # export mode + + def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer + super().__init__() + self.nc = nc # number of classes + self.no = nc + 5 # number of outputs per anchor + self.nl = len(anchors) # number of detection layers + self.na = len(anchors[0]) // 2 # number of anchors + self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid + self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid + self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) + self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv + self.inplace = inplace # use inplace ops (e.g. slice assignment) + + def forward(self, x): + z = [] # inference output + for i in range(self.nl): + x[i] = self.m[i](x[i]) # conv + bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) + x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() + + if not self.training: # inference + if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: + self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) + + if isinstance(self, Segment): # (boxes + masks) + xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4) + xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy + wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh + y = torch.cat((xy, wh, conf.sigmoid(), mask), 4) + else: # Detect (boxes only) + xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4) + xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy + wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh + y = torch.cat((xy, wh, conf), 4) + z.append(y.view(bs, self.na * nx * ny, self.no)) + + return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x) + + def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')): + d = self.anchors[i].device + t = self.anchors[i].dtype + shape = 1, self.na, ny, nx, 2 # grid shape + y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t) + yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility + grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5 + anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape) + return grid, anchor_grid + + +class Segment(Detect): + # YOLOv5 Segment head for segmentation models + def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True): + super().__init__(nc, anchors, ch, inplace) + self.nm = nm # number of masks + self.npr = npr # number of protos + self.no = 5 + nc + self.nm # number of outputs per anchor + self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv + self.proto = Proto(ch[0], self.npr, self.nm) # protos + self.detect = Detect.forward + + def forward(self, x): + p = self.proto(x[0]) + x = self.detect(self, x) + return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1]) + + +class BaseModel(nn.Module): + # YOLOv5 base model + def forward(self, x, profile=False, visualize=False): + return self._forward_once(x, profile, visualize) # single-scale inference, train + + def _forward_once(self, x, profile=False, visualize=False): + y, dt = [], [] # outputs + for m in self.model: + if m.f != -1: # if not from previous layer + x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers + if profile: + self._profile_one_layer(m, x, dt) + x = m(x) # run + y.append(x if m.i in self.save else None) # save output + if visualize: + feature_visualization(x, m.type, m.i, save_dir=visualize) + return x + + def _profile_one_layer(self, m, x, dt): + c = m == self.model[-1] # is final layer, copy input as inplace fix + o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs + t = time_sync() + for _ in range(10): + m(x.copy() if c else x) + dt.append((time_sync() - t) * 100) + if m == self.model[0]: + LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") + LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') + if c: + LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") + + def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers + LOGGER.info('Fusing layers... ') + for m in self.model.modules(): + if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'): + m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv + delattr(m, 'bn') # remove batchnorm + m.forward = m.forward_fuse # update forward + self.info() + return self + + def info(self, verbose=False, img_size=640): # print model information + model_info(self, verbose, img_size) + + def _apply(self, fn): + # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers + self = super()._apply(fn) + m = self.model[-1] # Detect() + if isinstance(m, (Detect, Segment)): + m.stride = fn(m.stride) + m.grid = list(map(fn, m.grid)) + if isinstance(m.anchor_grid, list): + m.anchor_grid = list(map(fn, m.anchor_grid)) + return self + + +class DetectionModel(BaseModel): + # YOLOv5 detection model + def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes + super().__init__() + if isinstance(cfg, dict): + self.yaml = cfg # model dict + else: # is *.yaml + import yaml # for torch hub + self.yaml_file = Path(cfg).name + with open(cfg, encoding='ascii', errors='ignore') as f: + self.yaml = yaml.safe_load(f) # model dict + + # Define model + ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels + if nc and nc != self.yaml['nc']: + LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") + self.yaml['nc'] = nc # override yaml value + if anchors: + LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') + self.yaml['anchors'] = round(anchors) # override yaml value + self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist + self.names = [str(i) for i in range(self.yaml['nc'])] # default names + self.inplace = self.yaml.get('inplace', True) + + # Build strides, anchors + m = self.model[-1] # Detect() + if isinstance(m, (Detect, Segment)): + s = 256 # 2x min stride + m.inplace = self.inplace + forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x) + m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward + check_anchor_order(m) + m.anchors /= m.stride.view(-1, 1, 1) + self.stride = m.stride + self._initialize_biases() # only run once + + # Init weights, biases + initialize_weights(self) + self.info() + LOGGER.info('') + + def forward(self, x, augment=False, profile=False, visualize=False): + if augment: + return self._forward_augment(x) # augmented inference, None + return self._forward_once(x, profile, visualize) # single-scale inference, train + + def _forward_augment(self, x): + img_size = x.shape[-2:] # height, width + s = [1, 0.83, 0.67] # scales + f = [None, 3, None] # flips (2-ud, 3-lr) + y = [] # outputs + for si, fi in zip(s, f): + xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) + yi = self._forward_once(xi)[0] # forward + # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save + yi = self._descale_pred(yi, fi, si, img_size) + y.append(yi) + y = self._clip_augmented(y) # clip augmented tails + return torch.cat(y, 1), None # augmented inference, train + + def _descale_pred(self, p, flips, scale, img_size): + # de-scale predictions following augmented inference (inverse operation) + if self.inplace: + p[..., :4] /= scale # de-scale + if flips == 2: + p[..., 1] = img_size[0] - p[..., 1] # de-flip ud + elif flips == 3: + p[..., 0] = img_size[1] - p[..., 0] # de-flip lr + else: + x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale + if flips == 2: + y = img_size[0] - y # de-flip ud + elif flips == 3: + x = img_size[1] - x # de-flip lr + p = torch.cat((x, y, wh, p[..., 4:]), -1) + return p + + def _clip_augmented(self, y): + # Clip YOLOv5 augmented inference tails + nl = self.model[-1].nl # number of detection layers (P3-P5) + g = sum(4 ** x for x in range(nl)) # grid points + e = 1 # exclude layer count + i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices + y[0] = y[0][:, :-i] # large + i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices + y[-1] = y[-1][:, i:] # small + return y + + def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency + # https://arxiv.org/abs/1708.02002 section 3.3 + # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. + m = self.model[-1] # Detect() module + for mi, s in zip(m.m, m.stride): # from + b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) + b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) + b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum()) # cls + mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) + + +Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibility + + +class SegmentationModel(DetectionModel): + # YOLOv5 segmentation model + def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, anchors=None): + super().__init__(cfg, ch, nc, anchors) + + +class ClassificationModel(BaseModel): + # YOLOv5 classification model + def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index + super().__init__() + self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg) + + def _from_detection_model(self, model, nc=1000, cutoff=10): + # Create a YOLOv5 classification model from a YOLOv5 detection model + if isinstance(model, DetectMultiBackend): + model = model.model # unwrap DetectMultiBackend + model.model = model.model[:cutoff] # backbone + m = model.model[-1] # last layer + ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module + c = Classify(ch, nc) # Classify() + c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type + model.model[-1] = c # replace + self.model = model.model + self.stride = model.stride + self.save = [] + self.nc = nc + + def _from_yaml(self, cfg): + # Create a YOLOv5 classification model from a *.yaml file + self.model = None + + +def parse_model(d, ch): # model_dict, input_channels(3) + # Parse a YOLOv5 model.yaml dictionary + LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") + anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation') + if act: + Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() + LOGGER.info(f"{colorstr('activation:')} {act}") # print + na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors + no = na * (nc + 5) # number of outputs = anchors * (classes + 5) + + layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out + for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args + m = eval(m) if isinstance(m, str) else m # eval strings + for j, a in enumerate(args): + with contextlib.suppress(NameError): + args[j] = eval(a) if isinstance(a, str) else a # eval strings + + n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain + if m in { + Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, + BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}: + c1, c2 = ch[f], args[0] + if c2 != no: # if not output + c2 = make_divisible(c2 * gw, 8) + + args = [c1, c2, *args[1:]] + if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}: + args.insert(2, n) # number of repeats + n = 1 + elif m is nn.BatchNorm2d: + args = [ch[f]] + elif m is Concat: + c2 = sum(ch[x] for x in f) + # TODO: channel, gw, gd + elif m in {Detect, Segment}: + args.append([ch[x] for x in f]) + if isinstance(args[1], int): # number of anchors + args[1] = [list(range(args[1] * 2))] * len(f) + if m is Segment: + args[3] = make_divisible(args[3] * gw, 8) + elif m is Contract: + c2 = ch[f] * args[0] ** 2 + elif m is Expand: + c2 = ch[f] // args[0] ** 2 + else: + c2 = ch[f] + + m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module + t = str(m)[8:-2].replace('__main__.', '') # module type + np = sum(x.numel() for x in m_.parameters()) # number params + m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params + LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print + save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist + layers.append(m_) + if i == 0: + ch = [] + ch.append(c2) + return nn.Sequential(*layers), sorted(save) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') + parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--profile', action='store_true', help='profile model speed') + parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer') + parser.add_argument('--test', action='store_true', help='test all yolo*.yaml') + opt = parser.parse_args() + opt.cfg = check_yaml(opt.cfg) # check YAML + print_args(vars(opt)) + device = select_device(opt.device) + + # Create model + im = torch.rand(opt.batch_size, 3, 640, 640).to(device) + model = Model(opt.cfg).to(device) + + # Options + if opt.line_profile: # profile layer by layer + model(im, profile=True) + + elif opt.profile: # profile forward-backward + results = profile(input=im, ops=[model], n=3) + + elif opt.test: # test all models + for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'): + try: + _ = Model(cfg) + except Exception as e: + print(f'Error in {cfg}: {e}') + + else: # report fused model summary + model.fuse() diff --git a/ultralytics/yolov5/requirements.txt b/ultralytics/yolov5/requirements.txt new file mode 100644 index 0000000..11cb9aa --- /dev/null +++ b/ultralytics/yolov5/requirements.txt @@ -0,0 +1,50 @@ +# YOLOv5 requirements +# Usage: pip install -r requirements.txt + +# Base ------------------------------------------------------------------------ +gitpython>=3.1.30 +matplotlib>=3.2.2 +numpy>=1.18.5 +opencv-python>=4.1.1 +Pillow>=7.1.2 +psutil # system resources +PyYAML>=5.3.1 +requests>=2.23.0 +scipy>=1.4.1 +thop>=0.1.1 # FLOPs computation +torch>=1.7.0 # see https://pytorch.org/get-started/locally (recommended) +torchvision>=0.8.1 +tqdm>=4.64.0 +# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012 + +# Logging --------------------------------------------------------------------- +tensorboard>=2.4.1 +# clearml>=1.2.0 +# comet + +# Plotting -------------------------------------------------------------------- +pandas>=1.1.4 +seaborn>=0.11.0 + +# Export ---------------------------------------------------------------------- +# coremltools>=6.0 # CoreML export +# onnx>=1.12.0 # ONNX export +# onnx-simplifier>=0.4.1 # ONNX simplifier +# nvidia-pyindex # TensorRT export +# nvidia-tensorrt # TensorRT export +# scikit-learn<=1.1.2 # CoreML quantization +# tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos) +# tensorflowjs>=3.9.0 # TF.js export +# openvino-dev # OpenVINO export + +# Deploy ---------------------------------------------------------------------- +setuptools>=65.5.1 # Snyk vulnerability fix +# tritonclient[all]~=2.24.0 + +# Extras ---------------------------------------------------------------------- +# ipython # interactive notebook +# mss # screenshots +# albumentations>=1.0.3 +# pycocotools>=2.0.6 # COCO mAP +# roboflow +# ultralytics # HUB https://hub.ultralytics.com diff --git a/ultralytics/yolov5/segment/predict.py b/ultralytics/yolov5/segment/predict.py new file mode 100644 index 0000000..d82df89 --- /dev/null +++ b/ultralytics/yolov5/segment/predict.py @@ -0,0 +1,284 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Run YOLOv5 segmentation inference on images, videos, directories, streams, etc. + +Usage - sources: + $ python segment/predict.py --weights yolov5s-seg.pt --source 0 # webcam + img.jpg # image + vid.mp4 # video + screen # screenshot + path/ # directory + list.txt # list of images + list.streams # list of streams + 'path/*.jpg' # glob + 'https://youtu.be/Zgi9g1ksQHc' # YouTube + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream + +Usage - formats: + $ python segment/predict.py --weights yolov5s-seg.pt # PyTorch + yolov5s-seg.torchscript # TorchScript + yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s-seg_openvino_model # OpenVINO + yolov5s-seg.engine # TensorRT + yolov5s-seg.mlmodel # CoreML (macOS-only) + yolov5s-seg_saved_model # TensorFlow SavedModel + yolov5s-seg.pb # TensorFlow GraphDef + yolov5s-seg.tflite # TensorFlow Lite + yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU + yolov5s-seg_paddle_model # PaddlePaddle +""" + +import argparse +import os +import platform +import sys +from pathlib import Path + +import torch + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import DetectMultiBackend +from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams +from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, + increment_path, non_max_suppression, print_args, scale_boxes, scale_segments, + strip_optimizer) +from utils.plots import Annotator, colors, save_one_box +from utils.segment.general import masks2segments, process_mask, process_mask_native +from utils.torch_utils import select_device, smart_inference_mode + + +@smart_inference_mode() +def run( + weights=ROOT / 'yolov5s-seg.pt', # model.pt path(s) + source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam) + data=ROOT / 'data/coco128.yaml', # dataset.yaml path + imgsz=(640, 640), # inference size (height, width) + conf_thres=0.25, # confidence threshold + iou_thres=0.45, # NMS IOU threshold + max_det=1000, # maximum detections per image + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + view_img=False, # show results + save_txt=False, # save results to *.txt + save_conf=False, # save confidences in --save-txt labels + save_crop=False, # save cropped prediction boxes + nosave=False, # do not save images/videos + classes=None, # filter by class: --class 0, or --class 0 2 3 + agnostic_nms=False, # class-agnostic NMS + augment=False, # augmented inference + visualize=False, # visualize features + update=False, # update all models + project=ROOT / 'runs/predict-seg', # save results to project/name + name='exp', # save results to project/name + exist_ok=False, # existing project/name ok, do not increment + line_thickness=3, # bounding box thickness (pixels) + hide_labels=False, # hide labels + hide_conf=False, # hide confidences + half=False, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + vid_stride=1, # video frame-rate stride + retina_masks=False, +): + source = str(source) + save_img = not nosave and not source.endswith('.txt') # save inference images + is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) + is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) + webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) + screenshot = source.lower().startswith('screen') + if is_url and is_file: + source = check_file(source) # download + + # Directories + save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir + + # Load model + device = select_device(device) + model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) + stride, names, pt = model.stride, model.names, model.pt + imgsz = check_img_size(imgsz, s=stride) # check image size + + # Dataloader + bs = 1 # batch_size + if webcam: + view_img = check_imshow(warn=True) + dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) + bs = len(dataset) + elif screenshot: + dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) + else: + dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) + vid_path, vid_writer = [None] * bs, [None] * bs + + # Run inference + model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup + seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) + for path, im, im0s, vid_cap, s in dataset: + with dt[0]: + im = torch.from_numpy(im).to(model.device) + im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + if len(im.shape) == 3: + im = im[None] # expand for batch dim + + # Inference + with dt[1]: + visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False + pred, proto = model(im, augment=augment, visualize=visualize)[:2] + + # NMS + with dt[2]: + pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32) + + # Second-stage classifier (optional) + # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) + + # Process predictions + for i, det in enumerate(pred): # per image + seen += 1 + if webcam: # batch_size >= 1 + p, im0, frame = path[i], im0s[i].copy(), dataset.count + s += f'{i}: ' + else: + p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) + + p = Path(p) # to Path + save_path = str(save_dir / p.name) # im.jpg + txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt + s += '%gx%g ' % im.shape[2:] # print string + imc = im0.copy() if save_crop else im0 # for save_crop + annotator = Annotator(im0, line_width=line_thickness, example=str(names)) + if len(det): + if retina_masks: + # scale bbox first the crop masks + det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size + masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2]) # HWC + else: + masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC + det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size + + # Segments + if save_txt: + segments = [ + scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True) + for x in reversed(masks2segments(masks))] + + # Print results + for c in det[:, 5].unique(): + n = (det[:, 5] == c).sum() # detections per class + s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string + + # Mask plotting + annotator.masks( + masks, + colors=[colors(x, True) for x in det[:, 5]], + im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(0).contiguous() / + 255 if retina_masks else im[i]) + + # Write results + for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])): + if save_txt: # Write to file + seg = segments[j].reshape(-1) # (n,2) to (n*2) + line = (cls, *seg, conf) if save_conf else (cls, *seg) # label format + with open(f'{txt_path}.txt', 'a') as f: + f.write(('%g ' * len(line)).rstrip() % line + '\n') + + if save_img or save_crop or view_img: # Add bbox to image + c = int(cls) # integer class + label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') + annotator.box_label(xyxy, label, color=colors(c, True)) + # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3) + if save_crop: + save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) + + # Stream results + im0 = annotator.result() + if view_img: + if platform.system() == 'Linux' and p not in windows: + windows.append(p) + cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) + cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) + cv2.imshow(str(p), im0) + if cv2.waitKey(1) == ord('q'): # 1 millisecond + exit() + + # Save results (image with detections) + if save_img: + if dataset.mode == 'image': + cv2.imwrite(save_path, im0) + else: # 'video' or 'stream' + if vid_path[i] != save_path: # new video + vid_path[i] = save_path + if isinstance(vid_writer[i], cv2.VideoWriter): + vid_writer[i].release() # release previous video writer + if vid_cap: # video + fps = vid_cap.get(cv2.CAP_PROP_FPS) + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + else: # stream + fps, w, h = 30, im0.shape[1], im0.shape[0] + save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos + vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) + vid_writer[i].write(im0) + + # Print time (inference-only) + LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") + + # Print results + t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) + if save_txt or save_img: + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") + if update: + strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)') + parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') + parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') + parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') + parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') + parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--view-img', action='store_true', help='show results') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') + parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') + parser.add_argument('--nosave', action='store_true', help='do not save images/videos') + parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') + parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--visualize', action='store_true', help='visualize features') + parser.add_argument('--update', action='store_true', help='update all models') + parser.add_argument('--project', default=ROOT / 'runs/predict-seg', help='save results to project/name') + parser.add_argument('--name', default='exp', help='save results to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') + parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') + parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') + parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') + parser.add_argument('--retina-masks', action='store_true', help='whether to plot masks in native resolution') + opt = parser.parse_args() + opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand + print_args(vars(opt)) + return opt + + +def main(opt): + check_requirements(exclude=('tensorboard', 'thop')) + run(**vars(opt)) + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/segment/train.py b/ultralytics/yolov5/segment/train.py new file mode 100644 index 0000000..de5f703 --- /dev/null +++ b/ultralytics/yolov5/segment/train.py @@ -0,0 +1,664 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Train a YOLOv5 segment model on a segment dataset +Models and datasets download automatically from the latest YOLOv5 release. + +Usage - Single-GPU training: + $ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 # from pretrained (recommended) + $ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640 # from scratch + +Usage - Multi-GPU DDP training: + $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3 + +Models: https://github.com/ultralytics/yolov5/tree/master/models +Datasets: https://github.com/ultralytics/yolov5/tree/master/data +Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data +""" + +import argparse +import math +import os +import random +import subprocess +import sys +import time +from copy import deepcopy +from datetime import datetime +from pathlib import Path + +import numpy as np +import torch +import torch.distributed as dist +import torch.nn as nn +import yaml +from torch.optim import lr_scheduler +from tqdm import tqdm + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +import segment.val as validate # for end-of-epoch mAP +from models.experimental import attempt_load +from models.yolo import SegmentationModel +from utils.autoanchor import check_anchors +from utils.autobatch import check_train_batch_size +from utils.callbacks import Callbacks +from utils.downloads import attempt_download, is_url +from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info, + check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr, + get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights, + labels_to_image_weights, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save) +from utils.loggers import GenericLogger +from utils.plots import plot_evolve, plot_labels +from utils.segment.dataloaders import create_dataloader +from utils.segment.loss import ComputeLoss +from utils.segment.metrics import KEYS, fitness +from utils.segment.plots import plot_images_and_masks, plot_results_with_masks +from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, + smart_resume, torch_distributed_zero_first) + +LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html +RANK = int(os.getenv('RANK', -1)) +WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) +GIT_INFO = check_git_info() + + +def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary + save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, mask_ratio = \ + Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ + opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.mask_ratio + # callbacks.run('on_pretrain_routine_start') + + # Directories + w = save_dir / 'weights' # weights dir + (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir + last, best = w / 'last.pt', w / 'best.pt' + + # Hyperparameters + if isinstance(hyp, str): + with open(hyp, errors='ignore') as f: + hyp = yaml.safe_load(f) # load hyps dict + LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) + opt.hyp = hyp.copy() # for saving hyps to checkpoints + + # Save run settings + if not evolve: + yaml_save(save_dir / 'hyp.yaml', hyp) + yaml_save(save_dir / 'opt.yaml', vars(opt)) + + # Loggers + data_dict = None + if RANK in {-1, 0}: + logger = GenericLogger(opt=opt, console_logger=LOGGER) + + # Config + plots = not evolve and not opt.noplots # create plots + overlap = not opt.no_overlap + cuda = device.type != 'cpu' + init_seeds(opt.seed + 1 + RANK, deterministic=True) + with torch_distributed_zero_first(LOCAL_RANK): + data_dict = data_dict or check_dataset(data) # check if None + train_path, val_path = data_dict['train'], data_dict['val'] + nc = 1 if single_cls else int(data_dict['nc']) # number of classes + names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names + is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset + + # Model + check_suffix(weights, '.pt') # check weights + pretrained = weights.endswith('.pt') + if pretrained: + with torch_distributed_zero_first(LOCAL_RANK): + weights = attempt_download(weights) # download if not found locally + ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak + model = SegmentationModel(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) + exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys + csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 + csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect + model.load_state_dict(csd, strict=False) # load + LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report + else: + model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create + amp = check_amp(model) # check AMP + + # Freeze + freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze + for k, v in model.named_parameters(): + v.requires_grad = True # train all layers + # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) + if any(x in k for x in freeze): + LOGGER.info(f'freezing {k}') + v.requires_grad = False + + # Image size + gs = max(int(model.stride.max()), 32) # grid size (max stride) + imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple + + # Batch size + if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size + batch_size = check_train_batch_size(model, imgsz, amp) + logger.update_params({'batch_size': batch_size}) + # loggers.on_params_update({"batch_size": batch_size}) + + # Optimizer + nbs = 64 # nominal batch size + accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing + hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay + optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay']) + + # Scheduler + if opt.cos_lr: + lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] + else: + lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear + scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) + + # EMA + ema = ModelEMA(model) if RANK in {-1, 0} else None + + # Resume + best_fitness, start_epoch = 0.0, 0 + if pretrained: + if resume: + best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) + del ckpt, csd + + # DP mode + if cuda and RANK == -1 and torch.cuda.device_count() > 1: + LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' + 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') + model = torch.nn.DataParallel(model) + + # SyncBatchNorm + if opt.sync_bn and cuda and RANK != -1: + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) + LOGGER.info('Using SyncBatchNorm()') + + # Trainloader + train_loader, dataset = create_dataloader( + train_path, + imgsz, + batch_size // WORLD_SIZE, + gs, + single_cls, + hyp=hyp, + augment=True, + cache=None if opt.cache == 'val' else opt.cache, + rect=opt.rect, + rank=LOCAL_RANK, + workers=workers, + image_weights=opt.image_weights, + quad=opt.quad, + prefix=colorstr('train: '), + shuffle=True, + mask_downsample_ratio=mask_ratio, + overlap_mask=overlap, + ) + labels = np.concatenate(dataset.labels, 0) + mlc = int(labels[:, 0].max()) # max label class + assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' + + # Process 0 + if RANK in {-1, 0}: + val_loader = create_dataloader(val_path, + imgsz, + batch_size // WORLD_SIZE * 2, + gs, + single_cls, + hyp=hyp, + cache=None if noval else opt.cache, + rect=True, + rank=-1, + workers=workers * 2, + pad=0.5, + mask_downsample_ratio=mask_ratio, + overlap_mask=overlap, + prefix=colorstr('val: '))[0] + + if not resume: + if not opt.noautoanchor: + check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor + model.half().float() # pre-reduce anchor precision + + if plots: + plot_labels(labels, names, save_dir) + # callbacks.run('on_pretrain_routine_end', labels, names) + + # DDP mode + if cuda and RANK != -1: + model = smart_DDP(model) + + # Model attributes + nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) + hyp['box'] *= 3 / nl # scale to layers + hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers + hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers + hyp['label_smoothing'] = opt.label_smoothing + model.nc = nc # attach number of classes to model + model.hyp = hyp # attach hyperparameters to model + model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights + model.names = names + + # Start training + t0 = time.time() + nb = len(train_loader) # number of batches + nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) + # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training + last_opt_step = -1 + maps = np.zeros(nc) # mAP per class + results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) + scheduler.last_epoch = start_epoch - 1 # do not move + scaler = torch.cuda.amp.GradScaler(enabled=amp) + stopper, stop = EarlyStopping(patience=opt.patience), False + compute_loss = ComputeLoss(model, overlap=overlap) # init loss class + # callbacks.run('on_train_start') + LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' + f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' + f"Logging results to {colorstr('bold', save_dir)}\n" + f'Starting training for {epochs} epochs...') + for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ + # callbacks.run('on_train_epoch_start') + model.train() + + # Update image weights (optional, single-GPU only) + if opt.image_weights: + cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights + iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights + dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx + + # Update mosaic border (optional) + # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) + # dataset.mosaic_border = [b - imgsz, -b] # height, width borders + + mloss = torch.zeros(4, device=device) # mean losses + if RANK != -1: + train_loader.sampler.set_epoch(epoch) + pbar = enumerate(train_loader) + LOGGER.info(('\n' + '%11s' * 8) % + ('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size')) + if RANK in {-1, 0}: + pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar + optimizer.zero_grad() + for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------ + # callbacks.run('on_train_batch_start') + ni = i + nb * epoch # number integrated batches (since train start) + imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 + + # Warmup + if ni <= nw: + xi = [0, nw] # x interp + # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) + accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) + for j, x in enumerate(optimizer.param_groups): + # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 + x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)]) + if 'momentum' in x: + x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) + + # Multi-scale + if opt.multi_scale: + sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size + sf = sz / max(imgs.shape[2:]) # scale factor + if sf != 1: + ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) + imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) + + # Forward + with torch.cuda.amp.autocast(amp): + pred = model(imgs) # forward + loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float()) + if RANK != -1: + loss *= WORLD_SIZE # gradient averaged between devices in DDP mode + if opt.quad: + loss *= 4. + + # Backward + scaler.scale(loss).backward() + + # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html + if ni - last_opt_step >= accumulate: + scaler.unscale_(optimizer) # unscale gradients + torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients + scaler.step(optimizer) # optimizer.step + scaler.update() + optimizer.zero_grad() + if ema: + ema.update(model) + last_opt_step = ni + + # Log + if RANK in {-1, 0}: + mloss = (mloss * i + loss_items) / (i + 1) # update mean losses + mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) + pbar.set_description(('%11s' * 2 + '%11.4g' * 6) % + (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) + # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths) + # if callbacks.stop_training: + # return + + # Mosaic plots + if plots: + if ni < 3: + plot_images_and_masks(imgs, targets, masks, paths, save_dir / f'train_batch{ni}.jpg') + if ni == 10: + files = sorted(save_dir.glob('train*.jpg')) + logger.log_images(files, 'Mosaics', epoch) + # end batch ------------------------------------------------------------------------------------------------ + + # Scheduler + lr = [x['lr'] for x in optimizer.param_groups] # for loggers + scheduler.step() + + if RANK in {-1, 0}: + # mAP + # callbacks.run('on_train_epoch_end', epoch=epoch) + ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) + final_epoch = (epoch + 1 == epochs) or stopper.possible_stop + if not noval or final_epoch: # Calculate mAP + results, maps, _ = validate.run(data_dict, + batch_size=batch_size // WORLD_SIZE * 2, + imgsz=imgsz, + half=amp, + model=ema.ema, + single_cls=single_cls, + dataloader=val_loader, + save_dir=save_dir, + plots=False, + callbacks=callbacks, + compute_loss=compute_loss, + mask_downsample_ratio=mask_ratio, + overlap=overlap) + + # Update best mAP + fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] + stop = stopper(epoch=epoch, fitness=fi) # early stop check + if fi > best_fitness: + best_fitness = fi + log_vals = list(mloss) + list(results) + lr + # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) + # Log val metrics and media + metrics_dict = dict(zip(KEYS, log_vals)) + logger.log_metrics(metrics_dict, epoch) + + # Save model + if (not nosave) or (final_epoch and not evolve): # if save + ckpt = { + 'epoch': epoch, + 'best_fitness': best_fitness, + 'model': deepcopy(de_parallel(model)).half(), + 'ema': deepcopy(ema.ema).half(), + 'updates': ema.updates, + 'optimizer': optimizer.state_dict(), + 'opt': vars(opt), + 'git': GIT_INFO, # {remote, branch, commit} if a git repo + 'date': datetime.now().isoformat()} + + # Save last, best and delete + torch.save(ckpt, last) + if best_fitness == fi: + torch.save(ckpt, best) + if opt.save_period > 0 and epoch % opt.save_period == 0: + torch.save(ckpt, w / f'epoch{epoch}.pt') + logger.log_model(w / f'epoch{epoch}.pt') + del ckpt + # callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) + + # EarlyStopping + if RANK != -1: # if DDP training + broadcast_list = [stop if RANK == 0 else None] + dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks + if RANK != 0: + stop = broadcast_list[0] + if stop: + break # must break all DDP ranks + + # end epoch ---------------------------------------------------------------------------------------------------- + # end training ----------------------------------------------------------------------------------------------------- + if RANK in {-1, 0}: + LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') + for f in last, best: + if f.exists(): + strip_optimizer(f) # strip optimizers + if f is best: + LOGGER.info(f'\nValidating {f}...') + results, _, _ = validate.run( + data_dict, + batch_size=batch_size // WORLD_SIZE * 2, + imgsz=imgsz, + model=attempt_load(f, device).half(), + iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65 + single_cls=single_cls, + dataloader=val_loader, + save_dir=save_dir, + save_json=is_coco, + verbose=True, + plots=plots, + callbacks=callbacks, + compute_loss=compute_loss, + mask_downsample_ratio=mask_ratio, + overlap=overlap) # val best model with plots + if is_coco: + # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) + metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr)) + logger.log_metrics(metrics_dict, epoch) + + # callbacks.run('on_train_end', last, best, epoch, results) + # on train end callback using genericLogger + logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs) + if not opt.evolve: + logger.log_model(best, epoch) + if plots: + plot_results_with_masks(file=save_dir / 'results.csv') # save results.png + files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] + files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") + logger.log_images(files, 'Results', epoch + 1) + logger.log_images(sorted(save_dir.glob('val*.jpg')), 'Validation', epoch + 1) + torch.cuda.empty_cache() + return results + + +def parse_opt(known=False): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s-seg.pt', help='initial weights path') + parser.add_argument('--cfg', type=str, default='', help='model.yaml path') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path') + parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') + parser.add_argument('--epochs', type=int, default=100, help='total training epochs') + parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') + parser.add_argument('--rect', action='store_true', help='rectangular training') + parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') + parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') + parser.add_argument('--noval', action='store_true', help='only validate final epoch') + parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') + parser.add_argument('--noplots', action='store_true', help='save no plot files') + parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') + parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') + parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk') + parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') + parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') + parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') + parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--project', default=ROOT / 'runs/train-seg', help='save to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--quad', action='store_true', help='quad dataloader') + parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') + parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') + parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') + parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') + parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') + parser.add_argument('--seed', type=int, default=0, help='Global training seed') + parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') + + # Instance Segmentation Args + parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory') + parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP') + + return parser.parse_known_args()[0] if known else parser.parse_args() + + +def main(opt, callbacks=Callbacks()): + # Checks + if RANK in {-1, 0}: + print_args(vars(opt)) + check_git_status() + check_requirements() + + # Resume + if opt.resume and not opt.evolve: # resume from specified or most recent last.pt + last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) + opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml + opt_data = opt.data # original dataset + if opt_yaml.is_file(): + with open(opt_yaml, errors='ignore') as f: + d = yaml.safe_load(f) + else: + d = torch.load(last, map_location='cpu')['opt'] + opt = argparse.Namespace(**d) # replace + opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate + if is_url(opt_data): + opt.data = check_file(opt_data) # avoid HUB resume auth timeout + else: + opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ + check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks + assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' + if opt.evolve: + if opt.project == str(ROOT / 'runs/train-seg'): # if default project name, rename to runs/evolve-seg + opt.project = str(ROOT / 'runs/evolve-seg') + opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume + if opt.name == 'cfg': + opt.name = Path(opt.cfg).stem # use model.yaml as name + opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) + + # DDP mode + device = select_device(opt.device, batch_size=opt.batch_size) + if LOCAL_RANK != -1: + msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' + assert not opt.image_weights, f'--image-weights {msg}' + assert not opt.evolve, f'--evolve {msg}' + assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' + assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' + assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' + torch.cuda.set_device(LOCAL_RANK) + device = torch.device('cuda', LOCAL_RANK) + dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo') + + # Train + if not opt.evolve: + train(opt.hyp, opt, device, callbacks) + + # Evolve hyperparameters (optional) + else: + # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) + meta = { + 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) + 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) + 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 + 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay + 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) + 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum + 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr + 'box': (1, 0.02, 0.2), # box loss gain + 'cls': (1, 0.2, 4.0), # cls loss gain + 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight + 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) + 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight + 'iou_t': (0, 0.1, 0.7), # IoU training threshold + 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold + 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) + 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) + 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) + 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) + 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) + 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) + 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) + 'scale': (1, 0.0, 0.9), # image scale (+/- gain) + 'shear': (1, 0.0, 10.0), # image shear (+/- deg) + 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 + 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) + 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) + 'mosaic': (1, 0.0, 1.0), # image mixup (probability) + 'mixup': (1, 0.0, 1.0), # image mixup (probability) + 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) + + with open(opt.hyp, errors='ignore') as f: + hyp = yaml.safe_load(f) # load hyps dict + if 'anchors' not in hyp: # anchors commented in hyp.yaml + hyp['anchors'] = 3 + if opt.noautoanchor: + del hyp['anchors'], meta['anchors'] + opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch + # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices + evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' + if opt.bucket: + # download evolve.csv if exists + subprocess.run([ + 'gsutil', + 'cp', + f'gs://{opt.bucket}/evolve.csv', + str(evolve_csv),]) + + for _ in range(opt.evolve): # generations to evolve + if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate + # Select parent(s) + parent = 'single' # parent selection method: 'single' or 'weighted' + x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) + n = min(5, len(x)) # number of previous results to consider + x = x[np.argsort(-fitness(x))][:n] # top n mutations + w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) + if parent == 'single' or len(x) == 1: + # x = x[random.randint(0, n - 1)] # random selection + x = x[random.choices(range(n), weights=w)[0]] # weighted selection + elif parent == 'weighted': + x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination + + # Mutate + mp, s = 0.8, 0.2 # mutation probability, sigma + npr = np.random + npr.seed(int(time.time())) + g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 + ng = len(meta) + v = np.ones(ng) + while all(v == 1): # mutate until a change occurs (prevent duplicates) + v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) + for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) + hyp[k] = float(x[i + 12] * v[i]) # mutate + + # Constrain to limits + for k, v in meta.items(): + hyp[k] = max(hyp[k], v[1]) # lower limit + hyp[k] = min(hyp[k], v[2]) # upper limit + hyp[k] = round(hyp[k], 5) # significant digits + + # Train mutation + results = train(hyp.copy(), opt, device, callbacks) + callbacks = Callbacks() + # Write mutation results + print_mutation(KEYS[4:16], results, hyp.copy(), save_dir, opt.bucket) + + # Plot results + plot_evolve(evolve_csv) + LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' + f"Results saved to {colorstr('bold', save_dir)}\n" + f'Usage example: $ python train.py --hyp {evolve_yaml}') + + +def run(**kwargs): + # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') + opt = parse_opt(True) + for k, v in kwargs.items(): + setattr(opt, k, v) + main(opt) + return opt + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/segment/tutorial.ipynb b/ultralytics/yolov5/segment/tutorial.ipynb new file mode 100644 index 0000000..cb52045 --- /dev/null +++ b/ultralytics/yolov5/segment/tutorial.ipynb @@ -0,0 +1,594 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "t6MPjfT5NrKQ" + }, + "source": [ + "

    \n", + "\n", + " \n", + " \n", + "\n", + "\n", + "
    \n", + " \"Run\n", + " \"Open\n", + " \"Open\n", + "
    \n", + "\n", + "This YOLOv5 🚀 notebook by Ultralytics presents simple train, validate and predict examples to help start your AI adventure.
    See GitHub for community support or contact us for professional support.\n", + "\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7mGmQbAO5pQb" + }, + "source": [ + "# Setup\n", + "\n", + "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wbvMlHd_QwMG", + "outputId": "171b23f0-71b9-4cbf-b666-6fa2ecef70c8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n" + ] + } + ], + "source": [ + "!git clone https://github.com/ultralytics/yolov5 # clone\n", + "%cd yolov5\n", + "%pip install -qr requirements.txt # install\n", + "\n", + "import torch\n", + "import utils\n", + "display = utils.notebook_init() # checks" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4JnkELT0cIJg" + }, + "source": [ + "# 1. Predict\n", + "\n", + "`segment/predict.py` runs YOLOv5 instance segmentation inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict`. Example inference sources are:\n", + "\n", + "```shell\n", + "python segment/predict.py --source 0 # webcam\n", + " img.jpg # image \n", + " vid.mp4 # video\n", + " screen # screenshot\n", + " path/ # directory\n", + " 'path/*.jpg' # glob\n", + " 'https://youtu.be/Zgi9g1ksQHc' # YouTube\n", + " 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zR9ZbuQCH7FX", + "outputId": "3f67f1c7-f15e-4fa5-d251-967c3b77eaad" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n", + "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", + "\n", + "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt to yolov5s-seg.pt...\n", + "100% 14.9M/14.9M [00:01<00:00, 12.0MB/s]\n", + "\n", + "Fusing layers... \n", + "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n", + "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 18.2ms\n", + "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.4ms\n", + "Speed: 0.5ms pre-process, 15.8ms inference, 18.5ms NMS per image at shape (1, 3, 640, 640)\n", + "Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n" + ] + } + ], + "source": [ + "!python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source data/images\n", + "#display.Image(filename='runs/predict-seg/exp/zidane.jpg', width=600)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hkAzDWJ7cWTr" + }, + "source": [ + "        \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0eq1SMWl6Sfn" + }, + "source": [ + "# 2. Validate\n", + "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WQPtK1QYVaD_", + "outputId": "9d751d8c-bee8-4339-cf30-9854ca530449" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels-segments.zip ...\n", + "Downloading http://images.cocodataset.org/zips/val2017.zip ...\n", + "######################################################################## 100.0%\n", + "######################################################################## 100.0%\n" + ] + } + ], + "source": [ + "# Download COCO val\n", + "!bash data/scripts/get_coco.sh --val --segments # download (780M - 5000 images)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X58w8JLpMnjH", + "outputId": "a140d67a-02da-479e-9ddb-7d54bf9e407a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n", + "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", + "\n", + "Fusing layers... \n", + "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n", + "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1361.31it/s]\n", + "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n", + " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 157/157 [01:54<00:00, 1.37it/s]\n", + " all 5000 36335 0.673 0.517 0.566 0.373 0.672 0.49 0.532 0.319\n", + "Speed: 0.6ms pre-process, 4.4ms inference, 2.9ms NMS per image at shape (32, 3, 640, 640)\n", + "Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n" + ] + } + ], + "source": [ + "# Validate YOLOv5s-seg on COCO val\n", + "!python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 --half" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZY2VXXXu74w5" + }, + "source": [ + "# 3. Train\n", + "\n", + "

    \n", + "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n", + "

    \n", + "\n", + "Train a YOLOv5s-seg model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128-seg.yaml`, starting from pretrained `--weights yolov5s-seg.pt`, or from randomly initialized `--weights '' --cfg yolov5s-seg.yaml`.\n", + "\n", + "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n", + "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n", + "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n", + "- **Training Results** are saved to `runs/train-seg/` with incrementing run directories, i.e. `runs/train-seg/exp2`, `runs/train-seg/exp3` etc.\n", + "

    \n", + "\n", + "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n", + "\n", + "## Train on Custom Data with Roboflow 🌟 NEW\n", + "\n", + "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n", + "\n", + "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/](https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/?ref=ultralytics)\n", + "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JTz7kpmHsg-5qwVz2d2IH3AaenI1tv0N?usp=sharing)\n", + "
    \n", + "\n", + "

    Label images lightning fast (including with model-assisted labeling)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "i3oKtE4g-aNn" + }, + "outputs": [], + "source": [ + "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n", + "logger = 'TensorBoard' #@param ['TensorBoard', 'Comet', 'ClearML']\n", + "\n", + "if logger == 'TensorBoard':\n", + " %load_ext tensorboard\n", + " %tensorboard --logdir runs/train-seg\n", + "elif logger == 'Comet':\n", + " %pip install -q comet_ml\n", + " import comet_ml; comet_ml.init()\n", + "elif logger == 'ClearML':\n", + " import clearml; clearml.browser_login()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1NcFxRcFdJ_O", + "outputId": "3a3e0cf7-e79c-47a5-c8e7-2d26eeeab988" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n", + "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n", + "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", + "\n", + "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n", + "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n", + "\n", + "Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n", + "Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...\n", + "100% 6.79M/6.79M [00:01<00:00, 6.73MB/s]\n", + "Dataset download success ✅ (1.9s), saved to \u001b[1m/content/datasets\u001b[0m\n", + "\n", + " from n params module arguments \n", + " 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n", + " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n", + " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n", + " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n", + " 4 -1 2 115712 models.common.C3 [128, 128, 2] \n", + " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n", + " 6 -1 3 625152 models.common.C3 [256, 256, 3] \n", + " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n", + " 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n", + " 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n", + " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n", + " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 12 [-1, 6] 1 0 models.common.Concat [1] \n", + " 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n", + " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n", + " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 16 [-1, 4] 1 0 models.common.Concat [1] \n", + " 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n", + " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n", + " 19 [-1, 14] 1 0 models.common.Concat [1] \n", + " 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n", + " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n", + " 22 [-1, 10] 1 0 models.common.Concat [1] \n", + " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n", + " 24 [17, 20, 23] 1 615133 models.yolo.Segment [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 128, [128, 256, 512]]\n", + "Model summary: 225 layers, 7621277 parameters, 7621277 gradients, 26.6 GFLOPs\n", + "\n", + "Transferred 367/367 items from yolov5s-seg.pt\n", + "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", + "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n", + "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", + "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1389.59it/s]\n", + "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n", + "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 238.86it/s]\n", + "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00 # 2. paste API key\n", + "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n", + "```\n", + "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n", + "\n", + "\n", + "\"Comet" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Lay2WsTjNJzP" + }, + "source": [ + "## ClearML Logging and Automation 🌟 NEW\n", + "\n", + "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n", + "\n", + "- `pip install clearml`\n", + "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n", + "\n", + "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n", + "\n", + "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n", + "\n", + "\n", + "\"ClearML" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-WPvRbS5Swl6" + }, + "source": [ + "## Local Logging\n", + "\n", + "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n", + "\n", + "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n", + "\n", + "\"Local\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zelyeqbyt3GD" + }, + "source": [ + "# Environments\n", + "\n", + "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n", + "\n", + "- **Notebooks** with free GPU: \"Run \"Open \"Open\n", + "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n", + "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n", + "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) \"Docker\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6Qu7Iesl0p54" + }, + "source": [ + "# Status\n", + "\n", + "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n", + "\n", + "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IEijrePND_2I" + }, + "source": [ + "# Appendix\n", + "\n", + "Additional content below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GMusP4OAxFu6" + }, + "outputs": [], + "source": [ + "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n", + "import torch\n", + "\n", + "model = torch.hub.load('ultralytics/yolov5', 'yolov5s-seg') # yolov5n - yolov5x6 or custom\n", + "im = 'https://ultralytics.com/images/zidane.jpg' # file, Path, PIL.Image, OpenCV, nparray, list\n", + "results = model(im) # inference\n", + "results.print() # or .show(), .save(), .crop(), .pandas(), etc." + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "name": "YOLOv5 Segmentation Tutorial", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/ultralytics/yolov5/segment/val.py b/ultralytics/yolov5/segment/val.py new file mode 100644 index 0000000..a7f95fe --- /dev/null +++ b/ultralytics/yolov5/segment/val.py @@ -0,0 +1,473 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Validate a trained YOLOv5 segment model on a segment dataset + +Usage: + $ bash data/scripts/get_coco.sh --val --segments # download COCO-segments val split (1G, 5000 images) + $ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate COCO-segments + +Usage - formats: + $ python segment/val.py --weights yolov5s-seg.pt # PyTorch + yolov5s-seg.torchscript # TorchScript + yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s-seg_openvino_label # OpenVINO + yolov5s-seg.engine # TensorRT + yolov5s-seg.mlmodel # CoreML (macOS-only) + yolov5s-seg_saved_model # TensorFlow SavedModel + yolov5s-seg.pb # TensorFlow GraphDef + yolov5s-seg.tflite # TensorFlow Lite + yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU + yolov5s-seg_paddle_model # PaddlePaddle +""" + +import argparse +import json +import os +import subprocess +import sys +from multiprocessing.pool import ThreadPool +from pathlib import Path + +import numpy as np +import torch +from tqdm import tqdm + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +import torch.nn.functional as F + +from models.common import DetectMultiBackend +from models.yolo import SegmentationModel +from utils.callbacks import Callbacks +from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, + check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path, + non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh) +from utils.metrics import ConfusionMatrix, box_iou +from utils.plots import output_to_target, plot_val_study +from utils.segment.dataloaders import create_dataloader +from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image +from utils.segment.metrics import Metrics, ap_per_class_box_and_mask +from utils.segment.plots import plot_images_and_masks +from utils.torch_utils import de_parallel, select_device, smart_inference_mode + + +def save_one_txt(predn, save_conf, shape, file): + # Save one txt result + gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh + for *xyxy, conf, cls in predn.tolist(): + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format + with open(file, 'a') as f: + f.write(('%g ' * len(line)).rstrip() % line + '\n') + + +def save_one_json(predn, jdict, path, class_map, pred_masks): + # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} + from pycocotools.mask import encode + + def single_encode(x): + rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0] + rle['counts'] = rle['counts'].decode('utf-8') + return rle + + image_id = int(path.stem) if path.stem.isnumeric() else path.stem + box = xyxy2xywh(predn[:, :4]) # xywh + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner + pred_masks = np.transpose(pred_masks, (2, 0, 1)) + with ThreadPool(NUM_THREADS) as pool: + rles = pool.map(single_encode, pred_masks) + for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): + jdict.append({ + 'image_id': image_id, + 'category_id': class_map[int(p[5])], + 'bbox': [round(x, 3) for x in b], + 'score': round(p[4], 5), + 'segmentation': rles[i]}) + + +def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False): + """ + Return correct prediction matrix + Arguments: + detections (array[N, 6]), x1, y1, x2, y2, conf, class + labels (array[M, 5]), class, x1, y1, x2, y2 + Returns: + correct (array[N, 10]), for 10 IoU levels + """ + if masks: + if overlap: + nl = len(labels) + index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 + gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) + gt_masks = torch.where(gt_masks == index, 1.0, 0.0) + if gt_masks.shape[1:] != pred_masks.shape[1:]: + gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0] + gt_masks = gt_masks.gt_(0.5) + iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) + else: # boxes + iou = box_iou(labels[:, 1:], detections[:, :4]) + + correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) + correct_class = labels[:, 0:1] == detections[:, 5] + for i in range(len(iouv)): + x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + # matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + correct[matches[:, 1].astype(int), i] = True + return torch.tensor(correct, dtype=torch.bool, device=iouv.device) + + +@smart_inference_mode() +def run( + data, + weights=None, # model.pt path(s) + batch_size=32, # batch size + imgsz=640, # inference size (pixels) + conf_thres=0.001, # confidence threshold + iou_thres=0.6, # NMS IoU threshold + max_det=300, # maximum detections per image + task='val', # train, val, test, speed or study + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + workers=8, # max dataloader workers (per RANK in DDP mode) + single_cls=False, # treat as single-class dataset + augment=False, # augmented inference + verbose=False, # verbose output + save_txt=False, # save results to *.txt + save_hybrid=False, # save label+prediction hybrid results to *.txt + save_conf=False, # save confidences in --save-txt labels + save_json=False, # save a COCO-JSON results file + project=ROOT / 'runs/val-seg', # save to project/name + name='exp', # save to project/name + exist_ok=False, # existing project/name ok, do not increment + half=True, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + model=None, + dataloader=None, + save_dir=Path(''), + plots=True, + overlap=False, + mask_downsample_ratio=1, + compute_loss=None, + callbacks=Callbacks(), +): + if save_json: + check_requirements('pycocotools>=2.0.6') + process = process_mask_native # more accurate + else: + process = process_mask # faster + + # Initialize/load model and set device + training = model is not None + if training: # called by train.py + device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model + half &= device.type != 'cpu' # half precision only supported on CUDA + model.half() if half else model.float() + nm = de_parallel(model).model[-1].nm # number of masks + else: # called directly + device = select_device(device, batch_size=batch_size) + + # Directories + save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir + + # Load model + model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) + stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine + imgsz = check_img_size(imgsz, s=stride) # check image size + half = model.fp16 # FP16 supported on limited backends with CUDA + nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks + if engine: + batch_size = model.batch_size + else: + device = model.device + if not (pt or jit): + batch_size = 1 # export.py models default to batch-size 1 + LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') + + # Data + data = check_dataset(data) # check + + # Configure + model.eval() + cuda = device.type != 'cpu' + is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset + nc = 1 if single_cls else int(data['nc']) # number of classes + iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95 + niou = iouv.numel() + + # Dataloader + if not training: + if pt and not single_cls: # check --weights are trained on --data + ncm = model.model.nc + assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \ + f'classes). Pass correct combination of --weights and --data that are trained together.' + model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup + pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks + task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images + dataloader = create_dataloader(data[task], + imgsz, + batch_size, + stride, + single_cls, + pad=pad, + rect=rect, + workers=workers, + prefix=colorstr(f'{task}: '), + overlap_mask=overlap, + mask_downsample_ratio=mask_downsample_ratio)[0] + + seen = 0 + confusion_matrix = ConfusionMatrix(nc=nc) + names = model.names if hasattr(model, 'names') else model.module.names # get class names + if isinstance(names, (list, tuple)): # old format + names = dict(enumerate(names)) + class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) + s = ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', 'R', + 'mAP50', 'mAP50-95)') + dt = Profile(), Profile(), Profile() + metrics = Metrics() + loss = torch.zeros(4, device=device) + jdict, stats = [], [] + # callbacks.run('on_val_start') + pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar + for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar): + # callbacks.run('on_val_batch_start') + with dt[0]: + if cuda: + im = im.to(device, non_blocking=True) + targets = targets.to(device) + masks = masks.to(device) + masks = masks.float() + im = im.half() if half else im.float() # uint8 to fp16/32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + nb, _, height, width = im.shape # batch size, channels, height, width + + # Inference + with dt[1]: + preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None) + + # Loss + if compute_loss: + loss += compute_loss((train_out, protos), targets, masks)[1] # box, obj, cls + + # NMS + targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels + lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling + with dt[2]: + preds = non_max_suppression(preds, + conf_thres, + iou_thres, + labels=lb, + multi_label=True, + agnostic=single_cls, + max_det=max_det, + nm=nm) + + # Metrics + plot_masks = [] # masks for plotting + for si, (pred, proto) in enumerate(zip(preds, protos)): + labels = targets[targets[:, 0] == si, 1:] + nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions + path, shape = Path(paths[si]), shapes[si][0] + correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init + correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init + seen += 1 + + if npr == 0: + if nl: + stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0])) + if plots: + confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) + continue + + # Masks + midx = [si] if overlap else targets[:, 0] == si + gt_masks = masks[midx] + pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:]) + + # Predictions + if single_cls: + pred[:, 5] = 0 + predn = pred.clone() + scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred + + # Evaluate + if nl: + tbox = xywh2xyxy(labels[:, 1:5]) # target boxes + scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels + labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels + correct_bboxes = process_batch(predn, labelsn, iouv) + correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True) + if plots: + confusion_matrix.process_batch(predn, labelsn) + stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls) + + pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) + if plots and batch_i < 3: + plot_masks.append(pred_masks[:15]) # filter top 15 to plot + + # Save/log + if save_txt: + save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') + if save_json: + pred_masks = scale_image(im[si].shape[1:], + pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1]) + save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary + # callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) + + # Plot images + if plots and batch_i < 3: + if len(plot_masks): + plot_masks = torch.cat(plot_masks, dim=0) + plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) + plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths, + save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred + + # callbacks.run('on_val_batch_end') + + # Compute metrics + stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy + if len(stats) and stats[0].any(): + results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names) + metrics.update(results) + nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class + + # Print results + pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format + LOGGER.info(pf % ('all', seen, nt.sum(), *metrics.mean_results())) + if nt.sum() == 0: + LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels') + + # Print results per class + if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): + for i, c in enumerate(metrics.ap_class_index): + LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i))) + + # Print speeds + t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image + if not training: + shape = (batch_size, 3, imgsz, imgsz) + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) + + # Plots + if plots: + confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) + # callbacks.run('on_val_end') + + mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results() + + # Save JSON + if save_json and len(jdict): + w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights + anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations + pred_json = str(save_dir / f'{w}_predictions.json') # predictions + LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') + with open(pred_json, 'w') as f: + json.dump(jdict, f) + + try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb + from pycocotools.coco import COCO + from pycocotools.cocoeval import COCOeval + + anno = COCO(anno_json) # init annotations api + pred = anno.loadRes(pred_json) # init predictions api + results = [] + for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'): + if is_coco: + eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate + eval.evaluate() + eval.accumulate() + eval.summarize() + results.extend(eval.stats[:2]) # update results (mAP@0.5:0.95, mAP@0.5) + map_bbox, map50_bbox, map_mask, map50_mask = results + except Exception as e: + LOGGER.info(f'pycocotools unable to run: {e}') + + # Return results + model.float() # for training + if not training: + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") + final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask + return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path') + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)') + parser.add_argument('--batch-size', type=int, default=32, help='batch size') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') + parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') + parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') + parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image') + parser.add_argument('--task', default='val', help='train, val, test, speed or study') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--verbose', action='store_true', help='report mAP by class') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') + parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') + parser.add_argument('--project', default=ROOT / 'runs/val-seg', help='save results to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') + opt = parser.parse_args() + opt.data = check_yaml(opt.data) # check YAML + # opt.save_json |= opt.data.endswith('coco.yaml') + opt.save_txt |= opt.save_hybrid + print_args(vars(opt)) + return opt + + +def main(opt): + check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) + + if opt.task in ('train', 'val', 'test'): # run normally + if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 + LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results') + if opt.save_hybrid: + LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone') + run(**vars(opt)) + + else: + weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] + opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results + if opt.task == 'speed': # speed benchmarks + # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... + opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False + for opt.weights in weights: + run(**vars(opt), plots=False) + + elif opt.task == 'study': # speed vs mAP benchmarks + # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... + for opt.weights in weights: + f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to + x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis + for opt.imgsz in x: # img-size + LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') + r, _, t = run(**vars(opt), plots=False) + y.append(r + t) # results and times + np.savetxt(f, y, fmt='%10.4g') # save + subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt']) + plot_val_study(x=x) # plot + else: + raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")') + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/setup.cfg b/ultralytics/yolov5/setup.cfg new file mode 100644 index 0000000..d7c4cb3 --- /dev/null +++ b/ultralytics/yolov5/setup.cfg @@ -0,0 +1,54 @@ +# Project-wide configuration file, can be used for package metadata and other toll configurations +# Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments +# Local usage: pip install pre-commit, pre-commit run --all-files + +[metadata] +license_file = LICENSE +description_file = README.md + +[tool:pytest] +norecursedirs = + .git + dist + build +addopts = + --doctest-modules + --durations=25 + --color=yes + +[flake8] +max-line-length = 120 +exclude = .tox,*.egg,build,temp +select = E,W,F +doctests = True +verbose = 2 +# https://pep8.readthedocs.io/en/latest/intro.html#error-codes +format = pylint +# see: https://www.flake8rules.com/ +ignore = E731,F405,E402,F401,W504,E127,E231,E501,F403 + # E731: Do not assign a lambda expression, use a def + # F405: name may be undefined, or defined from star imports: module + # E402: module level import not at top of file + # F401: module imported but unused + # W504: line break after binary operator + # E127: continuation line over-indented for visual indent + # E231: missing whitespace after ‘,’, ‘;’, or ‘:’ + # E501: line too long + # F403: ‘from module import *’ used; unable to detect undefined names + +[isort] +# https://pycqa.github.io/isort/docs/configuration/options.html +line_length = 120 +# see: https://pycqa.github.io/isort/docs/configuration/multi_line_output_modes.html +multi_line_output = 0 + +[yapf] +based_on_style = pep8 +spaces_before_comment = 2 +COLUMN_LIMIT = 120 +COALESCE_BRACKETS = True +SPACES_AROUND_POWER_OPERATOR = True +SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET = False +SPLIT_BEFORE_CLOSING_BRACKET = False +SPLIT_BEFORE_FIRST_ARGUMENT = False +# EACH_DICT_ENTRY_ON_SEPARATE_LINE = False diff --git a/ultralytics/yolov5/train.py b/ultralytics/yolov5/train.py new file mode 100644 index 0000000..960f24c --- /dev/null +++ b/ultralytics/yolov5/train.py @@ -0,0 +1,640 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Train a YOLOv5 model on a custom dataset. +Models and datasets download automatically from the latest YOLOv5 release. + +Usage - Single-GPU training: + $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended) + $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch + +Usage - Multi-GPU DDP training: + $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3 + +Models: https://github.com/ultralytics/yolov5/tree/master/models +Datasets: https://github.com/ultralytics/yolov5/tree/master/data +Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data +""" + +import argparse +import math +import os +import random +import subprocess +import sys +import time +from copy import deepcopy +from datetime import datetime +from pathlib import Path + +import numpy as np +import torch +import torch.distributed as dist +import torch.nn as nn +import yaml +from torch.optim import lr_scheduler +from tqdm import tqdm + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +import val as validate # for end-of-epoch mAP +from models.experimental import attempt_load +from models.yolo import Model +from utils.autoanchor import check_anchors +from utils.autobatch import check_train_batch_size +from utils.callbacks import Callbacks +from utils.dataloaders import create_dataloader +from utils.downloads import attempt_download, is_url +from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info, + check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr, + get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights, + labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer, + yaml_save) +from utils.loggers import Loggers +from utils.loggers.comet.comet_utils import check_comet_resume +from utils.loss import ComputeLoss +from utils.metrics import fitness +from utils.plots import plot_evolve +from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, + smart_resume, torch_distributed_zero_first) + +LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html +RANK = int(os.getenv('RANK', -1)) +WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) +GIT_INFO = check_git_info() + + +def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary + save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ + Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ + opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze + callbacks.run('on_pretrain_routine_start') + + # Directories + w = save_dir / 'weights' # weights dir + (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir + last, best = w / 'last.pt', w / 'best.pt' + + # Hyperparameters + if isinstance(hyp, str): + with open(hyp, errors='ignore') as f: + hyp = yaml.safe_load(f) # load hyps dict + LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) + opt.hyp = hyp.copy() # for saving hyps to checkpoints + + # Save run settings + if not evolve: + yaml_save(save_dir / 'hyp.yaml', hyp) + yaml_save(save_dir / 'opt.yaml', vars(opt)) + + # Loggers + data_dict = None + if RANK in {-1, 0}: + loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance + + # Register actions + for k in methods(loggers): + callbacks.register_action(k, callback=getattr(loggers, k)) + + # Process custom dataset artifact link + data_dict = loggers.remote_dataset + if resume: # If resuming runs from remote artifact + weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size + + # Config + plots = not evolve and not opt.noplots # create plots + cuda = device.type != 'cpu' + init_seeds(opt.seed + 1 + RANK, deterministic=True) + with torch_distributed_zero_first(LOCAL_RANK): + data_dict = data_dict or check_dataset(data) # check if None + train_path, val_path = data_dict['train'], data_dict['val'] + nc = 1 if single_cls else int(data_dict['nc']) # number of classes + names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names + is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset + + # Model + check_suffix(weights, '.pt') # check weights + pretrained = weights.endswith('.pt') + if pretrained: + with torch_distributed_zero_first(LOCAL_RANK): + weights = attempt_download(weights) # download if not found locally + ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak + model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create + exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys + csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 + csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect + model.load_state_dict(csd, strict=False) # load + LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report + else: + model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create + amp = check_amp(model) # check AMP + + # Freeze + freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze + for k, v in model.named_parameters(): + v.requires_grad = True # train all layers + # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) + if any(x in k for x in freeze): + LOGGER.info(f'freezing {k}') + v.requires_grad = False + + # Image size + gs = max(int(model.stride.max()), 32) # grid size (max stride) + imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple + + # Batch size + if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size + batch_size = check_train_batch_size(model, imgsz, amp) + loggers.on_params_update({'batch_size': batch_size}) + + # Optimizer + nbs = 64 # nominal batch size + accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing + hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay + optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay']) + + # Scheduler + if opt.cos_lr: + lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] + else: + lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear + scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) + + # EMA + ema = ModelEMA(model) if RANK in {-1, 0} else None + + # Resume + best_fitness, start_epoch = 0.0, 0 + if pretrained: + if resume: + best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) + del ckpt, csd + + # DP mode + if cuda and RANK == -1 and torch.cuda.device_count() > 1: + LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' + 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') + model = torch.nn.DataParallel(model) + + # SyncBatchNorm + if opt.sync_bn and cuda and RANK != -1: + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) + LOGGER.info('Using SyncBatchNorm()') + + # Trainloader + train_loader, dataset = create_dataloader(train_path, + imgsz, + batch_size // WORLD_SIZE, + gs, + single_cls, + hyp=hyp, + augment=True, + cache=None if opt.cache == 'val' else opt.cache, + rect=opt.rect, + rank=LOCAL_RANK, + workers=workers, + image_weights=opt.image_weights, + quad=opt.quad, + prefix=colorstr('train: '), + shuffle=True, + seed=opt.seed) + labels = np.concatenate(dataset.labels, 0) + mlc = int(labels[:, 0].max()) # max label class + assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' + + # Process 0 + if RANK in {-1, 0}: + val_loader = create_dataloader(val_path, + imgsz, + batch_size // WORLD_SIZE * 2, + gs, + single_cls, + hyp=hyp, + cache=None if noval else opt.cache, + rect=True, + rank=-1, + workers=workers * 2, + pad=0.5, + prefix=colorstr('val: '))[0] + + if not resume: + if not opt.noautoanchor: + check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor + model.half().float() # pre-reduce anchor precision + + callbacks.run('on_pretrain_routine_end', labels, names) + + # DDP mode + if cuda and RANK != -1: + model = smart_DDP(model) + + # Model attributes + nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) + hyp['box'] *= 3 / nl # scale to layers + hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers + hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers + hyp['label_smoothing'] = opt.label_smoothing + model.nc = nc # attach number of classes to model + model.hyp = hyp # attach hyperparameters to model + model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights + model.names = names + + # Start training + t0 = time.time() + nb = len(train_loader) # number of batches + nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) + # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training + last_opt_step = -1 + maps = np.zeros(nc) # mAP per class + results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) + scheduler.last_epoch = start_epoch - 1 # do not move + scaler = torch.cuda.amp.GradScaler(enabled=amp) + stopper, stop = EarlyStopping(patience=opt.patience), False + compute_loss = ComputeLoss(model) # init loss class + callbacks.run('on_train_start') + LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' + f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' + f"Logging results to {colorstr('bold', save_dir)}\n" + f'Starting training for {epochs} epochs...') + for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ + callbacks.run('on_train_epoch_start') + model.train() + + # Update image weights (optional, single-GPU only) + if opt.image_weights: + cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights + iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights + dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx + + # Update mosaic border (optional) + # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) + # dataset.mosaic_border = [b - imgsz, -b] # height, width borders + + mloss = torch.zeros(3, device=device) # mean losses + if RANK != -1: + train_loader.sampler.set_epoch(epoch) + pbar = enumerate(train_loader) + LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size')) + if RANK in {-1, 0}: + pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar + optimizer.zero_grad() + for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- + callbacks.run('on_train_batch_start') + ni = i + nb * epoch # number integrated batches (since train start) + imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 + + # Warmup + if ni <= nw: + xi = [0, nw] # x interp + # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) + accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) + for j, x in enumerate(optimizer.param_groups): + # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 + x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)]) + if 'momentum' in x: + x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) + + # Multi-scale + if opt.multi_scale: + sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size + sf = sz / max(imgs.shape[2:]) # scale factor + if sf != 1: + ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) + imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) + + # Forward + with torch.cuda.amp.autocast(amp): + pred = model(imgs) # forward + loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size + if RANK != -1: + loss *= WORLD_SIZE # gradient averaged between devices in DDP mode + if opt.quad: + loss *= 4. + + # Backward + scaler.scale(loss).backward() + + # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html + if ni - last_opt_step >= accumulate: + scaler.unscale_(optimizer) # unscale gradients + torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients + scaler.step(optimizer) # optimizer.step + scaler.update() + optimizer.zero_grad() + if ema: + ema.update(model) + last_opt_step = ni + + # Log + if RANK in {-1, 0}: + mloss = (mloss * i + loss_items) / (i + 1) # update mean losses + mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) + pbar.set_description(('%11s' * 2 + '%11.4g' * 5) % + (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) + callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss)) + if callbacks.stop_training: + return + # end batch ------------------------------------------------------------------------------------------------ + + # Scheduler + lr = [x['lr'] for x in optimizer.param_groups] # for loggers + scheduler.step() + + if RANK in {-1, 0}: + # mAP + callbacks.run('on_train_epoch_end', epoch=epoch) + ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) + final_epoch = (epoch + 1 == epochs) or stopper.possible_stop + if not noval or final_epoch: # Calculate mAP + results, maps, _ = validate.run(data_dict, + batch_size=batch_size // WORLD_SIZE * 2, + imgsz=imgsz, + half=amp, + model=ema.ema, + single_cls=single_cls, + dataloader=val_loader, + save_dir=save_dir, + plots=False, + callbacks=callbacks, + compute_loss=compute_loss) + + # Update best mAP + fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] + stop = stopper(epoch=epoch, fitness=fi) # early stop check + if fi > best_fitness: + best_fitness = fi + log_vals = list(mloss) + list(results) + lr + callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) + + # Save model + if (not nosave) or (final_epoch and not evolve): # if save + ckpt = { + 'epoch': epoch, + 'best_fitness': best_fitness, + 'model': deepcopy(de_parallel(model)).half(), + 'ema': deepcopy(ema.ema).half(), + 'updates': ema.updates, + 'optimizer': optimizer.state_dict(), + 'opt': vars(opt), + 'git': GIT_INFO, # {remote, branch, commit} if a git repo + 'date': datetime.now().isoformat()} + + # Save last, best and delete + torch.save(ckpt, last) + if best_fitness == fi: + torch.save(ckpt, best) + if opt.save_period > 0 and epoch % opt.save_period == 0: + torch.save(ckpt, w / f'epoch{epoch}.pt') + del ckpt + callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) + + # EarlyStopping + if RANK != -1: # if DDP training + broadcast_list = [stop if RANK == 0 else None] + dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks + if RANK != 0: + stop = broadcast_list[0] + if stop: + break # must break all DDP ranks + + # end epoch ---------------------------------------------------------------------------------------------------- + # end training ----------------------------------------------------------------------------------------------------- + if RANK in {-1, 0}: + LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') + for f in last, best: + if f.exists(): + strip_optimizer(f) # strip optimizers + if f is best: + LOGGER.info(f'\nValidating {f}...') + results, _, _ = validate.run( + data_dict, + batch_size=batch_size // WORLD_SIZE * 2, + imgsz=imgsz, + model=attempt_load(f, device).half(), + iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65 + single_cls=single_cls, + dataloader=val_loader, + save_dir=save_dir, + save_json=is_coco, + verbose=True, + plots=plots, + callbacks=callbacks, + compute_loss=compute_loss) # val best model with plots + if is_coco: + callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) + + callbacks.run('on_train_end', last, best, epoch, results) + + torch.cuda.empty_cache() + return results + + +def parse_opt(known=False): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') + parser.add_argument('--cfg', type=str, default='', help='model.yaml path') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') + parser.add_argument('--epochs', type=int, default=100, help='total training epochs') + parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') + parser.add_argument('--rect', action='store_true', help='rectangular training') + parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') + parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') + parser.add_argument('--noval', action='store_true', help='only validate final epoch') + parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') + parser.add_argument('--noplots', action='store_true', help='save no plot files') + parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') + parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') + parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk') + parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') + parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') + parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') + parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--quad', action='store_true', help='quad dataloader') + parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') + parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') + parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') + parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') + parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') + parser.add_argument('--seed', type=int, default=0, help='Global training seed') + parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') + + # Logger arguments + parser.add_argument('--entity', default=None, help='Entity') + parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option') + parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval') + parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use') + + return parser.parse_known_args()[0] if known else parser.parse_args() + + +def main(opt, callbacks=Callbacks()): + # Checks + if RANK in {-1, 0}: + print_args(vars(opt)) + check_git_status() + check_requirements() + + # Resume (from specified or most recent last.pt) + if opt.resume and not check_comet_resume(opt) and not opt.evolve: + last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) + opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml + opt_data = opt.data # original dataset + if opt_yaml.is_file(): + with open(opt_yaml, errors='ignore') as f: + d = yaml.safe_load(f) + else: + d = torch.load(last, map_location='cpu')['opt'] + opt = argparse.Namespace(**d) # replace + opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate + if is_url(opt_data): + opt.data = check_file(opt_data) # avoid HUB resume auth timeout + else: + opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ + check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks + assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' + if opt.evolve: + if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve + opt.project = str(ROOT / 'runs/evolve') + opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume + if opt.name == 'cfg': + opt.name = Path(opt.cfg).stem # use model.yaml as name + opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) + + # DDP mode + device = select_device(opt.device, batch_size=opt.batch_size) + if LOCAL_RANK != -1: + msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' + assert not opt.image_weights, f'--image-weights {msg}' + assert not opt.evolve, f'--evolve {msg}' + assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' + assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' + assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' + torch.cuda.set_device(LOCAL_RANK) + device = torch.device('cuda', LOCAL_RANK) + dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo') + + # Train + if not opt.evolve: + train(opt.hyp, opt, device, callbacks) + + # Evolve hyperparameters (optional) + else: + # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) + meta = { + 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) + 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) + 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 + 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay + 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) + 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum + 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr + 'box': (1, 0.02, 0.2), # box loss gain + 'cls': (1, 0.2, 4.0), # cls loss gain + 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight + 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) + 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight + 'iou_t': (0, 0.1, 0.7), # IoU training threshold + 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold + 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) + 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) + 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) + 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) + 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) + 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) + 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) + 'scale': (1, 0.0, 0.9), # image scale (+/- gain) + 'shear': (1, 0.0, 10.0), # image shear (+/- deg) + 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 + 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) + 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) + 'mosaic': (1, 0.0, 1.0), # image mixup (probability) + 'mixup': (1, 0.0, 1.0), # image mixup (probability) + 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) + + with open(opt.hyp, errors='ignore') as f: + hyp = yaml.safe_load(f) # load hyps dict + if 'anchors' not in hyp: # anchors commented in hyp.yaml + hyp['anchors'] = 3 + if opt.noautoanchor: + del hyp['anchors'], meta['anchors'] + opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch + # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices + evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' + if opt.bucket: + # download evolve.csv if exists + subprocess.run([ + 'gsutil', + 'cp', + f'gs://{opt.bucket}/evolve.csv', + str(evolve_csv),]) + + for _ in range(opt.evolve): # generations to evolve + if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate + # Select parent(s) + parent = 'single' # parent selection method: 'single' or 'weighted' + x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) + n = min(5, len(x)) # number of previous results to consider + x = x[np.argsort(-fitness(x))][:n] # top n mutations + w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) + if parent == 'single' or len(x) == 1: + # x = x[random.randint(0, n - 1)] # random selection + x = x[random.choices(range(n), weights=w)[0]] # weighted selection + elif parent == 'weighted': + x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination + + # Mutate + mp, s = 0.8, 0.2 # mutation probability, sigma + npr = np.random + npr.seed(int(time.time())) + g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 + ng = len(meta) + v = np.ones(ng) + while all(v == 1): # mutate until a change occurs (prevent duplicates) + v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) + for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) + hyp[k] = float(x[i + 7] * v[i]) # mutate + + # Constrain to limits + for k, v in meta.items(): + hyp[k] = max(hyp[k], v[1]) # lower limit + hyp[k] = min(hyp[k], v[2]) # upper limit + hyp[k] = round(hyp[k], 5) # significant digits + + # Train mutation + results = train(hyp.copy(), opt, device, callbacks) + callbacks = Callbacks() + # Write mutation results + keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', + 'val/obj_loss', 'val/cls_loss') + print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket) + + # Plot results + plot_evolve(evolve_csv) + LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' + f"Results saved to {colorstr('bold', save_dir)}\n" + f'Usage example: $ python train.py --hyp {evolve_yaml}') + + +def run(**kwargs): + # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') + opt = parse_opt(True) + for k, v in kwargs.items(): + setattr(opt, k, v) + main(opt) + return opt + + +if __name__ == '__main__': + opt = parse_opt() + main(opt) diff --git a/ultralytics/yolov5/tutorial.ipynb b/ultralytics/yolov5/tutorial.ipynb new file mode 100644 index 0000000..32af68b --- /dev/null +++ b/ultralytics/yolov5/tutorial.ipynb @@ -0,0 +1,976 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "YOLOv5 Tutorial", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "1f7df330663048998adcf8a45bc8f69b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e896e6096dd244c59d7955e2035cd729", + "IPY_MODEL_a6ff238c29984b24bf6d0bd175c19430", + "IPY_MODEL_3c085ba3f3fd4c3c8a6bb41b41ce1479" + ], + "layout": "IPY_MODEL_16b0c8aa6e0f427e8a54d3791abb7504" + } + }, + "e896e6096dd244c59d7955e2035cd729": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c7b2dd0f78384cad8e400b282996cdf5", + "placeholder": "​", + "style": "IPY_MODEL_6a27e43b0e434edd82ee63f0a91036ca", + "value": "100%" + } + }, + "a6ff238c29984b24bf6d0bd175c19430": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cce0e6c0c4ec442cb47e65c674e02e92", + "max": 818322941, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c5b9f38e2f0d4f9aa97fe87265263743", + "value": 818322941 + } + }, + "3c085ba3f3fd4c3c8a6bb41b41ce1479": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df554fb955c7454696beac5a82889386", + "placeholder": "​", + "style": "IPY_MODEL_74e9112a87a242f4831b7d68c7da6333", + "value": " 780M/780M [00:05<00:00, 126MB/s]" + } + }, + "16b0c8aa6e0f427e8a54d3791abb7504": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c7b2dd0f78384cad8e400b282996cdf5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a27e43b0e434edd82ee63f0a91036ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cce0e6c0c4ec442cb47e65c674e02e92": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c5b9f38e2f0d4f9aa97fe87265263743": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "df554fb955c7454696beac5a82889386": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74e9112a87a242f4831b7d68c7da6333": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "t6MPjfT5NrKQ" + }, + "source": [ + "
    \n", + "\n", + " \n", + " \n", + "\n", + "\n", + "
    \n", + " \"Run\n", + " \"Open\n", + " \"Open\n", + "
    \n", + "\n", + "This YOLOv5 🚀 notebook by Ultralytics presents simple train, validate and predict examples to help start your AI adventure.
    See GitHub for community support or contact us for professional support.\n", + "\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7mGmQbAO5pQb" + }, + "source": [ + "# Setup\n", + "\n", + "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "wbvMlHd_QwMG", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "f9f016ad-3dcf-4bd2-e1c3-d5b79efc6f32" + }, + "source": [ + "!git clone https://github.com/ultralytics/yolov5 # clone\n", + "%cd yolov5\n", + "%pip install -qr requirements.txt # install\n", + "\n", + "import torch\n", + "import utils\n", + "display = utils.notebook_init() # checks" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4JnkELT0cIJg" + }, + "source": [ + "# 1. Detect\n", + "\n", + "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n", + "\n", + "```shell\n", + "python detect.py --source 0 # webcam\n", + " img.jpg # image \n", + " vid.mp4 # video\n", + " screen # screenshot\n", + " path/ # directory\n", + " 'path/*.jpg' # glob\n", + " 'https://youtu.be/Zgi9g1ksQHc' # YouTube\n", + " 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n", + "```" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "zR9ZbuQCH7FX", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "b4db5c49-f501-4505-cf0d-a1d35236c485" + }, + "source": [ + "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n", + "# display.Image(filename='runs/detect/exp/zidane.jpg', width=600)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1\n", + "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", + "\n", + "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...\n", + "100% 14.1M/14.1M [00:00<00:00, 116MB/s] \n", + "\n", + "Fusing layers... \n", + "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n", + "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 17.0ms\n", + "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, 14.3ms\n", + "Speed: 0.5ms pre-process, 15.7ms inference, 18.6ms NMS per image at shape (1, 3, 640, 640)\n", + "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hkAzDWJ7cWTr" + }, + "source": [ + "        \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0eq1SMWl6Sfn" + }, + "source": [ + "# 2. Validate\n", + "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "WQPtK1QYVaD_", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "1f7df330663048998adcf8a45bc8f69b", + "e896e6096dd244c59d7955e2035cd729", + "a6ff238c29984b24bf6d0bd175c19430", + "3c085ba3f3fd4c3c8a6bb41b41ce1479", + "16b0c8aa6e0f427e8a54d3791abb7504", + "c7b2dd0f78384cad8e400b282996cdf5", + "6a27e43b0e434edd82ee63f0a91036ca", + "cce0e6c0c4ec442cb47e65c674e02e92", + "c5b9f38e2f0d4f9aa97fe87265263743", + "df554fb955c7454696beac5a82889386", + "74e9112a87a242f4831b7d68c7da6333" + ] + }, + "outputId": "c7d0a0d2-abfb-44c3-d60d-f99d0e7aabad" + }, + "source": [ + "# Download COCO val\n", + "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip') # download (780M - 5000 images)\n", + "!unzip -q tmp.zip -d ../datasets && rm tmp.zip # unzip" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0.00/780M [00:00

    \n", + "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n", + "

    \n", + "\n", + "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n", + "\n", + "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n", + "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n", + "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n", + "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n", + "

    \n", + "\n", + "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n", + "\n", + "## Train on Custom Data with Roboflow 🌟 NEW\n", + "\n", + "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n", + "\n", + "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n", + "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n", + "
    \n", + "\n", + "

    Label images lightning fast (including with model-assisted labeling)" + ] + }, + { + "cell_type": "code", + "source": [ + "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n", + "logger = 'ClearML' #@param ['ClearML', 'Comet', 'TensorBoard']\n", + "\n", + "if logger == 'ClearML':\n", + " %pip install -q clearml\n", + " import clearml; clearml.browser_login()\n", + "elif logger == 'Comet':\n", + " %pip install -q comet_ml\n", + " import comet_ml; comet_ml.init()\n", + "elif logger == 'TensorBoard':\n", + " %load_ext tensorboard\n", + " %tensorboard --logdir runs/train" + ], + "metadata": { + "id": "i3oKtE4g-aNn" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "1NcFxRcFdJ_O", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "721b9028-767f-4a05-c964-692c245f7398" + }, + "source": [ + "# Train YOLOv5s on COCO128 for 3 epochs\n", + "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n", + "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n", + "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n", + "\n", + "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n", + "\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML\n", + "\u001b[34m\u001b[1mComet: \u001b[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet\n", + "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n", + "\n", + "Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n", + "Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n", + "100% 6.66M/6.66M [00:00<00:00, 261MB/s]\n", + "Dataset download success ✅ (0.3s), saved to \u001b[1m/content/datasets\u001b[0m\n", + "\n", + " from n params module arguments \n", + " 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n", + " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n", + " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n", + " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n", + " 4 -1 2 115712 models.common.C3 [128, 128, 2] \n", + " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n", + " 6 -1 3 625152 models.common.C3 [256, 256, 3] \n", + " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n", + " 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n", + " 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n", + " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n", + " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 12 [-1, 6] 1 0 models.common.Concat [1] \n", + " 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n", + " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n", + " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 16 [-1, 4] 1 0 models.common.Concat [1] \n", + " 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n", + " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n", + " 19 [-1, 14] 1 0 models.common.Concat [1] \n", + " 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n", + " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n", + " 22 [-1, 10] 1 0 models.common.Concat [1] \n", + " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n", + " 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n", + "Model summary: 214 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs\n", + "\n", + "Transferred 349/349 items from yolov5s.pt\n", + "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", + "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n", + "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", + "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1911.57it/s]\n", + "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n", + "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 229.69it/s]\n", + "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00 # 2. paste API key\n", + "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n", + "```\n", + "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n", + "\n", + "\n", + "\"Comet" + ], + "metadata": { + "id": "nWOsI5wJR1o3" + } + }, + { + "cell_type": "markdown", + "source": [ + "## ClearML Logging and Automation 🌟 NEW\n", + "\n", + "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n", + "\n", + "- `pip install clearml`\n", + "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n", + "\n", + "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n", + "\n", + "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n", + "\n", + "\n", + "\"ClearML" + ], + "metadata": { + "id": "Lay2WsTjNJzP" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-WPvRbS5Swl6" + }, + "source": [ + "## Local Logging\n", + "\n", + "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n", + "\n", + "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n", + "\n", + "\"Local\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zelyeqbyt3GD" + }, + "source": [ + "# Environments\n", + "\n", + "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n", + "\n", + "- **Notebooks** with free GPU: \"Run \"Open \"Open\n", + "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n", + "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n", + "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) \"Docker\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6Qu7Iesl0p54" + }, + "source": [ + "# Status\n", + "\n", + "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n", + "\n", + "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IEijrePND_2I" + }, + "source": [ + "# Appendix\n", + "\n", + "Additional content below." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "GMusP4OAxFu6" + }, + "source": [ + "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n", + "import torch\n", + "\n", + "model = torch.hub.load('ultralytics/yolov5', 'yolov5s', force_reload=True) # yolov5n - yolov5x6 or custom\n", + "im = 'https://ultralytics.com/images/zidane.jpg' # file, Path, PIL.Image, OpenCV, nparray, list\n", + "results = model(im) # inference\n", + "results.print() # or .show(), .save(), .crop(), .pandas(), etc." + ], + "execution_count": null, + "outputs": [] + } + ] +} diff --git a/ultralytics/yolov5/utils/__init__.py b/ultralytics/yolov5/utils/__init__.py new file mode 100644 index 0000000..5b9fcd5 --- /dev/null +++ b/ultralytics/yolov5/utils/__init__.py @@ -0,0 +1,82 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +utils/initialization +""" + +import contextlib +import platform +import threading + + +def emojis(str=''): + # Return platform-dependent emoji-safe version of string + return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str + + +class TryExcept(contextlib.ContextDecorator): + # YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager + def __init__(self, msg=''): + self.msg = msg + + def __enter__(self): + pass + + def __exit__(self, exc_type, value, traceback): + if value: + print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}")) + return True + + +def threaded(func): + # Multi-threads a target function and returns thread. Usage: @threaded decorator + def wrapper(*args, **kwargs): + thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) + thread.start() + return thread + + return wrapper + + +def join_threads(verbose=False): + # Join all daemon threads, i.e. atexit.register(lambda: join_threads()) + main_thread = threading.current_thread() + for t in threading.enumerate(): + if t is not main_thread: + if verbose: + print(f'Joining thread {t.name}') + t.join() + + +def notebook_init(verbose=True): + # Check system software and hardware + print('Checking setup...') + + import os + import shutil + + from utils.general import check_font, check_requirements, is_colab + from utils.torch_utils import select_device # imports + + check_font() + + import psutil + + if is_colab(): + shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory + + # System info + display = None + if verbose: + gb = 1 << 30 # bytes to GiB (1024 ** 3) + ram = psutil.virtual_memory().total + total, used, free = shutil.disk_usage('/') + with contextlib.suppress(Exception): # clear display if ipython is installed + from IPython import display + display.clear_output() + s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)' + else: + s = '' + + select_device(newline=False) + print(emojis(f'Setup complete ✅ {s}')) + return display diff --git a/ultralytics/yolov5/utils/activations.py b/ultralytics/yolov5/utils/activations.py new file mode 100644 index 0000000..084ce8c --- /dev/null +++ b/ultralytics/yolov5/utils/activations.py @@ -0,0 +1,103 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Activation functions +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class SiLU(nn.Module): + # SiLU activation https://arxiv.org/pdf/1606.08415.pdf + @staticmethod + def forward(x): + return x * torch.sigmoid(x) + + +class Hardswish(nn.Module): + # Hard-SiLU activation + @staticmethod + def forward(x): + # return x * F.hardsigmoid(x) # for TorchScript and CoreML + return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX + + +class Mish(nn.Module): + # Mish activation https://github.com/digantamisra98/Mish + @staticmethod + def forward(x): + return x * F.softplus(x).tanh() + + +class MemoryEfficientMish(nn.Module): + # Mish activation memory-efficient + class F(torch.autograd.Function): + + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + sx = torch.sigmoid(x) + fx = F.softplus(x).tanh() + return grad_output * (fx + x * sx * (1 - fx * fx)) + + def forward(self, x): + return self.F.apply(x) + + +class FReLU(nn.Module): + # FReLU activation https://arxiv.org/abs/2007.11824 + def __init__(self, c1, k=3): # ch_in, kernel + super().__init__() + self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) + self.bn = nn.BatchNorm2d(c1) + + def forward(self, x): + return torch.max(x, self.bn(self.conv(x))) + + +class AconC(nn.Module): + r""" ACON activation (activate or not) + AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter + according to "Activate or Not: Learning Customized Activation" . + """ + + def __init__(self, c1): + super().__init__() + self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) + self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) + self.beta = nn.Parameter(torch.ones(1, c1, 1, 1)) + + def forward(self, x): + dpx = (self.p1 - self.p2) * x + return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x + + +class MetaAconC(nn.Module): + r""" ACON activation (activate or not) + MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network + according to "Activate or Not: Learning Customized Activation" . + """ + + def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r + super().__init__() + c2 = max(r, c1 // r) + self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) + self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) + self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True) + self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True) + # self.bn1 = nn.BatchNorm2d(c2) + # self.bn2 = nn.BatchNorm2d(c1) + + def forward(self, x): + y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True) + # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891 + # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable + beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed + dpx = (self.p1 - self.p2) * x + return dpx * torch.sigmoid(beta * dpx) + self.p2 * x diff --git a/ultralytics/yolov5/utils/augmentations.py b/ultralytics/yolov5/utils/augmentations.py new file mode 100644 index 0000000..7ab75f1 --- /dev/null +++ b/ultralytics/yolov5/utils/augmentations.py @@ -0,0 +1,397 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Image augmentation functions +""" + +import math +import random + +import cv2 +import numpy as np +import torch +import torchvision.transforms as T +import torchvision.transforms.functional as TF + +from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy +from utils.metrics import bbox_ioa + +IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean +IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation + + +class Albumentations: + # YOLOv5 Albumentations class (optional, only used if package is installed) + def __init__(self, size=640): + self.transform = None + prefix = colorstr('albumentations: ') + try: + import albumentations as A + check_version(A.__version__, '1.0.3', hard=True) # version requirement + + T = [ + A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0), + A.Blur(p=0.01), + A.MedianBlur(p=0.01), + A.ToGray(p=0.01), + A.CLAHE(p=0.01), + A.RandomBrightnessContrast(p=0.0), + A.RandomGamma(p=0.0), + A.ImageCompression(quality_lower=75, p=0.0)] # transforms + self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) + + LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) + except ImportError: # package not installed, skip + pass + except Exception as e: + LOGGER.info(f'{prefix}{e}') + + def __call__(self, im, labels, p=1.0): + if self.transform and random.random() < p: + new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed + im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) + return im, labels + + +def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False): + # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std + return TF.normalize(x, mean, std, inplace=inplace) + + +def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD): + # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean + for i in range(3): + x[:, i] = x[:, i] * std[i] + mean[i] + return x + + +def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): + # HSV color-space augmentation + if hgain or sgain or vgain: + r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains + hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) + dtype = im.dtype # uint8 + + x = np.arange(0, 256, dtype=r.dtype) + lut_hue = ((x * r[0]) % 180).astype(dtype) + lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) + lut_val = np.clip(x * r[2], 0, 255).astype(dtype) + + im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) + cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed + + +def hist_equalize(im, clahe=True, bgr=False): + # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255 + yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) + if clahe: + c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) + yuv[:, :, 0] = c.apply(yuv[:, :, 0]) + else: + yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram + return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB + + +def replicate(im, labels): + # Replicate labels + h, w = im.shape[:2] + boxes = labels[:, 1:].astype(int) + x1, y1, x2, y2 = boxes.T + s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) + for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices + x1b, y1b, x2b, y2b = boxes[i] + bh, bw = y2b - y1b, x2b - x1b + yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y + x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] + im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax] + labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) + + return im, labels + + +def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): + # Resize and pad image while meeting stride-multiple constraints + shape = im.shape[:2] # current shape [height, width] + if isinstance(new_shape, int): + new_shape = (new_shape, new_shape) + + # Scale ratio (new / old) + r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) + if not scaleup: # only scale down, do not scale up (for better val mAP) + r = min(r, 1.0) + + # Compute padding + ratio = r, r # width, height ratios + new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) + dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding + if auto: # minimum rectangle + dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding + elif scaleFill: # stretch + dw, dh = 0.0, 0.0 + new_unpad = (new_shape[1], new_shape[0]) + ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios + + dw /= 2 # divide padding into 2 sides + dh /= 2 + + if shape[::-1] != new_unpad: # resize + im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) + top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) + left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) + im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border + return im, ratio, (dw, dh) + + +def random_perspective(im, + targets=(), + segments=(), + degrees=10, + translate=.1, + scale=.1, + shear=10, + perspective=0.0, + border=(0, 0)): + # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10)) + # targets = [cls, xyxy] + + height = im.shape[0] + border[0] * 2 # shape(h,w,c) + width = im.shape[1] + border[1] * 2 + + # Center + C = np.eye(3) + C[0, 2] = -im.shape[1] / 2 # x translation (pixels) + C[1, 2] = -im.shape[0] / 2 # y translation (pixels) + + # Perspective + P = np.eye(3) + P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) + P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) + + # Rotation and Scale + R = np.eye(3) + a = random.uniform(-degrees, degrees) + # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations + s = random.uniform(1 - scale, 1 + scale) + # s = 2 ** random.uniform(-scale, scale) + R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) + + # Shear + S = np.eye(3) + S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) + S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) + + # Translation + T = np.eye(3) + T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) + T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) + + # Combined rotation matrix + M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT + if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed + if perspective: + im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) + else: # affine + im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) + + # Visualize + # import matplotlib.pyplot as plt + # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() + # ax[0].imshow(im[:, :, ::-1]) # base + # ax[1].imshow(im2[:, :, ::-1]) # warped + + # Transform label coordinates + n = len(targets) + if n: + use_segments = any(x.any() for x in segments) and len(segments) == n + new = np.zeros((n, 4)) + if use_segments: # warp segments + segments = resample_segments(segments) # upsample + for i, segment in enumerate(segments): + xy = np.ones((len(segment), 3)) + xy[:, :2] = segment + xy = xy @ M.T # transform + xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine + + # clip + new[i] = segment2box(xy, width, height) + + else: # warp boxes + xy = np.ones((n * 4, 3)) + xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 + xy = xy @ M.T # transform + xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine + + # create new boxes + x = xy[:, [0, 2, 4, 6]] + y = xy[:, [1, 3, 5, 7]] + new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T + + # clip + new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) + new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) + + # filter candidates + i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) + targets = targets[i] + targets[:, 1:5] = new[i] + + return im, targets + + +def copy_paste(im, labels, segments, p=0.5): + # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) + n = len(segments) + if p and n: + h, w, c = im.shape # height, width, channels + im_new = np.zeros(im.shape, np.uint8) + for j in random.sample(range(n), k=round(p * n)): + l, s = labels[j], segments[j] + box = w - l[3], l[2], w - l[1], l[4] + ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area + if (ioa < 0.30).all(): # allow 30% obscuration of existing labels + labels = np.concatenate((labels, [[l[0], *box]]), 0) + segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) + cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED) + + result = cv2.flip(im, 1) # augment segments (flip left-right) + i = cv2.flip(im_new, 1).astype(bool) + im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug + + return im, labels, segments + + +def cutout(im, labels, p=0.5): + # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 + if random.random() < p: + h, w = im.shape[:2] + scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction + for s in scales: + mask_h = random.randint(1, int(h * s)) # create random masks + mask_w = random.randint(1, int(w * s)) + + # box + xmin = max(0, random.randint(0, w) - mask_w // 2) + ymin = max(0, random.randint(0, h) - mask_h // 2) + xmax = min(w, xmin + mask_w) + ymax = min(h, ymin + mask_h) + + # apply random color mask + im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] + + # return unobscured labels + if len(labels) and s > 0.03: + box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) + ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h)) # intersection over area + labels = labels[ioa < 0.60] # remove >60% obscured labels + + return labels + + +def mixup(im, labels, im2, labels2): + # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf + r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 + im = (im * r + im2 * (1 - r)).astype(np.uint8) + labels = np.concatenate((labels, labels2), 0) + return im, labels + + +def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) + # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio + w1, h1 = box1[2] - box1[0], box1[3] - box1[1] + w2, h2 = box2[2] - box2[0], box2[3] - box2[1] + ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio + return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates + + +def classify_albumentations( + augment=True, + size=224, + scale=(0.08, 1.0), + ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33 + hflip=0.5, + vflip=0.0, + jitter=0.4, + mean=IMAGENET_MEAN, + std=IMAGENET_STD, + auto_aug=False): + # YOLOv5 classification Albumentations (optional, only used if package is installed) + prefix = colorstr('albumentations: ') + try: + import albumentations as A + from albumentations.pytorch import ToTensorV2 + check_version(A.__version__, '1.0.3', hard=True) # version requirement + if augment: # Resize and crop + T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)] + if auto_aug: + # TODO: implement AugMix, AutoAug & RandAug in albumentation + LOGGER.info(f'{prefix}auto augmentations are currently not supported') + else: + if hflip > 0: + T += [A.HorizontalFlip(p=hflip)] + if vflip > 0: + T += [A.VerticalFlip(p=vflip)] + if jitter > 0: + color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue + T += [A.ColorJitter(*color_jitter, 0)] + else: # Use fixed crop for eval set (reproducibility) + T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] + T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor + LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) + return A.Compose(T) + + except ImportError: # package not installed, skip + LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)') + except Exception as e: + LOGGER.info(f'{prefix}{e}') + + +def classify_transforms(size=224): + # Transforms to apply if albumentations not installed + assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)' + # T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) + return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) + + +class LetterBox: + # YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) + def __init__(self, size=(640, 640), auto=False, stride=32): + super().__init__() + self.h, self.w = (size, size) if isinstance(size, int) else size + self.auto = auto # pass max size integer, automatically solve for short side using stride + self.stride = stride # used with auto + + def __call__(self, im): # im = np.array HWC + imh, imw = im.shape[:2] + r = min(self.h / imh, self.w / imw) # ratio of new/old + h, w = round(imh * r), round(imw * r) # resized image + hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w + top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) + im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) + im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) + return im_out + + +class CenterCrop: + # YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) + def __init__(self, size=640): + super().__init__() + self.h, self.w = (size, size) if isinstance(size, int) else size + + def __call__(self, im): # im = np.array HWC + imh, imw = im.shape[:2] + m = min(imh, imw) # min dimension + top, left = (imh - m) // 2, (imw - m) // 2 + return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) + + +class ToTensor: + # YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) + def __init__(self, half=False): + super().__init__() + self.half = half + + def __call__(self, im): # im = np.array HWC in BGR order + im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous + im = torch.from_numpy(im) # to torch + im = im.half() if self.half else im.float() # uint8 to fp16/32 + im /= 255.0 # 0-255 to 0.0-1.0 + return im diff --git a/ultralytics/yolov5/utils/autoanchor.py b/ultralytics/yolov5/utils/autoanchor.py new file mode 100644 index 0000000..bb5cf6e --- /dev/null +++ b/ultralytics/yolov5/utils/autoanchor.py @@ -0,0 +1,169 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +AutoAnchor utils +""" + +import random + +import numpy as np +import torch +import yaml +from tqdm import tqdm + +from utils import TryExcept +from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr + +PREFIX = colorstr('AutoAnchor: ') + + +def check_anchor_order(m): + # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary + a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer + da = a[-1] - a[0] # delta a + ds = m.stride[-1] - m.stride[0] # delta s + if da and (da.sign() != ds.sign()): # same order + LOGGER.info(f'{PREFIX}Reversing anchor order') + m.anchors[:] = m.anchors.flip(0) + + +@TryExcept(f'{PREFIX}ERROR') +def check_anchors(dataset, model, thr=4.0, imgsz=640): + # Check anchor fit to data, recompute if necessary + m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() + shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) + scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale + wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh + + def metric(k): # compute metric + r = wh[:, None] / k[None] + x = torch.min(r, 1 / r).min(2)[0] # ratio metric + best = x.max(1)[0] # best_x + aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold + bpr = (best > 1 / thr).float().mean() # best possible recall + return bpr, aat + + stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides + anchors = m.anchors.clone() * stride # current anchors + bpr, aat = metric(anchors.cpu().view(-1, 2)) + s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). ' + if bpr > 0.98: # threshold to recompute + LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅') + else: + LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...') + na = m.anchors.numel() // 2 # number of anchors + anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) + new_bpr = metric(anchors)[0] + if new_bpr > bpr: # replace anchors + anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) + m.anchors[:] = anchors.clone().view_as(m.anchors) + check_anchor_order(m) # must be in pixel-space (not grid-space) + m.anchors /= stride + s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)' + else: + s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)' + LOGGER.info(s) + + +def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): + """ Creates kmeans-evolved anchors from training dataset + + Arguments: + dataset: path to data.yaml, or a loaded dataset + n: number of anchors + img_size: image size used for training + thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 + gen: generations to evolve anchors using genetic algorithm + verbose: print all results + + Return: + k: kmeans evolved anchors + + Usage: + from utils.autoanchor import *; _ = kmean_anchors() + """ + from scipy.cluster.vq import kmeans + + npr = np.random + thr = 1 / thr + + def metric(k, wh): # compute metrics + r = wh[:, None] / k[None] + x = torch.min(r, 1 / r).min(2)[0] # ratio metric + # x = wh_iou(wh, torch.tensor(k)) # iou metric + return x, x.max(1)[0] # x, best_x + + def anchor_fitness(k): # mutation fitness + _, best = metric(torch.tensor(k, dtype=torch.float32), wh) + return (best * (best > thr).float()).mean() # fitness + + def print_results(k, verbose=True): + k = k[np.argsort(k.prod(1))] # sort small to large + x, best = metric(k, wh0) + bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr + s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \ + f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \ + f'past_thr={x[x > thr].mean():.3f}-mean: ' + for x in k: + s += '%i,%i, ' % (round(x[0]), round(x[1])) + if verbose: + LOGGER.info(s[:-2]) + return k + + if isinstance(dataset, str): # *.yaml file + with open(dataset, errors='ignore') as f: + data_dict = yaml.safe_load(f) # model dict + from utils.dataloaders import LoadImagesAndLabels + dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) + + # Get label wh + shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) + wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh + + # Filter + i = (wh0 < 3.0).any(1).sum() + if i: + LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size') + wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels + # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 + + # Kmeans init + try: + LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...') + assert n <= len(wh) # apply overdetermined constraint + s = wh.std(0) # sigmas for whitening + k = kmeans(wh / s, n, iter=30)[0] * s # points + assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar + except Exception: + LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init') + k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init + wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0)) + k = print_results(k, verbose=False) + + # Plot + # k, d = [None] * 20, [None] * 20 + # for i in tqdm(range(1, 21)): + # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance + # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) + # ax = ax.ravel() + # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') + # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh + # ax[0].hist(wh[wh[:, 0]<100, 0],400) + # ax[1].hist(wh[wh[:, 1]<100, 1],400) + # fig.savefig('wh.png', dpi=200) + + # Evolve + f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma + pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar + for _ in pbar: + v = np.ones(sh) + while (v == 1).all(): # mutate until a change occurs (prevent duplicates) + v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) + kg = (k.copy() * v).clip(min=2.0) + fg = anchor_fitness(kg) + if fg > f: + f, k = fg, kg.copy() + pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' + if verbose: + print_results(k, verbose) + + return print_results(k).astype(np.float32) diff --git a/ultralytics/yolov5/utils/autobatch.py b/ultralytics/yolov5/utils/autobatch.py new file mode 100644 index 0000000..bdeb91c --- /dev/null +++ b/ultralytics/yolov5/utils/autobatch.py @@ -0,0 +1,72 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Auto-batch utils +""" + +from copy import deepcopy + +import numpy as np +import torch + +from utils.general import LOGGER, colorstr +from utils.torch_utils import profile + + +def check_train_batch_size(model, imgsz=640, amp=True): + # Check YOLOv5 training batch size + with torch.cuda.amp.autocast(amp): + return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size + + +def autobatch(model, imgsz=640, fraction=0.8, batch_size=16): + # Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory + # Usage: + # import torch + # from utils.autobatch import autobatch + # model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False) + # print(autobatch(model)) + + # Check device + prefix = colorstr('AutoBatch: ') + LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}') + device = next(model.parameters()).device # get model device + if device.type == 'cpu': + LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}') + return batch_size + if torch.backends.cudnn.benchmark: + LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}') + return batch_size + + # Inspect CUDA memory + gb = 1 << 30 # bytes to GiB (1024 ** 3) + d = str(device).upper() # 'CUDA:0' + properties = torch.cuda.get_device_properties(device) # device properties + t = properties.total_memory / gb # GiB total + r = torch.cuda.memory_reserved(device) / gb # GiB reserved + a = torch.cuda.memory_allocated(device) / gb # GiB allocated + f = t - (r + a) # GiB free + LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free') + + # Profile batch sizes + batch_sizes = [1, 2, 4, 8, 16] + try: + img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes] + results = profile(img, model, n=3, device=device) + except Exception as e: + LOGGER.warning(f'{prefix}{e}') + + # Fit a solution + y = [x[2] for x in results if x] # memory [2] + p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit + b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) + if None in results: # some sizes failed + i = results.index(None) # first fail index + if b >= batch_sizes[i]: # y intercept above failure point + b = batch_sizes[max(i - 1, 0)] # select prior safe point + if b < 1 or b > 1024: # b outside of safe range + b = batch_size + LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.') + + fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted + LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅') + return b diff --git a/ultralytics/yolov5/utils/aws/__init__.py b/ultralytics/yolov5/utils/aws/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ultralytics/yolov5/utils/aws/mime.sh b/ultralytics/yolov5/utils/aws/mime.sh new file mode 100644 index 0000000..c319a83 --- /dev/null +++ b/ultralytics/yolov5/utils/aws/mime.sh @@ -0,0 +1,26 @@ +# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/ +# This script will run on every instance restart, not only on first start +# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA --- + +Content-Type: multipart/mixed; boundary="//" +MIME-Version: 1.0 + +--// +Content-Type: text/cloud-config; charset="us-ascii" +MIME-Version: 1.0 +Content-Transfer-Encoding: 7bit +Content-Disposition: attachment; filename="cloud-config.txt" + +#cloud-config +cloud_final_modules: +- [scripts-user, always] + +--// +Content-Type: text/x-shellscript; charset="us-ascii" +MIME-Version: 1.0 +Content-Transfer-Encoding: 7bit +Content-Disposition: attachment; filename="userdata.txt" + +#!/bin/bash +# --- paste contents of userdata.sh here --- +--// diff --git a/ultralytics/yolov5/utils/aws/resume.py b/ultralytics/yolov5/utils/aws/resume.py new file mode 100644 index 0000000..b21731c --- /dev/null +++ b/ultralytics/yolov5/utils/aws/resume.py @@ -0,0 +1,40 @@ +# Resume all interrupted trainings in yolov5/ dir including DDP trainings +# Usage: $ python utils/aws/resume.py + +import os +import sys +from pathlib import Path + +import torch +import yaml + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[2] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH + +port = 0 # --master_port +path = Path('').resolve() +for last in path.rglob('*/**/last.pt'): + ckpt = torch.load(last) + if ckpt['optimizer'] is None: + continue + + # Load opt.yaml + with open(last.parent.parent / 'opt.yaml', errors='ignore') as f: + opt = yaml.safe_load(f) + + # Get device count + d = opt['device'].split(',') # devices + nd = len(d) # number of devices + ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel + + if ddp: # multi-GPU + port += 1 + cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}' + else: # single-GPU + cmd = f'python train.py --resume {last}' + + cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread + print(cmd) + os.system(cmd) diff --git a/ultralytics/yolov5/utils/aws/userdata.sh b/ultralytics/yolov5/utils/aws/userdata.sh new file mode 100644 index 0000000..5fc1332 --- /dev/null +++ b/ultralytics/yolov5/utils/aws/userdata.sh @@ -0,0 +1,27 @@ +#!/bin/bash +# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html +# This script will run only once on first instance start (for a re-start script see mime.sh) +# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir +# Use >300 GB SSD + +cd home/ubuntu +if [ ! -d yolov5 ]; then + echo "Running first-time script." # install dependencies, download COCO, pull Docker + git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5 + cd yolov5 + bash data/scripts/get_coco.sh && echo "COCO done." & + sudo docker pull ultralytics/yolov5:latest && echo "Docker done." & + python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." & + wait && echo "All tasks done." # finish background tasks +else + echo "Running re-start script." # resume interrupted runs + i=0 + list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour' + while IFS= read -r id; do + ((i++)) + echo "restarting container $i: $id" + sudo docker start $id + # sudo docker exec -it $id python train.py --resume # single-GPU + sudo docker exec -d $id python utils/aws/resume.py # multi-scenario + done <<<"$list" +fi diff --git a/ultralytics/yolov5/utils/callbacks.py b/ultralytics/yolov5/utils/callbacks.py new file mode 100644 index 0000000..166d893 --- /dev/null +++ b/ultralytics/yolov5/utils/callbacks.py @@ -0,0 +1,76 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Callback utils +""" + +import threading + + +class Callbacks: + """" + Handles all registered callbacks for YOLOv5 Hooks + """ + + def __init__(self): + # Define the available callbacks + self._callbacks = { + 'on_pretrain_routine_start': [], + 'on_pretrain_routine_end': [], + 'on_train_start': [], + 'on_train_epoch_start': [], + 'on_train_batch_start': [], + 'optimizer_step': [], + 'on_before_zero_grad': [], + 'on_train_batch_end': [], + 'on_train_epoch_end': [], + 'on_val_start': [], + 'on_val_batch_start': [], + 'on_val_image_end': [], + 'on_val_batch_end': [], + 'on_val_end': [], + 'on_fit_epoch_end': [], # fit = train + val + 'on_model_save': [], + 'on_train_end': [], + 'on_params_update': [], + 'teardown': [],} + self.stop_training = False # set True to interrupt training + + def register_action(self, hook, name='', callback=None): + """ + Register a new action to a callback hook + + Args: + hook: The callback hook name to register the action to + name: The name of the action for later reference + callback: The callback to fire + """ + assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}" + assert callable(callback), f"callback '{callback}' is not callable" + self._callbacks[hook].append({'name': name, 'callback': callback}) + + def get_registered_actions(self, hook=None): + """" + Returns all the registered actions by callback hook + + Args: + hook: The name of the hook to check, defaults to all + """ + return self._callbacks[hook] if hook else self._callbacks + + def run(self, hook, *args, thread=False, **kwargs): + """ + Loop through the registered actions and fire all callbacks on main thread + + Args: + hook: The name of the hook to check, defaults to all + args: Arguments to receive from YOLOv5 + thread: (boolean) Run callbacks in daemon thread + kwargs: Keyword Arguments to receive from YOLOv5 + """ + + assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}" + for logger in self._callbacks[hook]: + if thread: + threading.Thread(target=logger['callback'], args=args, kwargs=kwargs, daemon=True).start() + else: + logger['callback'](*args, **kwargs) diff --git a/ultralytics/yolov5/utils/dataloaders.py b/ultralytics/yolov5/utils/dataloaders.py new file mode 100644 index 0000000..28d5b79 --- /dev/null +++ b/ultralytics/yolov5/utils/dataloaders.py @@ -0,0 +1,1222 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Dataloaders and dataset utils +""" + +import contextlib +import glob +import hashlib +import json +import math +import os +import random +import shutil +import time +from itertools import repeat +from multiprocessing.pool import Pool, ThreadPool +from pathlib import Path +from threading import Thread +from urllib.parse import urlparse + +import numpy as np +import psutil +import torch +import torch.nn.functional as F +import torchvision +import yaml +from PIL import ExifTags, Image, ImageOps +from torch.utils.data import DataLoader, Dataset, dataloader, distributed +from tqdm import tqdm + +from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste, + letterbox, mixup, random_perspective) +from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements, + check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy, + xywh2xyxy, xywhn2xyxy, xyxy2xywhn) +from utils.torch_utils import torch_distributed_zero_first + +# Parameters +HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' +IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # include image suffixes +VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes +LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html +RANK = int(os.getenv('RANK', -1)) +PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders + +# Get orientation exif tag +for orientation in ExifTags.TAGS.keys(): + if ExifTags.TAGS[orientation] == 'Orientation': + break + + +def get_hash(paths): + # Returns a single hash value of a list of paths (files or dirs) + size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes + h = hashlib.sha256(str(size).encode()) # hash sizes + h.update(''.join(paths).encode()) # hash paths + return h.hexdigest() # return hash + + +def exif_size(img): + # Returns exif-corrected PIL size + s = img.size # (width, height) + with contextlib.suppress(Exception): + rotation = dict(img._getexif().items())[orientation] + if rotation in [6, 8]: # rotation 270 or 90 + s = (s[1], s[0]) + return s + + +def exif_transpose(image): + """ + Transpose a PIL image accordingly if it has an EXIF Orientation tag. + Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose() + + :param image: The image to transpose. + :return: An image. + """ + exif = image.getexif() + orientation = exif.get(0x0112, 1) # default 1 + if orientation > 1: + method = { + 2: Image.FLIP_LEFT_RIGHT, + 3: Image.ROTATE_180, + 4: Image.FLIP_TOP_BOTTOM, + 5: Image.TRANSPOSE, + 6: Image.ROTATE_270, + 7: Image.TRANSVERSE, + 8: Image.ROTATE_90}.get(orientation) + if method is not None: + image = image.transpose(method) + del exif[0x0112] + image.info['exif'] = exif.tobytes() + return image + + +def seed_worker(worker_id): + # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader + worker_seed = torch.initial_seed() % 2 ** 32 + np.random.seed(worker_seed) + random.seed(worker_seed) + + +def create_dataloader(path, + imgsz, + batch_size, + stride, + single_cls=False, + hyp=None, + augment=False, + cache=False, + pad=0.0, + rect=False, + rank=-1, + workers=8, + image_weights=False, + quad=False, + prefix='', + shuffle=False, + seed=0): + if rect and shuffle: + LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False') + shuffle = False + with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP + dataset = LoadImagesAndLabels( + path, + imgsz, + batch_size, + augment=augment, # augmentation + hyp=hyp, # hyperparameters + rect=rect, # rectangular batches + cache_images=cache, + single_cls=single_cls, + stride=int(stride), + pad=pad, + image_weights=image_weights, + prefix=prefix) + + batch_size = min(batch_size, len(dataset)) + nd = torch.cuda.device_count() # number of CUDA devices + nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers + sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) + loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates + generator = torch.Generator() + generator.manual_seed(6148914691236517205 + seed + RANK) + return loader(dataset, + batch_size=batch_size, + shuffle=shuffle and sampler is None, + num_workers=nw, + sampler=sampler, + pin_memory=PIN_MEMORY, + collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn, + worker_init_fn=seed_worker, + generator=generator), dataset + + +class InfiniteDataLoader(dataloader.DataLoader): + """ Dataloader that reuses workers + + Uses same syntax as vanilla DataLoader + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) + self.iterator = super().__iter__() + + def __len__(self): + return len(self.batch_sampler.sampler) + + def __iter__(self): + for _ in range(len(self)): + yield next(self.iterator) + + +class _RepeatSampler: + """ Sampler that repeats forever + + Args: + sampler (Sampler) + """ + + def __init__(self, sampler): + self.sampler = sampler + + def __iter__(self): + while True: + yield from iter(self.sampler) + + +class LoadScreenshots: + # YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"` + def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None): + # source = [screen_number left top width height] (pixels) + check_requirements('mss') + import mss + + source, *params = source.split() + self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0 + if len(params) == 1: + self.screen = int(params[0]) + elif len(params) == 4: + left, top, width, height = (int(x) for x in params) + elif len(params) == 5: + self.screen, left, top, width, height = (int(x) for x in params) + self.img_size = img_size + self.stride = stride + self.transforms = transforms + self.auto = auto + self.mode = 'stream' + self.frame = 0 + self.sct = mss.mss() + + # Parse monitor shape + monitor = self.sct.monitors[self.screen] + self.top = monitor['top'] if top is None else (monitor['top'] + top) + self.left = monitor['left'] if left is None else (monitor['left'] + left) + self.width = width or monitor['width'] + self.height = height or monitor['height'] + self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height} + + def __iter__(self): + return self + + def __next__(self): + # mss screen capture: get raw pixels from the screen as np array + im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR + s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: ' + + if self.transforms: + im = self.transforms(im0) # transforms + else: + im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize + im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + im = np.ascontiguousarray(im) # contiguous + self.frame += 1 + return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s + + +class LoadImages: + # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4` + def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1): + if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line + path = Path(path).read_text().rsplit() + files = [] + for p in sorted(path) if isinstance(path, (list, tuple)) else [path]: + p = str(Path(p).resolve()) + if '*' in p: + files.extend(sorted(glob.glob(p, recursive=True))) # glob + elif os.path.isdir(p): + files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir + elif os.path.isfile(p): + files.append(p) # files + else: + raise FileNotFoundError(f'{p} does not exist') + + images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] + videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] + ni, nv = len(images), len(videos) + + self.img_size = img_size + self.stride = stride + self.files = images + videos + self.nf = ni + nv # number of files + self.video_flag = [False] * ni + [True] * nv + self.mode = 'image' + self.auto = auto + self.transforms = transforms # optional + self.vid_stride = vid_stride # video frame-rate stride + if any(videos): + self._new_video(videos[0]) # new video + else: + self.cap = None + assert self.nf > 0, f'No images or videos found in {p}. ' \ + f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}' + + def __iter__(self): + self.count = 0 + return self + + def __next__(self): + if self.count == self.nf: + raise StopIteration + path = self.files[self.count] + + if self.video_flag[self.count]: + # Read video + self.mode = 'video' + for _ in range(self.vid_stride): + self.cap.grab() + ret_val, im0 = self.cap.retrieve() + while not ret_val: + self.count += 1 + self.cap.release() + if self.count == self.nf: # last video + raise StopIteration + path = self.files[self.count] + self._new_video(path) + ret_val, im0 = self.cap.read() + + self.frame += 1 + # im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False + s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ' + + else: + # Read image + self.count += 1 + im0 = cv2.imread(path) # BGR + assert im0 is not None, f'Image Not Found {path}' + s = f'image {self.count}/{self.nf} {path}: ' + + if self.transforms: + im = self.transforms(im0) # transforms + else: + im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize + im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + im = np.ascontiguousarray(im) # contiguous + + return path, im, im0, self.cap, s + + def _new_video(self, path): + # Create a new video capture object + self.frame = 0 + self.cap = cv2.VideoCapture(path) + self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride) + self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees + # self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) # disable https://github.com/ultralytics/yolov5/issues/8493 + + def _cv2_rotate(self, im): + # Rotate a cv2 video manually + if self.orientation == 0: + return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE) + elif self.orientation == 180: + return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE) + elif self.orientation == 90: + return cv2.rotate(im, cv2.ROTATE_180) + return im + + def __len__(self): + return self.nf # number of files + + +class LoadStreams: + # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams` + def __init__(self, sources='file.streams', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1): + torch.backends.cudnn.benchmark = True # faster for fixed-size inference + self.mode = 'stream' + self.img_size = img_size + self.stride = stride + self.vid_stride = vid_stride # video frame-rate stride + sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources] + n = len(sources) + self.sources = [clean_str(x) for x in sources] # clean source names for later + self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n + for i, s in enumerate(sources): # index, source + # Start thread to read frames from video stream + st = f'{i + 1}/{n}: {s}... ' + if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video + # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc' + check_requirements(('pafy', 'youtube_dl==2020.12.2')) + import pafy + s = pafy.new(s).getbest(preftype='mp4').url # YouTube URL + s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam + if s == 0: + assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.' + assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.' + cap = cv2.VideoCapture(s) + assert cap.isOpened(), f'{st}Failed to open {s}' + w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan + self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback + self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback + + _, self.imgs[i] = cap.read() # guarantee first frame + self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True) + LOGGER.info(f'{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)') + self.threads[i].start() + LOGGER.info('') # newline + + # check for common shapes + s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs]) + self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal + self.auto = auto and self.rect + self.transforms = transforms # optional + if not self.rect: + LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.') + + def update(self, i, cap, stream): + # Read stream `i` frames in daemon thread + n, f = 0, self.frames[i] # frame number, frame array + while cap.isOpened() and n < f: + n += 1 + cap.grab() # .read() = .grab() followed by .retrieve() + if n % self.vid_stride == 0: + success, im = cap.retrieve() + if success: + self.imgs[i] = im + else: + LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.') + self.imgs[i] = np.zeros_like(self.imgs[i]) + cap.open(stream) # re-open stream if signal was lost + time.sleep(0.0) # wait time + + def __iter__(self): + self.count = -1 + return self + + def __next__(self): + self.count += 1 + if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit + cv2.destroyAllWindows() + raise StopIteration + + im0 = self.imgs.copy() + if self.transforms: + im = np.stack([self.transforms(x) for x in im0]) # transforms + else: + im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0]) # resize + im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW + im = np.ascontiguousarray(im) # contiguous + + return self.sources, im, im0, None, '' + + def __len__(self): + return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years + + +def img2label_paths(img_paths): + # Define label paths as a function of image paths + sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings + return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths] + + +class LoadImagesAndLabels(Dataset): + # YOLOv5 train_loader/val_loader, loads images and labels for training and validation + cache_version = 0.6 # dataset labels *.cache version + rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4] + + def __init__(self, + path, + img_size=640, + batch_size=16, + augment=False, + hyp=None, + rect=False, + image_weights=False, + cache_images=False, + single_cls=False, + stride=32, + pad=0.0, + min_items=0, + prefix=''): + self.img_size = img_size + self.augment = augment + self.hyp = hyp + self.image_weights = image_weights + self.rect = False if image_weights else rect + self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) + self.mosaic_border = [-img_size // 2, -img_size // 2] + self.stride = stride + self.path = path + self.albumentations = Albumentations(size=img_size) if augment else None + + try: + f = [] # image files + for p in path if isinstance(path, list) else [path]: + p = Path(p) # os-agnostic + if p.is_dir(): # dir + f += glob.glob(str(p / '**' / '*.*'), recursive=True) + # f = list(p.rglob('*.*')) # pathlib + elif p.is_file(): # file + with open(p) as t: + t = t.read().strip().splitlines() + parent = str(p.parent) + os.sep + f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t] # to global path + # f += [p.parent / x.lstrip(os.sep) for x in t] # to global path (pathlib) + else: + raise FileNotFoundError(f'{prefix}{p} does not exist') + self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS) + # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib + assert self.im_files, f'{prefix}No images found' + except Exception as e: + raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e + + # Check cache + self.label_files = img2label_paths(self.im_files) # labels + cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') + try: + cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict + assert cache['version'] == self.cache_version # matches current version + assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash + except Exception: + cache, exists = self.cache_labels(cache_path, prefix), False # run cache ops + + # Display cache + nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total + if exists and LOCAL_RANK in {-1, 0}: + d = f'Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt' + tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results + if cache['msgs']: + LOGGER.info('\n'.join(cache['msgs'])) # display warnings + assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}' + + # Read cache + [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items + labels, shapes, self.segments = zip(*cache.values()) + nl = len(np.concatenate(labels, 0)) # number of labels + assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}' + self.labels = list(labels) + self.shapes = np.array(shapes) + self.im_files = list(cache.keys()) # update + self.label_files = img2label_paths(cache.keys()) # update + + # Filter images + if min_items: + include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int) + LOGGER.info(f'{prefix}{n - len(include)}/{n} images filtered from dataset') + self.im_files = [self.im_files[i] for i in include] + self.label_files = [self.label_files[i] for i in include] + self.labels = [self.labels[i] for i in include] + self.segments = [self.segments[i] for i in include] + self.shapes = self.shapes[include] # wh + + # Create indices + n = len(self.shapes) # number of images + bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index + nb = bi[-1] + 1 # number of batches + self.batch = bi # batch index of image + self.n = n + self.indices = range(n) + + # Update labels + include_class = [] # filter labels to include only these classes (optional) + self.segments = list(self.segments) + include_class_array = np.array(include_class).reshape(1, -1) + for i, (label, segment) in enumerate(zip(self.labels, self.segments)): + if include_class: + j = (label[:, 0:1] == include_class_array).any(1) + self.labels[i] = label[j] + if segment: + self.segments[i] = [segment[idx] for idx, elem in enumerate(j) if elem] + if single_cls: # single-class training, merge all classes into 0 + self.labels[i][:, 0] = 0 + + # Rectangular Training + if self.rect: + # Sort by aspect ratio + s = self.shapes # wh + ar = s[:, 1] / s[:, 0] # aspect ratio + irect = ar.argsort() + self.im_files = [self.im_files[i] for i in irect] + self.label_files = [self.label_files[i] for i in irect] + self.labels = [self.labels[i] for i in irect] + self.segments = [self.segments[i] for i in irect] + self.shapes = s[irect] # wh + ar = ar[irect] + + # Set training image shapes + shapes = [[1, 1]] * nb + for i in range(nb): + ari = ar[bi == i] + mini, maxi = ari.min(), ari.max() + if maxi < 1: + shapes[i] = [maxi, 1] + elif mini > 1: + shapes[i] = [1, 1 / mini] + + self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride + + # Cache images into RAM/disk for faster training + if cache_images == 'ram' and not self.check_cache_ram(prefix=prefix): + cache_images = False + self.ims = [None] * n + self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files] + if cache_images: + b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes + self.im_hw0, self.im_hw = [None] * n, [None] * n + fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image + results = ThreadPool(NUM_THREADS).imap(fcn, range(n)) + pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0) + for i, x in pbar: + if cache_images == 'disk': + b += self.npy_files[i].stat().st_size + else: # 'ram' + self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) + b += self.ims[i].nbytes + pbar.desc = f'{prefix}Caching images ({b / gb:.1f}GB {cache_images})' + pbar.close() + + def check_cache_ram(self, safety_margin=0.1, prefix=''): + # Check image caching requirements vs available memory + b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes + n = min(self.n, 30) # extrapolate from 30 random images + for _ in range(n): + im = cv2.imread(random.choice(self.im_files)) # sample image + ratio = self.img_size / max(im.shape[0], im.shape[1]) # max(h, w) # ratio + b += im.nbytes * ratio ** 2 + mem_required = b * self.n / n # GB required to cache dataset into RAM + mem = psutil.virtual_memory() + cache = mem_required * (1 + safety_margin) < mem.available # to cache or not to cache, that is the question + if not cache: + LOGGER.info(f'{prefix}{mem_required / gb:.1f}GB RAM required, ' + f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, ' + f"{'caching images ✅' if cache else 'not caching images ⚠️'}") + return cache + + def cache_labels(self, path=Path('./labels.cache'), prefix=''): + # Cache dataset labels, check images and read shapes + x = {} # dict + nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages + desc = f'{prefix}Scanning {path.parent / path.stem}...' + with Pool(NUM_THREADS) as pool: + pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))), + desc=desc, + total=len(self.im_files), + bar_format=TQDM_BAR_FORMAT) + for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: + nm += nm_f + nf += nf_f + ne += ne_f + nc += nc_f + if im_file: + x[im_file] = [lb, shape, segments] + if msg: + msgs.append(msg) + pbar.desc = f'{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt' + + pbar.close() + if msgs: + LOGGER.info('\n'.join(msgs)) + if nf == 0: + LOGGER.warning(f'{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}') + x['hash'] = get_hash(self.label_files + self.im_files) + x['results'] = nf, nm, ne, nc, len(self.im_files) + x['msgs'] = msgs # warnings + x['version'] = self.cache_version # cache version + try: + np.save(path, x) # save cache for next time + path.with_suffix('.cache.npy').rename(path) # remove .npy suffix + LOGGER.info(f'{prefix}New cache created: {path}') + except Exception as e: + LOGGER.warning(f'{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable: {e}') # not writeable + return x + + def __len__(self): + return len(self.im_files) + + # def __iter__(self): + # self.count = -1 + # print('ran dataset iter') + # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) + # return self + + def __getitem__(self, index): + index = self.indices[index] # linear, shuffled, or image_weights + + hyp = self.hyp + mosaic = self.mosaic and random.random() < hyp['mosaic'] + if mosaic: + # Load mosaic + img, labels = self.load_mosaic(index) + shapes = None + + # MixUp augmentation + if random.random() < hyp['mixup']: + img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1))) + + else: + # Load image + img, (h0, w0), (h, w) = self.load_image(index) + + # Letterbox + shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape + img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) + shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling + + labels = self.labels[index].copy() + if labels.size: # normalized xywh to pixel xyxy format + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) + + if self.augment: + img, labels = random_perspective(img, + labels, + degrees=hyp['degrees'], + translate=hyp['translate'], + scale=hyp['scale'], + shear=hyp['shear'], + perspective=hyp['perspective']) + + nl = len(labels) # number of labels + if nl: + labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3) + + if self.augment: + # Albumentations + img, labels = self.albumentations(img, labels) + nl = len(labels) # update after albumentations + + # HSV color-space + augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) + + # Flip up-down + if random.random() < hyp['flipud']: + img = np.flipud(img) + if nl: + labels[:, 2] = 1 - labels[:, 2] + + # Flip left-right + if random.random() < hyp['fliplr']: + img = np.fliplr(img) + if nl: + labels[:, 1] = 1 - labels[:, 1] + + # Cutouts + # labels = cutout(img, labels, p=0.5) + # nl = len(labels) # update after cutout + + labels_out = torch.zeros((nl, 6)) + if nl: + labels_out[:, 1:] = torch.from_numpy(labels) + + # Convert + img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + img = np.ascontiguousarray(img) + + return torch.from_numpy(img), labels_out, self.im_files[index], shapes + + def load_image(self, i): + # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw) + im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i], + if im is None: # not cached in RAM + if fn.exists(): # load npy + im = np.load(fn) + else: # read image + im = cv2.imread(f) # BGR + assert im is not None, f'Image Not Found {f}' + h0, w0 = im.shape[:2] # orig hw + r = self.img_size / max(h0, w0) # ratio + if r != 1: # if sizes are not equal + interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA + im = cv2.resize(im, (math.ceil(w0 * r), math.ceil(h0 * r)), interpolation=interp) + return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized + return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized + + def cache_images_to_disk(self, i): + # Saves an image as an *.npy file for faster loading + f = self.npy_files[i] + if not f.exists(): + np.save(f.as_posix(), cv2.imread(self.im_files[i])) + + def load_mosaic(self, index): + # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic + labels4, segments4 = [], [] + s = self.img_size + yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y + indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices + random.shuffle(indices) + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = self.load_image(index) + + # place img in img4 + if i == 0: # top left + img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) + x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) + elif i == 1: # top right + x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc + x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h + elif i == 2: # bottom left + x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) + x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) + elif i == 3: # bottom right + x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) + x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) + + img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] + padw = x1a - x1b + padh = y1a - y1b + + # Labels + labels, segments = self.labels[index].copy(), self.segments[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format + segments = [xyn2xy(x, w, h, padw, padh) for x in segments] + labels4.append(labels) + segments4.extend(segments) + + # Concat/clip labels + labels4 = np.concatenate(labels4, 0) + for x in (labels4[:, 1:], *segments4): + np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() + # img4, labels4 = replicate(img4, labels4) # replicate + + # Augment + img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste']) + img4, labels4 = random_perspective(img4, + labels4, + segments4, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + + return img4, labels4 + + def load_mosaic9(self, index): + # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic + labels9, segments9 = [], [] + s = self.img_size + indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices + random.shuffle(indices) + hp, wp = -1, -1 # height, width previous + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = self.load_image(index) + + # place img in img9 + if i == 0: # center + img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + h0, w0 = h, w + c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates + elif i == 1: # top + c = s, s - h, s + w, s + elif i == 2: # top right + c = s + wp, s - h, s + wp + w, s + elif i == 3: # right + c = s + w0, s, s + w0 + w, s + h + elif i == 4: # bottom right + c = s + w0, s + hp, s + w0 + w, s + hp + h + elif i == 5: # bottom + c = s + w0 - w, s + h0, s + w0, s + h0 + h + elif i == 6: # bottom left + c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h + elif i == 7: # left + c = s - w, s + h0 - h, s, s + h0 + elif i == 8: # top left + c = s - w, s + h0 - hp - h, s, s + h0 - hp + + padx, pady = c[:2] + x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords + + # Labels + labels, segments = self.labels[index].copy(), self.segments[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format + segments = [xyn2xy(x, w, h, padx, pady) for x in segments] + labels9.append(labels) + segments9.extend(segments) + + # Image + img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax] + hp, wp = h, w # height, width previous + + # Offset + yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y + img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] + + # Concat/clip labels + labels9 = np.concatenate(labels9, 0) + labels9[:, [1, 3]] -= xc + labels9[:, [2, 4]] -= yc + c = np.array([xc, yc]) # centers + segments9 = [x - c for x in segments9] + + for x in (labels9[:, 1:], *segments9): + np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() + # img9, labels9 = replicate(img9, labels9) # replicate + + # Augment + img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp['copy_paste']) + img9, labels9 = random_perspective(img9, + labels9, + segments9, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + + return img9, labels9 + + @staticmethod + def collate_fn(batch): + im, label, path, shapes = zip(*batch) # transposed + for i, lb in enumerate(label): + lb[:, 0] = i # add target image index for build_targets() + return torch.stack(im, 0), torch.cat(label, 0), path, shapes + + @staticmethod + def collate_fn4(batch): + im, label, path, shapes = zip(*batch) # transposed + n = len(shapes) // 4 + im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] + + ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]]) + wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]]) + s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale + for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW + i *= 4 + if random.random() < 0.5: + im1 = F.interpolate(im[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', + align_corners=False)[0].type(im[i].type()) + lb = label[i] + else: + im1 = torch.cat((torch.cat((im[i], im[i + 1]), 1), torch.cat((im[i + 2], im[i + 3]), 1)), 2) + lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s + im4.append(im1) + label4.append(lb) + + for i, lb in enumerate(label4): + lb[:, 0] = i # add target image index for build_targets() + + return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4 + + +# Ancillary functions -------------------------------------------------------------------------------------------------- +def flatten_recursive(path=DATASETS_DIR / 'coco128'): + # Flatten a recursive directory by bringing all files to top level + new_path = Path(f'{str(path)}_flat') + if os.path.exists(new_path): + shutil.rmtree(new_path) # delete output folder + os.makedirs(new_path) # make new output folder + for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)): + shutil.copyfile(file, new_path / Path(file).name) + + +def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes() + # Convert detection dataset into classification dataset, with one directory per class + path = Path(path) # images dir + shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None # remove existing + files = list(path.rglob('*.*')) + n = len(files) # number of files + for im_file in tqdm(files, total=n): + if im_file.suffix[1:] in IMG_FORMATS: + # image + im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB + h, w = im.shape[:2] + + # labels + lb_file = Path(img2label_paths([str(im_file)])[0]) + if Path(lb_file).exists(): + with open(lb_file) as f: + lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels + + for j, x in enumerate(lb): + c = int(x[0]) # class + f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename + if not f.parent.is_dir(): + f.parent.mkdir(parents=True) + + b = x[1:] * [w, h, w, h] # box + # b[2:] = b[2:].max() # rectangle to square + b[2:] = b[2:] * 1.2 + 3 # pad + b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int) + + b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image + b[[1, 3]] = np.clip(b[[1, 3]], 0, h) + assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' + + +def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False): + """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files + Usage: from utils.dataloaders import *; autosplit() + Arguments + path: Path to images directory + weights: Train, val, test weights (list, tuple) + annotated_only: Only use images with an annotated txt file + """ + path = Path(path) # images dir + files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only + n = len(files) # number of files + random.seed(0) # for reproducibility + indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split + + txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files + for x in txt: + if (path.parent / x).exists(): + (path.parent / x).unlink() # remove existing + + print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) + for i, img in tqdm(zip(indices, files), total=n): + if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label + with open(path.parent / txt[i], 'a') as f: + f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file + + +def verify_image_label(args): + # Verify one image-label pair + im_file, lb_file, prefix = args + nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments + try: + # verify images + im = Image.open(im_file) + im.verify() # PIL verify + shape = exif_size(im) # image size + assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' + assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' + if im.format.lower() in ('jpg', 'jpeg'): + with open(im_file, 'rb') as f: + f.seek(-2, 2) + if f.read() != b'\xff\xd9': # corrupt JPEG + ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100) + msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved' + + # verify labels + if os.path.isfile(lb_file): + nf = 1 # label found + with open(lb_file) as f: + lb = [x.split() for x in f.read().strip().splitlines() if len(x)] + if any(len(x) > 6 for x in lb): # is segment + classes = np.array([x[0] for x in lb], dtype=np.float32) + segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) + lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) + lb = np.array(lb, dtype=np.float32) + nl = len(lb) + if nl: + assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected' + assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}' + assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}' + _, i = np.unique(lb, axis=0, return_index=True) + if len(i) < nl: # duplicate row check + lb = lb[i] # remove duplicates + if segments: + segments = [segments[x] for x in i] + msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed' + else: + ne = 1 # label empty + lb = np.zeros((0, 5), dtype=np.float32) + else: + nm = 1 # label missing + lb = np.zeros((0, 5), dtype=np.float32) + return im_file, lb, shape, segments, nm, nf, ne, nc, msg + except Exception as e: + nc = 1 + msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}' + return [None, None, None, None, nm, nf, ne, nc, msg] + + +class HUBDatasetStats(): + """ Class for generating HUB dataset JSON and `-hub` dataset directory + + Arguments + path: Path to data.yaml or data.zip (with data.yaml inside data.zip) + autodownload: Attempt to download dataset if not found locally + + Usage + from utils.dataloaders import HUBDatasetStats + stats = HUBDatasetStats('coco128.yaml', autodownload=True) # usage 1 + stats = HUBDatasetStats('path/to/coco128.zip') # usage 2 + stats.get_json(save=False) + stats.process_images() + """ + + def __init__(self, path='coco128.yaml', autodownload=False): + # Initialize class + zipped, data_dir, yaml_path = self._unzip(Path(path)) + try: + with open(check_yaml(yaml_path), errors='ignore') as f: + data = yaml.safe_load(f) # data dict + if zipped: + data['path'] = data_dir + except Exception as e: + raise Exception('error/HUB/dataset_stats/yaml_load') from e + + check_dataset(data, autodownload) # download dataset if missing + self.hub_dir = Path(data['path'] + '-hub') + self.im_dir = self.hub_dir / 'images' + self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images + self.stats = {'nc': data['nc'], 'names': list(data['names'].values())} # statistics dictionary + self.data = data + + @staticmethod + def _find_yaml(dir): + # Return data.yaml file + files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive + assert files, f'No *.yaml file found in {dir}' + if len(files) > 1: + files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name + assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed' + assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}' + return files[0] + + def _unzip(self, path): + # Unzip data.zip + if not str(path).endswith('.zip'): # path is data.yaml + return False, None, path + assert Path(path).is_file(), f'Error unzipping {path}, file not found' + unzip_file(path, path=path.parent) + dir = path.with_suffix('') # dataset directory == zip name + assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/' + return True, str(dir), self._find_yaml(dir) # zipped, data_dir, yaml_path + + def _hub_ops(self, f, max_dim=1920): + # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing + f_new = self.im_dir / Path(f).name # dataset-hub image filename + try: # use PIL + im = Image.open(f) + r = max_dim / max(im.height, im.width) # ratio + if r < 1.0: # image too large + im = im.resize((int(im.width * r), int(im.height * r))) + im.save(f_new, 'JPEG', quality=50, optimize=True) # save + except Exception as e: # use OpenCV + LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}') + im = cv2.imread(f) + im_height, im_width = im.shape[:2] + r = max_dim / max(im_height, im_width) # ratio + if r < 1.0: # image too large + im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) + cv2.imwrite(str(f_new), im) + + def get_json(self, save=False, verbose=False): + # Return dataset JSON for Ultralytics HUB + def _round(labels): + # Update labels to integer class and 6 decimal place floats + return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels] + + for split in 'train', 'val', 'test': + if self.data.get(split) is None: + self.stats[split] = None # i.e. no test set + continue + dataset = LoadImagesAndLabels(self.data[split]) # load dataset + x = np.array([ + np.bincount(label[:, 0].astype(int), minlength=self.data['nc']) + for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')]) # shape(128x80) + self.stats[split] = { + 'instance_stats': { + 'total': int(x.sum()), + 'per_class': x.sum(0).tolist()}, + 'image_stats': { + 'total': dataset.n, + 'unlabelled': int(np.all(x == 0, 1).sum()), + 'per_class': (x > 0).sum(0).tolist()}, + 'labels': [{ + str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]} + + # Save, print and return + if save: + stats_path = self.hub_dir / 'stats.json' + print(f'Saving {stats_path.resolve()}...') + with open(stats_path, 'w') as f: + json.dump(self.stats, f) # save stats.json + if verbose: + print(json.dumps(self.stats, indent=2, sort_keys=False)) + return self.stats + + def process_images(self): + # Compress images for Ultralytics HUB + for split in 'train', 'val', 'test': + if self.data.get(split) is None: + continue + dataset = LoadImagesAndLabels(self.data[split]) # load dataset + desc = f'{split} images' + for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc): + pass + print(f'Done. All images saved to {self.im_dir}') + return self.im_dir + + +# Classification dataloaders ------------------------------------------------------------------------------------------- +class ClassificationDataset(torchvision.datasets.ImageFolder): + """ + YOLOv5 Classification Dataset. + Arguments + root: Dataset path + transform: torchvision transforms, used by default + album_transform: Albumentations transforms, used if installed + """ + + def __init__(self, root, augment, imgsz, cache=False): + super().__init__(root=root) + self.torch_transforms = classify_transforms(imgsz) + self.album_transforms = classify_albumentations(augment, imgsz) if augment else None + self.cache_ram = cache is True or cache == 'ram' + self.cache_disk = cache == 'disk' + self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im + + def __getitem__(self, i): + f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image + if self.cache_ram and im is None: + im = self.samples[i][3] = cv2.imread(f) + elif self.cache_disk: + if not fn.exists(): # load npy + np.save(fn.as_posix(), cv2.imread(f)) + im = np.load(fn) + else: # read image + im = cv2.imread(f) # BGR + if self.album_transforms: + sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))['image'] + else: + sample = self.torch_transforms(im) + return sample, j + + +def create_classification_dataloader(path, + imgsz=224, + batch_size=16, + augment=True, + cache=False, + rank=-1, + workers=8, + shuffle=True): + # Returns Dataloader object to be used with YOLOv5 Classifier + with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP + dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache) + batch_size = min(batch_size, len(dataset)) + nd = torch.cuda.device_count() + nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) + sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) + generator = torch.Generator() + generator.manual_seed(6148914691236517205 + RANK) + return InfiniteDataLoader(dataset, + batch_size=batch_size, + shuffle=shuffle and sampler is None, + num_workers=nw, + sampler=sampler, + pin_memory=PIN_MEMORY, + worker_init_fn=seed_worker, + generator=generator) # or DataLoader(persistent_workers=True) diff --git a/ultralytics/yolov5/utils/docker/Dockerfile b/ultralytics/yolov5/utils/docker/Dockerfile new file mode 100644 index 0000000..b5d2af9 --- /dev/null +++ b/ultralytics/yolov5/utils/docker/Dockerfile @@ -0,0 +1,75 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5 +# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference + +# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch +# FROM docker.io/pytorch/pytorch:latest +FROM pytorch/pytorch:latest + +# Downloads to user config dir +ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ + +# Install linux packages +ENV DEBIAN_FRONTEND noninteractive +RUN apt update +RUN TZ=Etc/UTC apt install -y tzdata +RUN apt install --no-install-recommends -y gcc git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg +# RUN alias python=python3 + +# Security updates +# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796 +RUN apt upgrade --no-install-recommends -y openssl + +# Create working directory +RUN rm -rf /usr/src/app && mkdir -p /usr/src/app +WORKDIR /usr/src/app + +# Copy contents +# COPY . /usr/src/app (issues as not a .git directory) +RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app + +# Install pip packages +COPY requirements.txt . +RUN python3 -m pip install --upgrade pip wheel +RUN pip install --no-cache -r requirements.txt albumentations comet gsutil notebook \ + coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2022.3' + # tensorflow tensorflowjs \ + +# Set environment variables +ENV OMP_NUM_THREADS=1 + +# Cleanup +ENV DEBIAN_FRONTEND teletype + + +# Usage Examples ------------------------------------------------------------------------------------------------------- + +# Build and Push +# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t + +# Pull and Run +# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t + +# Pull and Run with local directory access +# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t + +# Kill all +# sudo docker kill $(sudo docker ps -q) + +# Kill all image-based +# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest) + +# DockerHub tag update +# t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew + +# Clean up +# sudo docker system prune -a --volumes + +# Update Ubuntu drivers +# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/ + +# DDP test +# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3 + +# GCP VM from Image +# docker.io/ultralytics/yolov5:latest diff --git a/ultralytics/yolov5/utils/docker/Dockerfile-arm64 b/ultralytics/yolov5/utils/docker/Dockerfile-arm64 new file mode 100644 index 0000000..7023c6a --- /dev/null +++ b/ultralytics/yolov5/utils/docker/Dockerfile-arm64 @@ -0,0 +1,41 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# Builds ultralytics/yolov5:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/yolov5 +# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi + +# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu +FROM arm64v8/ubuntu:rolling + +# Downloads to user config dir +ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ + +# Install linux packages +ENV DEBIAN_FRONTEND noninteractive +RUN apt update +RUN TZ=Etc/UTC apt install -y tzdata +RUN apt install --no-install-recommends -y python3-pip git zip curl htop gcc libgl1-mesa-glx libglib2.0-0 libpython3-dev +# RUN alias python=python3 + +# Install pip packages +COPY requirements.txt . +RUN python3 -m pip install --upgrade pip wheel +RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \ + coremltools onnx onnxruntime + # tensorflow-aarch64 tensorflowjs \ + +# Create working directory +RUN mkdir -p /usr/src/app +WORKDIR /usr/src/app + +# Copy contents +# COPY . /usr/src/app (issues as not a .git directory) +RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app +ENV DEBIAN_FRONTEND teletype + + +# Usage Examples ------------------------------------------------------------------------------------------------------- + +# Build and Push +# t=ultralytics/yolov5:latest-arm64 && sudo docker build --platform linux/arm64 -f utils/docker/Dockerfile-arm64 -t $t . && sudo docker push $t + +# Pull and Run +# t=ultralytics/yolov5:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t diff --git a/ultralytics/yolov5/utils/docker/Dockerfile-cpu b/ultralytics/yolov5/utils/docker/Dockerfile-cpu new file mode 100644 index 0000000..06bad9a --- /dev/null +++ b/ultralytics/yolov5/utils/docker/Dockerfile-cpu @@ -0,0 +1,42 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +# Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5 +# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments + +# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu +FROM ubuntu:rolling + +# Downloads to user config dir +ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ + +# Install linux packages +ENV DEBIAN_FRONTEND noninteractive +RUN apt update +RUN TZ=Etc/UTC apt install -y tzdata +RUN apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg +# RUN alias python=python3 + +# Install pip packages +COPY requirements.txt . +RUN python3 -m pip install --upgrade pip wheel +RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \ + coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2022.3' \ + # tensorflow tensorflowjs \ + --extra-index-url https://download.pytorch.org/whl/cpu + +# Create working directory +RUN mkdir -p /usr/src/app +WORKDIR /usr/src/app + +# Copy contents +# COPY . /usr/src/app (issues as not a .git directory) +RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app +ENV DEBIAN_FRONTEND teletype + + +# Usage Examples ------------------------------------------------------------------------------------------------------- + +# Build and Push +# t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t + +# Pull and Run +# t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t diff --git a/ultralytics/yolov5/utils/downloads.py b/ultralytics/yolov5/utils/downloads.py new file mode 100644 index 0000000..88f5237 --- /dev/null +++ b/ultralytics/yolov5/utils/downloads.py @@ -0,0 +1,128 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Download utils +""" + +import logging +import os +import subprocess +import urllib +from pathlib import Path + +import requests +import torch + + +def is_url(url, check=True): + # Check if string is URL and check if URL exists + try: + url = str(url) + result = urllib.parse.urlparse(url) + assert all([result.scheme, result.netloc]) # check if is url + return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online + except (AssertionError, urllib.request.HTTPError): + return False + + +def gsutil_getsize(url=''): + # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du + output = subprocess.check_output(['gsutil', 'du', url], shell=True, encoding='utf-8') + if output: + return int(output.split()[0]) + return 0 + + +def url_getsize(url='https://ultralytics.com/images/bus.jpg'): + # Return downloadable file size in bytes + response = requests.head(url, allow_redirects=True) + return int(response.headers.get('content-length', -1)) + + +def curl_download(url, filename, *, silent: bool = False) -> bool: + """ + Download a file from a url to a filename using curl. + """ + silent_option = 'sS' if silent else '' # silent + proc = subprocess.run([ + 'curl', + '-#', + f'-{silent_option}L', + url, + '--output', + filename, + '--retry', + '9', + '-C', + '-',]) + return proc.returncode == 0 + + +def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''): + # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes + from utils.general import LOGGER + + file = Path(file) + assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}" + try: # url1 + LOGGER.info(f'Downloading {url} to {file}...') + torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO) + assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check + except Exception as e: # url2 + if file.exists(): + file.unlink() # remove partial downloads + LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...') + # curl download, retry and resume on fail + curl_download(url2 or url, file) + finally: + if not file.exists() or file.stat().st_size < min_bytes: # check + if file.exists(): + file.unlink() # remove partial downloads + LOGGER.info(f'ERROR: {assert_msg}\n{error_msg}') + LOGGER.info('') + + +def attempt_download(file, repo='ultralytics/yolov5', release='v7.0'): + # Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v7.0', etc. + from utils.general import LOGGER + + def github_assets(repository, version='latest'): + # Return GitHub repo tag (i.e. 'v7.0') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...]) + if version != 'latest': + version = f'tags/{version}' # i.e. tags/v7.0 + response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api + return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets + + file = Path(str(file).strip().replace("'", '')) + if not file.exists(): + # URL specified + name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc. + if str(file).startswith(('http:/', 'https:/')): # download + url = str(file).replace(':/', '://') # Pathlib turns :// -> :/ + file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth... + if Path(file).is_file(): + LOGGER.info(f'Found {url} locally at {file}') # file already exists + else: + safe_download(file=file, url=url, min_bytes=1E5) + return file + + # GitHub assets + assets = [f'yolov5{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] # default + try: + tag, assets = github_assets(repo, release) + except Exception: + try: + tag, assets = github_assets(repo) # latest release + except Exception: + try: + tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1] + except Exception: + tag = release + + if name in assets: + file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required) + safe_download(file, + url=f'https://github.com/{repo}/releases/download/{tag}/{name}', + min_bytes=1E5, + error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag}') + + return str(file) diff --git a/ultralytics/yolov5/utils/flask_rest_api/README.md b/ultralytics/yolov5/utils/flask_rest_api/README.md new file mode 100644 index 0000000..a726acb --- /dev/null +++ b/ultralytics/yolov5/utils/flask_rest_api/README.md @@ -0,0 +1,73 @@ +# Flask REST API + +[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are +commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API +created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/). + +## Requirements + +[Flask](https://palletsprojects.com/p/flask/) is required. Install with: + +```shell +$ pip install Flask +``` + +## Run + +After Flask installation run: + +```shell +$ python3 restapi.py --port 5000 +``` + +Then use [curl](https://curl.se/) to perform a request: + +```shell +$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s' +``` + +The model inference results are returned as a JSON response: + +```json +[ + { + "class": 0, + "confidence": 0.8900438547, + "height": 0.9318675399, + "name": "person", + "width": 0.3264600933, + "xcenter": 0.7438579798, + "ycenter": 0.5207948685 + }, + { + "class": 0, + "confidence": 0.8440024257, + "height": 0.7155083418, + "name": "person", + "width": 0.6546785235, + "xcenter": 0.427829951, + "ycenter": 0.6334488392 + }, + { + "class": 27, + "confidence": 0.3771208823, + "height": 0.3902671337, + "name": "tie", + "width": 0.0696444362, + "xcenter": 0.3675483763, + "ycenter": 0.7991207838 + }, + { + "class": 27, + "confidence": 0.3527112305, + "height": 0.1540903747, + "name": "tie", + "width": 0.0336618312, + "xcenter": 0.7814827561, + "ycenter": 0.5065554976 + } +] +``` + +An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given +in `example_request.py` diff --git a/ultralytics/yolov5/utils/flask_rest_api/example_request.py b/ultralytics/yolov5/utils/flask_rest_api/example_request.py new file mode 100644 index 0000000..952e5dc --- /dev/null +++ b/ultralytics/yolov5/utils/flask_rest_api/example_request.py @@ -0,0 +1,19 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Perform test request +""" + +import pprint + +import requests + +DETECTION_URL = 'http://localhost:5000/v1/object-detection/yolov5s' +IMAGE = 'zidane.jpg' + +# Read image +with open(IMAGE, 'rb') as f: + image_data = f.read() + +response = requests.post(DETECTION_URL, files={'image': image_data}).json() + +pprint.pprint(response) diff --git a/ultralytics/yolov5/utils/flask_rest_api/restapi.py b/ultralytics/yolov5/utils/flask_rest_api/restapi.py new file mode 100644 index 0000000..9258b1a --- /dev/null +++ b/ultralytics/yolov5/utils/flask_rest_api/restapi.py @@ -0,0 +1,48 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Run a Flask REST API exposing one or more YOLOv5s models +""" + +import argparse +import io + +import torch +from flask import Flask, request +from PIL import Image + +app = Flask(__name__) +models = {} + +DETECTION_URL = '/v1/object-detection/' + + +@app.route(DETECTION_URL, methods=['POST']) +def predict(model): + if request.method != 'POST': + return + + if request.files.get('image'): + # Method 1 + # with request.files["image"] as f: + # im = Image.open(io.BytesIO(f.read())) + + # Method 2 + im_file = request.files['image'] + im_bytes = im_file.read() + im = Image.open(io.BytesIO(im_bytes)) + + if model in models: + results = models[model](im, size=640) # reduce size=320 for faster inference + return results.pandas().xyxy[0].to_json(orient='records') + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Flask API exposing YOLOv5 model') + parser.add_argument('--port', default=5000, type=int, help='port number') + parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s') + opt = parser.parse_args() + + for m in opt.model: + models[m] = torch.hub.load('ultralytics/yolov5', m, force_reload=True, skip_validation=True) + + app.run(host='0.0.0.0', port=opt.port) # debug=True causes Restarting with stat diff --git a/ultralytics/yolov5/utils/general.py b/ultralytics/yolov5/utils/general.py new file mode 100644 index 0000000..adb9242 --- /dev/null +++ b/ultralytics/yolov5/utils/general.py @@ -0,0 +1,1140 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +General utils +""" + +import contextlib +import glob +import inspect +import logging +import logging.config +import math +import os +import platform +import random +import re +import signal +import subprocess +import sys +import time +import urllib +from copy import deepcopy +from datetime import datetime +from itertools import repeat +from multiprocessing.pool import ThreadPool +from pathlib import Path +from subprocess import check_output +from tarfile import is_tarfile +from typing import Optional +from zipfile import ZipFile, is_zipfile + +import cv2 +import numpy as np +import pandas as pd +import pkg_resources as pkg +import torch +import torchvision +import yaml + +from utils import TryExcept, emojis +from utils.downloads import curl_download, gsutil_getsize +from utils.metrics import box_iou, fitness + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +RANK = int(os.getenv('RANK', -1)) + +# Settings +NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads +DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory +AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode +VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode +TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format +FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf + +torch.set_printoptions(linewidth=320, precision=5, profile='long') +np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 +pd.options.display.max_columns = 10 +cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) +os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads +os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy) + + +def is_ascii(s=''): + # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) + s = str(s) # convert list, tuple, None, etc. to str + return len(s.encode().decode('ascii', 'ignore')) == len(s) + + +def is_chinese(s='人工智能'): + # Is string composed of any Chinese characters? + return bool(re.search('[\u4e00-\u9fff]', str(s))) + + +def is_colab(): + # Is environment a Google Colab instance? + return 'google.colab' in sys.modules + + +def is_jupyter(): + """ + Check if the current script is running inside a Jupyter Notebook. + Verified on Colab, Jupyterlab, Kaggle, Paperspace. + + Returns: + bool: True if running inside a Jupyter Notebook, False otherwise. + """ + with contextlib.suppress(Exception): + from IPython import get_ipython + return get_ipython() is not None + return False + + +def is_kaggle(): + # Is environment a Kaggle Notebook? + return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' + + +def is_docker() -> bool: + """Check if the process runs inside a docker container.""" + if Path('/.dockerenv').exists(): + return True + try: # check if docker is in control groups + with open('/proc/self/cgroup') as file: + return any('docker' in line for line in file) + except OSError: + return False + + +def is_writeable(dir, test=False): + # Return True if directory has write permissions, test opening a file with write permissions if test=True + if not test: + return os.access(dir, os.W_OK) # possible issues on Windows + file = Path(dir) / 'tmp.txt' + try: + with open(file, 'w'): # open file with write permissions + pass + file.unlink() # remove file + return True + except OSError: + return False + + +LOGGING_NAME = 'yolov5' + + +def set_logging(name=LOGGING_NAME, verbose=True): + # sets up logging for the given name + rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings + level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR + logging.config.dictConfig({ + 'version': 1, + 'disable_existing_loggers': False, + 'formatters': { + name: { + 'format': '%(message)s'}}, + 'handlers': { + name: { + 'class': 'logging.StreamHandler', + 'formatter': name, + 'level': level,}}, + 'loggers': { + name: { + 'level': level, + 'handlers': [name], + 'propagate': False,}}}) + + +set_logging(LOGGING_NAME) # run before defining LOGGER +LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.) +if platform.system() == 'Windows': + for fn in LOGGER.info, LOGGER.warning: + setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging + + +def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'): + # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. + env = os.getenv(env_var) + if env: + path = Path(env) # use environment variable + else: + cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs + path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir + path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable + path.mkdir(exist_ok=True) # make if required + return path + + +CONFIG_DIR = user_config_dir() # Ultralytics settings dir + + +class Profile(contextlib.ContextDecorator): + # YOLOv5 Profile class. Usage: @Profile() decorator or 'with Profile():' context manager + def __init__(self, t=0.0): + self.t = t + self.cuda = torch.cuda.is_available() + + def __enter__(self): + self.start = self.time() + return self + + def __exit__(self, type, value, traceback): + self.dt = self.time() - self.start # delta-time + self.t += self.dt # accumulate dt + + def time(self): + if self.cuda: + torch.cuda.synchronize() + return time.time() + + +class Timeout(contextlib.ContextDecorator): + # YOLOv5 Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager + def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True): + self.seconds = int(seconds) + self.timeout_message = timeout_msg + self.suppress = bool(suppress_timeout_errors) + + def _timeout_handler(self, signum, frame): + raise TimeoutError(self.timeout_message) + + def __enter__(self): + if platform.system() != 'Windows': # not supported on Windows + signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM + signal.alarm(self.seconds) # start countdown for SIGALRM to be raised + + def __exit__(self, exc_type, exc_val, exc_tb): + if platform.system() != 'Windows': + signal.alarm(0) # Cancel SIGALRM if it's scheduled + if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError + return True + + +class WorkingDirectory(contextlib.ContextDecorator): + # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager + def __init__(self, new_dir): + self.dir = new_dir # new dir + self.cwd = Path.cwd().resolve() # current dir + + def __enter__(self): + os.chdir(self.dir) + + def __exit__(self, exc_type, exc_val, exc_tb): + os.chdir(self.cwd) + + +def methods(instance): + # Get class/instance methods + return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith('__')] + + +def print_args(args: Optional[dict] = None, show_file=True, show_func=False): + # Print function arguments (optional args dict) + x = inspect.currentframe().f_back # previous frame + file, _, func, _, _ = inspect.getframeinfo(x) + if args is None: # get args automatically + args, _, _, frm = inspect.getargvalues(x) + args = {k: v for k, v in frm.items() if k in args} + try: + file = Path(file).resolve().relative_to(ROOT).with_suffix('') + except ValueError: + file = Path(file).stem + s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '') + LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items())) + + +def init_seeds(seed=0, deterministic=False): + # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe + # torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287 + if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213 + torch.use_deterministic_algorithms(True) + torch.backends.cudnn.deterministic = True + os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' + os.environ['PYTHONHASHSEED'] = str(seed) + + +def intersect_dicts(da, db, exclude=()): + # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values + return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape} + + +def get_default_args(func): + # Get func() default arguments + signature = inspect.signature(func) + return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} + + +def get_latest_run(search_dir='.'): + # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) + last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) + return max(last_list, key=os.path.getctime) if last_list else '' + + +def file_age(path=__file__): + # Return days since last file update + dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta + return dt.days # + dt.seconds / 86400 # fractional days + + +def file_date(path=__file__): + # Return human-readable file modification date, i.e. '2021-3-26' + t = datetime.fromtimestamp(Path(path).stat().st_mtime) + return f'{t.year}-{t.month}-{t.day}' + + +def file_size(path): + # Return file/dir size (MB) + mb = 1 << 20 # bytes to MiB (1024 ** 2) + path = Path(path) + if path.is_file(): + return path.stat().st_size / mb + elif path.is_dir(): + return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb + else: + return 0.0 + + +def check_online(): + # Check internet connectivity + import socket + + def run_once(): + # Check once + try: + socket.create_connection(('1.1.1.1', 443), 5) # check host accessibility + return True + except OSError: + return False + + return run_once() or run_once() # check twice to increase robustness to intermittent connectivity issues + + +def git_describe(path=ROOT): # path must be a directory + # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe + try: + assert (Path(path) / '.git').is_dir() + return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1] + except Exception: + return '' + + +@TryExcept() +@WorkingDirectory(ROOT) +def check_git_status(repo='ultralytics/yolov5', branch='master'): + # YOLOv5 status check, recommend 'git pull' if code is out of date + url = f'https://github.com/{repo}' + msg = f', for updates see {url}' + s = colorstr('github: ') # string + assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg + assert check_online(), s + 'skipping check (offline)' + msg + + splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode()) + matches = [repo in s for s in splits] + if any(matches): + remote = splits[matches.index(True) - 1] + else: + remote = 'ultralytics' + check_output(f'git remote add {remote} {url}', shell=True) + check_output(f'git fetch {remote}', shell=True, timeout=5) # git fetch + local_branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out + n = int(check_output(f'git rev-list {local_branch}..{remote}/{branch} --count', shell=True)) # commits behind + if n > 0: + pull = 'git pull' if remote == 'origin' else f'git pull {remote} {branch}' + s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use '{pull}' or 'git clone {url}' to update." + else: + s += f'up to date with {url} ✅' + LOGGER.info(s) + + +@WorkingDirectory(ROOT) +def check_git_info(path='.'): + # YOLOv5 git info check, return {remote, branch, commit} + check_requirements('gitpython') + import git + try: + repo = git.Repo(path) + remote = repo.remotes.origin.url.replace('.git', '') # i.e. 'https://github.com/ultralytics/yolov5' + commit = repo.head.commit.hexsha # i.e. '3134699c73af83aac2a481435550b968d5792c0d' + try: + branch = repo.active_branch.name # i.e. 'main' + except TypeError: # not on any branch + branch = None # i.e. 'detached HEAD' state + return {'remote': remote, 'branch': branch, 'commit': commit} + except git.exc.InvalidGitRepositoryError: # path is not a git dir + return {'remote': None, 'branch': None, 'commit': None} + + +def check_python(minimum='3.7.0'): + # Check current python version vs. required python version + check_version(platform.python_version(), minimum, name='Python ', hard=True) + + +def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False): + # Check version vs. required version + current, minimum = (pkg.parse_version(x) for x in (current, minimum)) + result = (current == minimum) if pinned else (current >= minimum) # bool + s = f'WARNING ⚠️ {name}{minimum} is required by YOLOv5, but {name}{current} is currently installed' # string + if hard: + assert result, emojis(s) # assert min requirements met + if verbose and not result: + LOGGER.warning(s) + return result + + +@TryExcept() +def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=''): + # Check installed dependencies meet YOLOv5 requirements (pass *.txt file or list of packages or single package str) + prefix = colorstr('red', 'bold', 'requirements:') + check_python() # check python version + if isinstance(requirements, Path): # requirements.txt file + file = requirements.resolve() + assert file.exists(), f'{prefix} {file} not found, check failed.' + with file.open() as f: + requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude] + elif isinstance(requirements, str): + requirements = [requirements] + + s = '' + n = 0 + for r in requirements: + try: + pkg.require(r) + except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met + s += f'"{r}" ' + n += 1 + + if s and install and AUTOINSTALL: # check environment variable + LOGGER.info(f"{prefix} YOLOv5 requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...") + try: + # assert check_online(), "AutoUpdate skipped (offline)" + LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode()) + source = file if 'file' in locals() else requirements + s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \ + f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" + LOGGER.info(s) + except Exception as e: + LOGGER.warning(f'{prefix} ❌ {e}') + + +def check_img_size(imgsz, s=32, floor=0): + # Verify image size is a multiple of stride s in each dimension + if isinstance(imgsz, int): # integer i.e. img_size=640 + new_size = max(make_divisible(imgsz, int(s)), floor) + else: # list i.e. img_size=[640, 480] + imgsz = list(imgsz) # convert to list if tuple + new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] + if new_size != imgsz: + LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}') + return new_size + + +def check_imshow(warn=False): + # Check if environment supports image displays + try: + assert not is_jupyter() + assert not is_docker() + cv2.imshow('test', np.zeros((1, 1, 3))) + cv2.waitKey(1) + cv2.destroyAllWindows() + cv2.waitKey(1) + return True + except Exception as e: + if warn: + LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}') + return False + + +def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''): + # Check file(s) for acceptable suffix + if file and suffix: + if isinstance(suffix, str): + suffix = [suffix] + for f in file if isinstance(file, (list, tuple)) else [file]: + s = Path(f).suffix.lower() # file suffix + if len(s): + assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}' + + +def check_yaml(file, suffix=('.yaml', '.yml')): + # Search/download YAML file (if necessary) and return path, checking suffix + return check_file(file, suffix) + + +def check_file(file, suffix=''): + # Search/download file (if necessary) and return path + check_suffix(file, suffix) # optional + file = str(file) # convert to str() + if os.path.isfile(file) or not file: # exists + return file + elif file.startswith(('http:/', 'https:/')): # download + url = file # warning: Pathlib turns :// -> :/ + file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth + if os.path.isfile(file): + LOGGER.info(f'Found {url} locally at {file}') # file already exists + else: + LOGGER.info(f'Downloading {url} to {file}...') + torch.hub.download_url_to_file(url, file) + assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check + return file + elif file.startswith('clearml://'): # ClearML Dataset ID + assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'." + return file + else: # search + files = [] + for d in 'data', 'models', 'utils': # search directories + files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file + assert len(files), f'File not found: {file}' # assert file was found + assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique + return files[0] # return file + + +def check_font(font=FONT, progress=False): + # Download font to CONFIG_DIR if necessary + font = Path(font) + file = CONFIG_DIR / font.name + if not font.exists() and not file.exists(): + url = f'https://ultralytics.com/assets/{font.name}' + LOGGER.info(f'Downloading {url} to {file}...') + torch.hub.download_url_to_file(url, str(file), progress=progress) + + +def check_dataset(data, autodownload=True): + # Download, check and/or unzip dataset if not found locally + + # Download (optional) + extract_dir = '' + if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)): + download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1) + data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml')) + extract_dir, autodownload = data.parent, False + + # Read yaml (optional) + if isinstance(data, (str, Path)): + data = yaml_load(data) # dictionary + + # Checks + for k in 'train', 'val', 'names': + assert k in data, emojis(f"data.yaml '{k}:' field missing ❌") + if isinstance(data['names'], (list, tuple)): # old array format + data['names'] = dict(enumerate(data['names'])) # convert to dict + assert all(isinstance(k, int) for k in data['names'].keys()), 'data.yaml names keys must be integers, i.e. 2: car' + data['nc'] = len(data['names']) + + # Resolve paths + path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.' + if not path.is_absolute(): + path = (ROOT / path).resolve() + data['path'] = path # download scripts + for k in 'train', 'val', 'test': + if data.get(k): # prepend path + if isinstance(data[k], str): + x = (path / data[k]).resolve() + if not x.exists() and data[k].startswith('../'): + x = (path / data[k][3:]).resolve() + data[k] = str(x) + else: + data[k] = [str((path / x).resolve()) for x in data[k]] + + # Parse yaml + train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) + if val: + val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path + if not all(x.exists() for x in val): + LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()]) + if not s or not autodownload: + raise Exception('Dataset not found ❌') + t = time.time() + if s.startswith('http') and s.endswith('.zip'): # URL + f = Path(s).name # filename + LOGGER.info(f'Downloading {s} to {f}...') + torch.hub.download_url_to_file(s, f) + Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root + unzip_file(f, path=DATASETS_DIR) # unzip + Path(f).unlink() # remove zip + r = None # success + elif s.startswith('bash '): # bash script + LOGGER.info(f'Running {s} ...') + r = subprocess.run(s, shell=True) + else: # python script + r = exec(s, {'yaml': data}) # return None + dt = f'({round(time.time() - t, 1)}s)' + s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f'failure {dt} ❌' + LOGGER.info(f'Dataset download {s}') + check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts + return data # dictionary + + +def check_amp(model): + # Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation + from models.common import AutoShape, DetectMultiBackend + + def amp_allclose(model, im): + # All close FP32 vs AMP results + m = AutoShape(model, verbose=False) # model + a = m(im).xywhn[0] # FP32 inference + m.amp = True + b = m(im).xywhn[0] # AMP inference + return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance + + prefix = colorstr('AMP: ') + device = next(model.parameters()).device # get model device + if device.type in ('cpu', 'mps'): + return False # AMP only used on CUDA devices + f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check + im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3)) + try: + assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im) + LOGGER.info(f'{prefix}checks passed ✅') + return True + except Exception: + help_url = 'https://github.com/ultralytics/yolov5/issues/7908' + LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}') + return False + + +def yaml_load(file='data.yaml'): + # Single-line safe yaml loading + with open(file, errors='ignore') as f: + return yaml.safe_load(f) + + +def yaml_save(file='data.yaml', data={}): + # Single-line safe yaml saving + with open(file, 'w') as f: + yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False) + + +def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')): + # Unzip a *.zip file to path/, excluding files containing strings in exclude list + if path is None: + path = Path(file).parent # default path + with ZipFile(file) as zipObj: + for f in zipObj.namelist(): # list all archived filenames in the zip + if all(x not in f for x in exclude): + zipObj.extract(f, path=path) + + +def url2file(url): + # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt + url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/ + return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth + + +def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3): + # Multithreaded file download and unzip function, used in data.yaml for autodownload + def download_one(url, dir): + # Download 1 file + success = True + if os.path.isfile(url): + f = Path(url) # filename + else: # does not exist + f = dir / Path(url).name + LOGGER.info(f'Downloading {url} to {f}...') + for i in range(retry + 1): + if curl: + success = curl_download(url, f, silent=(threads > 1)) + else: + torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download + success = f.is_file() + if success: + break + elif i < retry: + LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...') + else: + LOGGER.warning(f'❌ Failed to download {url}...') + + if unzip and success and (f.suffix == '.gz' or is_zipfile(f) or is_tarfile(f)): + LOGGER.info(f'Unzipping {f}...') + if is_zipfile(f): + unzip_file(f, dir) # unzip + elif is_tarfile(f): + subprocess.run(['tar', 'xf', f, '--directory', f.parent], check=True) # unzip + elif f.suffix == '.gz': + subprocess.run(['tar', 'xfz', f, '--directory', f.parent], check=True) # unzip + if delete: + f.unlink() # remove zip + + dir = Path(dir) + dir.mkdir(parents=True, exist_ok=True) # make directory + if threads > 1: + pool = ThreadPool(threads) + pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded + pool.close() + pool.join() + else: + for u in [url] if isinstance(url, (str, Path)) else url: + download_one(u, dir) + + +def make_divisible(x, divisor): + # Returns nearest x divisible by divisor + if isinstance(divisor, torch.Tensor): + divisor = int(divisor.max()) # to int + return math.ceil(x / divisor) * divisor + + +def clean_str(s): + # Cleans a string by replacing special characters with underscore _ + return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s) + + +def one_cycle(y1=0.0, y2=1.0, steps=100): + # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf + return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 + + +def colorstr(*input): + # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') + *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string + colors = { + 'black': '\033[30m', # basic colors + 'red': '\033[31m', + 'green': '\033[32m', + 'yellow': '\033[33m', + 'blue': '\033[34m', + 'magenta': '\033[35m', + 'cyan': '\033[36m', + 'white': '\033[37m', + 'bright_black': '\033[90m', # bright colors + 'bright_red': '\033[91m', + 'bright_green': '\033[92m', + 'bright_yellow': '\033[93m', + 'bright_blue': '\033[94m', + 'bright_magenta': '\033[95m', + 'bright_cyan': '\033[96m', + 'bright_white': '\033[97m', + 'end': '\033[0m', # misc + 'bold': '\033[1m', + 'underline': '\033[4m'} + return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] + + +def labels_to_class_weights(labels, nc=80): + # Get class weights (inverse frequency) from training labels + if labels[0] is None: # no labels loaded + return torch.Tensor() + + labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO + classes = labels[:, 0].astype(int) # labels = [class xywh] + weights = np.bincount(classes, minlength=nc) # occurrences per class + + # Prepend gridpoint count (for uCE training) + # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image + # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start + + weights[weights == 0] = 1 # replace empty bins with 1 + weights = 1 / weights # number of targets per class + weights /= weights.sum() # normalize + return torch.from_numpy(weights).float() + + +def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): + # Produces image weights based on class_weights and image contents + # Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample + class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels]) + return (class_weights.reshape(1, nc) * class_counts).sum(1) + + +def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) + # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ + # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') + # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') + # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco + # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet + return [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, + 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] + + +def xyxy2xywh(x): + # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center + y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center + y[..., 2] = x[..., 2] - x[..., 0] # width + y[..., 3] = x[..., 3] - x[..., 1] # height + return y + + +def xywh2xyxy(x): + # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x + y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y + y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x + y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y + return y + + +def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): + # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x + y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y + y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x + y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y + return y + + +def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): + # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right + if clip: + clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center + y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center + y[..., 2] = (x[..., 2] - x[..., 0]) / w # width + y[..., 3] = (x[..., 3] - x[..., 1]) / h # height + return y + + +def xyn2xy(x, w=640, h=640, padw=0, padh=0): + # Convert normalized segments into pixel segments, shape (n,2) + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = w * x[..., 0] + padw # top left x + y[..., 1] = h * x[..., 1] + padh # top left y + return y + + +def segment2box(segment, width=640, height=640): + # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) + x, y = segment.T # segment xy + inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) + x, y, = x[inside], y[inside] + return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy + + +def segments2boxes(segments): + # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) + boxes = [] + for s in segments: + x, y = s.T # segment xy + boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy + return xyxy2xywh(np.array(boxes)) # cls, xywh + + +def resample_segments(segments, n=1000): + # Up-sample an (n,2) segment + for i, s in enumerate(segments): + s = np.concatenate((s, s[0:1, :]), axis=0) + x = np.linspace(0, len(s) - 1, n) + xp = np.arange(len(s)) + segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy + return segments + + +def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None): + # Rescale boxes (xyxy) from img1_shape to img0_shape + if ratio_pad is None: # calculate from img0_shape + gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new + pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding + else: + gain = ratio_pad[0][0] + pad = ratio_pad[1] + + boxes[..., [0, 2]] -= pad[0] # x padding + boxes[..., [1, 3]] -= pad[1] # y padding + boxes[..., :4] /= gain + clip_boxes(boxes, img0_shape) + return boxes + + +def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False): + # Rescale coords (xyxy) from img1_shape to img0_shape + if ratio_pad is None: # calculate from img0_shape + gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new + pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding + else: + gain = ratio_pad[0][0] + pad = ratio_pad[1] + + segments[:, 0] -= pad[0] # x padding + segments[:, 1] -= pad[1] # y padding + segments /= gain + clip_segments(segments, img0_shape) + if normalize: + segments[:, 0] /= img0_shape[1] # width + segments[:, 1] /= img0_shape[0] # height + return segments + + +def clip_boxes(boxes, shape): + # Clip boxes (xyxy) to image shape (height, width) + if isinstance(boxes, torch.Tensor): # faster individually + boxes[..., 0].clamp_(0, shape[1]) # x1 + boxes[..., 1].clamp_(0, shape[0]) # y1 + boxes[..., 2].clamp_(0, shape[1]) # x2 + boxes[..., 3].clamp_(0, shape[0]) # y2 + else: # np.array (faster grouped) + boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2 + boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2 + + +def clip_segments(segments, shape): + # Clip segments (xy1,xy2,...) to image shape (height, width) + if isinstance(segments, torch.Tensor): # faster individually + segments[:, 0].clamp_(0, shape[1]) # x + segments[:, 1].clamp_(0, shape[0]) # y + else: # np.array (faster grouped) + segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x + segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y + + +def non_max_suppression( + prediction, + conf_thres=0.25, + iou_thres=0.45, + classes=None, + agnostic=False, + multi_label=False, + labels=(), + max_det=300, + nm=0, # number of masks +): + """Non-Maximum Suppression (NMS) on inference results to reject overlapping detections + + Returns: + list of detections, on (n,6) tensor per image [xyxy, conf, cls] + """ + + # Checks + assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' + assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' + if isinstance(prediction, (list, tuple)): # YOLOv5 model in validation model, output = (inference_out, loss_out) + prediction = prediction[0] # select only inference output + + device = prediction.device + mps = 'mps' in device.type # Apple MPS + if mps: # MPS not fully supported yet, convert tensors to CPU before NMS + prediction = prediction.cpu() + bs = prediction.shape[0] # batch size + nc = prediction.shape[2] - nm - 5 # number of classes + xc = prediction[..., 4] > conf_thres # candidates + + # Settings + # min_wh = 2 # (pixels) minimum box width and height + max_wh = 7680 # (pixels) maximum box width and height + max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() + time_limit = 0.5 + 0.05 * bs # seconds to quit after + redundant = True # require redundant detections + multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) + merge = False # use merge-NMS + + t = time.time() + mi = 5 + nc # mask start index + output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs + for xi, x in enumerate(prediction): # image index, image inference + # Apply constraints + # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height + x = x[xc[xi]] # confidence + + # Cat apriori labels if autolabelling + if labels and len(labels[xi]): + lb = labels[xi] + v = torch.zeros((len(lb), nc + nm + 5), device=x.device) + v[:, :4] = lb[:, 1:5] # box + v[:, 4] = 1.0 # conf + v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls + x = torch.cat((x, v), 0) + + # If none remain process next image + if not x.shape[0]: + continue + + # Compute conf + x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf + + # Box/Mask + box = xywh2xyxy(x[:, :4]) # center_x, center_y, width, height) to (x1, y1, x2, y2) + mask = x[:, mi:] # zero columns if no masks + + # Detections matrix nx6 (xyxy, conf, cls) + if multi_label: + i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T + x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1) + else: # best class only + conf, j = x[:, 5:mi].max(1, keepdim=True) + x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres] + + # Filter by class + if classes is not None: + x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] + + # Apply finite constraint + # if not torch.isfinite(x).all(): + # x = x[torch.isfinite(x).all(1)] + + # Check shape + n = x.shape[0] # number of boxes + if not n: # no boxes + continue + x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes + + # Batched NMS + c = x[:, 5:6] * (0 if agnostic else max_wh) # classes + boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores + i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS + i = i[:max_det] # limit detections + if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) + # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) + iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix + weights = iou * scores[None] # box weights + x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes + if redundant: + i = i[iou.sum(1) > 1] # require redundancy + + output[xi] = x[i] + if mps: + output[xi] = output[xi].to(device) + if (time.time() - t) > time_limit: + LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded') + break # time limit exceeded + + return output + + +def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() + # Strip optimizer from 'f' to finalize training, optionally save as 's' + x = torch.load(f, map_location=torch.device('cpu')) + if x.get('ema'): + x['model'] = x['ema'] # replace model with ema + for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys + x[k] = None + x['epoch'] = -1 + x['model'].half() # to FP16 + for p in x['model'].parameters(): + p.requires_grad = False + torch.save(x, s or f) + mb = os.path.getsize(s or f) / 1E6 # filesize + LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB") + + +def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')): + evolve_csv = save_dir / 'evolve.csv' + evolve_yaml = save_dir / 'hyp_evolve.yaml' + keys = tuple(keys) + tuple(hyp.keys()) # [results + hyps] + keys = tuple(x.strip() for x in keys) + vals = results + tuple(hyp.values()) + n = len(keys) + + # Download (optional) + if bucket: + url = f'gs://{bucket}/evolve.csv' + if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0): + subprocess.run(['gsutil', 'cp', f'{url}', f'{save_dir}']) # download evolve.csv if larger than local + + # Log to evolve.csv + s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header + with open(evolve_csv, 'a') as f: + f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n') + + # Save yaml + with open(evolve_yaml, 'w') as f: + data = pd.read_csv(evolve_csv, skipinitialspace=True) + data = data.rename(columns=lambda x: x.strip()) # strip keys + i = np.argmax(fitness(data.values[:, :4])) # + generations = len(data) + f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' + + f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + + '\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n') + yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False) + + # Print to screen + LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix + + ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}' + for x in vals) + '\n\n') + + if bucket: + subprocess.run(['gsutil', 'cp', f'{evolve_csv}', f'{evolve_yaml}', f'gs://{bucket}']) # upload + + +def apply_classifier(x, model, img, im0): + # Apply a second stage classifier to YOLO outputs + # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval() + im0 = [im0] if isinstance(im0, np.ndarray) else im0 + for i, d in enumerate(x): # per image + if d is not None and len(d): + d = d.clone() + + # Reshape and pad cutouts + b = xyxy2xywh(d[:, :4]) # boxes + b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square + b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad + d[:, :4] = xywh2xyxy(b).long() + + # Rescale boxes from img_size to im0 size + scale_boxes(img.shape[2:], d[:, :4], im0[i].shape) + + # Classes + pred_cls1 = d[:, 5].long() + ims = [] + for a in d: + cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] + im = cv2.resize(cutout, (224, 224)) # BGR + + im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 + im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + ims.append(im) + + pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction + x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections + + return x + + +def increment_path(path, exist_ok=False, sep='', mkdir=False): + # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. + path = Path(path) # os-agnostic + if path.exists() and not exist_ok: + path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '') + + # Method 1 + for n in range(2, 9999): + p = f'{path}{sep}{n}{suffix}' # increment path + if not os.path.exists(p): # + break + path = Path(p) + + # Method 2 (deprecated) + # dirs = glob.glob(f"{path}{sep}*") # similar paths + # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs] + # i = [int(m.groups()[0]) for m in matches if m] # indices + # n = max(i) + 1 if i else 2 # increment number + # path = Path(f"{path}{sep}{n}{suffix}") # increment path + + if mkdir: + path.mkdir(parents=True, exist_ok=True) # make directory + + return path + + +# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------------ +imshow_ = cv2.imshow # copy to avoid recursion errors + + +def imread(filename, flags=cv2.IMREAD_COLOR): + return cv2.imdecode(np.fromfile(filename, np.uint8), flags) + + +def imwrite(filename, img): + try: + cv2.imencode(Path(filename).suffix, img)[1].tofile(filename) + return True + except Exception: + return False + + +def imshow(path, im): + imshow_(path.encode('unicode_escape').decode(), im) + + +cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine + +# Variables ------------------------------------------------------------------------------------------------------------ diff --git a/ultralytics/yolov5/utils/google_app_engine/Dockerfile b/ultralytics/yolov5/utils/google_app_engine/Dockerfile new file mode 100644 index 0000000..0155618 --- /dev/null +++ b/ultralytics/yolov5/utils/google_app_engine/Dockerfile @@ -0,0 +1,25 @@ +FROM gcr.io/google-appengine/python + +# Create a virtualenv for dependencies. This isolates these packages from +# system-level packages. +# Use -p python3 or -p python3.7 to select python version. Default is version 2. +RUN virtualenv /env -p python3 + +# Setting these environment variables are the same as running +# source /env/bin/activate. +ENV VIRTUAL_ENV /env +ENV PATH /env/bin:$PATH + +RUN apt-get update && apt-get install -y python-opencv + +# Copy the application's requirements.txt and run pip to install all +# dependencies into the virtualenv. +ADD requirements.txt /app/requirements.txt +RUN pip install -r /app/requirements.txt + +# Add the application source code. +ADD . /app + +# Run a WSGI server to serve the application. gunicorn must be declared as +# a dependency in requirements.txt. +CMD gunicorn -b :$PORT main:app diff --git a/ultralytics/yolov5/utils/loggers/__init__.py b/ultralytics/yolov5/utils/loggers/__init__.py new file mode 100644 index 0000000..9de1f22 --- /dev/null +++ b/ultralytics/yolov5/utils/loggers/__init__.py @@ -0,0 +1,401 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Logging utils +""" + +import os +import warnings +from pathlib import Path + +import pkg_resources as pkg +import torch +from torch.utils.tensorboard import SummaryWriter + +from utils.general import LOGGER, colorstr, cv2 +from utils.loggers.clearml.clearml_utils import ClearmlLogger +from utils.loggers.wandb.wandb_utils import WandbLogger +from utils.plots import plot_images, plot_labels, plot_results +from utils.torch_utils import de_parallel + +LOGGERS = ('csv', 'tb', 'wandb', 'clearml', 'comet') # *.csv, TensorBoard, Weights & Biases, ClearML +RANK = int(os.getenv('RANK', -1)) + +try: + import wandb + + assert hasattr(wandb, '__version__') # verify package import not local dir + if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}: + try: + wandb_login_success = wandb.login(timeout=30) + except wandb.errors.UsageError: # known non-TTY terminal issue + wandb_login_success = False + if not wandb_login_success: + wandb = None +except (ImportError, AssertionError): + wandb = None + +try: + import clearml + + assert hasattr(clearml, '__version__') # verify package import not local dir +except (ImportError, AssertionError): + clearml = None + +try: + if RANK not in [0, -1]: + comet_ml = None + else: + import comet_ml + + assert hasattr(comet_ml, '__version__') # verify package import not local dir + from utils.loggers.comet import CometLogger + +except (ModuleNotFoundError, ImportError, AssertionError): + comet_ml = None + + +class Loggers(): + # YOLOv5 Loggers class + def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS): + self.save_dir = save_dir + self.weights = weights + self.opt = opt + self.hyp = hyp + self.plots = not opt.noplots # plot results + self.logger = logger # for printing results to console + self.include = include + self.keys = [ + 'train/box_loss', + 'train/obj_loss', + 'train/cls_loss', # train loss + 'metrics/precision', + 'metrics/recall', + 'metrics/mAP_0.5', + 'metrics/mAP_0.5:0.95', # metrics + 'val/box_loss', + 'val/obj_loss', + 'val/cls_loss', # val loss + 'x/lr0', + 'x/lr1', + 'x/lr2'] # params + self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95'] + for k in LOGGERS: + setattr(self, k, None) # init empty logger dictionary + self.csv = True # always log to csv + + # Messages + if not clearml: + prefix = colorstr('ClearML: ') + s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML" + self.logger.info(s) + if not comet_ml: + prefix = colorstr('Comet: ') + s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet" + self.logger.info(s) + # TensorBoard + s = self.save_dir + if 'tb' in self.include and not self.opt.evolve: + prefix = colorstr('TensorBoard: ') + self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/") + self.tb = SummaryWriter(str(s)) + + # W&B + if wandb and 'wandb' in self.include: + self.opt.hyp = self.hyp # add hyperparameters + self.wandb = WandbLogger(self.opt) + else: + self.wandb = None + + # ClearML + if clearml and 'clearml' in self.include: + try: + self.clearml = ClearmlLogger(self.opt, self.hyp) + except Exception: + self.clearml = None + prefix = colorstr('ClearML: ') + LOGGER.warning(f'{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging.' + f' See https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml#readme') + + else: + self.clearml = None + + # Comet + if comet_ml and 'comet' in self.include: + if isinstance(self.opt.resume, str) and self.opt.resume.startswith('comet://'): + run_id = self.opt.resume.split('/')[-1] + self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id) + + else: + self.comet_logger = CometLogger(self.opt, self.hyp) + + else: + self.comet_logger = None + + @property + def remote_dataset(self): + # Get data_dict if custom dataset artifact link is provided + data_dict = None + if self.clearml: + data_dict = self.clearml.data_dict + if self.wandb: + data_dict = self.wandb.data_dict + if self.comet_logger: + data_dict = self.comet_logger.data_dict + + return data_dict + + def on_train_start(self): + if self.comet_logger: + self.comet_logger.on_train_start() + + def on_pretrain_routine_start(self): + if self.comet_logger: + self.comet_logger.on_pretrain_routine_start() + + def on_pretrain_routine_end(self, labels, names): + # Callback runs on pre-train routine end + if self.plots: + plot_labels(labels, names, self.save_dir) + paths = self.save_dir.glob('*labels*.jpg') # training labels + if self.wandb: + self.wandb.log({'Labels': [wandb.Image(str(x), caption=x.name) for x in paths]}) + # if self.clearml: + # pass # ClearML saves these images automatically using hooks + if self.comet_logger: + self.comet_logger.on_pretrain_routine_end(paths) + + def on_train_batch_end(self, model, ni, imgs, targets, paths, vals): + log_dict = dict(zip(self.keys[:3], vals)) + # Callback runs on train batch end + # ni: number integrated batches (since train start) + if self.plots: + if ni < 3: + f = self.save_dir / f'train_batch{ni}.jpg' # filename + plot_images(imgs, targets, paths, f) + if ni == 0 and self.tb and not self.opt.sync_bn: + log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz)) + if ni == 10 and (self.wandb or self.clearml): + files = sorted(self.save_dir.glob('train*.jpg')) + if self.wandb: + self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]}) + if self.clearml: + self.clearml.log_debug_samples(files, title='Mosaics') + + if self.comet_logger: + self.comet_logger.on_train_batch_end(log_dict, step=ni) + + def on_train_epoch_end(self, epoch): + # Callback runs on train epoch end + if self.wandb: + self.wandb.current_epoch = epoch + 1 + + if self.comet_logger: + self.comet_logger.on_train_epoch_end(epoch) + + def on_val_start(self): + if self.comet_logger: + self.comet_logger.on_val_start() + + def on_val_image_end(self, pred, predn, path, names, im): + # Callback runs on val image end + if self.wandb: + self.wandb.val_one_image(pred, predn, path, names, im) + if self.clearml: + self.clearml.log_image_with_boxes(path, pred, names, im) + + def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out): + if self.comet_logger: + self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out) + + def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix): + # Callback runs on val end + if self.wandb or self.clearml: + files = sorted(self.save_dir.glob('val*.jpg')) + if self.wandb: + self.wandb.log({'Validation': [wandb.Image(str(f), caption=f.name) for f in files]}) + if self.clearml: + self.clearml.log_debug_samples(files, title='Validation') + + if self.comet_logger: + self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix) + + def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): + # Callback runs at the end of each fit (train+val) epoch + x = dict(zip(self.keys, vals)) + if self.csv: + file = self.save_dir / 'results.csv' + n = len(x) + 1 # number of cols + s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header + with open(file, 'a') as f: + f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n') + + if self.tb: + for k, v in x.items(): + self.tb.add_scalar(k, v, epoch) + elif self.clearml: # log to ClearML if TensorBoard not used + for k, v in x.items(): + title, series = k.split('/') + self.clearml.task.get_logger().report_scalar(title, series, v, epoch) + + if self.wandb: + if best_fitness == fi: + best_results = [epoch] + vals[3:7] + for i, name in enumerate(self.best_keys): + self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary + self.wandb.log(x) + self.wandb.end_epoch() + + if self.clearml: + self.clearml.current_epoch_logged_images = set() # reset epoch image limit + self.clearml.current_epoch += 1 + + if self.comet_logger: + self.comet_logger.on_fit_epoch_end(x, epoch=epoch) + + def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): + # Callback runs on model save event + if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1: + if self.wandb: + self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) + if self.clearml: + self.clearml.task.update_output_model(model_path=str(last), + model_name='Latest Model', + auto_delete_file=False) + + if self.comet_logger: + self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi) + + def on_train_end(self, last, best, epoch, results): + # Callback runs on training end, i.e. saving best model + if self.plots: + plot_results(file=self.save_dir / 'results.csv') # save results.png + files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] + files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter + self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}") + + if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles + for f in files: + self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC') + + if self.wandb: + self.wandb.log(dict(zip(self.keys[3:10], results))) + self.wandb.log({'Results': [wandb.Image(str(f), caption=f.name) for f in files]}) + # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model + if not self.opt.evolve: + wandb.log_artifact(str(best if best.exists() else last), + type='model', + name=f'run_{self.wandb.wandb_run.id}_model', + aliases=['latest', 'best', 'stripped']) + self.wandb.finish_run() + + if self.clearml and not self.opt.evolve: + self.clearml.task.update_output_model(model_path=str(best if best.exists() else last), + name='Best Model', + auto_delete_file=False) + + if self.comet_logger: + final_results = dict(zip(self.keys[3:10], results)) + self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results) + + def on_params_update(self, params: dict): + # Update hyperparams or configs of the experiment + if self.wandb: + self.wandb.wandb_run.config.update(params, allow_val_change=True) + if self.comet_logger: + self.comet_logger.on_params_update(params) + + +class GenericLogger: + """ + YOLOv5 General purpose logger for non-task specific logging + Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...) + Arguments + opt: Run arguments + console_logger: Console logger + include: loggers to include + """ + + def __init__(self, opt, console_logger, include=('tb', 'wandb')): + # init default loggers + self.save_dir = Path(opt.save_dir) + self.include = include + self.console_logger = console_logger + self.csv = self.save_dir / 'results.csv' # CSV logger + if 'tb' in self.include: + prefix = colorstr('TensorBoard: ') + self.console_logger.info( + f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/") + self.tb = SummaryWriter(str(self.save_dir)) + + if wandb and 'wandb' in self.include: + self.wandb = wandb.init(project=web_project_name(str(opt.project)), + name=None if opt.name == 'exp' else opt.name, + config=opt) + else: + self.wandb = None + + def log_metrics(self, metrics, epoch): + # Log metrics dictionary to all loggers + if self.csv: + keys, vals = list(metrics.keys()), list(metrics.values()) + n = len(metrics) + 1 # number of cols + s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header + with open(self.csv, 'a') as f: + f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n') + + if self.tb: + for k, v in metrics.items(): + self.tb.add_scalar(k, v, epoch) + + if self.wandb: + self.wandb.log(metrics, step=epoch) + + def log_images(self, files, name='Images', epoch=0): + # Log images to all loggers + files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path + files = [f for f in files if f.exists()] # filter by exists + + if self.tb: + for f in files: + self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC') + + if self.wandb: + self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch) + + def log_graph(self, model, imgsz=(640, 640)): + # Log model graph to all loggers + if self.tb: + log_tensorboard_graph(self.tb, model, imgsz) + + def log_model(self, model_path, epoch=0, metadata={}): + # Log model to all loggers + if self.wandb: + art = wandb.Artifact(name=f'run_{wandb.run.id}_model', type='model', metadata=metadata) + art.add_file(str(model_path)) + wandb.log_artifact(art) + + def update_params(self, params): + # Update the parameters logged + if self.wandb: + wandb.run.config.update(params, allow_val_change=True) + + +def log_tensorboard_graph(tb, model, imgsz=(640, 640)): + # Log model graph to TensorBoard + try: + p = next(model.parameters()) # for device, type + imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand + im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty) + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress jit trace warning + tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), []) + except Exception as e: + LOGGER.warning(f'WARNING ⚠️ TensorBoard graph visualization failure {e}') + + +def web_project_name(project): + # Convert local project name to web project name + if not project.startswith('runs/train'): + return project + suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else '' + return f'YOLOv5{suffix}' diff --git a/ultralytics/yolov5/utils/loggers/clearml/README.md b/ultralytics/yolov5/utils/loggers/clearml/README.md new file mode 100644 index 0000000..ca41c04 --- /dev/null +++ b/ultralytics/yolov5/utils/loggers/clearml/README.md @@ -0,0 +1,237 @@ +# ClearML Integration + +Clear|MLClear|ML + +## About ClearML + +[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time ⏱️. + +🔨 Track every YOLOv5 training run in the experiment manager + +🔧 Version and easily access your custom training data with the integrated ClearML Data Versioning Tool + +🔦 Remotely train and monitor your YOLOv5 training runs using ClearML Agent + +🔬 Get the very best mAP using ClearML Hyperparameter Optimization + +🔭 Turn your newly trained YOLOv5 model into an API with just a few commands using ClearML Serving + +
    +And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline! +
    +
    + +![ClearML scalars dashboard](https://github.com/thepycoder/clearml_screenshots/raw/main/experiment_manager_with_compare.gif) + +
    +
    + +## 🦾 Setting Things Up + +To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one: + +Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go! + +1. Install the `clearml` python package: + + ```bash + pip install clearml + ``` + +1. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions: + + ```bash + clearml-init + ``` + +That's it! You're done 😎 + +
    + +## 🚀 Training YOLOv5 With ClearML + +To enable ClearML experiment tracking, simply install the ClearML pip package. + +```bash +pip install clearml>=1.2.0 +``` + +This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager. + +If you want to change the `project_name` or `task_name`, use the `--project` and `--name` arguments of the `train.py` script, by default the project will be called `YOLOv5` and the task `Training`. +PLEASE NOTE: ClearML uses `/` as a delimiter for subprojects, so be careful when using `/` in your project name! + +```bash +python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache +``` + +or with custom project and task name: + +```bash +python train.py --project my_project --name my_training --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache +``` + +This will capture: + +- Source code + uncommitted changes +- Installed packages +- (Hyper)parameters +- Model files (use `--save-period n` to save a checkpoint every n epochs) +- Console output +- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...) +- General info such as machine details, runtime, creation date etc. +- All produced plots such as label correlogram and confusion matrix +- Images with bounding boxes per epoch +- Mosaic per epoch +- Validation images per epoch +- ... + +That's a lot right? 🤯 +Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them! + +There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works! + +
    + +## 🔗 Dataset Version Management + +Versioning your data separately from your code is generally a good idea and makes it easy to acquire the latest version too. This repository supports supplying a dataset version ID, and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment! + +![ClearML Dataset Interface](https://github.com/thepycoder/clearml_screenshots/raw/main/clearml_data.gif) + +### Prepare Your Dataset + +The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure: + +``` +.. +|_ yolov5 +|_ datasets + |_ coco128 + |_ images + |_ labels + |_ LICENSE + |_ README.txt +``` + +But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure. + +Next, ⚠️**copy the corresponding yaml file to the root of the dataset folder**⚠️. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls. + +Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`. + +``` +.. +|_ yolov5 +|_ datasets + |_ coco128 + |_ images + |_ labels + |_ coco128.yaml # <---- HERE! + |_ LICENSE + |_ README.txt +``` + +### Upload Your Dataset + +To get this dataset into ClearML as a versioned dataset, go to the dataset root folder and run the following command: + +```bash +cd coco128 +clearml-data sync --project YOLOv5 --name coco128 --folder . +``` + +The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other: + +```bash +# Optionally add --parent if you want to base +# this version on another dataset version, so no duplicate files are uploaded! +clearml-data create --name coco128 --project YOLOv5 +clearml-data add --files . +clearml-data close +``` + +### Run Training Using A ClearML Dataset + +Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models! + +```bash +python train.py --img 640 --batch 16 --epochs 3 --data clearml:// --weights yolov5s.pt --cache +``` + +
    + +## 👀 Hyperparameter Optimization + +Now that we have our experiments and data versioned, it's time to take a look at what we can build on top! + +Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does! + +To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters. + +You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead. + +```bash +# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch +pip install optuna +python utils/loggers/clearml/hpo.py +``` + +![HPO](https://github.com/thepycoder/clearml_screenshots/raw/main/hpo.png) + +## 🤯 Remote Execution (advanced) + +Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site, or you have some budget to use cloud GPUs. +This is where the ClearML Agent comes into play. Check out what the agent can do here: + +- [YouTube video](https://youtu.be/MX3BrXnaULs) +- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent) + +In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager. + +You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running: + +```bash +clearml-agent daemon --queue [--docker] +``` + +### Cloning, Editing And Enqueuing + +With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too! + +🪄 Clone the experiment by right-clicking it + +🎯 Edit the hyperparameters to what you wish them to be + +⏳ Enqueue the task to any of the queues by right-clicking it + +![Enqueue a task from the UI](https://github.com/thepycoder/clearml_screenshots/raw/main/enqueue.gif) + +### Executing A Task Remotely + +Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on! + +To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instantiated: + +```python +# ... +# Loggers +data_dict = None +if RANK in {-1, 0}: + loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance + if loggers.clearml: + loggers.clearml.task.execute_remotely(queue="my_queue") # <------ ADD THIS LINE + # Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML + data_dict = loggers.clearml.data_dict +# ... +``` + +When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead! + +### Autoscaling workers + +ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines, and you stop paying! + +Check out the autoscalers getting started video below. + +[![Watch the video](https://img.youtube.com/vi/j4XVMAaUt3E/0.jpg)](https://youtu.be/j4XVMAaUt3E) diff --git a/ultralytics/yolov5/utils/loggers/clearml/__init__.py b/ultralytics/yolov5/utils/loggers/clearml/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ultralytics/yolov5/utils/loggers/clearml/clearml_utils.py b/ultralytics/yolov5/utils/loggers/clearml/clearml_utils.py new file mode 100644 index 0000000..2764abe --- /dev/null +++ b/ultralytics/yolov5/utils/loggers/clearml/clearml_utils.py @@ -0,0 +1,164 @@ +"""Main Logger class for ClearML experiment tracking.""" +import glob +import re +from pathlib import Path + +import numpy as np +import yaml + +from utils.plots import Annotator, colors + +try: + import clearml + from clearml import Dataset, Task + + assert hasattr(clearml, '__version__') # verify package import not local dir +except (ImportError, AssertionError): + clearml = None + + +def construct_dataset(clearml_info_string): + """Load in a clearml dataset and fill the internal data_dict with its contents. + """ + dataset_id = clearml_info_string.replace('clearml://', '') + dataset = Dataset.get(dataset_id=dataset_id) + dataset_root_path = Path(dataset.get_local_copy()) + + # We'll search for the yaml file definition in the dataset + yaml_filenames = list(glob.glob(str(dataset_root_path / '*.yaml')) + glob.glob(str(dataset_root_path / '*.yml'))) + if len(yaml_filenames) > 1: + raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains ' + 'the dataset definition this way.') + elif len(yaml_filenames) == 0: + raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file ' + 'inside the dataset root path.') + with open(yaml_filenames[0]) as f: + dataset_definition = yaml.safe_load(f) + + assert set(dataset_definition.keys()).issuperset( + {'train', 'test', 'val', 'nc', 'names'} + ), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')" + + data_dict = dict() + data_dict['train'] = str( + (dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None + data_dict['test'] = str( + (dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None + data_dict['val'] = str( + (dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None + data_dict['nc'] = dataset_definition['nc'] + data_dict['names'] = dataset_definition['names'] + + return data_dict + + +class ClearmlLogger: + """Log training runs, datasets, models, and predictions to ClearML. + + This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default, + this information includes hyperparameters, system configuration and metrics, model metrics, code information and + basic data metrics and analyses. + + By providing additional command line arguments to train.py, datasets, + models and predictions can also be logged. + """ + + def __init__(self, opt, hyp): + """ + - Initialize ClearML Task, this object will capture the experiment + - Upload dataset version to ClearML Data if opt.upload_dataset is True + + arguments: + opt (namespace) -- Commandline arguments for this run + hyp (dict) -- Hyperparameters for this run + + """ + self.current_epoch = 0 + # Keep tracked of amount of logged images to enforce a limit + self.current_epoch_logged_images = set() + # Maximum number of images to log to clearML per epoch + self.max_imgs_to_log_per_epoch = 16 + # Get the interval of epochs when bounding box images should be logged + self.bbox_interval = opt.bbox_interval + self.clearml = clearml + self.task = None + self.data_dict = None + if self.clearml: + self.task = Task.init( + project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5', + task_name=opt.name if opt.name != 'exp' else 'Training', + tags=['YOLOv5'], + output_uri=True, + reuse_last_task_id=opt.exist_ok, + auto_connect_frameworks={'pytorch': False} + # We disconnect pytorch auto-detection, because we added manual model save points in the code + ) + # ClearML's hooks will already grab all general parameters + # Only the hyperparameters coming from the yaml config file + # will have to be added manually! + self.task.connect(hyp, name='Hyperparameters') + self.task.connect(opt, name='Args') + + # Make sure the code is easily remotely runnable by setting the docker image to use by the remote agent + self.task.set_base_docker('ultralytics/yolov5:latest', + docker_arguments='--ipc=host -e="CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"', + docker_setup_bash_script='pip install clearml') + + # Get ClearML Dataset Version if requested + if opt.data.startswith('clearml://'): + # data_dict should have the following keys: + # names, nc (number of classes), test, train, val (all three relative paths to ../datasets) + self.data_dict = construct_dataset(opt.data) + # Set data to data_dict because wandb will crash without this information and opt is the best way + # to give it to them + opt.data = self.data_dict + + def log_debug_samples(self, files, title='Debug Samples'): + """ + Log files (images) as debug samples in the ClearML task. + + arguments: + files (List(PosixPath)) a list of file paths in PosixPath format + title (str) A title that groups together images with the same values + """ + for f in files: + if f.exists(): + it = re.search(r'_batch(\d+)', f.name) + iteration = int(it.groups()[0]) if it else 0 + self.task.get_logger().report_image(title=title, + series=f.name.replace(it.group(), ''), + local_path=str(f), + iteration=iteration) + + def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25): + """ + Draw the bounding boxes on a single image and report the result as a ClearML debug sample. + + arguments: + image_path (PosixPath) the path the original image file + boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class] + class_names (dict): dict containing mapping of class int to class name + image (Tensor): A torch tensor containing the actual image data + """ + if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0: + # Log every bbox_interval times and deduplicate for any intermittend extra eval runs + if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images: + im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2)) + annotator = Annotator(im=im, pil=True) + for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])): + color = colors(i) + + class_name = class_names[int(class_nr)] + confidence_percentage = round(float(conf) * 100, 2) + label = f'{class_name}: {confidence_percentage}%' + + if conf > conf_threshold: + annotator.rectangle(box.cpu().numpy(), outline=color) + annotator.box_label(box.cpu().numpy(), label=label, color=color) + + annotated_image = annotator.result() + self.task.get_logger().report_image(title='Bounding Boxes', + series=image_path.name, + iteration=self.current_epoch, + image=annotated_image) + self.current_epoch_logged_images.add(image_path) diff --git a/ultralytics/yolov5/utils/loggers/clearml/hpo.py b/ultralytics/yolov5/utils/loggers/clearml/hpo.py new file mode 100644 index 0000000..ee518b0 --- /dev/null +++ b/ultralytics/yolov5/utils/loggers/clearml/hpo.py @@ -0,0 +1,84 @@ +from clearml import Task +# Connecting ClearML with the current process, +# from here on everything is logged automatically +from clearml.automation import HyperParameterOptimizer, UniformParameterRange +from clearml.automation.optuna import OptimizerOptuna + +task = Task.init(project_name='Hyper-Parameter Optimization', + task_name='YOLOv5', + task_type=Task.TaskTypes.optimizer, + reuse_last_task_id=False) + +# Example use case: +optimizer = HyperParameterOptimizer( + # This is the experiment we want to optimize + base_task_id='', + # here we define the hyper-parameters to optimize + # Notice: The parameter name should exactly match what you see in the UI: / + # For Example, here we see in the base experiment a section Named: "General" + # under it a parameter named "batch_size", this becomes "General/batch_size" + # If you have `argparse` for example, then arguments will appear under the "Args" section, + # and you should instead pass "Args/batch_size" + hyper_parameters=[ + UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1), + UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0), + UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98), + UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001), + UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0), + UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95), + UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2), + UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2), + UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0), + UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0), + UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0), + UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0), + UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7), + UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0), + UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0), + UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1), + UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9), + UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9), + UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0), + UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9), + UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9), + UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0), + UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001), + UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0), + UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0), + UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0), + UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0), + UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)], + # this is the objective metric we want to maximize/minimize + objective_metric_title='metrics', + objective_metric_series='mAP_0.5', + # now we decide if we want to maximize it or minimize it (accuracy we maximize) + objective_metric_sign='max', + # let us limit the number of concurrent experiments, + # this in turn will make sure we do dont bombard the scheduler with experiments. + # if we have an auto-scaler connected, this, by proxy, will limit the number of machine + max_number_of_concurrent_tasks=1, + # this is the optimizer class (actually doing the optimization) + # Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band) + optimizer_class=OptimizerOptuna, + # If specified only the top K performing Tasks will be kept, the others will be automatically archived + save_top_k_tasks_only=5, # 5, + compute_time_limit=None, + total_max_jobs=20, + min_iteration_per_job=None, + max_iteration_per_job=None, +) + +# report every 10 seconds, this is way too often, but we are testing here +optimizer.set_report_period(10 / 60) +# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent +# an_optimizer.start_locally(job_complete_callback=job_complete_callback) +# set the time limit for the optimization process (2 hours) +optimizer.set_time_limit(in_minutes=120.0) +# Start the optimization process in the local environment +optimizer.start_locally() +# wait until process is done (notice we are controlling the optimization process in the background) +optimizer.wait() +# make sure background optimization stopped +optimizer.stop() + +print('We are done, good bye') diff --git a/ultralytics/yolov5/utils/loggers/comet/README.md b/ultralytics/yolov5/utils/loggers/comet/README.md new file mode 100644 index 0000000..47e6a45 --- /dev/null +++ b/ultralytics/yolov5/utils/loggers/comet/README.md @@ -0,0 +1,258 @@ + + +# YOLOv5 with Comet + +This guide will cover how to use YOLOv5 with [Comet](https://bit.ly/yolov5-readme-comet2) + +# About Comet + +Comet builds tools that help data scientists, engineers, and team leaders accelerate and optimize machine learning and deep learning models. + +Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)! +Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes! + +# Getting Started + +## Install Comet + +```shell +pip install comet_ml +``` + +## Configure Comet Credentials + +There are two ways to configure Comet with YOLOv5. + +You can either set your credentials through environment variables + +**Environment Variables** + +```shell +export COMET_API_KEY= +export COMET_PROJECT_NAME= # This will default to 'yolov5' +``` + +Or create a `.comet.config` file in your working directory and set your credentials there. + +**Comet Configuration File** + +``` +[comet] +api_key= +project_name= # This will default to 'yolov5' +``` + +## Run the Training Script + +```shell +# Train YOLOv5s on COCO128 for 5 epochs +python train.py --img 640 --batch 16 --epochs 5 --data coco128.yaml --weights yolov5s.pt +``` + +That's it! Comet will automatically log your hyperparameters, command line arguments, training and validation metrics. You can visualize and analyze your runs in the Comet UI + +yolo-ui + +# Try out an Example! + +Check out an example of a [completed run here](https://www.comet.com/examples/comet-example-yolov5/a0e29e0e9b984e4a822db2a62d0cb357?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github) + +Or better yet, try it out yourself in this Colab Notebook + +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing) + +# Log automatically + +By default, Comet will log the following items + +## Metrics + +- Box Loss, Object Loss, Classification Loss for the training and validation data +- mAP_0.5, mAP_0.5:0.95 metrics for the validation data. +- Precision and Recall for the validation data + +## Parameters + +- Model Hyperparameters +- All parameters passed through the command line options + +## Visualizations + +- Confusion Matrix of the model predictions on the validation data +- Plots for the PR and F1 curves across all classes +- Correlogram of the Class Labels + +# Configure Comet Logging + +Comet can be configured to log additional data either through command line flags passed to the training script +or through environment variables. + +```shell +export COMET_MODE=online # Set whether to run Comet in 'online' or 'offline' mode. Defaults to online +export COMET_MODEL_NAME= #Set the name for the saved model. Defaults to yolov5 +export COMET_LOG_CONFUSION_MATRIX=false # Set to disable logging a Comet Confusion Matrix. Defaults to true +export COMET_MAX_IMAGE_UPLOADS= # Controls how many total image predictions to log to Comet. Defaults to 100. +export COMET_LOG_PER_CLASS_METRICS=true # Set to log evaluation metrics for each detected class at the end of training. Defaults to false +export COMET_DEFAULT_CHECKPOINT_FILENAME= # Set this if you would like to resume training from a different checkpoint. Defaults to 'last.pt' +export COMET_LOG_BATCH_LEVEL_METRICS=true # Set this if you would like to log training metrics at the batch level. Defaults to false. +export COMET_LOG_PREDICTIONS=true # Set this to false to disable logging model predictions +``` + +## Logging Checkpoints with Comet + +Logging Models to Comet is disabled by default. To enable it, pass the `save-period` argument to the training script. This will save the +logged checkpoints to Comet based on the interval value provided by `save-period` + +```shell +python train.py \ +--img 640 \ +--batch 16 \ +--epochs 5 \ +--data coco128.yaml \ +--weights yolov5s.pt \ +--save-period 1 +``` + +## Logging Model Predictions + +By default, model predictions (images, ground truth labels and bounding boxes) will be logged to Comet. + +You can control the frequency of logged predictions and the associated images by passing the `bbox_interval` command line argument. Predictions can be visualized using Comet's Object Detection Custom Panel. This frequency corresponds to every Nth batch of data per epoch. In the example below, we are logging every 2nd batch of data for each epoch. + +**Note:** The YOLOv5 validation dataloader will default to a batch size of 32, so you will have to set the logging frequency accordingly. + +Here is an [example project using the Panel](https://www.comet.com/examples/comet-example-yolov5?shareable=YcwMiJaZSXfcEXpGOHDD12vA1&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github) + +```shell +python train.py \ +--img 640 \ +--batch 16 \ +--epochs 5 \ +--data coco128.yaml \ +--weights yolov5s.pt \ +--bbox_interval 2 +``` + +### Controlling the number of Prediction Images logged to Comet + +When logging predictions from YOLOv5, Comet will log the images associated with each set of predictions. By default a maximum of 100 validation images are logged. You can increase or decrease this number using the `COMET_MAX_IMAGE_UPLOADS` environment variable. + +```shell +env COMET_MAX_IMAGE_UPLOADS=200 python train.py \ +--img 640 \ +--batch 16 \ +--epochs 5 \ +--data coco128.yaml \ +--weights yolov5s.pt \ +--bbox_interval 1 +``` + +### Logging Class Level Metrics + +Use the `COMET_LOG_PER_CLASS_METRICS` environment variable to log mAP, precision, recall, f1 for each class. + +```shell +env COMET_LOG_PER_CLASS_METRICS=true python train.py \ +--img 640 \ +--batch 16 \ +--epochs 5 \ +--data coco128.yaml \ +--weights yolov5s.pt +``` + +## Uploading a Dataset to Comet Artifacts + +If you would like to store your data using [Comet Artifacts](https://www.comet.com/docs/v2/guides/data-management/using-artifacts/#learn-more?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github), you can do so using the `upload_dataset` flag. + +The dataset be organized in the way described in the [YOLOv5 documentation](https://docs.ultralytics.com/tutorials/train-custom-datasets/#3-organize-directories). The dataset config `yaml` file must follow the same format as that of the `coco128.yaml` file. + +```shell +python train.py \ +--img 640 \ +--batch 16 \ +--epochs 5 \ +--data coco128.yaml \ +--weights yolov5s.pt \ +--upload_dataset +``` + +You can find the uploaded dataset in the Artifacts tab in your Comet Workspace +artifact-1 + +You can preview the data directly in the Comet UI. +artifact-2 + +Artifacts are versioned and also support adding metadata about the dataset. Comet will automatically log the metadata from your dataset `yaml` file +artifact-3 + +### Using a saved Artifact + +If you would like to use a dataset from Comet Artifacts, set the `path` variable in your dataset `yaml` file to point to the following Artifact resource URL. + +``` +# contents of artifact.yaml file +path: "comet:///:" +``` + +Then pass this file to your training script in the following way + +```shell +python train.py \ +--img 640 \ +--batch 16 \ +--epochs 5 \ +--data artifact.yaml \ +--weights yolov5s.pt +``` + +Artifacts also allow you to track the lineage of data as it flows through your Experimentation workflow. Here you can see a graph that shows you all the experiments that have used your uploaded dataset. +artifact-4 + +## Resuming a Training Run + +If your training run is interrupted for any reason, e.g. disrupted internet connection, you can resume the run using the `resume` flag and the Comet Run Path. + +The Run Path has the following format `comet:////`. + +This will restore the run to its state before the interruption, which includes restoring the model from a checkpoint, restoring all hyperparameters and training arguments and downloading Comet dataset Artifacts if they were used in the original run. The resumed run will continue logging to the existing Experiment in the Comet UI + +```shell +python train.py \ +--resume "comet://" +``` + +## Hyperparameter Search with the Comet Optimizer + +YOLOv5 is also integrated with Comet's Optimizer, making is simple to visualize hyperparameter sweeps in the Comet UI. + +### Configuring an Optimizer Sweep + +To configure the Comet Optimizer, you will have to create a JSON file with the information about the sweep. An example file has been provided in `utils/loggers/comet/optimizer_config.json` + +```shell +python utils/loggers/comet/hpo.py \ + --comet_optimizer_config "utils/loggers/comet/optimizer_config.json" +``` + +The `hpo.py` script accepts the same arguments as `train.py`. If you wish to pass additional arguments to your sweep simply add them after +the script. + +```shell +python utils/loggers/comet/hpo.py \ + --comet_optimizer_config "utils/loggers/comet/optimizer_config.json" \ + --save-period 1 \ + --bbox_interval 1 +``` + +### Running a Sweep in Parallel + +```shell +comet optimizer -j utils/loggers/comet/hpo.py \ + utils/loggers/comet/optimizer_config.json" +``` + +### Visualizing Results + +Comet provides a number of ways to visualize the results of your sweep. Take a look at a [project with a completed sweep here](https://www.comet.com/examples/comet-example-yolov5/view/PrlArHGuuhDTKC1UuBmTtOSXD/panels?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github) + +hyperparameter-yolo diff --git a/ultralytics/yolov5/utils/loggers/comet/__init__.py b/ultralytics/yolov5/utils/loggers/comet/__init__.py new file mode 100644 index 0000000..d459984 --- /dev/null +++ b/ultralytics/yolov5/utils/loggers/comet/__init__.py @@ -0,0 +1,508 @@ +import glob +import json +import logging +import os +import sys +from pathlib import Path + +logger = logging.getLogger(__name__) + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[3] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH + +try: + import comet_ml + + # Project Configuration + config = comet_ml.config.get_config() + COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5') +except (ModuleNotFoundError, ImportError): + comet_ml = None + COMET_PROJECT_NAME = None + +import PIL +import torch +import torchvision.transforms as T +import yaml + +from utils.dataloaders import img2label_paths +from utils.general import check_dataset, scale_boxes, xywh2xyxy +from utils.metrics import box_iou + +COMET_PREFIX = 'comet://' + +COMET_MODE = os.getenv('COMET_MODE', 'online') + +# Model Saving Settings +COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'yolov5') + +# Dataset Artifact Settings +COMET_UPLOAD_DATASET = os.getenv('COMET_UPLOAD_DATASET', 'false').lower() == 'true' + +# Evaluation Settings +COMET_LOG_CONFUSION_MATRIX = os.getenv('COMET_LOG_CONFUSION_MATRIX', 'true').lower() == 'true' +COMET_LOG_PREDICTIONS = os.getenv('COMET_LOG_PREDICTIONS', 'true').lower() == 'true' +COMET_MAX_IMAGE_UPLOADS = int(os.getenv('COMET_MAX_IMAGE_UPLOADS', 100)) + +# Confusion Matrix Settings +CONF_THRES = float(os.getenv('CONF_THRES', 0.001)) +IOU_THRES = float(os.getenv('IOU_THRES', 0.6)) + +# Batch Logging Settings +COMET_LOG_BATCH_METRICS = os.getenv('COMET_LOG_BATCH_METRICS', 'false').lower() == 'true' +COMET_BATCH_LOGGING_INTERVAL = os.getenv('COMET_BATCH_LOGGING_INTERVAL', 1) +COMET_PREDICTION_LOGGING_INTERVAL = os.getenv('COMET_PREDICTION_LOGGING_INTERVAL', 1) +COMET_LOG_PER_CLASS_METRICS = os.getenv('COMET_LOG_PER_CLASS_METRICS', 'false').lower() == 'true' + +RANK = int(os.getenv('RANK', -1)) + +to_pil = T.ToPILImage() + + +class CometLogger: + """Log metrics, parameters, source code, models and much more + with Comet + """ + + def __init__(self, opt, hyp, run_id=None, job_type='Training', **experiment_kwargs) -> None: + self.job_type = job_type + self.opt = opt + self.hyp = hyp + + # Comet Flags + self.comet_mode = COMET_MODE + + self.save_model = opt.save_period > -1 + self.model_name = COMET_MODEL_NAME + + # Batch Logging Settings + self.log_batch_metrics = COMET_LOG_BATCH_METRICS + self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL + + # Dataset Artifact Settings + self.upload_dataset = self.opt.upload_dataset if self.opt.upload_dataset else COMET_UPLOAD_DATASET + self.resume = self.opt.resume + + # Default parameters to pass to Experiment objects + self.default_experiment_kwargs = { + 'log_code': False, + 'log_env_gpu': True, + 'log_env_cpu': True, + 'project_name': COMET_PROJECT_NAME,} + self.default_experiment_kwargs.update(experiment_kwargs) + self.experiment = self._get_experiment(self.comet_mode, run_id) + + self.data_dict = self.check_dataset(self.opt.data) + self.class_names = self.data_dict['names'] + self.num_classes = self.data_dict['nc'] + + self.logged_images_count = 0 + self.max_images = COMET_MAX_IMAGE_UPLOADS + + if run_id is None: + self.experiment.log_other('Created from', 'YOLOv5') + if not isinstance(self.experiment, comet_ml.OfflineExperiment): + workspace, project_name, experiment_id = self.experiment.url.split('/')[-3:] + self.experiment.log_other( + 'Run Path', + f'{workspace}/{project_name}/{experiment_id}', + ) + self.log_parameters(vars(opt)) + self.log_parameters(self.opt.hyp) + self.log_asset_data( + self.opt.hyp, + name='hyperparameters.json', + metadata={'type': 'hyp-config-file'}, + ) + self.log_asset( + f'{self.opt.save_dir}/opt.yaml', + metadata={'type': 'opt-config-file'}, + ) + + self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX + + if hasattr(self.opt, 'conf_thres'): + self.conf_thres = self.opt.conf_thres + else: + self.conf_thres = CONF_THRES + if hasattr(self.opt, 'iou_thres'): + self.iou_thres = self.opt.iou_thres + else: + self.iou_thres = IOU_THRES + + self.log_parameters({'val_iou_threshold': self.iou_thres, 'val_conf_threshold': self.conf_thres}) + + self.comet_log_predictions = COMET_LOG_PREDICTIONS + if self.opt.bbox_interval == -1: + self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10 + else: + self.comet_log_prediction_interval = self.opt.bbox_interval + + if self.comet_log_predictions: + self.metadata_dict = {} + self.logged_image_names = [] + + self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS + + self.experiment.log_others({ + 'comet_mode': COMET_MODE, + 'comet_max_image_uploads': COMET_MAX_IMAGE_UPLOADS, + 'comet_log_per_class_metrics': COMET_LOG_PER_CLASS_METRICS, + 'comet_log_batch_metrics': COMET_LOG_BATCH_METRICS, + 'comet_log_confusion_matrix': COMET_LOG_CONFUSION_MATRIX, + 'comet_model_name': COMET_MODEL_NAME,}) + + # Check if running the Experiment with the Comet Optimizer + if hasattr(self.opt, 'comet_optimizer_id'): + self.experiment.log_other('optimizer_id', self.opt.comet_optimizer_id) + self.experiment.log_other('optimizer_objective', self.opt.comet_optimizer_objective) + self.experiment.log_other('optimizer_metric', self.opt.comet_optimizer_metric) + self.experiment.log_other('optimizer_parameters', json.dumps(self.hyp)) + + def _get_experiment(self, mode, experiment_id=None): + if mode == 'offline': + if experiment_id is not None: + return comet_ml.ExistingOfflineExperiment( + previous_experiment=experiment_id, + **self.default_experiment_kwargs, + ) + + return comet_ml.OfflineExperiment(**self.default_experiment_kwargs,) + + else: + try: + if experiment_id is not None: + return comet_ml.ExistingExperiment( + previous_experiment=experiment_id, + **self.default_experiment_kwargs, + ) + + return comet_ml.Experiment(**self.default_experiment_kwargs) + + except ValueError: + logger.warning('COMET WARNING: ' + 'Comet credentials have not been set. ' + 'Comet will default to offline logging. ' + 'Please set your credentials to enable online logging.') + return self._get_experiment('offline', experiment_id) + + return + + def log_metrics(self, log_dict, **kwargs): + self.experiment.log_metrics(log_dict, **kwargs) + + def log_parameters(self, log_dict, **kwargs): + self.experiment.log_parameters(log_dict, **kwargs) + + def log_asset(self, asset_path, **kwargs): + self.experiment.log_asset(asset_path, **kwargs) + + def log_asset_data(self, asset, **kwargs): + self.experiment.log_asset_data(asset, **kwargs) + + def log_image(self, img, **kwargs): + self.experiment.log_image(img, **kwargs) + + def log_model(self, path, opt, epoch, fitness_score, best_model=False): + if not self.save_model: + return + + model_metadata = { + 'fitness_score': fitness_score[-1], + 'epochs_trained': epoch + 1, + 'save_period': opt.save_period, + 'total_epochs': opt.epochs,} + + model_files = glob.glob(f'{path}/*.pt') + for model_path in model_files: + name = Path(model_path).name + + self.experiment.log_model( + self.model_name, + file_or_folder=model_path, + file_name=name, + metadata=model_metadata, + overwrite=True, + ) + + def check_dataset(self, data_file): + with open(data_file) as f: + data_config = yaml.safe_load(f) + + if data_config['path'].startswith(COMET_PREFIX): + path = data_config['path'].replace(COMET_PREFIX, '') + data_dict = self.download_dataset_artifact(path) + + return data_dict + + self.log_asset(self.opt.data, metadata={'type': 'data-config-file'}) + + return check_dataset(data_file) + + def log_predictions(self, image, labelsn, path, shape, predn): + if self.logged_images_count >= self.max_images: + return + detections = predn[predn[:, 4] > self.conf_thres] + iou = box_iou(labelsn[:, 1:], detections[:, :4]) + mask, _ = torch.where(iou > self.iou_thres) + if len(mask) == 0: + return + + filtered_detections = detections[mask] + filtered_labels = labelsn[mask] + + image_id = path.split('/')[-1].split('.')[0] + image_name = f'{image_id}_curr_epoch_{self.experiment.curr_epoch}' + if image_name not in self.logged_image_names: + native_scale_image = PIL.Image.open(path) + self.log_image(native_scale_image, name=image_name) + self.logged_image_names.append(image_name) + + metadata = [] + for cls, *xyxy in filtered_labels.tolist(): + metadata.append({ + 'label': f'{self.class_names[int(cls)]}-gt', + 'score': 100, + 'box': { + 'x': xyxy[0], + 'y': xyxy[1], + 'x2': xyxy[2], + 'y2': xyxy[3]},}) + for *xyxy, conf, cls in filtered_detections.tolist(): + metadata.append({ + 'label': f'{self.class_names[int(cls)]}', + 'score': conf * 100, + 'box': { + 'x': xyxy[0], + 'y': xyxy[1], + 'x2': xyxy[2], + 'y2': xyxy[3]},}) + + self.metadata_dict[image_name] = metadata + self.logged_images_count += 1 + + return + + def preprocess_prediction(self, image, labels, shape, pred): + nl, _ = labels.shape[0], pred.shape[0] + + # Predictions + if self.opt.single_cls: + pred[:, 5] = 0 + + predn = pred.clone() + scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) + + labelsn = None + if nl: + tbox = xywh2xyxy(labels[:, 1:5]) # target boxes + scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels + labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels + scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred + + return predn, labelsn + + def add_assets_to_artifact(self, artifact, path, asset_path, split): + img_paths = sorted(glob.glob(f'{asset_path}/*')) + label_paths = img2label_paths(img_paths) + + for image_file, label_file in zip(img_paths, label_paths): + image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file]) + + try: + artifact.add(image_file, logical_path=image_logical_path, metadata={'split': split}) + artifact.add(label_file, logical_path=label_logical_path, metadata={'split': split}) + except ValueError as e: + logger.error('COMET ERROR: Error adding file to Artifact. Skipping file.') + logger.error(f'COMET ERROR: {e}') + continue + + return artifact + + def upload_dataset_artifact(self): + dataset_name = self.data_dict.get('dataset_name', 'yolov5-dataset') + path = str((ROOT / Path(self.data_dict['path'])).resolve()) + + metadata = self.data_dict.copy() + for key in ['train', 'val', 'test']: + split_path = metadata.get(key) + if split_path is not None: + metadata[key] = split_path.replace(path, '') + + artifact = comet_ml.Artifact(name=dataset_name, artifact_type='dataset', metadata=metadata) + for key in metadata.keys(): + if key in ['train', 'val', 'test']: + if isinstance(self.upload_dataset, str) and (key != self.upload_dataset): + continue + + asset_path = self.data_dict.get(key) + if asset_path is not None: + artifact = self.add_assets_to_artifact(artifact, path, asset_path, key) + + self.experiment.log_artifact(artifact) + + return + + def download_dataset_artifact(self, artifact_path): + logged_artifact = self.experiment.get_artifact(artifact_path) + artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name) + logged_artifact.download(artifact_save_dir) + + metadata = logged_artifact.metadata + data_dict = metadata.copy() + data_dict['path'] = artifact_save_dir + + metadata_names = metadata.get('names') + if type(metadata_names) == dict: + data_dict['names'] = {int(k): v for k, v in metadata.get('names').items()} + elif type(metadata_names) == list: + data_dict['names'] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)} + else: + raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary" + + data_dict = self.update_data_paths(data_dict) + return data_dict + + def update_data_paths(self, data_dict): + path = data_dict.get('path', '') + + for split in ['train', 'val', 'test']: + if data_dict.get(split): + split_path = data_dict.get(split) + data_dict[split] = (f'{path}/{split_path}' if isinstance(split, str) else [ + f'{path}/{x}' for x in split_path]) + + return data_dict + + def on_pretrain_routine_end(self, paths): + if self.opt.resume: + return + + for path in paths: + self.log_asset(str(path)) + + if self.upload_dataset: + if not self.resume: + self.upload_dataset_artifact() + + return + + def on_train_start(self): + self.log_parameters(self.hyp) + + def on_train_epoch_start(self): + return + + def on_train_epoch_end(self, epoch): + self.experiment.curr_epoch = epoch + + return + + def on_train_batch_start(self): + return + + def on_train_batch_end(self, log_dict, step): + self.experiment.curr_step = step + if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0): + self.log_metrics(log_dict, step=step) + + return + + def on_train_end(self, files, save_dir, last, best, epoch, results): + if self.comet_log_predictions: + curr_epoch = self.experiment.curr_epoch + self.experiment.log_asset_data(self.metadata_dict, 'image-metadata.json', epoch=curr_epoch) + + for f in files: + self.log_asset(f, metadata={'epoch': epoch}) + self.log_asset(f'{save_dir}/results.csv', metadata={'epoch': epoch}) + + if not self.opt.evolve: + model_path = str(best if best.exists() else last) + name = Path(model_path).name + if self.save_model: + self.experiment.log_model( + self.model_name, + file_or_folder=model_path, + file_name=name, + overwrite=True, + ) + + # Check if running Experiment with Comet Optimizer + if hasattr(self.opt, 'comet_optimizer_id'): + metric = results.get(self.opt.comet_optimizer_metric) + self.experiment.log_other('optimizer_metric_value', metric) + + self.finish_run() + + def on_val_start(self): + return + + def on_val_batch_start(self): + return + + def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs): + if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)): + return + + for si, pred in enumerate(outputs): + if len(pred) == 0: + continue + + image = images[si] + labels = targets[targets[:, 0] == si, 1:] + shape = shapes[si] + path = paths[si] + predn, labelsn = self.preprocess_prediction(image, labels, shape, pred) + if labelsn is not None: + self.log_predictions(image, labelsn, path, shape, predn) + + return + + def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix): + if self.comet_log_per_class_metrics: + if self.num_classes > 1: + for i, c in enumerate(ap_class): + class_name = self.class_names[c] + self.experiment.log_metrics( + { + 'mAP@.5': ap50[i], + 'mAP@.5:.95': ap[i], + 'precision': p[i], + 'recall': r[i], + 'f1': f1[i], + 'true_positives': tp[i], + 'false_positives': fp[i], + 'support': nt[c]}, + prefix=class_name) + + if self.comet_log_confusion_matrix: + epoch = self.experiment.curr_epoch + class_names = list(self.class_names.values()) + class_names.append('background') + num_classes = len(class_names) + + self.experiment.log_confusion_matrix( + matrix=confusion_matrix.matrix, + max_categories=num_classes, + labels=class_names, + epoch=epoch, + column_label='Actual Category', + row_label='Predicted Category', + file_name=f'confusion-matrix-epoch-{epoch}.json', + ) + + def on_fit_epoch_end(self, result, epoch): + self.log_metrics(result, epoch=epoch) + + def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): + if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1: + self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) + + def on_params_update(self, params): + self.log_parameters(params) + + def finish_run(self): + self.experiment.end() diff --git a/ultralytics/yolov5/utils/loggers/comet/comet_utils.py b/ultralytics/yolov5/utils/loggers/comet/comet_utils.py new file mode 100644 index 0000000..2760076 --- /dev/null +++ b/ultralytics/yolov5/utils/loggers/comet/comet_utils.py @@ -0,0 +1,150 @@ +import logging +import os +from urllib.parse import urlparse + +try: + import comet_ml +except (ModuleNotFoundError, ImportError): + comet_ml = None + +import yaml + +logger = logging.getLogger(__name__) + +COMET_PREFIX = 'comet://' +COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'yolov5') +COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv('COMET_DEFAULT_CHECKPOINT_FILENAME', 'last.pt') + + +def download_model_checkpoint(opt, experiment): + model_dir = f'{opt.project}/{experiment.name}' + os.makedirs(model_dir, exist_ok=True) + + model_name = COMET_MODEL_NAME + model_asset_list = experiment.get_model_asset_list(model_name) + + if len(model_asset_list) == 0: + logger.error(f'COMET ERROR: No checkpoints found for model name : {model_name}') + return + + model_asset_list = sorted( + model_asset_list, + key=lambda x: x['step'], + reverse=True, + ) + logged_checkpoint_map = {asset['fileName']: asset['assetId'] for asset in model_asset_list} + + resource_url = urlparse(opt.weights) + checkpoint_filename = resource_url.query + + if checkpoint_filename: + asset_id = logged_checkpoint_map.get(checkpoint_filename) + else: + asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME) + checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME + + if asset_id is None: + logger.error(f'COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment') + return + + try: + logger.info(f'COMET INFO: Downloading checkpoint {checkpoint_filename}') + asset_filename = checkpoint_filename + + model_binary = experiment.get_asset(asset_id, return_type='binary', stream=False) + model_download_path = f'{model_dir}/{asset_filename}' + with open(model_download_path, 'wb') as f: + f.write(model_binary) + + opt.weights = model_download_path + + except Exception as e: + logger.warning('COMET WARNING: Unable to download checkpoint from Comet') + logger.exception(e) + + +def set_opt_parameters(opt, experiment): + """Update the opts Namespace with parameters + from Comet's ExistingExperiment when resuming a run + + Args: + opt (argparse.Namespace): Namespace of command line options + experiment (comet_ml.APIExperiment): Comet API Experiment object + """ + asset_list = experiment.get_asset_list() + resume_string = opt.resume + + for asset in asset_list: + if asset['fileName'] == 'opt.yaml': + asset_id = asset['assetId'] + asset_binary = experiment.get_asset(asset_id, return_type='binary', stream=False) + opt_dict = yaml.safe_load(asset_binary) + for key, value in opt_dict.items(): + setattr(opt, key, value) + opt.resume = resume_string + + # Save hyperparameters to YAML file + # Necessary to pass checks in training script + save_dir = f'{opt.project}/{experiment.name}' + os.makedirs(save_dir, exist_ok=True) + + hyp_yaml_path = f'{save_dir}/hyp.yaml' + with open(hyp_yaml_path, 'w') as f: + yaml.dump(opt.hyp, f) + opt.hyp = hyp_yaml_path + + +def check_comet_weights(opt): + """Downloads model weights from Comet and updates the + weights path to point to saved weights location + + Args: + opt (argparse.Namespace): Command Line arguments passed + to YOLOv5 training script + + Returns: + None/bool: Return True if weights are successfully downloaded + else return None + """ + if comet_ml is None: + return + + if isinstance(opt.weights, str): + if opt.weights.startswith(COMET_PREFIX): + api = comet_ml.API() + resource = urlparse(opt.weights) + experiment_path = f'{resource.netloc}{resource.path}' + experiment = api.get(experiment_path) + download_model_checkpoint(opt, experiment) + return True + + return None + + +def check_comet_resume(opt): + """Restores run parameters to its original state based on the model checkpoint + and logged Experiment parameters. + + Args: + opt (argparse.Namespace): Command Line arguments passed + to YOLOv5 training script + + Returns: + None/bool: Return True if the run is restored successfully + else return None + """ + if comet_ml is None: + return + + if isinstance(opt.resume, str): + if opt.resume.startswith(COMET_PREFIX): + api = comet_ml.API() + resource = urlparse(opt.resume) + experiment_path = f'{resource.netloc}{resource.path}' + experiment = api.get(experiment_path) + set_opt_parameters(opt, experiment) + download_model_checkpoint(opt, experiment) + + return True + + return None diff --git a/ultralytics/yolov5/utils/loggers/comet/hpo.py b/ultralytics/yolov5/utils/loggers/comet/hpo.py new file mode 100644 index 0000000..fc49115 --- /dev/null +++ b/ultralytics/yolov5/utils/loggers/comet/hpo.py @@ -0,0 +1,118 @@ +import argparse +import json +import logging +import os +import sys +from pathlib import Path + +import comet_ml + +logger = logging.getLogger(__name__) + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[3] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH + +from train import train +from utils.callbacks import Callbacks +from utils.general import increment_path +from utils.torch_utils import select_device + +# Project Configuration +config = comet_ml.config.get_config() +COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5') + + +def get_args(known=False): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') + parser.add_argument('--cfg', type=str, default='', help='model.yaml path') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') + parser.add_argument('--epochs', type=int, default=300, help='total training epochs') + parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') + parser.add_argument('--rect', action='store_true', help='rectangular training') + parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') + parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') + parser.add_argument('--noval', action='store_true', help='only validate final epoch') + parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') + parser.add_argument('--noplots', action='store_true', help='save no plot files') + parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') + parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') + parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') + parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') + parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') + parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') + parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--quad', action='store_true', help='quad dataloader') + parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') + parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') + parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') + parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') + parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') + parser.add_argument('--seed', type=int, default=0, help='Global training seed') + parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') + + # Weights & Biases arguments + parser.add_argument('--entity', default=None, help='W&B: Entity') + parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option') + parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval') + parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use') + + # Comet Arguments + parser.add_argument('--comet_optimizer_config', type=str, help='Comet: Path to a Comet Optimizer Config File.') + parser.add_argument('--comet_optimizer_id', type=str, help='Comet: ID of the Comet Optimizer sweep.') + parser.add_argument('--comet_optimizer_objective', type=str, help="Comet: Set to 'minimize' or 'maximize'.") + parser.add_argument('--comet_optimizer_metric', type=str, help='Comet: Metric to Optimize.') + parser.add_argument('--comet_optimizer_workers', + type=int, + default=1, + help='Comet: Number of Parallel Workers to use with the Comet Optimizer.') + + return parser.parse_known_args()[0] if known else parser.parse_args() + + +def run(parameters, opt): + hyp_dict = {k: v for k, v in parameters.items() if k not in ['epochs', 'batch_size']} + + opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) + opt.batch_size = parameters.get('batch_size') + opt.epochs = parameters.get('epochs') + + device = select_device(opt.device, batch_size=opt.batch_size) + train(hyp_dict, opt, device, callbacks=Callbacks()) + + +if __name__ == '__main__': + opt = get_args(known=True) + + opt.weights = str(opt.weights) + opt.cfg = str(opt.cfg) + opt.data = str(opt.data) + opt.project = str(opt.project) + + optimizer_id = os.getenv('COMET_OPTIMIZER_ID') + if optimizer_id is None: + with open(opt.comet_optimizer_config) as f: + optimizer_config = json.load(f) + optimizer = comet_ml.Optimizer(optimizer_config) + else: + optimizer = comet_ml.Optimizer(optimizer_id) + + opt.comet_optimizer_id = optimizer.id + status = optimizer.status() + + opt.comet_optimizer_objective = status['spec']['objective'] + opt.comet_optimizer_metric = status['spec']['metric'] + + logger.info('COMET INFO: Starting Hyperparameter Sweep') + for parameter in optimizer.get_parameters(): + run(parameter['parameters'], opt) diff --git a/ultralytics/yolov5/utils/loggers/wandb/__init__.py b/ultralytics/yolov5/utils/loggers/wandb/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ultralytics/yolov5/utils/loggers/wandb/wandb_utils.py b/ultralytics/yolov5/utils/loggers/wandb/wandb_utils.py new file mode 100644 index 0000000..c8ab381 --- /dev/null +++ b/ultralytics/yolov5/utils/loggers/wandb/wandb_utils.py @@ -0,0 +1,193 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license + +# WARNING ⚠️ wandb is deprecated and will be removed in future release. +# See supported integrations at https://github.com/ultralytics/yolov5#integrations + +import logging +import os +import sys +from contextlib import contextmanager +from pathlib import Path + +from utils.general import LOGGER, colorstr + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[3] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +RANK = int(os.getenv('RANK', -1)) +DEPRECATION_WARNING = f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. " \ + f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.' + +try: + import wandb + + assert hasattr(wandb, '__version__') # verify package import not local dir + LOGGER.warning(DEPRECATION_WARNING) +except (ImportError, AssertionError): + wandb = None + + +class WandbLogger(): + """Log training runs, datasets, models, and predictions to Weights & Biases. + + This logger sends information to W&B at wandb.ai. By default, this information + includes hyperparameters, system configuration and metrics, model metrics, + and basic data metrics and analyses. + + By providing additional command line arguments to train.py, datasets, + models and predictions can also be logged. + + For more on how this logger is used, see the Weights & Biases documentation: + https://docs.wandb.com/guides/integrations/yolov5 + """ + + def __init__(self, opt, run_id=None, job_type='Training'): + """ + - Initialize WandbLogger instance + - Upload dataset if opt.upload_dataset is True + - Setup training processes if job_type is 'Training' + + arguments: + opt (namespace) -- Commandline arguments for this run + run_id (str) -- Run ID of W&B run to be resumed + job_type (str) -- To set the job_type for this run + + """ + # Pre-training routine -- + self.job_type = job_type + self.wandb, self.wandb_run = wandb, wandb.run if wandb else None + self.val_artifact, self.train_artifact = None, None + self.train_artifact_path, self.val_artifact_path = None, None + self.result_artifact = None + self.val_table, self.result_table = None, None + self.max_imgs_to_log = 16 + self.data_dict = None + if self.wandb: + self.wandb_run = wandb.init(config=opt, + resume='allow', + project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem, + entity=opt.entity, + name=opt.name if opt.name != 'exp' else None, + job_type=job_type, + id=run_id, + allow_val_change=True) if not wandb.run else wandb.run + + if self.wandb_run: + if self.job_type == 'Training': + if isinstance(opt.data, dict): + # This means another dataset manager has already processed the dataset info (e.g. ClearML) + # and they will have stored the already processed dict in opt.data + self.data_dict = opt.data + self.setup_training(opt) + + def setup_training(self, opt): + """ + Setup the necessary processes for training YOLO models: + - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX + - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded + - Setup log_dict, initialize bbox_interval + + arguments: + opt (namespace) -- commandline arguments for this run + + """ + self.log_dict, self.current_epoch = {}, 0 + self.bbox_interval = opt.bbox_interval + if isinstance(opt.resume, str): + model_dir, _ = self.download_model_artifact(opt) + if model_dir: + self.weights = Path(model_dir) / 'last.pt' + config = self.wandb_run.config + opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str( + self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \ + config.hyp, config.imgsz + + if opt.bbox_interval == -1: + self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 + if opt.evolve or opt.noplots: + self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval + + def log_model(self, path, opt, epoch, fitness_score, best_model=False): + """ + Log the model checkpoint as W&B artifact + + arguments: + path (Path) -- Path of directory containing the checkpoints + opt (namespace) -- Command line arguments for this run + epoch (int) -- Current epoch number + fitness_score (float) -- fitness score for current epoch + best_model (boolean) -- Boolean representing if the current checkpoint is the best yet. + """ + model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', + type='model', + metadata={ + 'original_url': str(path), + 'epochs_trained': epoch + 1, + 'save period': opt.save_period, + 'project': opt.project, + 'total_epochs': opt.epochs, + 'fitness_score': fitness_score}) + model_artifact.add_file(str(path / 'last.pt'), name='last.pt') + wandb.log_artifact(model_artifact, + aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else '']) + LOGGER.info(f'Saving model artifact on epoch {epoch + 1}') + + def val_one_image(self, pred, predn, path, names, im): + pass + + def log(self, log_dict): + """ + save the metrics to the logging dictionary + + arguments: + log_dict (Dict) -- metrics/media to be logged in current step + """ + if self.wandb_run: + for key, value in log_dict.items(): + self.log_dict[key] = value + + def end_epoch(self): + """ + commit the log_dict, model artifacts and Tables to W&B and flush the log_dict. + + arguments: + best_result (boolean): Boolean representing if the result of this evaluation is best or not + """ + if self.wandb_run: + with all_logging_disabled(): + try: + wandb.log(self.log_dict) + except BaseException as e: + LOGGER.info( + f'An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}' + ) + self.wandb_run.finish() + self.wandb_run = None + self.log_dict = {} + + def finish_run(self): + """ + Log metrics if any and finish the current W&B run + """ + if self.wandb_run: + if self.log_dict: + with all_logging_disabled(): + wandb.log(self.log_dict) + wandb.run.finish() + LOGGER.warning(DEPRECATION_WARNING) + + +@contextmanager +def all_logging_disabled(highest_level=logging.CRITICAL): + """ source - https://gist.github.com/simon-weber/7853144 + A context manager that will prevent any logging messages triggered during the body from being processed. + :param highest_level: the maximum logging level in use. + This would only need to be changed if a custom level greater than CRITICAL is defined. + """ + previous_level = logging.root.manager.disable + logging.disable(highest_level) + try: + yield + finally: + logging.disable(previous_level) diff --git a/ultralytics/yolov5/utils/loss.py b/ultralytics/yolov5/utils/loss.py new file mode 100644 index 0000000..9b9c3d9 --- /dev/null +++ b/ultralytics/yolov5/utils/loss.py @@ -0,0 +1,234 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Loss functions +""" + +import torch +import torch.nn as nn + +from utils.metrics import bbox_iou +from utils.torch_utils import de_parallel + + +def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 + # return positive, negative label smoothing BCE targets + return 1.0 - 0.5 * eps, 0.5 * eps + + +class BCEBlurWithLogitsLoss(nn.Module): + # BCEwithLogitLoss() with reduced missing label effects. + def __init__(self, alpha=0.05): + super().__init__() + self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() + self.alpha = alpha + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + pred = torch.sigmoid(pred) # prob from logits + dx = pred - true # reduce only missing label effects + # dx = (pred - true).abs() # reduce missing label and false label effects + alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) + loss *= alpha_factor + return loss.mean() + + +class FocalLoss(nn.Module): + # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): + super().__init__() + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() + self.gamma = gamma + self.alpha = alpha + self.reduction = loss_fcn.reduction + self.loss_fcn.reduction = 'none' # required to apply FL to each element + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + # p_t = torch.exp(-loss) + # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability + + # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py + pred_prob = torch.sigmoid(pred) # prob from logits + p_t = true * pred_prob + (1 - true) * (1 - pred_prob) + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) + modulating_factor = (1.0 - p_t) ** self.gamma + loss *= alpha_factor * modulating_factor + + if self.reduction == 'mean': + return loss.mean() + elif self.reduction == 'sum': + return loss.sum() + else: # 'none' + return loss + + +class QFocalLoss(nn.Module): + # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): + super().__init__() + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() + self.gamma = gamma + self.alpha = alpha + self.reduction = loss_fcn.reduction + self.loss_fcn.reduction = 'none' # required to apply FL to each element + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + + pred_prob = torch.sigmoid(pred) # prob from logits + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) + modulating_factor = torch.abs(true - pred_prob) ** self.gamma + loss *= alpha_factor * modulating_factor + + if self.reduction == 'mean': + return loss.mean() + elif self.reduction == 'sum': + return loss.sum() + else: # 'none' + return loss + + +class ComputeLoss: + sort_obj_iou = False + + # Compute losses + def __init__(self, model, autobalance=False): + device = next(model.parameters()).device # get model device + h = model.hyp # hyperparameters + + # Define criteria + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) + + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 + self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets + + # Focal loss + g = h['fl_gamma'] # focal loss gamma + if g > 0: + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) + + m = de_parallel(model).model[-1] # Detect() module + self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 + self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index + self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance + self.na = m.na # number of anchors + self.nc = m.nc # number of classes + self.nl = m.nl # number of layers + self.anchors = m.anchors + self.device = device + + def __call__(self, p, targets): # predictions, targets + lcls = torch.zeros(1, device=self.device) # class loss + lbox = torch.zeros(1, device=self.device) # box loss + lobj = torch.zeros(1, device=self.device) # object loss + tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets + + # Losses + for i, pi in enumerate(p): # layer index, layer predictions + b, a, gj, gi = indices[i] # image, anchor, gridy, gridx + tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj + + n = b.shape[0] # number of targets + if n: + # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0 + pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions + + # Regression + pxy = pxy.sigmoid() * 2 - 0.5 + pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] + pbox = torch.cat((pxy, pwh), 1) # predicted box + iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target) + lbox += (1.0 - iou).mean() # iou loss + + # Objectness + iou = iou.detach().clamp(0).type(tobj.dtype) + if self.sort_obj_iou: + j = iou.argsort() + b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] + if self.gr < 1: + iou = (1.0 - self.gr) + self.gr * iou + tobj[b, a, gj, gi] = iou # iou ratio + + # Classification + if self.nc > 1: # cls loss (only if multiple classes) + t = torch.full_like(pcls, self.cn, device=self.device) # targets + t[range(n), tcls[i]] = self.cp + lcls += self.BCEcls(pcls, t) # BCE + + # Append targets to text file + # with open('targets.txt', 'a') as file: + # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] + + obji = self.BCEobj(pi[..., 4], tobj) + lobj += obji * self.balance[i] # obj loss + if self.autobalance: + self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() + + if self.autobalance: + self.balance = [x / self.balance[self.ssi] for x in self.balance] + lbox *= self.hyp['box'] + lobj *= self.hyp['obj'] + lcls *= self.hyp['cls'] + bs = tobj.shape[0] # batch size + + return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach() + + def build_targets(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + tcls, tbox, indices, anch = [], [], [], [] + gain = torch.ones(7, device=self.device) # normalized to gridspace gain + ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices + + g = 0.5 # bias + off = torch.tensor( + [ + [0, 0], + [1, 0], + [0, 1], + [-1, 0], + [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], + device=self.device).float() * g # offsets + + for i in range(self.nl): + anchors, shape = self.anchors[i], p[i].shape + gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain # shape(3,n,7) + if nt: + # Matches + r = t[..., 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1 < g) & (gxy > 1)).T + l, m = ((gxi % 1 < g) & (gxi > 1)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors + a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class + gij = (gxy - offsets).long() + gi, gj = gij.T # grid indices + + # Append + indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid + tbox.append(torch.cat((gxy - gij, gwh), 1)) # box + anch.append(anchors[a]) # anchors + tcls.append(c) # class + + return tcls, tbox, indices, anch diff --git a/ultralytics/yolov5/utils/metrics.py b/ultralytics/yolov5/utils/metrics.py new file mode 100644 index 0000000..95f364c --- /dev/null +++ b/ultralytics/yolov5/utils/metrics.py @@ -0,0 +1,360 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Model validation metrics +""" + +import math +import warnings +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np +import torch + +from utils import TryExcept, threaded + + +def fitness(x): + # Model fitness as a weighted combination of metrics + w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] + return (x[:, :4] * w).sum(1) + + +def smooth(y, f=0.05): + # Box filter of fraction f + nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) + p = np.ones(nf // 2) # ones padding + yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded + return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed + + +def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=''): + """ Compute the average precision, given the recall and precision curves. + Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. + # Arguments + tp: True positives (nparray, nx1 or nx10). + conf: Objectness value from 0-1 (nparray). + pred_cls: Predicted object classes (nparray). + target_cls: True object classes (nparray). + plot: Plot precision-recall curve at mAP@0.5 + save_dir: Plot save directory + # Returns + The average precision as computed in py-faster-rcnn. + """ + + # Sort by objectness + i = np.argsort(-conf) + tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] + + # Find unique classes + unique_classes, nt = np.unique(target_cls, return_counts=True) + nc = unique_classes.shape[0] # number of classes, number of detections + + # Create Precision-Recall curve and compute AP for each class + px, py = np.linspace(0, 1, 1000), [] # for plotting + ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) + for ci, c in enumerate(unique_classes): + i = pred_cls == c + n_l = nt[ci] # number of labels + n_p = i.sum() # number of predictions + if n_p == 0 or n_l == 0: + continue + + # Accumulate FPs and TPs + fpc = (1 - tp[i]).cumsum(0) + tpc = tp[i].cumsum(0) + + # Recall + recall = tpc / (n_l + eps) # recall curve + r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases + + # Precision + precision = tpc / (tpc + fpc) # precision curve + p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score + + # AP from recall-precision curve + for j in range(tp.shape[1]): + ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) + if plot and j == 0: + py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 + + # Compute F1 (harmonic mean of precision and recall) + f1 = 2 * p * r / (p + r + eps) + names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data + names = dict(enumerate(names)) # to dict + if plot: + plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names) + plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1') + plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision') + plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall') + + i = smooth(f1.mean(0), 0.1).argmax() # max F1 index + p, r, f1 = p[:, i], r[:, i], f1[:, i] + tp = (r * nt).round() # true positives + fp = (tp / (p + eps) - tp).round() # false positives + return tp, fp, p, r, f1, ap, unique_classes.astype(int) + + +def compute_ap(recall, precision): + """ Compute the average precision, given the recall and precision curves + # Arguments + recall: The recall curve (list) + precision: The precision curve (list) + # Returns + Average precision, precision curve, recall curve + """ + + # Append sentinel values to beginning and end + mrec = np.concatenate(([0.0], recall, [1.0])) + mpre = np.concatenate(([1.0], precision, [0.0])) + + # Compute the precision envelope + mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) + + # Integrate area under curve + method = 'interp' # methods: 'continuous', 'interp' + if method == 'interp': + x = np.linspace(0, 1, 101) # 101-point interp (COCO) + ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate + else: # 'continuous' + i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve + + return ap, mpre, mrec + + +class ConfusionMatrix: + # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix + def __init__(self, nc, conf=0.25, iou_thres=0.45): + self.matrix = np.zeros((nc + 1, nc + 1)) + self.nc = nc # number of classes + self.conf = conf + self.iou_thres = iou_thres + + def process_batch(self, detections, labels): + """ + Return intersection-over-union (Jaccard index) of boxes. + Both sets of boxes are expected to be in (x1, y1, x2, y2) format. + Arguments: + detections (Array[N, 6]), x1, y1, x2, y2, conf, class + labels (Array[M, 5]), class, x1, y1, x2, y2 + Returns: + None, updates confusion matrix accordingly + """ + if detections is None: + gt_classes = labels.int() + for gc in gt_classes: + self.matrix[self.nc, gc] += 1 # background FN + return + + detections = detections[detections[:, 4] > self.conf] + gt_classes = labels[:, 0].int() + detection_classes = detections[:, 5].int() + iou = box_iou(labels[:, 1:], detections[:, :4]) + + x = torch.where(iou > self.iou_thres) + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + else: + matches = np.zeros((0, 3)) + + n = matches.shape[0] > 0 + m0, m1, _ = matches.transpose().astype(int) + for i, gc in enumerate(gt_classes): + j = m0 == i + if n and sum(j) == 1: + self.matrix[detection_classes[m1[j]], gc] += 1 # correct + else: + self.matrix[self.nc, gc] += 1 # true background + + if n: + for i, dc in enumerate(detection_classes): + if not any(m1 == i): + self.matrix[dc, self.nc] += 1 # predicted background + + def tp_fp(self): + tp = self.matrix.diagonal() # true positives + fp = self.matrix.sum(1) - tp # false positives + # fn = self.matrix.sum(0) - tp # false negatives (missed detections) + return tp[:-1], fp[:-1] # remove background class + + @TryExcept('WARNING ⚠️ ConfusionMatrix plot failure') + def plot(self, normalize=True, save_dir='', names=()): + import seaborn as sn + + array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns + array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) + + fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) + nc, nn = self.nc, len(names) # number of classes, names + sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size + labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels + ticklabels = (names + ['background']) if labels else 'auto' + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered + sn.heatmap(array, + ax=ax, + annot=nc < 30, + annot_kws={ + 'size': 8}, + cmap='Blues', + fmt='.2f', + square=True, + vmin=0.0, + xticklabels=ticklabels, + yticklabels=ticklabels).set_facecolor((1, 1, 1)) + ax.set_xlabel('True') + ax.set_ylabel('Predicted') + ax.set_title('Confusion Matrix') + fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) + plt.close(fig) + + def print(self): + for i in range(self.nc + 1): + print(' '.join(map(str, self.matrix[i]))) + + +def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): + # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4) + + # Get the coordinates of bounding boxes + if xywh: # transform from xywh to xyxy + (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) + w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 + b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ + b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ + else: # x1, y1, x2, y2 = box1 + b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) + b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) + w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) + w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) + + # Intersection area + inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \ + (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0) + + # Union Area + union = w1 * h1 + w2 * h2 - inter + eps + + # IoU + iou = inter / union + if CIoU or DIoU or GIoU: + cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width + ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height + if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 + c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared + rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 + if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 + v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) + with torch.no_grad(): + alpha = v / (v - iou + (1 + eps)) + return iou - (rho2 / c2 + v * alpha) # CIoU + return iou - rho2 / c2 # DIoU + c_area = cw * ch + eps # convex area + return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf + return iou # IoU + + +def box_iou(box1, box2, eps=1e-7): + # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py + """ + Return intersection-over-union (Jaccard index) of boxes. + Both sets of boxes are expected to be in (x1, y1, x2, y2) format. + Arguments: + box1 (Tensor[N, 4]) + box2 (Tensor[M, 4]) + Returns: + iou (Tensor[N, M]): the NxM matrix containing the pairwise + IoU values for every element in boxes1 and boxes2 + """ + + # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) + (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2) + inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2) + + # IoU = inter / (area1 + area2 - inter) + return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps) + + +def bbox_ioa(box1, box2, eps=1e-7): + """ Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2 + box1: np.array of shape(4) + box2: np.array of shape(nx4) + returns: np.array of shape(n) + """ + + # Get the coordinates of bounding boxes + b1_x1, b1_y1, b1_x2, b1_y2 = box1 + b2_x1, b2_y1, b2_x2, b2_y2 = box2.T + + # Intersection area + inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ + (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) + + # box2 area + box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps + + # Intersection over box2 area + return inter_area / box2_area + + +def wh_iou(wh1, wh2, eps=1e-7): + # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 + wh1 = wh1[:, None] # [N,1,2] + wh2 = wh2[None] # [1,M,2] + inter = torch.min(wh1, wh2).prod(2) # [N,M] + return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter) + + +# Plots ---------------------------------------------------------------------------------------------------------------- + + +@threaded +def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()): + # Precision-recall curve + fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) + py = np.stack(py, axis=1) + + if 0 < len(names) < 21: # display per-class legend if < 21 classes + for i, y in enumerate(py.T): + ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) + else: + ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) + + ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) + ax.set_xlabel('Recall') + ax.set_ylabel('Precision') + ax.set_xlim(0, 1) + ax.set_ylim(0, 1) + ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') + ax.set_title('Precision-Recall Curve') + fig.savefig(save_dir, dpi=250) + plt.close(fig) + + +@threaded +def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'): + # Metric-confidence curve + fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) + + if 0 < len(names) < 21: # display per-class legend if < 21 classes + for i, y in enumerate(py): + ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) + else: + ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) + + y = smooth(py.mean(0), 0.05) + ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') + ax.set_xlabel(xlabel) + ax.set_ylabel(ylabel) + ax.set_xlim(0, 1) + ax.set_ylim(0, 1) + ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') + ax.set_title(f'{ylabel}-Confidence Curve') + fig.savefig(save_dir, dpi=250) + plt.close(fig) diff --git a/ultralytics/yolov5/utils/plots.py b/ultralytics/yolov5/utils/plots.py new file mode 100644 index 0000000..24c618c --- /dev/null +++ b/ultralytics/yolov5/utils/plots.py @@ -0,0 +1,560 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Plotting utils +""" + +import contextlib +import math +import os +from copy import copy +from pathlib import Path +from urllib.error import URLError + +import cv2 +import matplotlib +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import seaborn as sn +import torch +from PIL import Image, ImageDraw, ImageFont + +from utils import TryExcept, threaded +from utils.general import (CONFIG_DIR, FONT, LOGGER, check_font, check_requirements, clip_boxes, increment_path, + is_ascii, xywh2xyxy, xyxy2xywh) +from utils.metrics import fitness +from utils.segment.general import scale_image + +# Settings +RANK = int(os.getenv('RANK', -1)) +matplotlib.rc('font', **{'size': 11}) +matplotlib.use('Agg') # for writing to files only + + +class Colors: + # Ultralytics color palette https://ultralytics.com/ + def __init__(self): + # hex = matplotlib.colors.TABLEAU_COLORS.values() + hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', + '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') + self.palette = [self.hex2rgb(f'#{c}') for c in hexs] + self.n = len(self.palette) + + def __call__(self, i, bgr=False): + c = self.palette[int(i) % self.n] + return (c[2], c[1], c[0]) if bgr else c + + @staticmethod + def hex2rgb(h): # rgb order (PIL) + return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) + + +colors = Colors() # create instance for 'from utils.plots import colors' + + +def check_pil_font(font=FONT, size=10): + # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary + font = Path(font) + font = font if font.exists() else (CONFIG_DIR / font.name) + try: + return ImageFont.truetype(str(font) if font.exists() else font.name, size) + except Exception: # download if missing + try: + check_font(font) + return ImageFont.truetype(str(font), size) + except TypeError: + check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374 + except URLError: # not online + return ImageFont.load_default() + + +class Annotator: + # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations + def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): + assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' + non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic + self.pil = pil or non_ascii + if self.pil: # use PIL + self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) + self.draw = ImageDraw.Draw(self.im) + self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font, + size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)) + else: # use cv2 + self.im = im + self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width + + def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): + # Add one xyxy box to image with label + if self.pil or not is_ascii(label): + self.draw.rectangle(box, width=self.lw, outline=color) # box + if label: + w, h = self.font.getsize(label) # text width, height (WARNING: deprecated) in 9.2.0 + # _, _, w, h = self.font.getbbox(label) # text width, height (New) + outside = box[1] - h >= 0 # label fits outside box + self.draw.rectangle( + (box[0], box[1] - h if outside else box[1], box[0] + w + 1, + box[1] + 1 if outside else box[1] + h + 1), + fill=color, + ) + # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 + self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) + else: # cv2 + p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) + cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) + if label: + tf = max(self.lw - 1, 1) # font thickness + w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height + outside = p1[1] - h >= 3 + p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 + cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled + cv2.putText(self.im, + label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), + 0, + self.lw / 3, + txt_color, + thickness=tf, + lineType=cv2.LINE_AA) + + def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False): + """Plot masks at once. + Args: + masks (tensor): predicted masks on cuda, shape: [n, h, w] + colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n] + im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1] + alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque + """ + if self.pil: + # convert to numpy first + self.im = np.asarray(self.im).copy() + if len(masks) == 0: + self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 + colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0 + colors = colors[:, None, None] # shape(n,1,1,3) + masks = masks.unsqueeze(3) # shape(n,h,w,1) + masks_color = masks * (colors * alpha) # shape(n,h,w,3) + + inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1) + mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3) + + im_gpu = im_gpu.flip(dims=[0]) # flip channel + im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3) + im_gpu = im_gpu * inv_alph_masks[-1] + mcs + im_mask = (im_gpu * 255).byte().cpu().numpy() + self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape) + if self.pil: + # convert im back to PIL and update draw + self.fromarray(self.im) + + def rectangle(self, xy, fill=None, outline=None, width=1): + # Add rectangle to image (PIL-only) + self.draw.rectangle(xy, fill, outline, width) + + def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'): + # Add text to image (PIL-only) + if anchor == 'bottom': # start y from font bottom + w, h = self.font.getsize(text) # text width, height + xy[1] += 1 - h + self.draw.text(xy, text, fill=txt_color, font=self.font) + + def fromarray(self, im): + # Update self.im from a numpy array + self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) + self.draw = ImageDraw.Draw(self.im) + + def result(self): + # Return annotated image as array + return np.asarray(self.im) + + +def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): + """ + x: Features to be visualized + module_type: Module type + stage: Module stage within model + n: Maximum number of feature maps to plot + save_dir: Directory to save results + """ + if 'Detect' not in module_type: + batch, channels, height, width = x.shape # batch, channels, height, width + if height > 1 and width > 1: + f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename + + blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels + n = min(n, channels) # number of plots + fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols + ax = ax.ravel() + plt.subplots_adjust(wspace=0.05, hspace=0.05) + for i in range(n): + ax[i].imshow(blocks[i].squeeze()) # cmap='gray' + ax[i].axis('off') + + LOGGER.info(f'Saving {f}... ({n}/{channels})') + plt.savefig(f, dpi=300, bbox_inches='tight') + plt.close() + np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save + + +def hist2d(x, y, n=100): + # 2d histogram used in labels.png and evolve.png + xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) + hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) + xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) + yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) + return np.log(hist[xidx, yidx]) + + +def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): + from scipy.signal import butter, filtfilt + + # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy + def butter_lowpass(cutoff, fs, order): + nyq = 0.5 * fs + normal_cutoff = cutoff / nyq + return butter(order, normal_cutoff, btype='low', analog=False) + + b, a = butter_lowpass(cutoff, fs, order=order) + return filtfilt(b, a, data) # forward-backward filter + + +def output_to_target(output, max_det=300): + # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting + targets = [] + for i, o in enumerate(output): + box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) + j = torch.full((conf.shape[0], 1), i) + targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) + return torch.cat(targets, 0).numpy() + + +@threaded +def plot_images(images, targets, paths=None, fname='images.jpg', names=None): + # Plot image grid with labels + if isinstance(images, torch.Tensor): + images = images.cpu().float().numpy() + if isinstance(targets, torch.Tensor): + targets = targets.cpu().numpy() + + max_size = 1920 # max image size + max_subplots = 16 # max image subplots, i.e. 4x4 + bs, _, h, w = images.shape # batch size, _, height, width + bs = min(bs, max_subplots) # limit plot images + ns = np.ceil(bs ** 0.5) # number of subplots (square) + if np.max(images[0]) <= 1: + images *= 255 # de-normalise (optional) + + # Build Image + mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init + for i, im in enumerate(images): + if i == max_subplots: # if last batch has fewer images than we expect + break + x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin + im = im.transpose(1, 2, 0) + mosaic[y:y + h, x:x + w, :] = im + + # Resize (optional) + scale = max_size / ns / max(h, w) + if scale < 1: + h = math.ceil(scale * h) + w = math.ceil(scale * w) + mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) + + # Annotate + fs = int((h + w) * ns * 0.01) # font size + annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) + for i in range(i + 1): + x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin + annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders + if paths: + annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames + if len(targets) > 0: + ti = targets[targets[:, 0] == i] # image targets + boxes = xywh2xyxy(ti[:, 2:6]).T + classes = ti[:, 1].astype('int') + labels = ti.shape[1] == 6 # labels if no conf column + conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred) + + if boxes.shape[1]: + if boxes.max() <= 1.01: # if normalized with tolerance 0.01 + boxes[[0, 2]] *= w # scale to pixels + boxes[[1, 3]] *= h + elif scale < 1: # absolute coords need scale if image scales + boxes *= scale + boxes[[0, 2]] += x + boxes[[1, 3]] += y + for j, box in enumerate(boxes.T.tolist()): + cls = classes[j] + color = colors(cls) + cls = names[cls] if names else cls + if labels or conf[j] > 0.25: # 0.25 conf thresh + label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}' + annotator.box_label(box, label, color=color) + annotator.im.save(fname) # save + + +def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): + # Plot LR simulating training for full epochs + optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals + y = [] + for _ in range(epochs): + scheduler.step() + y.append(optimizer.param_groups[0]['lr']) + plt.plot(y, '.-', label='LR') + plt.xlabel('epoch') + plt.ylabel('LR') + plt.grid() + plt.xlim(0, epochs) + plt.ylim(0) + plt.savefig(Path(save_dir) / 'LR.png', dpi=200) + plt.close() + + +def plot_val_txt(): # from utils.plots import *; plot_val() + # Plot val.txt histograms + x = np.loadtxt('val.txt', dtype=np.float32) + box = xyxy2xywh(x[:, :4]) + cx, cy = box[:, 0], box[:, 1] + + fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) + ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) + ax.set_aspect('equal') + plt.savefig('hist2d.png', dpi=300) + + fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) + ax[0].hist(cx, bins=600) + ax[1].hist(cy, bins=600) + plt.savefig('hist1d.png', dpi=200) + + +def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() + # Plot targets.txt histograms + x = np.loadtxt('targets.txt', dtype=np.float32).T + s = ['x targets', 'y targets', 'width targets', 'height targets'] + fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) + ax = ax.ravel() + for i in range(4): + ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}') + ax[i].legend() + ax[i].set_title(s[i]) + plt.savefig('targets.jpg', dpi=200) + + +def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study() + # Plot file=study.txt generated by val.py (or plot all study*.txt in dir) + save_dir = Path(file).parent if file else Path(dir) + plot2 = False # plot additional results + if plot2: + ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel() + + fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) + # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]: + for f in sorted(save_dir.glob('study*.txt')): + y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T + x = np.arange(y.shape[1]) if x is None else np.array(x) + if plot2: + s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)'] + for i in range(7): + ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) + ax[i].set_title(s[i]) + + j = y[3].argmax() + 1 + ax2.plot(y[5, 1:j], + y[3, 1:j] * 1E2, + '.-', + linewidth=2, + markersize=8, + label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) + + ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], + 'k.-', + linewidth=2, + markersize=8, + alpha=.25, + label='EfficientDet') + + ax2.grid(alpha=0.2) + ax2.set_yticks(np.arange(20, 60, 5)) + ax2.set_xlim(0, 57) + ax2.set_ylim(25, 55) + ax2.set_xlabel('GPU Speed (ms/img)') + ax2.set_ylabel('COCO AP val') + ax2.legend(loc='lower right') + f = save_dir / 'study.png' + print(f'Saving {f}...') + plt.savefig(f, dpi=300) + + +@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395 +def plot_labels(labels, names=(), save_dir=Path('')): + # plot dataset labels + LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") + c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes + nc = int(c.max() + 1) # number of classes + x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) + + # seaborn correlogram + sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) + plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) + plt.close() + + # matplotlib labels + matplotlib.use('svg') # faster + ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() + y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) + with contextlib.suppress(Exception): # color histogram bars by class + [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195 + ax[0].set_ylabel('instances') + if 0 < len(names) < 30: + ax[0].set_xticks(range(len(names))) + ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10) + else: + ax[0].set_xlabel('classes') + sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) + sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) + + # rectangles + labels[:, 1:3] = 0.5 # center + labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 + img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) + for cls, *box in labels[:1000]: + ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot + ax[1].imshow(img) + ax[1].axis('off') + + for a in [0, 1, 2, 3]: + for s in ['top', 'right', 'left', 'bottom']: + ax[a].spines[s].set_visible(False) + + plt.savefig(save_dir / 'labels.jpg', dpi=200) + matplotlib.use('Agg') + plt.close() + + +def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')): + # Show classification image grid with labels (optional) and predictions (optional) + from utils.augmentations import denormalize + + names = names or [f'class{i}' for i in range(1000)] + blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im), + dim=0) # select batch index 0, block by channels + n = min(len(blocks), nmax) # number of plots + m = min(8, round(n ** 0.5)) # 8 x 8 default + fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols + ax = ax.ravel() if m > 1 else [ax] + # plt.subplots_adjust(wspace=0.05, hspace=0.05) + for i in range(n): + ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0)) + ax[i].axis('off') + if labels is not None: + s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '') + ax[i].set_title(s, fontsize=8, verticalalignment='top') + plt.savefig(f, dpi=300, bbox_inches='tight') + plt.close() + if verbose: + LOGGER.info(f'Saving {f}') + if labels is not None: + LOGGER.info('True: ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax])) + if pred is not None: + LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax])) + return f + + +def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve() + # Plot evolve.csv hyp evolution results + evolve_csv = Path(evolve_csv) + data = pd.read_csv(evolve_csv) + keys = [x.strip() for x in data.columns] + x = data.values + f = fitness(x) + j = np.argmax(f) # max fitness index + plt.figure(figsize=(10, 12), tight_layout=True) + matplotlib.rc('font', **{'size': 8}) + print(f'Best results from row {j} of {evolve_csv}:') + for i, k in enumerate(keys[7:]): + v = x[:, 7 + i] + mu = v[j] # best single result + plt.subplot(6, 5, i + 1) + plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none') + plt.plot(mu, f.max(), 'k+', markersize=15) + plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters + if i % 5 != 0: + plt.yticks([]) + print(f'{k:>15}: {mu:.3g}') + f = evolve_csv.with_suffix('.png') # filename + plt.savefig(f, dpi=200) + plt.close() + print(f'Saved {f}') + + +def plot_results(file='path/to/results.csv', dir=''): + # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') + save_dir = Path(file).parent if file else Path(dir) + fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) + ax = ax.ravel() + files = list(save_dir.glob('results*.csv')) + assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' + for f in files: + try: + data = pd.read_csv(f) + s = [x.strip() for x in data.columns] + x = data.values[:, 0] + for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]): + y = data.values[:, j].astype('float') + # y[y == 0] = np.nan # don't show zero values + ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) + ax[i].set_title(s[j], fontsize=12) + # if j in [8, 9, 10]: # share train and val loss y axes + # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) + except Exception as e: + LOGGER.info(f'Warning: Plotting error for {f}: {e}') + ax[1].legend() + fig.savefig(save_dir / 'results.png', dpi=200) + plt.close() + + +def profile_idetection(start=0, stop=0, labels=(), save_dir=''): + # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection() + ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() + s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] + files = list(Path(save_dir).glob('frames*.txt')) + for fi, f in enumerate(files): + try: + results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows + n = results.shape[1] # number of rows + x = np.arange(start, min(stop, n) if stop else n) + results = results[:, x] + t = (results[0] - results[0].min()) # set t0=0s + results[0] = x + for i, a in enumerate(ax): + if i < len(results): + label = labels[fi] if len(labels) else f.stem.replace('frames_', '') + a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) + a.set_title(s[i]) + a.set_xlabel('time (s)') + # if fi == len(files) - 1: + # a.set_ylim(bottom=0) + for side in ['top', 'right']: + a.spines[side].set_visible(False) + else: + a.remove() + except Exception as e: + print(f'Warning: Plotting error for {f}; {e}') + ax[1].legend() + plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) + + +def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True): + # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop + xyxy = torch.tensor(xyxy).view(-1, 4) + b = xyxy2xywh(xyxy) # boxes + if square: + b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square + b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad + xyxy = xywh2xyxy(b).long() + clip_boxes(xyxy, im.shape) + crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] + if save: + file.parent.mkdir(parents=True, exist_ok=True) # make directory + f = str(increment_path(file).with_suffix('.jpg')) + # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue + Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB + return crop diff --git a/ultralytics/yolov5/utils/segment/__init__.py b/ultralytics/yolov5/utils/segment/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ultralytics/yolov5/utils/segment/augmentations.py b/ultralytics/yolov5/utils/segment/augmentations.py new file mode 100644 index 0000000..169adde --- /dev/null +++ b/ultralytics/yolov5/utils/segment/augmentations.py @@ -0,0 +1,104 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Image augmentation functions +""" + +import math +import random + +import cv2 +import numpy as np + +from ..augmentations import box_candidates +from ..general import resample_segments, segment2box + + +def mixup(im, labels, segments, im2, labels2, segments2): + # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf + r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 + im = (im * r + im2 * (1 - r)).astype(np.uint8) + labels = np.concatenate((labels, labels2), 0) + segments = np.concatenate((segments, segments2), 0) + return im, labels, segments + + +def random_perspective(im, + targets=(), + segments=(), + degrees=10, + translate=.1, + scale=.1, + shear=10, + perspective=0.0, + border=(0, 0)): + # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) + # targets = [cls, xyxy] + + height = im.shape[0] + border[0] * 2 # shape(h,w,c) + width = im.shape[1] + border[1] * 2 + + # Center + C = np.eye(3) + C[0, 2] = -im.shape[1] / 2 # x translation (pixels) + C[1, 2] = -im.shape[0] / 2 # y translation (pixels) + + # Perspective + P = np.eye(3) + P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) + P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) + + # Rotation and Scale + R = np.eye(3) + a = random.uniform(-degrees, degrees) + # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations + s = random.uniform(1 - scale, 1 + scale) + # s = 2 ** random.uniform(-scale, scale) + R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) + + # Shear + S = np.eye(3) + S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) + S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) + + # Translation + T = np.eye(3) + T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width) # x translation (pixels) + T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height) # y translation (pixels) + + # Combined rotation matrix + M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT + if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed + if perspective: + im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) + else: # affine + im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) + + # Visualize + # import matplotlib.pyplot as plt + # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() + # ax[0].imshow(im[:, :, ::-1]) # base + # ax[1].imshow(im2[:, :, ::-1]) # warped + + # Transform label coordinates + n = len(targets) + new_segments = [] + if n: + new = np.zeros((n, 4)) + segments = resample_segments(segments) # upsample + for i, segment in enumerate(segments): + xy = np.ones((len(segment), 3)) + xy[:, :2] = segment + xy = xy @ M.T # transform + xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine + + # clip + new[i] = segment2box(xy, width, height) + new_segments.append(xy) + + # filter candidates + i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01) + targets = targets[i] + targets[:, 1:5] = new[i] + new_segments = np.array(new_segments)[i] + + return im, targets, new_segments diff --git a/ultralytics/yolov5/utils/segment/dataloaders.py b/ultralytics/yolov5/utils/segment/dataloaders.py new file mode 100644 index 0000000..097a5d5 --- /dev/null +++ b/ultralytics/yolov5/utils/segment/dataloaders.py @@ -0,0 +1,332 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Dataloaders +""" + +import os +import random + +import cv2 +import numpy as np +import torch +from torch.utils.data import DataLoader, distributed + +from ..augmentations import augment_hsv, copy_paste, letterbox +from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, seed_worker +from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn +from ..torch_utils import torch_distributed_zero_first +from .augmentations import mixup, random_perspective + +RANK = int(os.getenv('RANK', -1)) + + +def create_dataloader(path, + imgsz, + batch_size, + stride, + single_cls=False, + hyp=None, + augment=False, + cache=False, + pad=0.0, + rect=False, + rank=-1, + workers=8, + image_weights=False, + quad=False, + prefix='', + shuffle=False, + mask_downsample_ratio=1, + overlap_mask=False, + seed=0): + if rect and shuffle: + LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False') + shuffle = False + with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP + dataset = LoadImagesAndLabelsAndMasks( + path, + imgsz, + batch_size, + augment=augment, # augmentation + hyp=hyp, # hyperparameters + rect=rect, # rectangular batches + cache_images=cache, + single_cls=single_cls, + stride=int(stride), + pad=pad, + image_weights=image_weights, + prefix=prefix, + downsample_ratio=mask_downsample_ratio, + overlap=overlap_mask) + + batch_size = min(batch_size, len(dataset)) + nd = torch.cuda.device_count() # number of CUDA devices + nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers + sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) + loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates + generator = torch.Generator() + generator.manual_seed(6148914691236517205 + seed + RANK) + return loader( + dataset, + batch_size=batch_size, + shuffle=shuffle and sampler is None, + num_workers=nw, + sampler=sampler, + pin_memory=True, + collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn, + worker_init_fn=seed_worker, + generator=generator, + ), dataset + + +class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): # for training/testing + + def __init__( + self, + path, + img_size=640, + batch_size=16, + augment=False, + hyp=None, + rect=False, + image_weights=False, + cache_images=False, + single_cls=False, + stride=32, + pad=0, + min_items=0, + prefix='', + downsample_ratio=1, + overlap=False, + ): + super().__init__(path, img_size, batch_size, augment, hyp, rect, image_weights, cache_images, single_cls, + stride, pad, min_items, prefix) + self.downsample_ratio = downsample_ratio + self.overlap = overlap + + def __getitem__(self, index): + index = self.indices[index] # linear, shuffled, or image_weights + + hyp = self.hyp + mosaic = self.mosaic and random.random() < hyp['mosaic'] + masks = [] + if mosaic: + # Load mosaic + img, labels, segments = self.load_mosaic(index) + shapes = None + + # MixUp augmentation + if random.random() < hyp['mixup']: + img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1))) + + else: + # Load image + img, (h0, w0), (h, w) = self.load_image(index) + + # Letterbox + shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape + img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) + shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling + + labels = self.labels[index].copy() + # [array, array, ....], array.shape=(num_points, 2), xyxyxyxy + segments = self.segments[index].copy() + if len(segments): + for i_s in range(len(segments)): + segments[i_s] = xyn2xy( + segments[i_s], + ratio[0] * w, + ratio[1] * h, + padw=pad[0], + padh=pad[1], + ) + if labels.size: # normalized xywh to pixel xyxy format + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) + + if self.augment: + img, labels, segments = random_perspective(img, + labels, + segments=segments, + degrees=hyp['degrees'], + translate=hyp['translate'], + scale=hyp['scale'], + shear=hyp['shear'], + perspective=hyp['perspective']) + + nl = len(labels) # number of labels + if nl: + labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3) + if self.overlap: + masks, sorted_idx = polygons2masks_overlap(img.shape[:2], + segments, + downsample_ratio=self.downsample_ratio) + masks = masks[None] # (640, 640) -> (1, 640, 640) + labels = labels[sorted_idx] + else: + masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio) + + masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] // + self.downsample_ratio, img.shape[1] // + self.downsample_ratio)) + # TODO: albumentations support + if self.augment: + # Albumentations + # there are some augmentation that won't change boxes and masks, + # so just be it for now. + img, labels = self.albumentations(img, labels) + nl = len(labels) # update after albumentations + + # HSV color-space + augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) + + # Flip up-down + if random.random() < hyp['flipud']: + img = np.flipud(img) + if nl: + labels[:, 2] = 1 - labels[:, 2] + masks = torch.flip(masks, dims=[1]) + + # Flip left-right + if random.random() < hyp['fliplr']: + img = np.fliplr(img) + if nl: + labels[:, 1] = 1 - labels[:, 1] + masks = torch.flip(masks, dims=[2]) + + # Cutouts # labels = cutout(img, labels, p=0.5) + + labels_out = torch.zeros((nl, 6)) + if nl: + labels_out[:, 1:] = torch.from_numpy(labels) + + # Convert + img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + img = np.ascontiguousarray(img) + + return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks) + + def load_mosaic(self, index): + # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic + labels4, segments4 = [], [] + s = self.img_size + yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y + + # 3 additional image indices + indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = self.load_image(index) + + # place img in img4 + if i == 0: # top left + img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) + x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) + elif i == 1: # top right + x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc + x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h + elif i == 2: # bottom left + x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) + x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) + elif i == 3: # bottom right + x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) + x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) + + img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] + padw = x1a - x1b + padh = y1a - y1b + + labels, segments = self.labels[index].copy(), self.segments[index].copy() + + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format + segments = [xyn2xy(x, w, h, padw, padh) for x in segments] + labels4.append(labels) + segments4.extend(segments) + + # Concat/clip labels + labels4 = np.concatenate(labels4, 0) + for x in (labels4[:, 1:], *segments4): + np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() + # img4, labels4 = replicate(img4, labels4) # replicate + + # Augment + img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste']) + img4, labels4, segments4 = random_perspective(img4, + labels4, + segments4, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + return img4, labels4, segments4 + + @staticmethod + def collate_fn(batch): + img, label, path, shapes, masks = zip(*batch) # transposed + batched_masks = torch.cat(masks, 0) + for i, l in enumerate(label): + l[:, 0] = i # add target image index for build_targets() + return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks + + +def polygon2mask(img_size, polygons, color=1, downsample_ratio=1): + """ + Args: + img_size (tuple): The image size. + polygons (np.ndarray): [N, M], N is the number of polygons, + M is the number of points(Be divided by 2). + """ + mask = np.zeros(img_size, dtype=np.uint8) + polygons = np.asarray(polygons) + polygons = polygons.astype(np.int32) + shape = polygons.shape + polygons = polygons.reshape(shape[0], -1, 2) + cv2.fillPoly(mask, polygons, color=color) + nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio) + # NOTE: fillPoly firstly then resize is trying the keep the same way + # of loss calculation when mask-ratio=1. + mask = cv2.resize(mask, (nw, nh)) + return mask + + +def polygons2masks(img_size, polygons, color, downsample_ratio=1): + """ + Args: + img_size (tuple): The image size. + polygons (list[np.ndarray]): each polygon is [N, M], + N is the number of polygons, + M is the number of points(Be divided by 2). + """ + masks = [] + for si in range(len(polygons)): + mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio) + masks.append(mask) + return np.array(masks) + + +def polygons2masks_overlap(img_size, segments, downsample_ratio=1): + """Return a (640, 640) overlap mask.""" + masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio), + dtype=np.int32 if len(segments) > 255 else np.uint8) + areas = [] + ms = [] + for si in range(len(segments)): + mask = polygon2mask( + img_size, + [segments[si].reshape(-1)], + downsample_ratio=downsample_ratio, + color=1, + ) + ms.append(mask) + areas.append(mask.sum()) + areas = np.asarray(areas) + index = np.argsort(-areas) + ms = np.array(ms)[index] + for i in range(len(segments)): + mask = ms[i] * (i + 1) + masks = masks + mask + masks = np.clip(masks, a_min=0, a_max=i + 1) + return masks, index diff --git a/ultralytics/yolov5/utils/segment/general.py b/ultralytics/yolov5/utils/segment/general.py new file mode 100644 index 0000000..f1b2f1d --- /dev/null +++ b/ultralytics/yolov5/utils/segment/general.py @@ -0,0 +1,160 @@ +import cv2 +import numpy as np +import torch +import torch.nn.functional as F + + +def crop_mask(masks, boxes): + """ + "Crop" predicted masks by zeroing out everything not in the predicted bbox. + Vectorized by Chong (thanks Chong). + + Args: + - masks should be a size [n, h, w] tensor of masks + - boxes should be a size [n, 4] tensor of bbox coords in relative point form + """ + + n, h, w = masks.shape + x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n) + r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1) + c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1) + + return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) + + +def process_mask_upsample(protos, masks_in, bboxes, shape): + """ + Crop after upsample. + protos: [mask_dim, mask_h, mask_w] + masks_in: [n, mask_dim], n is number of masks after nms + bboxes: [n, 4], n is number of masks after nms + shape: input_image_size, (h, w) + + return: h, w, n + """ + + c, mh, mw = protos.shape # CHW + masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) + masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW + masks = crop_mask(masks, bboxes) # CHW + return masks.gt_(0.5) + + +def process_mask(protos, masks_in, bboxes, shape, upsample=False): + """ + Crop before upsample. + proto_out: [mask_dim, mask_h, mask_w] + out_masks: [n, mask_dim], n is number of masks after nms + bboxes: [n, 4], n is number of masks after nms + shape:input_image_size, (h, w) + + return: h, w, n + """ + + c, mh, mw = protos.shape # CHW + ih, iw = shape + masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW + + downsampled_bboxes = bboxes.clone() + downsampled_bboxes[:, 0] *= mw / iw + downsampled_bboxes[:, 2] *= mw / iw + downsampled_bboxes[:, 3] *= mh / ih + downsampled_bboxes[:, 1] *= mh / ih + + masks = crop_mask(masks, downsampled_bboxes) # CHW + if upsample: + masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW + return masks.gt_(0.5) + + +def process_mask_native(protos, masks_in, bboxes, shape): + """ + Crop after upsample. + protos: [mask_dim, mask_h, mask_w] + masks_in: [n, mask_dim], n is number of masks after nms + bboxes: [n, 4], n is number of masks after nms + shape: input_image_size, (h, w) + + return: h, w, n + """ + c, mh, mw = protos.shape # CHW + masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) + gain = min(mh / shape[0], mw / shape[1]) # gain = old / new + pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding + top, left = int(pad[1]), int(pad[0]) # y, x + bottom, right = int(mh - pad[1]), int(mw - pad[0]) + masks = masks[:, top:bottom, left:right] + + masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW + masks = crop_mask(masks, bboxes) # CHW + return masks.gt_(0.5) + + +def scale_image(im1_shape, masks, im0_shape, ratio_pad=None): + """ + img1_shape: model input shape, [h, w] + img0_shape: origin pic shape, [h, w, 3] + masks: [h, w, num] + """ + # Rescale coordinates (xyxy) from im1_shape to im0_shape + if ratio_pad is None: # calculate from im0_shape + gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new + pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding + else: + pad = ratio_pad[1] + top, left = int(pad[1]), int(pad[0]) # y, x + bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0]) + + if len(masks.shape) < 2: + raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}') + masks = masks[top:bottom, left:right] + # masks = masks.permute(2, 0, 1).contiguous() + # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0] + # masks = masks.permute(1, 2, 0).contiguous() + masks = cv2.resize(masks, (im0_shape[1], im0_shape[0])) + + if len(masks.shape) == 2: + masks = masks[:, :, None] + return masks + + +def mask_iou(mask1, mask2, eps=1e-7): + """ + mask1: [N, n] m1 means number of predicted objects + mask2: [M, n] m2 means number of gt objects + Note: n means image_w x image_h + + return: masks iou, [N, M] + """ + intersection = torch.matmul(mask1, mask2.t()).clamp(0) + union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection + return intersection / (union + eps) + + +def masks_iou(mask1, mask2, eps=1e-7): + """ + mask1: [N, n] m1 means number of predicted objects + mask2: [N, n] m2 means number of gt objects + Note: n means image_w x image_h + + return: masks iou, (N, ) + """ + intersection = (mask1 * mask2).sum(1).clamp(0) # (N, ) + union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection + return intersection / (union + eps) + + +def masks2segments(masks, strategy='largest'): + # Convert masks(n,160,160) into segments(n,xy) + segments = [] + for x in masks.int().cpu().numpy().astype('uint8'): + c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] + if c: + if strategy == 'concat': # concatenate all segments + c = np.concatenate([x.reshape(-1, 2) for x in c]) + elif strategy == 'largest': # select largest segment + c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2) + else: + c = np.zeros((0, 2)) # no segments found + segments.append(c.astype('float32')) + return segments diff --git a/ultralytics/yolov5/utils/segment/loss.py b/ultralytics/yolov5/utils/segment/loss.py new file mode 100644 index 0000000..caeff3c --- /dev/null +++ b/ultralytics/yolov5/utils/segment/loss.py @@ -0,0 +1,185 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..general import xywh2xyxy +from ..loss import FocalLoss, smooth_BCE +from ..metrics import bbox_iou +from ..torch_utils import de_parallel +from .general import crop_mask + + +class ComputeLoss: + # Compute losses + def __init__(self, model, autobalance=False, overlap=False): + self.sort_obj_iou = False + self.overlap = overlap + device = next(model.parameters()).device # get model device + h = model.hyp # hyperparameters + + # Define criteria + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) + + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 + self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets + + # Focal loss + g = h['fl_gamma'] # focal loss gamma + if g > 0: + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) + + m = de_parallel(model).model[-1] # Detect() module + self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 + self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index + self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance + self.na = m.na # number of anchors + self.nc = m.nc # number of classes + self.nl = m.nl # number of layers + self.nm = m.nm # number of masks + self.anchors = m.anchors + self.device = device + + def __call__(self, preds, targets, masks): # predictions, targets, model + p, proto = preds + bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width + lcls = torch.zeros(1, device=self.device) + lbox = torch.zeros(1, device=self.device) + lobj = torch.zeros(1, device=self.device) + lseg = torch.zeros(1, device=self.device) + tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets) # targets + + # Losses + for i, pi in enumerate(p): # layer index, layer predictions + b, a, gj, gi = indices[i] # image, anchor, gridy, gridx + tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj + + n = b.shape[0] # number of targets + if n: + pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1) # subset of predictions + + # Box regression + pxy = pxy.sigmoid() * 2 - 0.5 + pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] + pbox = torch.cat((pxy, pwh), 1) # predicted box + iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target) + lbox += (1.0 - iou).mean() # iou loss + + # Objectness + iou = iou.detach().clamp(0).type(tobj.dtype) + if self.sort_obj_iou: + j = iou.argsort() + b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] + if self.gr < 1: + iou = (1.0 - self.gr) + self.gr * iou + tobj[b, a, gj, gi] = iou # iou ratio + + # Classification + if self.nc > 1: # cls loss (only if multiple classes) + t = torch.full_like(pcls, self.cn, device=self.device) # targets + t[range(n), tcls[i]] = self.cp + lcls += self.BCEcls(pcls, t) # BCE + + # Mask regression + if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample + masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0] + marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized + mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)) + for bi in b.unique(): + j = b == bi # matching index + if self.overlap: + mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0) + else: + mask_gti = masks[tidxs[i]][j] + lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j]) + + obji = self.BCEobj(pi[..., 4], tobj) + lobj += obji * self.balance[i] # obj loss + if self.autobalance: + self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() + + if self.autobalance: + self.balance = [x / self.balance[self.ssi] for x in self.balance] + lbox *= self.hyp['box'] + lobj *= self.hyp['obj'] + lcls *= self.hyp['cls'] + lseg *= self.hyp['box'] / bs + + loss = lbox + lobj + lcls + lseg + return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach() + + def single_mask_loss(self, gt_mask, pred, proto, xyxy, area): + # Mask loss for one image + pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80) + loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none') + return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() + + def build_targets(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], [] + gain = torch.ones(8, device=self.device) # normalized to gridspace gain + ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + if self.overlap: + batch = p[0].shape[0] + ti = [] + for i in range(batch): + num = (targets[:, 0] == i).sum() # find number of targets of each image + ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num) + ti = torch.cat(ti, 1) # (na, nt) + else: + ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1) + targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices + + g = 0.5 # bias + off = torch.tensor( + [ + [0, 0], + [1, 0], + [0, 1], + [-1, 0], + [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], + device=self.device).float() * g # offsets + + for i in range(self.nl): + anchors, shape = self.anchors[i], p[i].shape + gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain # shape(3,n,7) + if nt: + # Matches + r = t[..., 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1 < g) & (gxy > 1)).T + l, m = ((gxi % 1 < g) & (gxi > 1)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors + (a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class + gij = (gxy - offsets).long() + gi, gj = gij.T # grid indices + + # Append + indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid + tbox.append(torch.cat((gxy - gij, gwh), 1)) # box + anch.append(anchors[a]) # anchors + tcls.append(c) # class + tidxs.append(tidx) + xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized + + return tcls, tbox, indices, anch, tidxs, xywhn diff --git a/ultralytics/yolov5/utils/segment/metrics.py b/ultralytics/yolov5/utils/segment/metrics.py new file mode 100644 index 0000000..c9f137e --- /dev/null +++ b/ultralytics/yolov5/utils/segment/metrics.py @@ -0,0 +1,210 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Model validation metrics +""" + +import numpy as np + +from ..metrics import ap_per_class + + +def fitness(x): + # Model fitness as a weighted combination of metrics + w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9] + return (x[:, :8] * w).sum(1) + + +def ap_per_class_box_and_mask( + tp_m, + tp_b, + conf, + pred_cls, + target_cls, + plot=False, + save_dir='.', + names=(), +): + """ + Args: + tp_b: tp of boxes. + tp_m: tp of masks. + other arguments see `func: ap_per_class`. + """ + results_boxes = ap_per_class(tp_b, + conf, + pred_cls, + target_cls, + plot=plot, + save_dir=save_dir, + names=names, + prefix='Box')[2:] + results_masks = ap_per_class(tp_m, + conf, + pred_cls, + target_cls, + plot=plot, + save_dir=save_dir, + names=names, + prefix='Mask')[2:] + + results = { + 'boxes': { + 'p': results_boxes[0], + 'r': results_boxes[1], + 'ap': results_boxes[3], + 'f1': results_boxes[2], + 'ap_class': results_boxes[4]}, + 'masks': { + 'p': results_masks[0], + 'r': results_masks[1], + 'ap': results_masks[3], + 'f1': results_masks[2], + 'ap_class': results_masks[4]}} + return results + + +class Metric: + + def __init__(self) -> None: + self.p = [] # (nc, ) + self.r = [] # (nc, ) + self.f1 = [] # (nc, ) + self.all_ap = [] # (nc, 10) + self.ap_class_index = [] # (nc, ) + + @property + def ap50(self): + """AP@0.5 of all classes. + Return: + (nc, ) or []. + """ + return self.all_ap[:, 0] if len(self.all_ap) else [] + + @property + def ap(self): + """AP@0.5:0.95 + Return: + (nc, ) or []. + """ + return self.all_ap.mean(1) if len(self.all_ap) else [] + + @property + def mp(self): + """mean precision of all classes. + Return: + float. + """ + return self.p.mean() if len(self.p) else 0.0 + + @property + def mr(self): + """mean recall of all classes. + Return: + float. + """ + return self.r.mean() if len(self.r) else 0.0 + + @property + def map50(self): + """Mean AP@0.5 of all classes. + Return: + float. + """ + return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 + + @property + def map(self): + """Mean AP@0.5:0.95 of all classes. + Return: + float. + """ + return self.all_ap.mean() if len(self.all_ap) else 0.0 + + def mean_results(self): + """Mean of results, return mp, mr, map50, map""" + return (self.mp, self.mr, self.map50, self.map) + + def class_result(self, i): + """class-aware result, return p[i], r[i], ap50[i], ap[i]""" + return (self.p[i], self.r[i], self.ap50[i], self.ap[i]) + + def get_maps(self, nc): + maps = np.zeros(nc) + self.map + for i, c in enumerate(self.ap_class_index): + maps[c] = self.ap[i] + return maps + + def update(self, results): + """ + Args: + results: tuple(p, r, ap, f1, ap_class) + """ + p, r, all_ap, f1, ap_class_index = results + self.p = p + self.r = r + self.all_ap = all_ap + self.f1 = f1 + self.ap_class_index = ap_class_index + + +class Metrics: + """Metric for boxes and masks.""" + + def __init__(self) -> None: + self.metric_box = Metric() + self.metric_mask = Metric() + + def update(self, results): + """ + Args: + results: Dict{'boxes': Dict{}, 'masks': Dict{}} + """ + self.metric_box.update(list(results['boxes'].values())) + self.metric_mask.update(list(results['masks'].values())) + + def mean_results(self): + return self.metric_box.mean_results() + self.metric_mask.mean_results() + + def class_result(self, i): + return self.metric_box.class_result(i) + self.metric_mask.class_result(i) + + def get_maps(self, nc): + return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc) + + @property + def ap_class_index(self): + # boxes and masks have the same ap_class_index + return self.metric_box.ap_class_index + + +KEYS = [ + 'train/box_loss', + 'train/seg_loss', # train loss + 'train/obj_loss', + 'train/cls_loss', + 'metrics/precision(B)', + 'metrics/recall(B)', + 'metrics/mAP_0.5(B)', + 'metrics/mAP_0.5:0.95(B)', # metrics + 'metrics/precision(M)', + 'metrics/recall(M)', + 'metrics/mAP_0.5(M)', + 'metrics/mAP_0.5:0.95(M)', # metrics + 'val/box_loss', + 'val/seg_loss', # val loss + 'val/obj_loss', + 'val/cls_loss', + 'x/lr0', + 'x/lr1', + 'x/lr2',] + +BEST_KEYS = [ + 'best/epoch', + 'best/precision(B)', + 'best/recall(B)', + 'best/mAP_0.5(B)', + 'best/mAP_0.5:0.95(B)', + 'best/precision(M)', + 'best/recall(M)', + 'best/mAP_0.5(M)', + 'best/mAP_0.5:0.95(M)',] diff --git a/ultralytics/yolov5/utils/segment/plots.py b/ultralytics/yolov5/utils/segment/plots.py new file mode 100644 index 0000000..1b22ec8 --- /dev/null +++ b/ultralytics/yolov5/utils/segment/plots.py @@ -0,0 +1,143 @@ +import contextlib +import math +from pathlib import Path + +import cv2 +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import torch + +from .. import threaded +from ..general import xywh2xyxy +from ..plots import Annotator, colors + + +@threaded +def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg', names=None): + # Plot image grid with labels + if isinstance(images, torch.Tensor): + images = images.cpu().float().numpy() + if isinstance(targets, torch.Tensor): + targets = targets.cpu().numpy() + if isinstance(masks, torch.Tensor): + masks = masks.cpu().numpy().astype(int) + + max_size = 1920 # max image size + max_subplots = 16 # max image subplots, i.e. 4x4 + bs, _, h, w = images.shape # batch size, _, height, width + bs = min(bs, max_subplots) # limit plot images + ns = np.ceil(bs ** 0.5) # number of subplots (square) + if np.max(images[0]) <= 1: + images *= 255 # de-normalise (optional) + + # Build Image + mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init + for i, im in enumerate(images): + if i == max_subplots: # if last batch has fewer images than we expect + break + x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin + im = im.transpose(1, 2, 0) + mosaic[y:y + h, x:x + w, :] = im + + # Resize (optional) + scale = max_size / ns / max(h, w) + if scale < 1: + h = math.ceil(scale * h) + w = math.ceil(scale * w) + mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) + + # Annotate + fs = int((h + w) * ns * 0.01) # font size + annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) + for i in range(i + 1): + x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin + annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders + if paths: + annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames + if len(targets) > 0: + idx = targets[:, 0] == i + ti = targets[idx] # image targets + + boxes = xywh2xyxy(ti[:, 2:6]).T + classes = ti[:, 1].astype('int') + labels = ti.shape[1] == 6 # labels if no conf column + conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred) + + if boxes.shape[1]: + if boxes.max() <= 1.01: # if normalized with tolerance 0.01 + boxes[[0, 2]] *= w # scale to pixels + boxes[[1, 3]] *= h + elif scale < 1: # absolute coords need scale if image scales + boxes *= scale + boxes[[0, 2]] += x + boxes[[1, 3]] += y + for j, box in enumerate(boxes.T.tolist()): + cls = classes[j] + color = colors(cls) + cls = names[cls] if names else cls + if labels or conf[j] > 0.25: # 0.25 conf thresh + label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}' + annotator.box_label(box, label, color=color) + + # Plot masks + if len(masks): + if masks.max() > 1.0: # mean that masks are overlap + image_masks = masks[[i]] # (1, 640, 640) + nl = len(ti) + index = np.arange(nl).reshape(nl, 1, 1) + 1 + image_masks = np.repeat(image_masks, nl, axis=0) + image_masks = np.where(image_masks == index, 1.0, 0.0) + else: + image_masks = masks[idx] + + im = np.asarray(annotator.im).copy() + for j, box in enumerate(boxes.T.tolist()): + if labels or conf[j] > 0.25: # 0.25 conf thresh + color = colors(classes[j]) + mh, mw = image_masks[j].shape + if mh != h or mw != w: + mask = image_masks[j].astype(np.uint8) + mask = cv2.resize(mask, (w, h)) + mask = mask.astype(bool) + else: + mask = image_masks[j].astype(bool) + with contextlib.suppress(Exception): + im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6 + annotator.fromarray(im) + annotator.im.save(fname) # save + + +def plot_results_with_masks(file='path/to/results.csv', dir='', best=True): + # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') + save_dir = Path(file).parent if file else Path(dir) + fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) + ax = ax.ravel() + files = list(save_dir.glob('results*.csv')) + assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' + for f in files: + try: + data = pd.read_csv(f) + index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] + + 0.1 * data.values[:, 11]) + s = [x.strip() for x in data.columns] + x = data.values[:, 0] + for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]): + y = data.values[:, j] + # y[y == 0] = np.nan # don't show zero values + ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=2) + if best: + # best + ax[i].scatter(index, y[index], color='r', label=f'best:{index}', marker='*', linewidth=3) + ax[i].set_title(s[j] + f'\n{round(y[index], 5)}') + else: + # last + ax[i].scatter(x[-1], y[-1], color='r', label='last', marker='*', linewidth=3) + ax[i].set_title(s[j] + f'\n{round(y[-1], 5)}') + # if j in [8, 9, 10]: # share train and val loss y axes + # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) + except Exception as e: + print(f'Warning: Plotting error for {f}: {e}') + ax[1].legend() + fig.savefig(save_dir / 'results.png', dpi=200) + plt.close() diff --git a/ultralytics/yolov5/utils/torch_utils.py b/ultralytics/yolov5/utils/torch_utils.py new file mode 100644 index 0000000..5b67b3f --- /dev/null +++ b/ultralytics/yolov5/utils/torch_utils.py @@ -0,0 +1,432 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +PyTorch utils +""" + +import math +import os +import platform +import subprocess +import time +import warnings +from contextlib import contextmanager +from copy import deepcopy +from pathlib import Path + +import torch +import torch.distributed as dist +import torch.nn as nn +import torch.nn.functional as F +from torch.nn.parallel import DistributedDataParallel as DDP + +from utils.general import LOGGER, check_version, colorstr, file_date, git_describe + +LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html +RANK = int(os.getenv('RANK', -1)) +WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) + +try: + import thop # for FLOPs computation +except ImportError: + thop = None + +# Suppress PyTorch warnings +warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling') +warnings.filterwarnings('ignore', category=UserWarning) + + +def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')): + # Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator + def decorate(fn): + return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn) + + return decorate + + +def smartCrossEntropyLoss(label_smoothing=0.0): + # Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0 + if check_version(torch.__version__, '1.10.0'): + return nn.CrossEntropyLoss(label_smoothing=label_smoothing) + if label_smoothing > 0: + LOGGER.warning(f'WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0') + return nn.CrossEntropyLoss() + + +def smart_DDP(model): + # Model DDP creation with checks + assert not check_version(torch.__version__, '1.12.0', pinned=True), \ + 'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \ + 'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395' + if check_version(torch.__version__, '1.11.0'): + return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True) + else: + return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) + + +def reshape_classifier_output(model, n=1000): + # Update a TorchVision classification model to class count 'n' if required + from models.common import Classify + name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module + if isinstance(m, Classify): # YOLOv5 Classify() head + if m.linear.out_features != n: + m.linear = nn.Linear(m.linear.in_features, n) + elif isinstance(m, nn.Linear): # ResNet, EfficientNet + if m.out_features != n: + setattr(model, name, nn.Linear(m.in_features, n)) + elif isinstance(m, nn.Sequential): + types = [type(x) for x in m] + if nn.Linear in types: + i = types.index(nn.Linear) # nn.Linear index + if m[i].out_features != n: + m[i] = nn.Linear(m[i].in_features, n) + elif nn.Conv2d in types: + i = types.index(nn.Conv2d) # nn.Conv2d index + if m[i].out_channels != n: + m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) + + +@contextmanager +def torch_distributed_zero_first(local_rank: int): + # Decorator to make all processes in distributed training wait for each local_master to do something + if local_rank not in [-1, 0]: + dist.barrier(device_ids=[local_rank]) + yield + if local_rank == 0: + dist.barrier(device_ids=[0]) + + +def device_count(): + # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows + assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows' + try: + cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows + return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]) + except Exception: + return 0 + + +def select_device(device='', batch_size=0, newline=True): + # device = None or 'cpu' or 0 or '0' or '0,1,2,3' + s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} ' + device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0' + cpu = device == 'cpu' + mps = device == 'mps' # Apple Metal Performance Shaders (MPS) + if cpu or mps: + os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False + elif device: # non-cpu device requested + os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() + assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \ + f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)" + + if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available + devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 + n = len(devices) # device count + if n > 1 and batch_size > 0: # check batch_size is divisible by device_count + assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' + space = ' ' * (len(s) + 1) + for i, d in enumerate(devices): + p = torch.cuda.get_device_properties(i) + s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB + arg = 'cuda:0' + elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available + s += 'MPS\n' + arg = 'mps' + else: # revert to CPU + s += 'CPU\n' + arg = 'cpu' + + if not newline: + s = s.rstrip() + LOGGER.info(s) + return torch.device(arg) + + +def time_sync(): + # PyTorch-accurate time + if torch.cuda.is_available(): + torch.cuda.synchronize() + return time.time() + + +def profile(input, ops, n=10, device=None): + """ YOLOv5 speed/memory/FLOPs profiler + Usage: + input = torch.randn(16, 3, 640, 640) + m1 = lambda x: x * torch.sigmoid(x) + m2 = nn.SiLU() + profile(input, [m1, m2], n=100) # profile over 100 iterations + """ + results = [] + if not isinstance(device, torch.device): + device = select_device(device) + print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" + f"{'input':>24s}{'output':>24s}") + + for x in input if isinstance(input, list) else [input]: + x = x.to(device) + x.requires_grad = True + for m in ops if isinstance(ops, list) else [ops]: + m = m.to(device) if hasattr(m, 'to') else m # device + m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m + tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward + try: + flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs + except Exception: + flops = 0 + + try: + for _ in range(n): + t[0] = time_sync() + y = m(x) + t[1] = time_sync() + try: + _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() + t[2] = time_sync() + except Exception: # no backward method + # print(e) # for debug + t[2] = float('nan') + tf += (t[1] - t[0]) * 1000 / n # ms per op forward + tb += (t[2] - t[1]) * 1000 / n # ms per op backward + mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) + s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes + p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters + print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') + results.append([p, flops, mem, tf, tb, s_in, s_out]) + except Exception as e: + print(e) + results.append(None) + torch.cuda.empty_cache() + return results + + +def is_parallel(model): + # Returns True if model is of type DP or DDP + return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) + + +def de_parallel(model): + # De-parallelize a model: returns single-GPU model if model is of type DP or DDP + return model.module if is_parallel(model) else model + + +def initialize_weights(model): + for m in model.modules(): + t = type(m) + if t is nn.Conv2d: + pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif t is nn.BatchNorm2d: + m.eps = 1e-3 + m.momentum = 0.03 + elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: + m.inplace = True + + +def find_modules(model, mclass=nn.Conv2d): + # Finds layer indices matching module class 'mclass' + return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] + + +def sparsity(model): + # Return global model sparsity + a, b = 0, 0 + for p in model.parameters(): + a += p.numel() + b += (p == 0).sum() + return b / a + + +def prune(model, amount=0.3): + # Prune model to requested global sparsity + import torch.nn.utils.prune as prune + for name, m in model.named_modules(): + if isinstance(m, nn.Conv2d): + prune.l1_unstructured(m, name='weight', amount=amount) # prune + prune.remove(m, 'weight') # make permanent + LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity') + + +def fuse_conv_and_bn(conv, bn): + # Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ + fusedconv = nn.Conv2d(conv.in_channels, + conv.out_channels, + kernel_size=conv.kernel_size, + stride=conv.stride, + padding=conv.padding, + dilation=conv.dilation, + groups=conv.groups, + bias=True).requires_grad_(False).to(conv.weight.device) + + # Prepare filters + w_conv = conv.weight.clone().view(conv.out_channels, -1) + w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) + fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) + + # Prepare spatial bias + b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias + b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) + fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) + + return fusedconv + + +def model_info(model, verbose=False, imgsz=640): + # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] + n_p = sum(x.numel() for x in model.parameters()) # number parameters + n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients + if verbose: + print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") + for i, (name, p) in enumerate(model.named_parameters()): + name = name.replace('module_list.', '') + print('%5g %40s %9s %12g %20s %10.3g %10.3g' % + (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) + + try: # FLOPs + p = next(model.parameters()) + stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride + im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format + flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs + imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float + fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs' # 640x640 GFLOPs + except Exception: + fs = '' + + name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model' + LOGGER.info(f'{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}') + + +def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) + # Scales img(bs,3,y,x) by ratio constrained to gs-multiple + if ratio == 1.0: + return img + h, w = img.shape[2:] + s = (int(h * ratio), int(w * ratio)) # new size + img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize + if not same_shape: # pad/crop img + h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) + return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean + + +def copy_attr(a, b, include=(), exclude=()): + # Copy attributes from b to a, options to only include [...] and to exclude [...] + for k, v in b.__dict__.items(): + if (len(include) and k not in include) or k.startswith('_') or k in exclude: + continue + else: + setattr(a, k, v) + + +def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): + # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay + g = [], [], [] # optimizer parameter groups + bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() + for v in model.modules(): + for p_name, p in v.named_parameters(recurse=0): + if p_name == 'bias': # bias (no decay) + g[2].append(p) + elif p_name == 'weight' and isinstance(v, bn): # weight (no decay) + g[1].append(p) + else: + g[0].append(p) # weight (with decay) + + if name == 'Adam': + optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum + elif name == 'AdamW': + optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) + elif name == 'RMSProp': + optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) + elif name == 'SGD': + optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) + else: + raise NotImplementedError(f'Optimizer {name} not implemented.') + + optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay + optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) + LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " + f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias') + return optimizer + + +def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs): + # YOLOv5 torch.hub.load() wrapper with smart error/issue handling + if check_version(torch.__version__, '1.9.1'): + kwargs['skip_validation'] = True # validation causes GitHub API rate limit errors + if check_version(torch.__version__, '1.12.0'): + kwargs['trust_repo'] = True # argument required starting in torch 0.12 + try: + return torch.hub.load(repo, model, **kwargs) + except Exception: + return torch.hub.load(repo, model, force_reload=True, **kwargs) + + +def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True): + # Resume training from a partially trained checkpoint + best_fitness = 0.0 + start_epoch = ckpt['epoch'] + 1 + if ckpt['optimizer'] is not None: + optimizer.load_state_dict(ckpt['optimizer']) # optimizer + best_fitness = ckpt['best_fitness'] + if ema and ckpt.get('ema'): + ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA + ema.updates = ckpt['updates'] + if resume: + assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \ + f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'" + LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs') + if epochs < start_epoch: + LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") + epochs += ckpt['epoch'] # finetune additional epochs + return best_fitness, start_epoch, epochs + + +class EarlyStopping: + # YOLOv5 simple early stopper + def __init__(self, patience=30): + self.best_fitness = 0.0 # i.e. mAP + self.best_epoch = 0 + self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop + self.possible_stop = False # possible stop may occur next epoch + + def __call__(self, epoch, fitness): + if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training + self.best_epoch = epoch + self.best_fitness = fitness + delta = epoch - self.best_epoch # epochs without improvement + self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch + stop = delta >= self.patience # stop training if patience exceeded + if stop: + LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' + f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' + f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' + f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.') + return stop + + +class ModelEMA: + """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models + Keeps a moving average of everything in the model state_dict (parameters and buffers) + For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage + """ + + def __init__(self, model, decay=0.9999, tau=2000, updates=0): + # Create EMA + self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA + self.updates = updates # number of EMA updates + self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs) + for p in self.ema.parameters(): + p.requires_grad_(False) + + def update(self, model): + # Update EMA parameters + self.updates += 1 + d = self.decay(self.updates) + + msd = de_parallel(model).state_dict() # model state_dict + for k, v in self.ema.state_dict().items(): + if v.dtype.is_floating_point: # true for FP16 and FP32 + v *= d + v += (1 - d) * msd[k].detach() + # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32' + + def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): + # Update EMA attributes + copy_attr(self.ema, model, include, exclude) diff --git a/ultralytics/yolov5/utils/triton.py b/ultralytics/yolov5/utils/triton.py new file mode 100644 index 0000000..2592802 --- /dev/null +++ b/ultralytics/yolov5/utils/triton.py @@ -0,0 +1,85 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" Utils to interact with the Triton Inference Server +""" + +import typing +from urllib.parse import urlparse + +import torch + + +class TritonRemoteModel: + """ A wrapper over a model served by the Triton Inference Server. It can + be configured to communicate over GRPC or HTTP. It accepts Torch Tensors + as input and returns them as outputs. + """ + + def __init__(self, url: str): + """ + Keyword arguments: + url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000 + """ + + parsed_url = urlparse(url) + if parsed_url.scheme == 'grpc': + from tritonclient.grpc import InferenceServerClient, InferInput + + self.client = InferenceServerClient(parsed_url.netloc) # Triton GRPC client + model_repository = self.client.get_model_repository_index() + self.model_name = model_repository.models[0].name + self.metadata = self.client.get_model_metadata(self.model_name, as_json=True) + + def create_input_placeholders() -> typing.List[InferInput]: + return [ + InferInput(i['name'], [int(s) for s in i['shape']], i['datatype']) for i in self.metadata['inputs']] + + else: + from tritonclient.http import InferenceServerClient, InferInput + + self.client = InferenceServerClient(parsed_url.netloc) # Triton HTTP client + model_repository = self.client.get_model_repository_index() + self.model_name = model_repository[0]['name'] + self.metadata = self.client.get_model_metadata(self.model_name) + + def create_input_placeholders() -> typing.List[InferInput]: + return [ + InferInput(i['name'], [int(s) for s in i['shape']], i['datatype']) for i in self.metadata['inputs']] + + self._create_input_placeholders_fn = create_input_placeholders + + @property + def runtime(self): + """Returns the model runtime""" + return self.metadata.get('backend', self.metadata.get('platform')) + + def __call__(self, *args, **kwargs) -> typing.Union[torch.Tensor, typing.Tuple[torch.Tensor, ...]]: + """ Invokes the model. Parameters can be provided via args or kwargs. + args, if provided, are assumed to match the order of inputs of the model. + kwargs are matched with the model input names. + """ + inputs = self._create_inputs(*args, **kwargs) + response = self.client.infer(model_name=self.model_name, inputs=inputs) + result = [] + for output in self.metadata['outputs']: + tensor = torch.as_tensor(response.as_numpy(output['name'])) + result.append(tensor) + return result[0] if len(result) == 1 else result + + def _create_inputs(self, *args, **kwargs): + args_len, kwargs_len = len(args), len(kwargs) + if not args_len and not kwargs_len: + raise RuntimeError('No inputs provided.') + if args_len and kwargs_len: + raise RuntimeError('Cannot specify args and kwargs at the same time') + + placeholders = self._create_input_placeholders_fn() + if args_len: + if args_len != len(placeholders): + raise RuntimeError(f'Expected {len(placeholders)} inputs, got {args_len}.') + for input, value in zip(placeholders, args): + input.set_data_from_numpy(value.cpu().numpy()) + else: + for input in placeholders: + value = kwargs[input.name] + input.set_data_from_numpy(value.cpu().numpy()) + return placeholders diff --git a/ultralytics/yolov5/val.py b/ultralytics/yolov5/val.py new file mode 100644 index 0000000..d4073b4 --- /dev/null +++ b/ultralytics/yolov5/val.py @@ -0,0 +1,409 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +Validate a trained YOLOv5 detection model on a detection dataset + +Usage: + $ python val.py --weights yolov5s.pt --data coco128.yaml --img 640 + +Usage - formats: + $ python val.py --weights yolov5s.pt # PyTorch + yolov5s.torchscript # TorchScript + yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s_openvino_model # OpenVINO + yolov5s.engine # TensorRT + yolov5s.mlmodel # CoreML (macOS-only) + yolov5s_saved_model # TensorFlow SavedModel + yolov5s.pb # TensorFlow GraphDef + yolov5s.tflite # TensorFlow Lite + yolov5s_edgetpu.tflite # TensorFlow Edge TPU + yolov5s_paddle_model # PaddlePaddle +""" + +import argparse +import json +import os +import subprocess +import sys +from pathlib import Path + +import numpy as np +import torch +from tqdm import tqdm + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import DetectMultiBackend +from utils.callbacks import Callbacks +from utils.dataloaders import create_dataloader +from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements, + check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, + print_args, scale_boxes, xywh2xyxy, xyxy2xywh) +from utils.metrics import ConfusionMatrix, ap_per_class, box_iou +from utils.plots import output_to_target, plot_images, plot_val_study +from utils.torch_utils import select_device, smart_inference_mode + + +def save_one_txt(predn, save_conf, shape, file): + # Save one txt result + gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh + for *xyxy, conf, cls in predn.tolist(): + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format + with open(file, 'a') as f: + f.write(('%g ' * len(line)).rstrip() % line + '\n') + + +def save_one_json(predn, jdict, path, class_map): + # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} + image_id = int(path.stem) if path.stem.isnumeric() else path.stem + box = xyxy2xywh(predn[:, :4]) # xywh + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner + for p, b in zip(predn.tolist(), box.tolist()): + jdict.append({ + 'image_id': image_id, + 'category_id': class_map[int(p[5])], + 'bbox': [round(x, 3) for x in b], + 'score': round(p[4], 5)}) + + +def process_batch(detections, labels, iouv): + """ + Return correct prediction matrix + Arguments: + detections (array[N, 6]), x1, y1, x2, y2, conf, class + labels (array[M, 5]), class, x1, y1, x2, y2 + Returns: + correct (array[N, 10]), for 10 IoU levels + """ + correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) + iou = box_iou(labels[:, 1:], detections[:, :4]) + correct_class = labels[:, 0:1] == detections[:, 5] + for i in range(len(iouv)): + x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + # matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + correct[matches[:, 1].astype(int), i] = True + return torch.tensor(correct, dtype=torch.bool, device=iouv.device) + + +@smart_inference_mode() +def run( + data, + weights=None, # model.pt path(s) + batch_size=32, # batch size + imgsz=640, # inference size (pixels) + conf_thres=0.001, # confidence threshold + iou_thres=0.6, # NMS IoU threshold + max_det=300, # maximum detections per image + task='val', # train, val, test, speed or study + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + workers=8, # max dataloader workers (per RANK in DDP mode) + single_cls=False, # treat as single-class dataset + augment=False, # augmented inference + verbose=False, # verbose output + save_txt=False, # save results to *.txt + save_hybrid=False, # save label+prediction hybrid results to *.txt + save_conf=False, # save confidences in --save-txt labels + save_json=False, # save a COCO-JSON results file + project=ROOT / 'runs/val', # save to project/name + name='exp', # save to project/name + exist_ok=False, # existing project/name ok, do not increment + half=True, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + model=None, + dataloader=None, + save_dir=Path(''), + plots=True, + callbacks=Callbacks(), + compute_loss=None, +): + # Initialize/load model and set device + training = model is not None + if training: # called by train.py + device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model + half &= device.type != 'cpu' # half precision only supported on CUDA + model.half() if half else model.float() + else: # called directly + device = select_device(device, batch_size=batch_size) + + # Directories + save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir + + # Load model + model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) + stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine + imgsz = check_img_size(imgsz, s=stride) # check image size + half = model.fp16 # FP16 supported on limited backends with CUDA + if engine: + batch_size = model.batch_size + else: + device = model.device + if not (pt or jit): + batch_size = 1 # export.py models default to batch-size 1 + LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') + + # Data + data = check_dataset(data) # check + + # Configure + model.eval() + cuda = device.type != 'cpu' + is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset + nc = 1 if single_cls else int(data['nc']) # number of classes + iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95 + niou = iouv.numel() + + # Dataloader + if not training: + if pt and not single_cls: # check --weights are trained on --data + ncm = model.model.nc + assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \ + f'classes). Pass correct combination of --weights and --data that are trained together.' + model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup + pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks + task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images + dataloader = create_dataloader(data[task], + imgsz, + batch_size, + stride, + single_cls, + pad=pad, + rect=rect, + workers=workers, + prefix=colorstr(f'{task}: '))[0] + + seen = 0 + confusion_matrix = ConfusionMatrix(nc=nc) + names = model.names if hasattr(model, 'names') else model.module.names # get class names + if isinstance(names, (list, tuple)): # old format + names = dict(enumerate(names)) + class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) + s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95') + tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 + dt = Profile(), Profile(), Profile() # profiling times + loss = torch.zeros(3, device=device) + jdict, stats, ap, ap_class = [], [], [], [] + callbacks.run('on_val_start') + pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar + for batch_i, (im, targets, paths, shapes) in enumerate(pbar): + callbacks.run('on_val_batch_start') + with dt[0]: + if cuda: + im = im.to(device, non_blocking=True) + targets = targets.to(device) + im = im.half() if half else im.float() # uint8 to fp16/32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + nb, _, height, width = im.shape # batch size, channels, height, width + + # Inference + with dt[1]: + preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None) + + # Loss + if compute_loss: + loss += compute_loss(train_out, targets)[1] # box, obj, cls + + # NMS + targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels + lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling + with dt[2]: + preds = non_max_suppression(preds, + conf_thres, + iou_thres, + labels=lb, + multi_label=True, + agnostic=single_cls, + max_det=max_det) + + # Metrics + for si, pred in enumerate(preds): + labels = targets[targets[:, 0] == si, 1:] + nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions + path, shape = Path(paths[si]), shapes[si][0] + correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init + seen += 1 + + if npr == 0: + if nl: + stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0])) + if plots: + confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) + continue + + # Predictions + if single_cls: + pred[:, 5] = 0 + predn = pred.clone() + scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred + + # Evaluate + if nl: + tbox = xywh2xyxy(labels[:, 1:5]) # target boxes + scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels + labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels + correct = process_batch(predn, labelsn, iouv) + if plots: + confusion_matrix.process_batch(predn, labelsn) + stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls) + + # Save/log + if save_txt: + save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') + if save_json: + save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary + callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) + + # Plot images + if plots and batch_i < 3: + plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels + plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred + + callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds) + + # Compute metrics + stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy + if len(stats) and stats[0].any(): + tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) + ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 + mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() + nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class + + # Print results + pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format + LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) + if nt.sum() == 0: + LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels') + + # Print results per class + if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): + for i, c in enumerate(ap_class): + LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) + + # Print speeds + t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image + if not training: + shape = (batch_size, 3, imgsz, imgsz) + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) + + # Plots + if plots: + confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) + callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix) + + # Save JSON + if save_json and len(jdict): + w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights + anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations + pred_json = str(save_dir / f'{w}_predictions.json') # predictions + LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') + with open(pred_json, 'w') as f: + json.dump(jdict, f) + + try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb + check_requirements('pycocotools>=2.0.6') + from pycocotools.coco import COCO + from pycocotools.cocoeval import COCOeval + + anno = COCO(anno_json) # init annotations api + pred = anno.loadRes(pred_json) # init predictions api + eval = COCOeval(anno, pred, 'bbox') + if is_coco: + eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate + eval.evaluate() + eval.accumulate() + eval.summarize() + map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) + except Exception as e: + LOGGER.info(f'pycocotools unable to run: {e}') + + # Return results + model.float() # for training + if not training: + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") + maps = np.zeros(nc) + map + for i, c in enumerate(ap_class): + maps[c] = ap[i] + return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)') + parser.add_argument('--batch-size', type=int, default=32, help='batch size') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') + parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') + parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') + parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image') + parser.add_argument('--task', default='val', help='train, val, test, speed or study') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--verbose', action='store_true', help='report mAP by class') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') + parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') + parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') + opt = parser.parse_args() + opt.data = check_yaml(opt.data) # check YAML + opt.save_json |= opt.data.endswith('coco.yaml') + opt.save_txt |= opt.save_hybrid + print_args(vars(opt)) + return opt + + +def main(opt): + check_requirements(exclude=('tensorboard', 'thop')) + + if opt.task in ('train', 'val', 'test'): # run normally + if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 + LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results') + if opt.save_hybrid: + LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone') + run(**vars(opt)) + + else: + weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] + opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results + if opt.task == 'speed': # speed benchmarks + # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... + opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False + for opt.weights in weights: + run(**vars(opt), plots=False) + + elif opt.task == 'study': # speed vs mAP benchmarks + # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... + for opt.weights in weights: + f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to + x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis + for opt.imgsz in x: # img-size + LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') + r, _, t = run(**vars(opt), plots=False) + y.append(r + t) # results and times + np.savetxt(f, y, fmt='%10.4g') # save + subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt']) + plot_val_study(x=x) # plot + else: + raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")') + + +if __name__ == '__main__': + opt = parse_opt() + main(opt)

    lMJOPq4YDm?NH{;HJsA9%_=f$<$IlsqIk4Mnyf7Jlxe+66v(?+}3 z;eVkjufy-szX@U&cMWQX(8Y82@^$O8xaq5EjZnwK|MC&K4N;|s``j%L@9?xup6S|$K5+fwBW7TgkyL!Hg@CU@jd!8Sr@g8PwH9ZOp}jb4rZ67m<6RZjthJKWxRE;Jhk3-*n2ST#YU zfn2z#RYv;UHv4hM6PRUz1(LH|`?UK0^C>l8WF&W{ zgaUkIDXTLaM&}T!F7*kqu$W#%PpzK}15vF=A=C~ZbfD;4DgS8H9ySq?+a{yLXajU% z#C75*%AFNK)u$F};7<9U=LJgY#Tl6csZfl(Q=~O087H_xB+(@hMlg82v|=l6Qp=^z zbXkpk*Cy;d^_V&~(PQyIjuz&jYVMU|;#HJrWg3jzal$H_q!;b~g(TOj%d$ z5l7o{$Xw@!o&FWD?SQ$^II=;_2G@w$vw>!6{65PUd{>l!;u3U%4ogM?inTAlj??ehE> zDd6(AaOD+${s-ji#Evbc=QaBJ+ViV(=0S@$F&VBUMKLZ&=0zcjhqaH-mbhHr&>o|t z7*krcaeDy_p+p282KuXzs6c={p3Tt2uvh_g{K9z|A4RJaLguiDe z>v&nJ=Ieb!-DX)hQyK5Y;mb#KvHPFT4HZs#USmWcpd~gSAmaZr0hu_P7&+70d;IV0 zqj_n2I1&F{TYBcsNN_Hskig^ghb507k%^56Z_~W0W#d${Gz6&;=7_lubxjYONYD1ST#1+^VYuzu02$akH_`vCN3&oZr=BL&F1~4L=leteBo(| zXl(8w#?e*ML0o!Z6Sz-w(@27Xpgeqg?Syq%mVM3&dyn5h!-K4h_X zQRa^?NT~+izb(iqQCT5G;;6%D#-z@>UB|BrM+Jh zJGr@yBFfVSnu*Ll3gzGDa;9AqR*9BT8xUn?Y^i#BvJ42MiD|7vkSPKo2YlE2 z|5_rA1%?6)lR?0&uJ75&7c_A}(ASDSsg(_EG!4NxUO3xK8op4u8912AwXgS2S0LC* z$=9EYkRyj&y8V;XzDF&KogHm$0iM<;0IwX?T+`jjG}QhN>dGlLMj z-Vi{Csq?!rcKY@5dSE|Va8`fzKKL=o)d7wnt)oP(QojqCQM$cR%3!EcJ|ya%COKyX zpd|aEXeXl}vHZUQ=ZvuYA~%gBvgqo<9PC_o8T5?$t=cqdVw1~;H))O2Mt?#wE;~`0 z2!V7I20@h}ZWBi9Y`=r~fG0w7B;=KQz?+OEyLE37HYWtq$-E~b zIh&h>k91i`NwDcF*BhzPRV32>893R%(rmyepPnzIk$s)P;qL>=6a(-mDLMN#I89Yc(Qx+Ut=oa9a=#9J1-G$Ww|G}}` zA@EtkF`c#O@INe+V6kHl)8Krr!nb)@j$Hq003Naf7H0ZQy6M`?8SD61ucBSPBM9OU%Ow_s z2~?Cbd`odtJ+Oq(k+=#Oy}TztpaAw6oy%}ELy{h3<(J`yg(B8fxrLs}!3P`91!f0I zVLf%gyG1gyYGqXr#?zvC?c`b#go+M^W0?~@aAP&Oz5tGtT5aZu$cx$>y^XT|$1%To zcC$;fNtgf@@$}oBk@daFH?Gec5+NL)7k#LNhytgTi~f30C7NQVp$rN59fT`d2m(dh z!9Bx#`|O2tpff*DT8*(Q9*x0GjKZt{x_7?M2zi~e4q5qehN=>mP-W(bfOSiy)C{j~ ztZ&H!FS#8?ay5>S(VRuc%52}7Qt%dJe{1>Z(5R2;z$lSg*n+jD|Jw&xO;_192a;~M z^+1|__}eeR--{r%Kq}<626EKmWCPJ1ooWWZFxNCBxuJ$PL9pMgrhLHXw9tI%E&@c217+PSqd4YEsWoprAF>0_l zG-C3ool-(9l#87EA}Aa186PLkCeqdl%`_0jMMPwjVC4YW(>$8_nS{nH#-NfSw}zHD z;BN3YatCO=R&m5X&t-#DFFoUmELJd^)W6J$urkp^GqONrfvRV0u9Ujj4Lg%`5Q%^3 zXd#2Y{+=2cC@;$n5&*1j;nI2d<7*up-ODIscHJ!^V()>7ja8Wj5h%RTQvUkHnOFhk zYI#FkKxs4X0vp*tT4=L`Q0XMy!2fCoHrwM%m3f?>HEPmsuQL{>9fyQGYU>#qS7JGk zT8Toy^hExiyDaUikQw%090>%L$<2UdBGfKGS1GimY@-X<3fI<^2f!DVC?*HH=3>YS zUcHR~*^joO3&caWx9X$ulbc)UJC$3}DuLiv2Efb~p5QO3u+C7eKK=8X3Q7 z@;YVI3e{*SB&u1dOvAX5Ff>#M^b?9Fc^xEx5Xd)6EwC|`DKC%!12`&?MuVg&F&`SZ z9|lp)sL_i-2;yi-Pc_}Bwvyk^3HI9rkqc`vYyAc;%L*JF_$USEo$&L&6STc%PCB|#F2(PlLwu?fZu+Aq}{_5HU-mif#KeDr8U&S$(`KUt- z@+$tGX9iAeVvwF)AaIQyan!CZ0zEM~NZxf;5n2KxG+JI0iQ-dN2={M-GRC?Kw?y2Z z5w`d(8xHylhrwRfoF6-YfY*HTifj#T#YOoBX-kEsb>3-gLHN2*?X`?^+wC)wIP+eWhj#_7^=U@I7S~13%D{HGqKbV z%EHw64ugp436QzBId)RrAIP@)L~z*l@@4lQk^`} zoS1r(drDnP`7z(Tat_V#a&$>Ed-ZDL@g-*CnpFwT%=P?uw!HkEMH5Z&_5O_FwIbC- zf8afQabrh!h&aGF_UATSI;*phC>t(L{^rT2f^ka74&iFnbYJ>o@PE0q+yTOR#o&h*I zF%3>d<#vrQvBfw&4xivKa$&ivE*hR;`N zcLszLlDBpK`V%ekyHWg1t57Q9*M{t@b46$BG&ka(sy?1hV<00ZD?!F4rgJC+`#{57 z&k`oj)W7$O$*{m$umCEBr`F}*d8^o%^eEPsP@|R0o`{&z5B(V`HFmsA{U#T*;^&0| zZt zwk}UMC(qxpyN28oD6k5&&er@OJJZU{T89;G&_FLIt9Q1EzmVbqo%23kog%+f{0^wR zga>i!i6i@M5Kp$%b(oZ_qP&BE&O9gA)MZU}wNjlR*4BH>4HX9-&E;E+3_)=n#?VOE zXq?GY#K$x`tHg)5fppgGM&NFUI4Sh5+8vEu**tHp<=#8VL+XG7**c+~p#%@L{X|@w zlu)@^SQ49WqRrZIiYzM&wZ8iH_7Mm26iK~AE^F$?`@W7$+^S1BPRxw)!@c@`24H1sP~1*wZxcVzZ2wo?(lTNhv1a^2npo~QIgFCN1d<#O#f%`H$9&|P1o zcTHeY-SH7Rt(!Lmu=fXwV<$!EWB;{Kx!Y{!uL^cXJiU~@ca|XUMgq^`I74;`QCnTFxw>`~+zs9XHT?Kjd+4Qxa?xpp#2vQE zq5(*dZHf3LIIVGfna8M1?K}vOEu)rKaqK^@TngbQkqc@K5?%r19|m#J0xJg*b}%&J zkaG+`pC^R%mzws-j<3~eE3KaG zEyCN8sP<_YqTll4D#E5!)Si33!2;XgAyI0hJ8@YDj-+1dfYw>6}gEw)ISD1O00>k~OtecbUytv(UwkV@|6}QdIMhoha zn3M`qCG#&kLD#fhHnqv^^`vn0)EtD!7Wu7G;oO;*%i|n%betO3(QXi1Rm-$GVjau& z>^Cb?Y%7}9cp=5NU?2Y)#z|_qW#Ur=mwvVxu7ai?PQ9LCIoD-LUY|3Ei zL$~e=+OQ@8?gR#*mq2I}k(fw8Sb#)gr<>98&KP|Og}<31p0;Zy5YV<$aZ)Ei(cxl= zkB2qo>At`HI-lj8>nPY0*X6BO5)wTQlSX^PS+@W5jsKtPnp^E^i3%bhAO@fRx~?&C zx3_crk9Ey7&!*$1xa;j#q^_JL5GOJD1QQ;e6^Dja3irfD%0z-0Yq5#}KT?r?01z6w zPH1IC*Ab11$F3yhd$jlLH~#|^M`{lMlw!P5Nn<%0EU$C+eDd7sb_M+)H+Bb4$A{+o zmG9?k*3glPcfBb8`SKOrSuMFg8n zYEbThMviPj!y*R(LBaE>+<{o=sYz?WZd`(e_VfUL^@H15p=|H29R$BiOY+1+EY^M~ zmez*RyA4*UnjX5Ysw?EwICEUXGef_+bE5Hm1TC}>#bie=5w4y!d6v~W>EMt zr(9Y8Lo$r6q6tVBTQm&%QIr61|3SM6)?I=h!l*7eDjujxEkL zN@VJNcV7y_bF~rTiG)4sOt>~|6L9Z6{fa;aKx-MCb&Sp9k4_i-sVhX|c<9VBSDK79 zzg;1tb!=1C=-u;9ydw+t+P5`gRu&-OsAbcjuHoGxiH6?m3`~f~yM0t_4q~Wq4l^@cOj8XkK>#a{cHXH?)l|4 zith)g`U}Rt>yKIA1E|W56RCrIPO}R*BponKTQz8E12VOKOWZFQIACaCL(1H%Chw$5 z!w5e0$euA^M0li6XN{j3V9c@=-S~PJlt`K(eVFH?!I|f;PrDxcJ+Gem_c!UM0F68C zAEg@~I^AABx*7q?{yI~M2Ynnkv~qj#o6ozNiI6fkmHN%Fp!lsicu_`8H%#d`*$)e( zT~~Zw-Y6ngt`+?jgj*9<4XTQM<*gS)=E0;+M8bycu(>ij?!j>x%VE?=|Wrxsl8Y zvljU|4eaC!a4NU$q4LU!)N-W;`Il&|ABe5(o;~mn#FA(tW;vx&@nFYb`lta@}eDAZS*<^k&Uhhu2k>JVa zzZ|Sjow|5v7T%~G+cRN>g-Yb3mUvT06N!!4PQ+;Cxu+JIk(gr{6i@pt$kPU)PUx8~ zBETXFfkChK*3v>3(=d$sl1yr9w}i@hJObm<1Dlds6@sgk(7>9O&JB5UHo;*&S(NK~>j2(d-d6>kUfEKsJ5RYI-rtswci^uU($qL0_p$@Dh_hDFYS;LFexVV3R(WG$rBGZqcHFTgl&$3{iKrxW;} zCwPa|cYwt%h$Pw!8aaMY@C8)iR}e(X@$7(y{BSXX7p%XTM^f1-Wt>}kDr8`r=PDkK zLX+IArN0QqAT{t5RUNulf%<^#3sEuJob0XhPWKiUCqPo2EQ8_K^d&)WEE2?OZg3pG zMtUh!Y|r93zgscVp%lpCHKUJ(=c%EIpW-@P9@nCh%ZWJH;5k%j+>bvNaIfqm<&od4 zm#T?WTwg~@jeyMMEw+9hctEp4cb@8lfs#u(tUPi#&7PBx%N!7VV4JzK<^^Ca5*19a z62Dvo#uV*KJr$MPl0+rgYo4WutEJf)fW`mUXEC~V(#1MU#=V*p!7}0@b0vzHkuKTO zyN^DpuLR0?Ulybc#*-;=(?7uZBe?+QGi`8Pg_P^l$=V|+Gt4`bobSzS?XF8Qdy1bTMF4B$? zDtRv&?o6=)Rhr~_`3(t{?4QDAXM)IU9^}7{`M#HLj>M}5I$wCZAhH|9eq60BnPDJ7 zO^}0!7iml{Xf=?;q*63^s_~wW7~_)Voow)U96MwRnzn7b0?{Z|#D2nr<8q(m=l(7U z|B9D~7>;b_(2FqG?FE5RpBce91L3+d0O`%+IbJyqCcZ=}&lT{A)Hi+9$J!VS%@Jn9b{-pr8$;b{3T%EfhOyly?!`MM`Vm3+;FRYTpdOf}#h^4Z8z#dv;#ZhX5HW zQo{toZ#;8r=E(tD78+hpSD2`_HQwOPl;eElw8mY-*R6LFIJNub!BnVV8JL)O7`JXw zPooDl1fD{UFasqsPYf6mJR6*OrVU;V_U?$ZGc#`$pm&WL^)SZJMRr0{OkQV%zWmYVj>*+knA-Odjw8>cXs zzwf9yOX#@2c0Yr2>&E@pg<9f|yZv{kyo;&6-5!?ZKH*Bd^g%XMJVk&iFgU#p!dq}X zu{+PiClv%zPYqo~vNU%|S(*2T-V8i~ag^;H zV|HnaH9icq6LpkkpTK*~dd~K4^#8!!dg-hElMA_yUU0lj-OT*T0UUtM1t?t(+^lx~ zE61bjxwQgtYCwkWX@U+GYT*)k#^P7NJ2tU-cmEyEp|{1g+V=b)0iXCv@PI_hRTgF@ zJh5D?0=~CF%Z(6nMcRA$tN_x{%tN5*|B5Dc7#o6{p3b0U;}7DgqMDv2x(bod44$g; zLc0v~sbQT+bL-9@TY@l+Qi@oS<_?->H8p|%_!yi-xJB6Q#f;BX*pyE}If#K%U8r^> zZ3QlZPd6a(ybQo1Zw)AR+wgL-?tRMm97C|pi_DqLTFcWeqZ`6=Bx3C`|A>Ga=vX|+ zzlOy@yWA&YLM?2O$2Bw~fK01a$hRU;(4uU>mfE@eUC5wUo1Aty+v7?y()PTRd4yd_twOa0;{Po7oqXXuED)=ac^m3!JDh(7t2!aM0 zma~OSL5)(WG%$!{A_M29ISpKGy%&X!>T3_yp+hf_-Ky)MlT=4tKY##FNLtoJb!BLB zrr955H_El6w)3k<9WI_EI?wj>w`MsO6*MVL{1yGUq~In&?vtQ8(_}ES>fbvQ_{=@a zn4kj4d4z~-{kj*b^U3|G^5xyOyo!NStMiqy;u2e{6S&Ggv-(~ImG~X7R2LMHF&+oR zp-0wf;SP$8CS+9U9yy`)DDiMIzSTDl?2Ou$M0M z{9)7@8Q&fJ2G+|R9V|cz<+BA_7O2MZA#G|NFsz~PSDX-|gQrcG@mNPSeC)n0m(Inj z{p`y;d!V$N!%b(375!tQ6yP;ug<_R9@nJ8F9Y;jq@AT%2#Pu1AB=9!k%3dYQ5EU=v zJlWZlml+-FU{+6do#vV^{;(!?yMP+!D~#8f=^F2w6=v7x^m5qkx{D|X#vf?RKas+9 z^~D!{;MqUEYA-&;4&Hdpn>iJv)vKKm$a=&3>N9*AuKa~Y>TGo}5m=+}8e>4|Yyq(1 z0ffjjvp*wc5#6PiOQ0X4Q88ah*|juD#Dn#(cZyU&dA3*Ulvna_NU=I!&+h7mB9}TU$$cCALCa{4+ zu6+Nx$VnFfW!yZ0e!K1PoW{!#f=0gqWy3_BY10l8P<*vf;xZ!J+oaQV44%s41yw;g z(lT)`f^|w>Of(5Q1ycJGP0Am~v@3(6+(spid!@x_yjhe|1!w9)^rn86{{a5JkI zD`pd+npCT`b=$5luN;_2HmIrOoF@!W3Bv@z*e9H}8?6;0K#I-#+qZ1)QzyjH!I)^7 zz8%}oxW0|(B!A-q>H=rsb8p;53suP-{+F1#cJXVWQEVoj^qJzxgfyaZ@2Lv40dA!r zUrZrDzC2Z(HL|I$M6|!TaqHA@z z;3}(Fq8AU}MHs==B%|#7O|1afcvfG}9 zpZiTc)yU{Vs9$k2{6%Fy=2cV<2Hf$_sWB^rIg=48vgi5*3hqtIAD(-3$1KRo%gxWi zPT9>~R)^i#VHmh#G$}W1C4{A~fzA6l8V|%HrUe5V7!kVtR-=knHQYky)U87apDfT- zr#j2%rG#C_ASrw;Wqog47LFE6hEpLy;#VeDyCJmK>_(aI$u_6f7L*07!HXqUS#%hB zqtPaaorNeXyzaqQ2r*4l$s4m5TDF%Ig#+}yk%zLbYJmsYBemPlzX-LlvM(OsWGX1L z%nNE?CyeytClolqsKzRG8DRu)KJOP!?N(|pDg80E=`12QdEMUxIg$BqaFAcP<0&Ro zPbjp5B;gu-AS{z{g(k`iuw8|x20Nw;*NL*FWEH*ZVvBWr#rEatyub+@B?vWD>&P!vgGffUNUis0sd1tRBKqWlLb{kz>El6= zO;qW{?YXBE>Lh6E355>X=EtIjK8PIYiahk>GJ4x(Qd87|rYR8PgvvZG{OkLiBClJK z)>Zxcv#&r2HYCIqY5F5|SDBb+;9|d2kmXeGGN;lz$+|8jMvH5ooXO5SLIbrtB7R}! zi5WMbzZxET`orUC&h4v(z~{1b#LQzZ{p04vGTyQoF<3wQNw_TBL_H-%^?tqgexLUK zOgla_`j+EL)=?FjGzUYYxSuWdz$$+S#m`}q0aqW|TVv4u#jdOwrUgPH^_* zrIv$y){y0%-@*!=^gE79@m?$!8G(?CJ9SmMGkU~RfJLpnYL9PKISR;9LgN&V_S{*# zWlJKneih5TqYLcM1{FM=VlDwC4>dUFT<<^~I%rL!w)5c3lyTr?aUGG@3|B{R4wK(P$ z>DHN|luy@fsS9fkl?WEATT{}V`ZiE!FjS1l0g37X5)J?=lgyn@OeleAS{!&cSJt&y zL-#9^3Yzc7U{@-z=-%D+ST(sdt)1;VCTS3_a0Wr!OX4P*=E5v;2pY5*)1ff9i~Lxb zyGHFz7(|a`;3E^i{jNsxVx1RW`h#U)#JEtG%$V12a;)p5{}C8)Omz$IClzeByDd+Fo2o{#)nX{X4R8O3vpR?|g~n)KVp5 zJAnSQZxvr2<-(I4IfERu8mrfEuOOa7;tRFizjb5_-Xmm;G!-QLy#4XMuxXPT%)`H* zh)d6w(*$bkcfCB7UZ-ZRH98x$R;%*{n~1uF7An_ZPBn3FG@Q6Zbvw|!*^akE2by`I z1wYkrp`LYX3-RFTN}V|T z=`q`z9eRzKN_JagO2bc*^GW(!CF#Ql7V4{pV)Ns3IRnAsGoG%v&NivVrmRWZo)w@8!<7&)r*R7gs zG7=BPXzV%#-GAaqEBw;CQWb^3nC7t{jo<}Qk3EJZJ*Q;rVM;M2x8f_$SzL-gEl;L0 zg$?3nQfIb?iM0<+)`?e?)!v=jt77iC2k(ucjZ2QL!v;;T3;h5(p5_Pa=$9X@mT$qp z#^L2enWXerCyW7B(>paoZ5@{P+(D@-(;Z;+EfDS}|MIJZYJRc8q!^3I~ zLTD5=04$F0N4T$r64!ftLBA0&z`1Xy&S>)`2hXbW)8v3CmGC4!mvAEZqOroK8FlVFF?|1Xr>xB(`lN6 zEw$ivn<*@b>NHE)OqHxS1yk9?(k|nJeDgEtNubKAsd%u4cPQ20K91D`zMM zwSEFTN$2^YdmDGiiS3;8(tb0VZ517mMH!R3F4aq*IlWZrF#iDlUF zN$k*jnjoCdm`E=jChced?Ew2D139!yYvDg6Ml7!X23p;)d(zck&$gTj_XA?sVM!Ok zkrH~PmYf1sH&yx^uKVh~wO0ZGT;tbGy09c7q!EVEFK*priW1*1OKMkEj!_!K;(@)1 z=PEOum=$EY_bJ8+1{WGg28qhmP(PGq>R}uC+a96Z=cy>WXL42qpc02LCf2-i;VGt3 zCY?u9x%t%Ynk%kF%{HzyT|%{&5(mxcE|Cn{e{3lZ$OfcUEWcN}K`py@nxR~b#(y6? zsy=4hkq!grB9u8(1LK2tkc2fo#1*`-Ff^AW;sIpPCQ!r-kWv>jdE%8gC-Xx6x6|Ow zD^K;+avi7gGRm0t-jZvTKB`vbo&{)I7DwC6DUK6MQ2t}W8Cbkx_=qu!&FITBRmPm{ zge&X8omniJ0%Dcg_17-)x(YMohRB5NZFf0zIdOXwDD)AME`<+rRMWh(j@ACLW^VGVPpYk^kPrg2l-$}EN zj~Pts!e~ISE5eGX7(duDI#tp)fUYsYl~JL@wE>OkTlHYixAFZBWyxlZz3O7`O`(To z-uV=8THJq>tW;HFCORC;i(rn0$t=%;f=1Cu=RJtLF(UpjCiSthuIq9LKXW{{>BC0S z_kki8>|EBPh}?cy`wscof0Bm!LrrIM~V@W&w*TLiXc66<%YVglB&S^dJtP%%ql+WF=VzKd^c8DeEn{Dc%Tg(Qc_Bi4 zfTI!FZ-pu@IsAFfS4HpoLVW=|df>jUmya}DB)e&O0q>6y9P+BPOnN8IzYgue??Oyt zXWBCnv1al!Fm?i#|9a@e9NI;i`%j)Tf$9Wh&+3jR2D(CUI2X-O-g%fBt7^SL& ztH2|y092rZq&>Q@cctRNiE}r*8E#UO!?MahPiKHG0K=wVS_@3hGTp-$5L41>!+bET z(cFOEBF~LVpcEW3R~mMa4turweLOr*E~fJC93JEM?D+Y4y4$z?Bwt+$TfbVBWxq#BM*fgg%s` zB`Q5>kvJr2AEI~l&XH)M+m#n=_2Ic!v!cO&SXQT%5A@bW;eH*j|_E%DQELSe(8@0 za@-rGo5WdT%k5NnwU8(KLg4ChbsN~VzQW>Lg{{A<&em^sbw?&fv?o5C$bIfmfAw=y zyNm%<7!;uTTpAf#2>U`zLh4%=X=%mGMNm#d^iTrLE>CK*=;dbD2fWi3 zhpUYDe2Jtcic;LpG2v3_sb9Y-FYi6^=NUD-!VgJvo8hZh(}$sKz&^c0XXpDv9Kfw6 zlyAqR5b4Z?`zpP>Vl)oA$jCybwnW#gvA-ISD90&dg8zZV+zb=7Y?is9HxcZx)5R=c zZr8IWjvG^Y{N9G5q{}GwK=l99^YSg7EHiVcbq_-MGl67kER23YIGBrJFNU zC!hdfm!E?Xa<=j`i8L1--2`ekGMGy@z-6Pa{oL)Jfk^8)q7KbZ33enP=6PaV~ z>G5ZSi^(gbe(8)~Q=kKzqwg_nwV;^+|jLV&ORJZ1L%?kii82rJ^Jk*dy#yq*a zOr(Kk^tA?Ff!aXZqA%dX%KJ#v(%5o$hwYbEB*|8(8t!>fq7j!Hm!!d=;Q&d38k>^9 z<3#Z{Tf0OLS5Hl~_kTNAzd9gBPFBLgTlo5;=1P7}E^cbc@Pw8u=y$*26QVGN78F7U&r$UTI>)@?Ao4)30XTN8v( zX1NHii~M7fl9q_OfTsUKsW+?5JnS&H+}wMWN=al()PwNL{e7WPXU@U5d$Sm*JN%yx z*YXR0oW{;9VQx%FpS6bL+8)Z4Gq!K*MewRnP^DRmFG*j=wTPC}vh5)?r-&iL&eJj} zv$FI^sZiVTH|E8iKHk^s5;|noVMiYg0!??-o>9LEtuW9*xN@rkxQoe6I#KKNiYsdIHJ!4ALKNf zCzIBl)Y0wj(s|Z-4agjpU)G%tVuOiVYirbKeYF=rx4mwHLU0LMt3GKbOV^rIlIhwq zRPzgfA|d3G>|ObLN8>cObR?>Yh23)5kV_qfU=9D7E{s}1&}`T?iBM0za`H5!*oH+b z72cKGVypHCY!8V^vtmf#O%N~n*x0=8k|lJ-*!7r|L2j$0aK-x7}9LY=BJH zXL2{Jl+9v*^-A)o#^;Sx`A}vcKVO~*FB86G_%zaRX?|7`fX~(a9>49}m#k#C8f4Xk zt&n9)+2JGm?KWdJt)P{^I2bE*l^tl@5Jzr!l5)ZsGtLXLuMzD0<(+M^>Apqd*I+Q2 zYpMSUejI$vM>CvibZ{D;uANYlj3lby7@!7PC)ftQVzcFF=`YqEOC?cu6*)Y$fMWr%%u~sZ|`9jw!c=Z9uw|V>OX2ZD;0vt?2cZ^UR zhMA9Rrl(ipGiyX%3F|bjMoQM-!6JWoDJeP4t3?Zd4<*!3ECM+?VytN2UC}&8aCqZq zE>Bb${5i;tA#>@HfnY|ur57%RO+%O(7u;0J_;`*eYqqf&&(^ zU7py~j`Y~puwn+9W*wxsEvZP`{o!-q$I*w^-ao6|t$tIBk|W5Z1W(a)Y~II*h4QH0 zmEoUJhNQ^)_c3O(D+$y)g=h^A_l0&s)V9~vl?VL&b*kILhrXm7^) zV{nvFEOmgJ`SKp1UTlRp98`_Qm`BY39eP7*jK!aeh6lRGake_h_O3IMMx664JI03lHA zZ}*{6Pi~XT)zrDz+ogJ<=)|0T51KyuTqD{|MHkRi5}f!QC+ODk==YzYAB5gVIOKmV zb$mP^Ad>&Tqh;=5Xk=$=`hQDW-5T4rTdZh3xupaNFcSXM#jaK;;Lh=$nM?jg*s_fx z2B4H;2UF%$5t<2Dvqg||Y-c`p8>45BS1?U+bzxyeMemoMS_Z*GOoO?PkJ)^97aZ>| zFCVV&nD2+FxqifpEFNl<0+Y>@jF<_lZmVQw^ZzI=n3W`%++Hu%j;-GrQPu)ImZe1p z98@G4nf-CnS2ltm$2e&NH;6pg9GWZStV6dq4?95ttGF zg368=pF94t)@Sa&@2A+#!GgKTyjiIl0#iaqek8673KSXYg`7#E)NDyI+ z=`B&q^`Ozf8pCL=>aQKa_M|FHk|xgT1qZi8PJ-E_>9iUfP85G8Hq zN*NPFp$k(HLAk)2J&m}~4R=+mR~N09;L~8<7bEqD410It8zNCg_wf)f`121GMGgA3NY1)AH@?WA(Ky#4ooA!FwX3n!g+N9o*gSZ*PENL&LE1fpt86@mLJ0w@ zbvaO!7hMl}9o(OtN2jmISctI)B`X>iqFK}s!rU7e9iFZnRZ}`eE`fC5 z5xl}d8O#&{8VxFppq`FN%K6u_9J^*v*oj|NvWl)nh-iIik_}&=74{9mF~W3<1oqGI zRPj{-Pr^9(eEb9g-QW-=!W$QT3>BX)gLpN z+*m;h%;e9zX&0kG9hqw2Ula(uXK@j@*dwo%#4$hL@8{QDUq=Ze1ev`!Qk_NtQi4Cf zf#MA{8^YZo(rtNmTDwS4lN9T^l1Q%+4^um!|IpF)euV1N0OhDo5(2}M!ucWPgp`)% zUi=6gfqAtzJe1#E8^`y;?Z6M$=X+7-)tCn=iIQKfszf=2MOgbYg)x>1H5M4(cYapB-CS_aq?9^rrzKD$-et1cv55=G8tO;U-Gk(D;J6Ml z-je}dBLm;a;ZPTW8U5Amz&2}q*RA1UCj=>XN4Zl=G-H_I2+7OzS&)!tQHbfnhq{iG z{7(Mng@o@pYx+d5GzAjr-rXH^pIGlL8~LDZs+u+0z7q)gwO#&;AB#txHt}E@5shC1 zLqsUMh^Y$ObT0gk77(Z0DEct37_K+pIIO4+#Wps9S7y0~2#R>+&FGgrh5!N=k8GYr zXj$;!6DcFEy_u0kkl(4u=Zy|UoB#d(r_J$Y@0=E>A@~(9-4*nu6G<>0Ui>!*yJi1t z!0XjA?k_rxYdgwXD|B_}iSXu)?>&YohkJNmQ0T>g@#u?OLpYO&{PCj4HDUb)%eT)pq9hGJhiI zI`z(V-+|yn%J|z=*Q`AjG9<+d17Rxj;;2u@N_zC51|Ix5hdR}gNxCHfflnR zu{qrX9uIp0GrEFATO~IS*lm;I%r=LlR3b_}T%q^KV-c;GA|IB5mt%$|y7IKf_#`?p zWnUNAV>KhoUMz*rk1utK+oPNRq3j))M2VVp&9-gZwr$(CZSS^i+qP}n=5E`&H9d3U zOx$no#Kf6DkWmqpnf2CMneXFMUG2_iw#f|zkp4OXe9$NStQ`k zX}|+A$%v?d3mUL8j!^y02QrUVTycZBh+@CB*bJm)d12c<2iQ82OXpi!&zH_#9Fy7Ypum`>rGBxniPm;2>UYZ?YwnJ5@eiu1A$cc$J~%!fa7H%mBBARJ=T!CtuL4p zUkyA!xuDO`&G+l>OBTp_CuWht-U(=GmGR>-*Yr+kY9i`y;%dM1jtj2~Y$CWUS`4%f z;vWhpt)?^m861Ztb#73W-h8DttXoMqTS$kwox7VNYgq7vfCMN1gWtOP-kEt|p`z+% z-8<&6Eirs`Kt%ewJv>f&ZU1OBd_Ljl1}b+ew(o&QV0h5eeWmZnJOf77`S-m+iE;9& z{N{`X;?WbtxIlPOyJq7fJuiP0sdmRYPM9zPo(h1=GM-FzX8-uDH>=pm?j7br=)`u~;}w)Q5bHvcb9ivN2c+W%1?eSJ$iOBa3p|5dO2_rv{{ zJL5jNC))@e0Knfu008R$QA}fdTU&d(|25)?@AdE8bL;vae$ZN7c7SdK5~Wsmaa1{7 zZ9MOk@z%+gE0ZDB0s#OLMj${M0Hx!0m6X%*ylx{r!qcLz1z3Nilb#Lk3Wre?K$pB5 zKHq;n?nfEVYw~G%Z1gohU%&UAKlNtZm#5VggEni$ir1RAb#!rZU&z$bMI?1eEksdjutUF$bwUdQb)%AAAbLHb%CR--wGQ00BbWZQysBF^jUDJbRdMebO zzSwG>neTou@?#iiwiC5{KDoBfw%@8@41d3@fh zr}BBdUaP9A`&S-n%`$~q0OFZy6I2sfTDw(ikDi?=>ev?erE^0SG?kqd-Q=s^@|of= zwEdiq)y;5zx@p{JCEy}1Ng$4$l9w)_yyHauBCdH&lqDDRcZJVG)KW_!G-~!@7Xr{7URka)V=YeEusH=S{+UxkR z{UZ=P#f$v*zPKM)V|1*MMWju9QN7iysb$zwj+^($5KsSX{5VK z`@)Ok-dV6m#|ny!S=&VB|G^+}HlFtMU_Lg&7cQ=qLf#mOD)3>63?i3f;(Rs^@f}k@ zjQpl}lvW%LsyF-wYCxu6)q+FpXCObBhnCoewV8JH!HOEY=EK>mCLuSWJg= zH$u!lX}!tJQbT?>gh3qlttq>p4>HT*9kHF4jqwJ>XnI~AS5pAusjSsOK?d-!SB!wL z;SXz%4ooe*(LSDKQxGC`HqefLas;SU8&)pJ%J>aO;bW{&Vw39*U$H@NZIbYSBts1e1dM$0~l z7fjoL<9yDGks6q(4XLuqtL9^4hApz}eu}iQLz=!ke3&_JMGNppzYb@{oH|B2MPNia zs97XrcAUhJ_5%P2RCGA*^hmra_JO8IqtC<~6MLQo`lX&oYH}hDFO4BtV<@{krFT@v zi}?Og#T=n)40kvYqmpV(Bw!>G(XG4n_Jip!NTMcxrO`I?1L7vIU1 zuZ~X8qy(M;j)7!0`egD0&=lIh9CaE~i>g*FRw%JI3BC}o9uY4AxT^LD&j*2Tc1w}xC}fwjn~57wQ9140~`Uza65D(k=q@m2*hFc znP6#DrE0#pE`S+2@#%Oo_g0W zH#NUx?f1dcJaf?`JOTk+4t+bhy3V!Vp9cx|WN^^)UV`_(R(#;|Ib1d1T*mOtzfKj} z-C$DjuB|@ZT8HABqzOwGag&TreL(}>vm2zO5Dqrix~aBH8DCaX^n>YWz@fO`x;n?` zWp_X5f8HCm19dTO}} z(0lEYfUatUyfd+n1I`>!^}U~`fzd+k=~D}01i%Kmu7PZ@MC;X8N`1xz>lq?!CZm^C z2wi@;LtK78?uEVzi+I8K=kv8YH>YYBf{f}O>S*9`!Qi(zY1Aix20U5ZjSpY`s zD<}SUmh{{?p1?j7B5}y`=XS}!dcEeUccIAf!-Cxjo$Rl9R_A#N3}RvF z*MA_KyXc#?lNpOb^mUk~&G?el8fKN@R08Ri@%lW&a1;J*JoWO9O)~C*NC%I;UMQC( zENSX!;@IKBV3qCLZgmudWZcs~6in9Z?KRN@cWvmB&E}n9Y4h4p%Sg;sJ;qG)+M^&V z$*YbztL(+^_Vjgz#@huheR53hV84NH6~1`ixXssWP1{=f;2L-_1eQz}Og7rE5DB(N%6j zH33z(aOjfOe0Ufvssf_8fY0%C-fPc?J&voL*@sNWwV;$2OBRMADend^$TGD<1ZPyF zHMVnM6`a&+Cic=Niqf{P2dhFgna;F7>8)MT))aUd-9}cgcUONkHURQZki{fIx@Xhl za8s?ZnK_+sLL5e(K-$@=aU!8Mpmw3WP)7a2&2w|Rj3#S8Y%oDbc zhEn;IRw*%Esu<2Y%~sV`hAjG97Ki_n_3R0&(k&HQ$@dz?v-eWvLzVRTNx!-khwt6e z9_i`=g26~Fl+&l<^U1OF# z@fZaXcByV!6r|!~`bzIYT%fWoK`XhF0L{wOA@!`8VOrVht;I-DOqLI0^sU)$7;ErY zeoDtna1J8{o2UztW6t=TS~J0l_|qe8gxwO#(!uz5*lQ zcKqDI2r$+pRPe=G4-(O0a)QmT5g}*135vq8=PzJbnbUWJ*W4PtP*d0sG*Z}+X|`tq zK8DX#+e^H&vlL?Q<2!ar7^3jhXE9qp=CJX~y~LQ?GL#~I^n> zlWNBNnAh%;8hkTe>;|rgk-ZcO7Yi0D!%dw3!Q;kLyiN!TSP(eMms#42G{m7*P&1HY zg2F0<_-eRz3(rY`s|mhuua1-YD_33Uw2M?F;1mSd4)@qba0gZye-4N-&S(l+MNMT%RcnM~c2uWnfD;Ww8wH_^ z4jw}&Du3Xuf~tXyb&oJ_A+^T`wB}R(K5|koMKKDC5dP~{jn2)sNu;aE_d?wvm2S2W zdtW`}Af9WSosB7WA=6BL>{XY@7bhM9?tVBJDTWG@(KN(od4JadpMEuiSgFi;=PbUe zYcew3P*Fc4r>z2cwked)6J9F{W>j?Hge!wKswp3S?!c)gMAlY=OS?5fP_lk`vHndn z<1Ot?7l3qq?$Sw3+655!adtFva#d4C;$?&njw4V{I&{R5O& z%PAHIuzk%?6{`%Sd5kRPU(cb?*(p%EEi4wo*|&dgtx=#1_{wE}zmrP!q{^mwqqGt& z=_sRMu4xo+()CUm{`bH4!{@ECW;416u+qn)_q2wI2`=l58cY>%lp%-EG9-3DXelNZ zSm%_cgdwdQh8g^##R#fbT9*#}?8rqsZw3Y|sHBJ#7!FCM{L4x3$=IcMBcabn2{rCS zu~7hIMDHeC0BE+#b|@eOia$^CpUBuL8&qcEaibb4X@1!X9dwB2t4ksp^1f7uN>T?Z zd=v;8=H$34-IC5idm>wRx9f*=E=z=J(TNPBYWLu_Bn8|Iu5WENl{cH?kt0L{w%pQdEX;r?s?Nt$?5*lAf)-aGyW`wYJc$n5u}2L6wV{|)4v9!O|_-gIVzHXzHP}j-Ebft`bpW~& zd+P#aCaq@z@@59KdVuFIN~kdv3`j|A=`a~?)TjqsRdDwsDMrKtlZTF)R*cDQs;3&4 z3TGB}lZcD;F`))-eq9L6>FA(=jzXj|)o;1vyBCfwK!}f+Y}!Y^atIm^^MVAvWWvw_ zIpW^Xl9gr;3zZSpttBPOJ0gI}^}o269bE=2MBNWN(VmiK*%YY{8IQ%~Ck*Tsl1UYr zF<}Q6DCgs+l5$QT81=&yF2Rx+c_0A?mEX)=N;TlAAOLY~4h7sNP`H&BjsfS*w_W}- zxP`~;cuPRx9?8`Mwiw7RKLv_4hb%vjlw)@gut+?Fs-AG{a?*|_h(4<9GRnar_@@x% zynhFEF8d;=6)PO+pS;=FbwnrhL`F&hH$*$sxV!AZ+{zI#Bp}w7c6lM1r8x%S4$KTWw=Uq(*O$F9)aT{jd{&423Mr7rIU)x^9w;Dr z6~d&|e(+RTP`Q)XTY@7%iQo3_?!Rk-@nVf?!E-LXk|?O*fhGnGgB&L`l$6g68~l@h z7h#0G;7z3>Kp1TRH2$tX+KJ9%*`hLd^Q@hcA)H+Odu`Er%Q{1&d(l2%&9mpxL}9!l z=4OaDDD21rN6RSIZ5Xy$dP#O6{*xp(E$tE%4$>`O^=Jl((K3B{mZ({@f=v=QXX3fb z^+>{bU{vRFZ_d`2&4H7ioA-6AW$DehrtvQu4~|$g;ev` zey|xtz>itO0=;{!?)hD{vvKF>^hg@gV?s**%d)xx2xb$RaREZOatlEd?{|| z?@{TH@o2#7F_8rEwK@YM$5NakuGe$8GX1Eze?suu=nX^yV6az(MjiwY!{m0_3dvqx zU}_)*nURxxxVB5t0l1cAa{+UMMnI1Y+YXtbd`vXw(O~Ko03MMX5RD0BTbMTiw4j;! zW#W#AD&s`yV>|Q*ojpIJS$B&}pp_vwxUBw)Kk)!LaR!FQW|H!Rbc!o<$lts4q6@+l z!vbIlDy5)izFjcXzod$fQcOFi(hQC+S0izKPIcx>@vEvTK9@Zs6a?jc$ugZ7rui1d zcUS!S;S`mgn~EQ4W@!>=V18WB3FuB|ZPiP~=0#A63+pL;;?RgQaP72u#4!xSvAx&_ zeGc}@JU*iV(`a%f4P12IiN82l4ESNIwOQ^~FgzUL{%XWWXbbBR+n5xS7>=o{t_mLM zxjOg!?3&JR<-t}lRb*ec4V--E)%l*1x!lZlFD6#9#RUHC%h)LKi)Z~k-O?F;E^c_4 zNkd^PT#jw>syYTsf1iDHjBzQDB?L`{2fH$?hZ_z{A)XCeBY(l8A&*&yba*(-&5wa} zP>fi=#H`ONXXS&iHp|K;Oy3UFLBukefA)iKePt(IEYe`Z94o1$qKs(xG`t$_c*UAm zu^r(eozO~m}*o=>pm ze(D%sTF{*@e^?jvLOkSF#tJ+7eaYJ$64O2EjDMcqAIs*R!w9WFn4QKlC2;H~#Qr|rRI%#BO;4u0s5zB5PU>A@5x2>i