add build.yaml Dockerfile app.py document.png requirements.txt
Build-Deploy-Actions
Details
Build-Deploy-Actions
Details
This commit is contained in:
parent
85d5850f46
commit
8b248bb420
|
@ -0,0 +1,47 @@
|
||||||
|
name: Build
|
||||||
|
run-name: ${{ github.actor }} is upgrade release 🚀
|
||||||
|
on: [push]
|
||||||
|
env:
|
||||||
|
REPOSITORY: ${{ github.repository }}
|
||||||
|
COMMIT_ID: ${{ github.sha }}
|
||||||
|
jobs:
|
||||||
|
Build-Deploy-Actions:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- run: echo "🎉 The job was automatically triggered by a ${{ github.event_name }} event."
|
||||||
|
- run: echo "🐧 This job is now running on a ${{ runner.os }} server hosted by Gitea!"
|
||||||
|
- run: echo "🔎 The name of your branch is ${{ github.ref }} and your repository is ${{ github.repository }}."
|
||||||
|
- name: Check out repository code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
-
|
||||||
|
name: Setup Git LFS
|
||||||
|
run: |
|
||||||
|
git lfs install
|
||||||
|
git lfs fetch
|
||||||
|
git lfs checkout
|
||||||
|
- name: List files in the repository
|
||||||
|
run: |
|
||||||
|
ls ${{ github.workspace }}
|
||||||
|
-
|
||||||
|
name: Docker Image Info
|
||||||
|
id: image-info
|
||||||
|
run: |
|
||||||
|
echo "::set-output name=image_name::$(echo $REPOSITORY | tr '[:upper:]' '[:lower:]')"
|
||||||
|
echo "::set-output name=image_tag::${COMMIT_ID:0:10}"
|
||||||
|
-
|
||||||
|
name: Login to Docker Hub
|
||||||
|
uses: docker/login-action@v2
|
||||||
|
with:
|
||||||
|
registry: artifacts.iflytek.com
|
||||||
|
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||||
|
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||||
|
- name: Set up Docker Buildx
|
||||||
|
uses: docker/setup-buildx-action@v2
|
||||||
|
-
|
||||||
|
name: Build and push
|
||||||
|
run: |
|
||||||
|
docker version
|
||||||
|
docker buildx build -t artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }} . --file ${{ github.workspace }}/Dockerfile --load
|
||||||
|
docker push artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }}
|
||||||
|
docker rmi artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }}
|
||||||
|
- run: echo "🍏 This job's status is ${{ job.status }}."
|
|
@ -0,0 +1,18 @@
|
||||||
|
FROM python:3.8.13
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . /app
|
||||||
|
|
||||||
|
RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple
|
||||||
|
|
||||||
|
ENV PYHTONUNBUFFERED=1
|
||||||
|
RUN apt-get update && apt-get -y install tesseract-ocr
|
||||||
|
|
||||||
|
RUN pip install pyyaml==5.1
|
||||||
|
|
||||||
|
RUN pip install -r requirements.txt
|
||||||
|
|
||||||
|
RUN pip install 'git+https://ghproxy.com/https://github.com/facebookresearch/detectron2.git'
|
||||||
|
|
||||||
|
CMD ["python", "app.py"]
|
|
@ -0,0 +1,84 @@
|
||||||
|
import gradio as gr
|
||||||
|
import numpy as np
|
||||||
|
from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification
|
||||||
|
from datasets import load_dataset
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
from gradio.themes.utils import sizes
|
||||||
|
|
||||||
|
|
||||||
|
theme = gr.themes.Default(radius_size=sizes.radius_none).set(
|
||||||
|
block_label_text_color = '#4D63FF',
|
||||||
|
block_title_text_color = '#4D63FF',
|
||||||
|
button_primary_text_color = '#4D63FF',
|
||||||
|
button_primary_background_fill='#FFFFFF',
|
||||||
|
button_primary_border_color='#4D63FF',
|
||||||
|
button_primary_background_fill_hover='#EDEFFF',
|
||||||
|
)
|
||||||
|
|
||||||
|
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
||||||
|
model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd")
|
||||||
|
|
||||||
|
labels = ['O', 'B-HEADER', 'I-HEADER', 'B-QUESTION', 'I-QUESTION', 'B-ANSWER', 'I-ANSWER']
|
||||||
|
id2label = {0: 'O', 1: 'B-HEADER', 2: 'I-HEADER', 3: 'B-QUESTION', 4: 'I-QUESTION', 5: 'B-ANSWER', 6: 'I-ANSWER'}
|
||||||
|
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
|
||||||
|
|
||||||
|
def unnormalize_box(bbox, width, height):
|
||||||
|
return [
|
||||||
|
width * (bbox[0] / 1000),
|
||||||
|
height * (bbox[1] / 1000),
|
||||||
|
width * (bbox[2] / 1000),
|
||||||
|
height * (bbox[3] / 1000),
|
||||||
|
]
|
||||||
|
|
||||||
|
def iob_to_label(label):
|
||||||
|
label = label[2:]
|
||||||
|
if not label:
|
||||||
|
return 'other'
|
||||||
|
return label
|
||||||
|
|
||||||
|
def process_image(image):
|
||||||
|
width, height = image.size
|
||||||
|
|
||||||
|
# encode
|
||||||
|
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
||||||
|
offset_mapping = encoding.pop('offset_mapping')
|
||||||
|
|
||||||
|
# forward pass
|
||||||
|
outputs = model(**encoding)
|
||||||
|
|
||||||
|
# get predictions
|
||||||
|
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
||||||
|
token_boxes = encoding.bbox.squeeze().tolist()
|
||||||
|
|
||||||
|
# only keep non-subword predictions
|
||||||
|
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
||||||
|
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
||||||
|
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
||||||
|
|
||||||
|
# draw predictions over the image
|
||||||
|
draw = ImageDraw.Draw(image)
|
||||||
|
font = ImageFont.load_default()
|
||||||
|
for prediction, box in zip(true_predictions, true_boxes):
|
||||||
|
predicted_label = iob_to_label(prediction).lower()
|
||||||
|
draw.rectangle(box, outline=label2color[predicted_label])
|
||||||
|
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
|
||||||
|
|
||||||
|
return image
|
||||||
|
|
||||||
|
with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo:
|
||||||
|
gr.Markdown("""
|
||||||
|
<div align='center' ><font size='60'>文档版面分析</font></div>
|
||||||
|
""")
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column():
|
||||||
|
image_input =gr.inputs.Image(type="pil", label="图片")
|
||||||
|
with gr.Row():
|
||||||
|
button = gr.Button("提交", variant="primary")
|
||||||
|
image_output = gr.Image(label="图片")
|
||||||
|
|
||||||
|
button.click(fn=process_image, inputs=image_input, outputs=image_output)
|
||||||
|
examples = gr.Examples(examples=[['document.png']], inputs=[image_input], label="例子")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3).launch(server_name = "0.0.0.0")
|
Binary file not shown.
After Width: | Height: | Size: 22 KiB |
|
@ -0,0 +1,8 @@
|
||||||
|
pytesseract
|
||||||
|
tesseract
|
||||||
|
transformers
|
||||||
|
Pillow
|
||||||
|
torch
|
||||||
|
gradio==3.27.0
|
||||||
|
torchvision
|
||||||
|
datasets
|
Loading…
Reference in New Issue