add
Build-Deploy-Actions
Details
Build-Deploy-Actions
Details
This commit is contained in:
parent
ab527ef40c
commit
e0f3566f42
|
@ -0,0 +1,47 @@
|
|||
name: Build
|
||||
run-name: ${{ github.actor }} is upgrade release 🚀
|
||||
on: [push]
|
||||
env:
|
||||
REPOSITORY: ${{ github.repository }}
|
||||
COMMIT_ID: ${{ github.sha }}
|
||||
jobs:
|
||||
Build-Deploy-Actions:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- run: echo "🎉 The job was automatically triggered by a ${{ github.event_name }} event."
|
||||
- run: echo "🐧 This job is now running on a ${{ runner.os }} server hosted by Gitea!"
|
||||
- run: echo "🔎 The name of your branch is ${{ github.ref }} and your repository is ${{ github.repository }}."
|
||||
- name: Check out repository code
|
||||
uses: actions/checkout@v3
|
||||
-
|
||||
name: Setup Git LFS
|
||||
run: |
|
||||
git lfs install
|
||||
git lfs fetch
|
||||
git lfs checkout
|
||||
- name: List files in the repository
|
||||
run: |
|
||||
ls ${{ github.workspace }}
|
||||
-
|
||||
name: Docker Image Info
|
||||
id: image-info
|
||||
run: |
|
||||
echo "::set-output name=image_name::$(echo $REPOSITORY | tr '[:upper:]' '[:lower:]')"
|
||||
echo "::set-output name=image_tag::${COMMIT_ID:0:10}"
|
||||
-
|
||||
name: Login to Docker Hub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
registry: artifacts.iflytek.com
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
-
|
||||
name: Build and push
|
||||
run: |
|
||||
docker version
|
||||
docker buildx build -t artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }} . --file ${{ github.workspace }}/Dockerfile --load
|
||||
docker push artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }}
|
||||
docker rmi artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }}
|
||||
- run: echo "🍏 This job's status is ${{ job.status }}."
|
|
@ -0,0 +1,62 @@
|
|||
import data
|
||||
import torch
|
||||
import gradio as gr
|
||||
from models import imagebind_model
|
||||
from models.imagebind_model import ModalityType
|
||||
from gradio.themes.utils import sizes
|
||||
|
||||
|
||||
theme = gr.themes.Default(radius_size=sizes.radius_none).set(
|
||||
block_label_text_color = '#4D63FF',
|
||||
block_title_text_color = '#4D63FF',
|
||||
button_primary_text_color = '#4D63FF',
|
||||
button_primary_background_fill='#FFFFFF',
|
||||
button_primary_border_color='#4D63FF',
|
||||
button_primary_background_fill_hover='#EDEFFF',
|
||||
)
|
||||
|
||||
css = "footer {visibility: hidden}"
|
||||
|
||||
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
model = imagebind_model.imagebind_huge(pretrained=True)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
|
||||
def audio_text(audio, text_list):
|
||||
audio_paths = [audio]
|
||||
labels = [label.strip(" ") for label in text_list.strip(" ").split("|")]
|
||||
|
||||
inputs = {
|
||||
ModalityType.TEXT: data.load_and_transform_text(labels, device),
|
||||
ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device),
|
||||
}
|
||||
|
||||
with torch.no_grad():
|
||||
embeddings = model(inputs)
|
||||
|
||||
scores = torch.softmax(embeddings[ModalityType.AUDIO] @ embeddings[ModalityType.TEXT].T, dim=-1).squeeze(0).tolist()
|
||||
|
||||
score_dict = {label:score for label, score in zip(labels, scores)}
|
||||
print(score_dict)
|
||||
|
||||
return score_dict
|
||||
|
||||
with gr.Blocks(theme=theme, css=css) as demo:
|
||||
gr.Markdown("""
|
||||
<div align='center' ><font size='60'>音频分类</font></div>
|
||||
""")
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
audio = gr.inputs.Audio(type='filepath',label="音频输入")
|
||||
text = gr.inputs.Textbox(lines=1,label="类别")
|
||||
with gr.Row():
|
||||
button = gr.Button("提交", variant="primary")
|
||||
outputs = gr.Label(label="类别")
|
||||
|
||||
button.click(fn=audio_text, inputs=[audio, text], outputs=outputs)
|
||||
examples = gr.Examples(examples=[[".assets/dog_audio.wav", "A dog|A car|A bird"],[".assets/car_audio.wav", "A dog|A car|A bird"], [".assets/bird_audio.wav", "A dog|A car|A bird"]],inputs=[audio, text], label="例子")
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.queue().launch(server_name = "0.0.0.0")
|
Binary file not shown.
|
@ -0,0 +1,350 @@
|
|||
#!/usr/bin/env python3
|
||||
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchaudio
|
||||
import logging
|
||||
|
||||
from models.multimodal_preprocessors import SimpleTokenizer
|
||||
from PIL import Image
|
||||
from pytorchvideo import transforms as pv_transforms
|
||||
from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler
|
||||
from pytorchvideo.data.encoded_video import EncodedVideo
|
||||
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms._transforms_video import NormalizeVideo
|
||||
|
||||
DEFAULT_AUDIO_FRAME_SHIFT_MS = 10 # in milliseconds
|
||||
|
||||
BPE_PATH = "bpe/bpe_simple_vocab_16e6.txt.gz"
|
||||
|
||||
|
||||
def waveform2melspec(waveform, sample_rate, num_mel_bins, target_length):
|
||||
# Based on https://github.com/YuanGongND/ast/blob/d7d8b4b8e06cdaeb6c843cdb38794c1c7692234c/src/dataloader.py#L102
|
||||
waveform -= waveform.mean()
|
||||
fbank = torchaudio.compliance.kaldi.fbank(
|
||||
waveform,
|
||||
htk_compat=True,
|
||||
sample_frequency=sample_rate,
|
||||
use_energy=False,
|
||||
window_type="hanning",
|
||||
num_mel_bins=num_mel_bins,
|
||||
dither=0.0,
|
||||
frame_length=25,
|
||||
frame_shift=DEFAULT_AUDIO_FRAME_SHIFT_MS,
|
||||
)
|
||||
# Convert to [mel_bins, num_frames] shape
|
||||
fbank = fbank.transpose(0, 1)
|
||||
# Pad to target_length
|
||||
n_frames = fbank.size(1)
|
||||
p = target_length - n_frames
|
||||
# if p is too large (say >20%), flash a warning
|
||||
if abs(p) / n_frames > 0.2:
|
||||
logging.warning(
|
||||
"Large gap between audio n_frames(%d) and "
|
||||
"target_length (%d). Is the audio_target_length "
|
||||
"setting correct?",
|
||||
n_frames,
|
||||
target_length,
|
||||
)
|
||||
# cut and pad
|
||||
if p > 0:
|
||||
fbank = torch.nn.functional.pad(fbank, (0, p), mode="constant", value=0)
|
||||
elif p < 0:
|
||||
fbank = fbank[:, 0:target_length]
|
||||
# Convert to [1, mel_bins, num_frames] shape, essentially like a 1
|
||||
# channel image
|
||||
fbank = fbank.unsqueeze(0)
|
||||
return fbank
|
||||
|
||||
|
||||
def get_clip_timepoints(clip_sampler, duration):
|
||||
# Read out all clips in this video
|
||||
all_clips_timepoints = []
|
||||
is_last_clip = False
|
||||
end = 0.0
|
||||
while not is_last_clip:
|
||||
start, end, _, _, is_last_clip = clip_sampler(end, duration, annotation=None)
|
||||
all_clips_timepoints.append((start, end))
|
||||
return all_clips_timepoints
|
||||
|
||||
|
||||
def load_and_transform_vision_data(image_paths, device):
|
||||
if image_paths is None:
|
||||
return None
|
||||
|
||||
image_ouputs = []
|
||||
for image_path in image_paths:
|
||||
data_transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(
|
||||
224, interpolation=transforms.InterpolationMode.BICUBIC
|
||||
),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(
|
||||
mean=(0.48145466, 0.4578275, 0.40821073),
|
||||
std=(0.26862954, 0.26130258, 0.27577711),
|
||||
),
|
||||
]
|
||||
)
|
||||
with open(image_path, "rb") as fopen:
|
||||
image = Image.open(fopen).convert("RGB")
|
||||
|
||||
image = data_transform(image).to(device)
|
||||
image_ouputs.append(image)
|
||||
return torch.stack(image_ouputs, dim=0)
|
||||
|
||||
|
||||
def load_and_transform_text(text, device):
|
||||
if text is None:
|
||||
return None
|
||||
tokenizer = SimpleTokenizer(bpe_path=BPE_PATH)
|
||||
tokens = [tokenizer(t).unsqueeze(0).to(device) for t in text]
|
||||
tokens = torch.cat(tokens, dim=0)
|
||||
return tokens
|
||||
|
||||
|
||||
def load_and_transform_audio_data(
|
||||
audio_paths,
|
||||
device,
|
||||
num_mel_bins=128,
|
||||
target_length=204,
|
||||
sample_rate=16000,
|
||||
clip_duration=2,
|
||||
clips_per_video=3,
|
||||
mean=-4.268,
|
||||
std=9.138,
|
||||
):
|
||||
if audio_paths is None:
|
||||
return None
|
||||
|
||||
audio_outputs = []
|
||||
clip_sampler = ConstantClipsPerVideoSampler(
|
||||
clip_duration=clip_duration, clips_per_video=clips_per_video
|
||||
)
|
||||
|
||||
for audio_path in audio_paths:
|
||||
waveform, sr = torchaudio.load(audio_path)
|
||||
if sample_rate != sr:
|
||||
waveform = torchaudio.functional.resample(
|
||||
waveform, orig_freq=sr, new_freq=sample_rate
|
||||
)
|
||||
all_clips_timepoints = get_clip_timepoints(
|
||||
clip_sampler, waveform.size(1) / sample_rate
|
||||
)
|
||||
all_clips = []
|
||||
for clip_timepoints in all_clips_timepoints:
|
||||
waveform_clip = waveform[
|
||||
:,
|
||||
int(clip_timepoints[0] * sample_rate) : int(
|
||||
clip_timepoints[1] * sample_rate
|
||||
),
|
||||
]
|
||||
waveform_melspec = waveform2melspec(
|
||||
waveform_clip, sample_rate, num_mel_bins, target_length
|
||||
)
|
||||
all_clips.append(waveform_melspec)
|
||||
|
||||
normalize = transforms.Normalize(mean=mean, std=std)
|
||||
all_clips = [normalize(ac).to(device) for ac in all_clips]
|
||||
|
||||
all_clips = torch.stack(all_clips, dim=0)
|
||||
audio_outputs.append(all_clips)
|
||||
|
||||
return torch.stack(audio_outputs, dim=0)
|
||||
|
||||
|
||||
def get_clip_timepoints(clip_sampler, duration):
|
||||
# Read out all clips in this video
|
||||
all_clips_timepoints = []
|
||||
is_last_clip = False
|
||||
end = 0.0
|
||||
while not is_last_clip:
|
||||
start, end, _, _, is_last_clip = clip_sampler(end, duration, annotation=None)
|
||||
all_clips_timepoints.append((start, end))
|
||||
return all_clips_timepoints
|
||||
|
||||
|
||||
def crop_boxes(boxes, x_offset, y_offset):
|
||||
"""
|
||||
Peform crop on the bounding boxes given the offsets.
|
||||
Args:
|
||||
boxes (ndarray or None): bounding boxes to peform crop. The dimension
|
||||
is `num boxes` x 4.
|
||||
x_offset (int): cropping offset in the x axis.
|
||||
y_offset (int): cropping offset in the y axis.
|
||||
Returns:
|
||||
cropped_boxes (ndarray or None): the cropped boxes with dimension of
|
||||
`num boxes` x 4.
|
||||
"""
|
||||
cropped_boxes = boxes.copy()
|
||||
cropped_boxes[:, [0, 2]] = boxes[:, [0, 2]] - x_offset
|
||||
cropped_boxes[:, [1, 3]] = boxes[:, [1, 3]] - y_offset
|
||||
|
||||
return cropped_boxes
|
||||
|
||||
|
||||
def uniform_crop(images, size, spatial_idx, boxes=None, scale_size=None):
|
||||
"""
|
||||
Perform uniform spatial sampling on the images and corresponding boxes.
|
||||
Args:
|
||||
images (tensor): images to perform uniform crop. The dimension is
|
||||
`num frames` x `channel` x `height` x `width`.
|
||||
size (int): size of height and weight to crop the images.
|
||||
spatial_idx (int): 0, 1, or 2 for left, center, and right crop if width
|
||||
is larger than height. Or 0, 1, or 2 for top, center, and bottom
|
||||
crop if height is larger than width.
|
||||
boxes (ndarray or None): optional. Corresponding boxes to images.
|
||||
Dimension is `num boxes` x 4.
|
||||
scale_size (int): optinal. If not None, resize the images to scale_size before
|
||||
performing any crop.
|
||||
Returns:
|
||||
cropped (tensor): images with dimension of
|
||||
`num frames` x `channel` x `size` x `size`.
|
||||
cropped_boxes (ndarray or None): the cropped boxes with dimension of
|
||||
`num boxes` x 4.
|
||||
"""
|
||||
assert spatial_idx in [0, 1, 2]
|
||||
ndim = len(images.shape)
|
||||
if ndim == 3:
|
||||
images = images.unsqueeze(0)
|
||||
height = images.shape[2]
|
||||
width = images.shape[3]
|
||||
|
||||
if scale_size is not None:
|
||||
if width <= height:
|
||||
width, height = scale_size, int(height / width * scale_size)
|
||||
else:
|
||||
width, height = int(width / height * scale_size), scale_size
|
||||
images = torch.nn.functional.interpolate(
|
||||
images,
|
||||
size=(height, width),
|
||||
mode="bilinear",
|
||||
align_corners=False,
|
||||
)
|
||||
|
||||
y_offset = int(math.ceil((height - size) / 2))
|
||||
x_offset = int(math.ceil((width - size) / 2))
|
||||
|
||||
if height > width:
|
||||
if spatial_idx == 0:
|
||||
y_offset = 0
|
||||
elif spatial_idx == 2:
|
||||
y_offset = height - size
|
||||
else:
|
||||
if spatial_idx == 0:
|
||||
x_offset = 0
|
||||
elif spatial_idx == 2:
|
||||
x_offset = width - size
|
||||
cropped = images[:, :, y_offset : y_offset + size, x_offset : x_offset + size]
|
||||
cropped_boxes = crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None
|
||||
if ndim == 3:
|
||||
cropped = cropped.squeeze(0)
|
||||
return cropped, cropped_boxes
|
||||
|
||||
|
||||
class SpatialCrop(nn.Module):
|
||||
"""
|
||||
Convert the video into 3 smaller clips spatially. Must be used after the
|
||||
temporal crops to get spatial crops, and should be used with
|
||||
-2 in the spatial crop at the slowfast augmentation stage (so full
|
||||
frames are passed in here). Will return a larger list with the
|
||||
3x spatial crops as well.
|
||||
"""
|
||||
|
||||
def __init__(self, crop_size: int = 224, num_crops: int = 3):
|
||||
super().__init__()
|
||||
self.crop_size = crop_size
|
||||
if num_crops == 3:
|
||||
self.crops_to_ext = [0, 1, 2]
|
||||
self.flipped_crops_to_ext = []
|
||||
elif num_crops == 1:
|
||||
self.crops_to_ext = [1]
|
||||
self.flipped_crops_to_ext = []
|
||||
else:
|
||||
raise NotImplementedError("Nothing else supported yet")
|
||||
|
||||
def forward(self, videos):
|
||||
"""
|
||||
Args:
|
||||
videos: A list of C, T, H, W videos.
|
||||
Returns:
|
||||
videos: A list with 3x the number of elements. Each video converted
|
||||
to C, T, H', W' by spatial cropping.
|
||||
"""
|
||||
assert isinstance(videos, list), "Must be a list of videos after temporal crops"
|
||||
assert all([video.ndim == 4 for video in videos]), "Must be (C,T,H,W)"
|
||||
res = []
|
||||
for video in videos:
|
||||
for spatial_idx in self.crops_to_ext:
|
||||
res.append(uniform_crop(video, self.crop_size, spatial_idx)[0])
|
||||
if not self.flipped_crops_to_ext:
|
||||
continue
|
||||
flipped_video = transforms.functional.hflip(video)
|
||||
for spatial_idx in self.flipped_crops_to_ext:
|
||||
res.append(uniform_crop(flipped_video, self.crop_size, spatial_idx)[0])
|
||||
return res
|
||||
|
||||
|
||||
def load_and_transform_video_data(
|
||||
video_paths,
|
||||
device,
|
||||
clip_duration=2,
|
||||
clips_per_video=5,
|
||||
sample_rate=16000,
|
||||
):
|
||||
if video_paths is None:
|
||||
return None
|
||||
|
||||
video_outputs = []
|
||||
video_transform = transforms.Compose(
|
||||
[
|
||||
pv_transforms.ShortSideScale(224),
|
||||
NormalizeVideo(
|
||||
mean=(0.48145466, 0.4578275, 0.40821073),
|
||||
std=(0.26862954, 0.26130258, 0.27577711),
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
clip_sampler = ConstantClipsPerVideoSampler(
|
||||
clip_duration=clip_duration, clips_per_video=clips_per_video
|
||||
)
|
||||
frame_sampler = pv_transforms.UniformTemporalSubsample(num_samples=clip_duration)
|
||||
|
||||
for video_path in video_paths:
|
||||
video = EncodedVideo.from_path(
|
||||
video_path,
|
||||
decoder="decord",
|
||||
decode_audio=False,
|
||||
**{"sample_rate": sample_rate},
|
||||
)
|
||||
|
||||
all_clips_timepoints = get_clip_timepoints(clip_sampler, video.duration)
|
||||
|
||||
all_video = []
|
||||
for clip_timepoints in all_clips_timepoints:
|
||||
# Read the clip, get frames
|
||||
clip = video.get_clip(clip_timepoints[0], clip_timepoints[1])
|
||||
if clip is None:
|
||||
raise ValueError("No clip found")
|
||||
video_clip = frame_sampler(clip["video"])
|
||||
video_clip = video_clip / 255.0 # since this is float, need 0-1
|
||||
|
||||
all_video.append(video_clip)
|
||||
|
||||
all_video = [video_transform(clip) for clip in all_video]
|
||||
all_video = SpatialCrop(224, num_crops=3)(all_video)
|
||||
|
||||
all_video = torch.stack(all_video, dim=0)
|
||||
video_outputs.append(all_video)
|
||||
|
||||
return torch.stack(video_outputs, dim=0).to(device)
|
|
@ -0,0 +1,141 @@
|
|||
#!/usr/bin/env python3
|
||||
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import math
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class Normalize(nn.Module):
|
||||
def __init__(self, dim: int) -> None:
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, x):
|
||||
return torch.nn.functional.normalize(x, dim=self.dim, p=2)
|
||||
|
||||
|
||||
class LearnableLogitScaling(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
logit_scale_init: float = 1 / 0.07,
|
||||
learnable: bool = True,
|
||||
max_logit_scale: float = 100,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.max_logit_scale = max_logit_scale
|
||||
self.logit_scale_init = logit_scale_init
|
||||
self.learnable = learnable
|
||||
log_logit_scale = torch.ones([]) * np.log(self.logit_scale_init)
|
||||
if learnable:
|
||||
self.log_logit_scale = nn.Parameter(log_logit_scale)
|
||||
else:
|
||||
self.register_buffer("log_logit_scale", log_logit_scale)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.clip(self.log_logit_scale.exp(), max=self.max_logit_scale) * x
|
||||
|
||||
def extra_repr(self):
|
||||
st = f"logit_scale_init={self.logit_scale_init},learnable={self.learnable}, max_logit_scale={self.max_logit_scale}"
|
||||
return st
|
||||
|
||||
|
||||
class EinOpsRearrange(nn.Module):
|
||||
def __init__(self, rearrange_expr: str, **kwargs) -> None:
|
||||
super().__init__()
|
||||
self.rearrange_expr = rearrange_expr
|
||||
self.kwargs = kwargs
|
||||
|
||||
def forward(self, x):
|
||||
assert isinstance(x, torch.Tensor)
|
||||
return einops.rearrange(x, self.rearrange_expr, **self.kwargs)
|
||||
|
||||
|
||||
class VerboseNNModule(nn.Module):
|
||||
"""
|
||||
Wrapper around nn.Module that prints registered buffers and parameter names.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def get_readable_tensor_repr(name: str, tensor: torch.Tensor) -> str:
|
||||
st = (
|
||||
"("
|
||||
+ name
|
||||
+ "): "
|
||||
+ "tensor("
|
||||
+ str(tuple(tensor[1].shape))
|
||||
+ ", requires_grad="
|
||||
+ str(tensor[1].requires_grad)
|
||||
+ ")\n"
|
||||
)
|
||||
return st
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
named_modules = set()
|
||||
for p in self.named_modules():
|
||||
named_modules.update([p[0]])
|
||||
named_modules = list(named_modules)
|
||||
|
||||
string_repr = ""
|
||||
for p in self.named_parameters():
|
||||
name = p[0].split(".")[0]
|
||||
if name not in named_modules:
|
||||
string_repr += self.get_readable_tensor_repr(name, p)
|
||||
|
||||
for p in self.named_buffers():
|
||||
name = p[0].split(".")[0]
|
||||
string_repr += self.get_readable_tensor_repr(name, p)
|
||||
|
||||
return string_repr
|
||||
|
||||
|
||||
def cast_if_src_dtype(
|
||||
tensor: torch.Tensor, src_dtype: torch.dtype, tgt_dtype: torch.dtype
|
||||
):
|
||||
updated = False
|
||||
if tensor.dtype == src_dtype:
|
||||
tensor = tensor.to(dtype=tgt_dtype)
|
||||
updated = True
|
||||
return tensor, updated
|
||||
|
||||
|
||||
class QuickGELU(nn.Module):
|
||||
# From https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/clip/model.py#L166
|
||||
def forward(self, x: torch.Tensor):
|
||||
return x * torch.sigmoid(1.702 * x)
|
||||
|
||||
|
||||
class SelectElement(nn.Module):
|
||||
def __init__(self, index) -> None:
|
||||
super().__init__()
|
||||
self.index = index
|
||||
|
||||
def forward(self, x):
|
||||
assert x.ndim >= 3
|
||||
return x[:, self.index, ...]
|
||||
|
||||
|
||||
class SelectEOSAndProject(nn.Module):
|
||||
"""
|
||||
Text Pooling used in OpenCLIP
|
||||
"""
|
||||
|
||||
def __init__(self, proj: nn.Module) -> None:
|
||||
super().__init__()
|
||||
self.proj = proj
|
||||
|
||||
def forward(self, x, seq_len):
|
||||
assert x.ndim == 3
|
||||
# x is of shape B x L x D
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), seq_len]
|
||||
x = self.proj(x)
|
||||
return x
|
|
@ -0,0 +1,517 @@
|
|||
#!/usr/bin/env python3
|
||||
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
import os
|
||||
import urllib
|
||||
from functools import partial
|
||||
from types import SimpleNamespace
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.helpers import (
|
||||
EinOpsRearrange,
|
||||
LearnableLogitScaling,
|
||||
Normalize,
|
||||
SelectElement,
|
||||
SelectEOSAndProject,
|
||||
)
|
||||
from models.multimodal_preprocessors import (
|
||||
AudioPreprocessor,
|
||||
IMUPreprocessor,
|
||||
PadIm2Video,
|
||||
PatchEmbedGeneric,
|
||||
RGBDTPreprocessor,
|
||||
SpatioTemporalPosEmbeddingHelper,
|
||||
TextPreprocessor,
|
||||
ThermalPreprocessor,
|
||||
)
|
||||
|
||||
from models.transformer import MultiheadAttention, SimpleTransformer
|
||||
|
||||
|
||||
ModalityType = SimpleNamespace(
|
||||
VISION="vision",
|
||||
TEXT="text",
|
||||
AUDIO="audio",
|
||||
THERMAL="thermal",
|
||||
DEPTH="depth",
|
||||
IMU="imu",
|
||||
)
|
||||
|
||||
|
||||
class ImageBindModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
video_frames=2,
|
||||
kernel_size=(2, 14, 14),
|
||||
audio_kernel_size=16,
|
||||
audio_stride=10,
|
||||
out_embed_dim=768,
|
||||
vision_embed_dim=1024,
|
||||
vision_num_blocks=24,
|
||||
vision_num_heads=16,
|
||||
audio_embed_dim=768,
|
||||
audio_num_blocks=12,
|
||||
audio_num_heads=12,
|
||||
audio_num_mel_bins=128,
|
||||
audio_target_len=204,
|
||||
audio_drop_path=0.1,
|
||||
text_embed_dim=768,
|
||||
text_num_blocks=12,
|
||||
text_num_heads=12,
|
||||
depth_embed_dim=384,
|
||||
depth_kernel_size=16,
|
||||
depth_num_blocks=12,
|
||||
depth_num_heads=8,
|
||||
depth_drop_path=0.0,
|
||||
thermal_embed_dim=768,
|
||||
thermal_kernel_size=16,
|
||||
thermal_num_blocks=12,
|
||||
thermal_num_heads=12,
|
||||
thermal_drop_path=0.0,
|
||||
imu_embed_dim=512,
|
||||
imu_kernel_size=8,
|
||||
imu_num_blocks=6,
|
||||
imu_num_heads=8,
|
||||
imu_drop_path=0.7,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.modality_preprocessors = self._create_modality_preprocessors(
|
||||
video_frames,
|
||||
vision_embed_dim,
|
||||
kernel_size,
|
||||
text_embed_dim,
|
||||
audio_embed_dim,
|
||||
audio_kernel_size,
|
||||
audio_stride,
|
||||
audio_num_mel_bins,
|
||||
audio_target_len,
|
||||
depth_embed_dim,
|
||||
depth_kernel_size,
|
||||
thermal_embed_dim,
|
||||
thermal_kernel_size,
|
||||
imu_embed_dim,
|
||||
)
|
||||
|
||||
self.modality_trunks = self._create_modality_trunks(
|
||||
vision_embed_dim,
|
||||
vision_num_blocks,
|
||||
vision_num_heads,
|
||||
text_embed_dim,
|
||||
text_num_blocks,
|
||||
text_num_heads,
|
||||
audio_embed_dim,
|
||||
audio_num_blocks,
|
||||
audio_num_heads,
|
||||
audio_drop_path,
|
||||
depth_embed_dim,
|
||||
depth_num_blocks,
|
||||
depth_num_heads,
|
||||
depth_drop_path,
|
||||
thermal_embed_dim,
|
||||
thermal_num_blocks,
|
||||
thermal_num_heads,
|
||||
thermal_drop_path,
|
||||
imu_embed_dim,
|
||||
imu_num_blocks,
|
||||
imu_num_heads,
|
||||
imu_drop_path,
|
||||
)
|
||||
|
||||
self.modality_heads = self._create_modality_heads(
|
||||
out_embed_dim,
|
||||
vision_embed_dim,
|
||||
text_embed_dim,
|
||||
audio_embed_dim,
|
||||
depth_embed_dim,
|
||||
thermal_embed_dim,
|
||||
imu_embed_dim,
|
||||
)
|
||||
|
||||
self.modality_postprocessors = self._create_modality_postprocessors(
|
||||
out_embed_dim
|
||||
)
|
||||
|
||||
def _create_modality_preprocessors(
|
||||
self,
|
||||
video_frames=2,
|
||||
vision_embed_dim=1024,
|
||||
kernel_size=(2, 14, 14),
|
||||
text_embed_dim=768,
|
||||
audio_embed_dim=768,
|
||||
audio_kernel_size=16,
|
||||
audio_stride=10,
|
||||
audio_num_mel_bins=128,
|
||||
audio_target_len=204,
|
||||
depth_embed_dim=768,
|
||||
depth_kernel_size=16,
|
||||
thermal_embed_dim=768,
|
||||
thermal_kernel_size=16,
|
||||
imu_embed_dim=512,
|
||||
):
|
||||
rgbt_stem = PatchEmbedGeneric(
|
||||
proj_stem=[
|
||||
PadIm2Video(pad_type="repeat", ntimes=2),
|
||||
nn.Conv3d(
|
||||
in_channels=3,
|
||||
kernel_size=kernel_size,
|
||||
out_channels=vision_embed_dim,
|
||||
stride=kernel_size,
|
||||
bias=False,
|
||||
),
|
||||
]
|
||||
)
|
||||
rgbt_preprocessor = RGBDTPreprocessor(
|
||||
img_size=[3, video_frames, 224, 224],
|
||||
num_cls_tokens=1,
|
||||
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
|
||||
rgbt_stem=rgbt_stem,
|
||||
depth_stem=None,
|
||||
)
|
||||
|
||||
text_preprocessor = TextPreprocessor(
|
||||
context_length=77,
|
||||
vocab_size=49408,
|
||||
embed_dim=text_embed_dim,
|
||||
causal_masking=True,
|
||||
)
|
||||
|
||||
audio_stem = PatchEmbedGeneric(
|
||||
proj_stem=[
|
||||
nn.Conv2d(
|
||||
in_channels=1,
|
||||
kernel_size=audio_kernel_size,
|
||||
stride=audio_stride,
|
||||
out_channels=audio_embed_dim,
|
||||
bias=False,
|
||||
),
|
||||
],
|
||||
norm_layer=nn.LayerNorm(normalized_shape=audio_embed_dim),
|
||||
)
|
||||
audio_preprocessor = AudioPreprocessor(
|
||||
img_size=[1, audio_num_mel_bins, audio_target_len],
|
||||
num_cls_tokens=1,
|
||||
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
|
||||
audio_stem=audio_stem,
|
||||
)
|
||||
|
||||
depth_stem = PatchEmbedGeneric(
|
||||
[
|
||||
nn.Conv2d(
|
||||
kernel_size=depth_kernel_size,
|
||||
in_channels=1,
|
||||
out_channels=depth_embed_dim,
|
||||
stride=depth_kernel_size,
|
||||
bias=False,
|
||||
),
|
||||
],
|
||||
norm_layer=nn.LayerNorm(normalized_shape=depth_embed_dim),
|
||||
)
|
||||
|
||||
depth_preprocessor = RGBDTPreprocessor(
|
||||
img_size=[1, 224, 224],
|
||||
num_cls_tokens=1,
|
||||
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
|
||||
rgbt_stem=None,
|
||||
depth_stem=depth_stem,
|
||||
)
|
||||
|
||||
thermal_stem = PatchEmbedGeneric(
|
||||
[
|
||||
nn.Conv2d(
|
||||
kernel_size=thermal_kernel_size,
|
||||
in_channels=1,
|
||||
out_channels=thermal_embed_dim,
|
||||
stride=thermal_kernel_size,
|
||||
bias=False,
|
||||
),
|
||||
],
|
||||
norm_layer=nn.LayerNorm(normalized_shape=thermal_embed_dim),
|
||||
)
|
||||
thermal_preprocessor = ThermalPreprocessor(
|
||||
img_size=[1, 224, 224],
|
||||
num_cls_tokens=1,
|
||||
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
|
||||
thermal_stem=thermal_stem,
|
||||
)
|
||||
|
||||
imu_stem = PatchEmbedGeneric(
|
||||
[
|
||||
nn.Linear(
|
||||
in_features=48,
|
||||
out_features=imu_embed_dim,
|
||||
bias=False,
|
||||
),
|
||||
],
|
||||
norm_layer=nn.LayerNorm(normalized_shape=imu_embed_dim),
|
||||
)
|
||||
|
||||
imu_preprocessor = IMUPreprocessor(
|
||||
img_size=[6, 2000],
|
||||
num_cls_tokens=1,
|
||||
kernel_size=8,
|
||||
embed_dim=imu_embed_dim,
|
||||
pos_embed_fn=partial(SpatioTemporalPosEmbeddingHelper, learnable=True),
|
||||
imu_stem=imu_stem,
|
||||
)
|
||||
|
||||
modality_preprocessors = {
|
||||
ModalityType.VISION: rgbt_preprocessor,
|
||||
ModalityType.TEXT: text_preprocessor,
|
||||
ModalityType.AUDIO: audio_preprocessor,
|
||||
ModalityType.DEPTH: depth_preprocessor,
|
||||
ModalityType.THERMAL: thermal_preprocessor,
|
||||
ModalityType.IMU: imu_preprocessor,
|
||||
}
|
||||
|
||||
return nn.ModuleDict(modality_preprocessors)
|
||||
|
||||
def _create_modality_trunks(
|
||||
self,
|
||||
vision_embed_dim=1024,
|
||||
vision_num_blocks=24,
|
||||
vision_num_heads=16,
|
||||
text_embed_dim=768,
|
||||
text_num_blocks=12,
|
||||
text_num_heads=12,
|
||||
audio_embed_dim=768,
|
||||
audio_num_blocks=12,
|
||||
audio_num_heads=12,
|
||||
audio_drop_path=0.0,
|
||||
depth_embed_dim=768,
|
||||
depth_num_blocks=12,
|
||||
depth_num_heads=12,
|
||||
depth_drop_path=0.0,
|
||||
thermal_embed_dim=768,
|
||||
thermal_num_blocks=12,
|
||||
thermal_num_heads=12,
|
||||
thermal_drop_path=0.0,
|
||||
imu_embed_dim=512,
|
||||
imu_num_blocks=6,
|
||||
imu_num_heads=8,
|
||||
imu_drop_path=0.7,
|
||||
):
|
||||
def instantiate_trunk(
|
||||
embed_dim, num_blocks, num_heads, pre_transformer_ln, add_bias_kv, drop_path
|
||||
):
|
||||
return SimpleTransformer(
|
||||
embed_dim=embed_dim,
|
||||
num_blocks=num_blocks,
|
||||
ffn_dropout_rate=0.0,
|
||||
drop_path_rate=drop_path,
|
||||
attn_target=partial(
|
||||
MultiheadAttention,
|
||||
embed_dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
bias=True,
|
||||
add_bias_kv=add_bias_kv,
|
||||
),
|
||||
pre_transformer_layer=nn.Sequential(
|
||||
nn.LayerNorm(embed_dim, eps=1e-6)
|
||||
if pre_transformer_ln
|
||||
else nn.Identity(),
|
||||
EinOpsRearrange("b l d -> l b d"),
|
||||
),
|
||||
post_transformer_layer=EinOpsRearrange("l b d -> b l d"),
|
||||
)
|
||||
|
||||
modality_trunks = {}
|
||||
modality_trunks[ModalityType.VISION] = instantiate_trunk(
|
||||
vision_embed_dim,
|
||||
vision_num_blocks,
|
||||
vision_num_heads,
|
||||
pre_transformer_ln=True,
|
||||
add_bias_kv=False,
|
||||
drop_path=0.0,
|
||||
)
|
||||
modality_trunks[ModalityType.TEXT] = instantiate_trunk(
|
||||
text_embed_dim,
|
||||
text_num_blocks,
|
||||
text_num_heads,
|
||||
pre_transformer_ln=False,
|
||||
add_bias_kv=False,
|
||||
drop_path=0.0,
|
||||
)
|
||||
modality_trunks[ModalityType.AUDIO] = instantiate_trunk(
|
||||
audio_embed_dim,
|
||||
audio_num_blocks,
|
||||
audio_num_heads,
|
||||
pre_transformer_ln=False,
|
||||
add_bias_kv=True,
|
||||
drop_path=audio_drop_path,
|
||||
)
|
||||
modality_trunks[ModalityType.DEPTH] = instantiate_trunk(
|
||||
depth_embed_dim,
|
||||
depth_num_blocks,
|
||||
depth_num_heads,
|
||||
pre_transformer_ln=False,
|
||||
add_bias_kv=True,
|
||||
drop_path=depth_drop_path,
|
||||
)
|
||||
modality_trunks[ModalityType.THERMAL] = instantiate_trunk(
|
||||
thermal_embed_dim,
|
||||
thermal_num_blocks,
|
||||
thermal_num_heads,
|
||||
pre_transformer_ln=False,
|
||||
add_bias_kv=True,
|
||||
drop_path=thermal_drop_path,
|
||||
)
|
||||
modality_trunks[ModalityType.IMU] = instantiate_trunk(
|
||||
imu_embed_dim,
|
||||
imu_num_blocks,
|
||||
imu_num_heads,
|
||||
pre_transformer_ln=False,
|
||||
add_bias_kv=True,
|
||||
drop_path=imu_drop_path,
|
||||
)
|
||||
|
||||
return nn.ModuleDict(modality_trunks)
|
||||
|
||||
def _create_modality_heads(
|
||||
self,
|
||||
out_embed_dim,
|
||||
vision_embed_dim,
|
||||
text_embed_dim,
|
||||
audio_embed_dim,
|
||||
depth_embed_dim,
|
||||
thermal_embed_dim,
|
||||
imu_embed_dim,
|
||||
):
|
||||
modality_heads = {}
|
||||
|
||||
modality_heads[ModalityType.VISION] = nn.Sequential(
|
||||
nn.LayerNorm(normalized_shape=vision_embed_dim, eps=1e-6),
|
||||
SelectElement(index=0),
|
||||
nn.Linear(vision_embed_dim, out_embed_dim, bias=False),
|
||||
)
|
||||
|
||||
modality_heads[ModalityType.TEXT] = SelectEOSAndProject(
|
||||
proj=nn.Sequential(
|
||||
nn.LayerNorm(normalized_shape=text_embed_dim, eps=1e-6),
|
||||
nn.Linear(text_embed_dim, out_embed_dim, bias=False),
|
||||
)
|
||||
)
|
||||
|
||||
modality_heads[ModalityType.AUDIO] = nn.Sequential(
|
||||
nn.LayerNorm(normalized_shape=audio_embed_dim, eps=1e-6),
|
||||
SelectElement(index=0),
|
||||
nn.Linear(audio_embed_dim, out_embed_dim, bias=False),
|
||||
)
|
||||
|
||||
modality_heads[ModalityType.DEPTH] = nn.Sequential(
|
||||
nn.LayerNorm(normalized_shape=depth_embed_dim, eps=1e-6),
|
||||
SelectElement(index=0),
|
||||
nn.Linear(depth_embed_dim, out_embed_dim, bias=False),
|
||||
)
|
||||
|
||||
modality_heads[ModalityType.THERMAL] = nn.Sequential(
|
||||
nn.LayerNorm(normalized_shape=thermal_embed_dim, eps=1e-6),
|
||||
SelectElement(index=0),
|
||||
nn.Linear(thermal_embed_dim, out_embed_dim, bias=False),
|
||||
)
|
||||
|
||||
modality_heads[ModalityType.IMU] = nn.Sequential(
|
||||
nn.LayerNorm(normalized_shape=imu_embed_dim, eps=1e-6),
|
||||
SelectElement(index=0),
|
||||
nn.Dropout(p=0.5),
|
||||
nn.Linear(imu_embed_dim, out_embed_dim, bias=False),
|
||||
)
|
||||
|
||||
return nn.ModuleDict(modality_heads)
|
||||
|
||||
def _create_modality_postprocessors(self, out_embed_dim):
|
||||
modality_postprocessors = {}
|
||||
|
||||
modality_postprocessors[ModalityType.VISION] = Normalize(dim=-1)
|
||||
modality_postprocessors[ModalityType.TEXT] = nn.Sequential(
|
||||
Normalize(dim=-1), LearnableLogitScaling(learnable=True)
|
||||
)
|
||||
modality_postprocessors[ModalityType.AUDIO] = nn.Sequential(
|
||||
Normalize(dim=-1),
|
||||
LearnableLogitScaling(logit_scale_init=20.0, learnable=False),
|
||||
)
|
||||
modality_postprocessors[ModalityType.DEPTH] = nn.Sequential(
|
||||
Normalize(dim=-1),
|
||||
LearnableLogitScaling(logit_scale_init=5.0, learnable=False),
|
||||
)
|
||||
modality_postprocessors[ModalityType.THERMAL] = nn.Sequential(
|
||||
Normalize(dim=-1),
|
||||
LearnableLogitScaling(logit_scale_init=10.0, learnable=False),
|
||||
)
|
||||
modality_postprocessors[ModalityType.IMU] = nn.Sequential(
|
||||
Normalize(dim=-1),
|
||||
LearnableLogitScaling(logit_scale_init=5.0, learnable=False),
|
||||
)
|
||||
|
||||
return nn.ModuleDict(modality_postprocessors)
|
||||
|
||||
def forward(self, inputs):
|
||||
outputs = {}
|
||||
for modality_key, modality_value in inputs.items():
|
||||
reduce_list = (
|
||||
modality_value.ndim >= 5
|
||||
) # Audio and Video inputs consist of multiple clips
|
||||
if reduce_list:
|
||||
B, S = modality_value.shape[:2]
|
||||
modality_value = modality_value.reshape(
|
||||
B * S, *modality_value.shape[2:]
|
||||
)
|
||||
|
||||
if modality_value is not None:
|
||||
modality_value = self.modality_preprocessors[modality_key](
|
||||
**{modality_key: modality_value}
|
||||
)
|
||||
trunk_inputs = modality_value["trunk"]
|
||||
head_inputs = modality_value["head"]
|
||||
modality_value = self.modality_trunks[modality_key](**trunk_inputs)
|
||||
modality_value = self.modality_heads[modality_key](
|
||||
modality_value, **head_inputs
|
||||
)
|
||||
modality_value = self.modality_postprocessors[modality_key](
|
||||
modality_value
|
||||
)
|
||||
|
||||
if reduce_list:
|
||||
modality_value = modality_value.reshape(B, S, -1)
|
||||
modality_value = modality_value.mean(dim=1)
|
||||
|
||||
outputs[modality_key] = modality_value
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def imagebind_huge(pretrained=False):
|
||||
model = ImageBindModel(
|
||||
vision_embed_dim=1280,
|
||||
vision_num_blocks=32,
|
||||
vision_num_heads=16,
|
||||
text_embed_dim=1024,
|
||||
text_num_blocks=24,
|
||||
text_num_heads=16,
|
||||
out_embed_dim=1024,
|
||||
audio_drop_path=0.1,
|
||||
imu_drop_path=0.7,
|
||||
)
|
||||
|
||||
if pretrained:
|
||||
if not os.path.exists(".checkpoints/imagebind_huge.pth"):
|
||||
print(
|
||||
"Downloading imagebind weights to .checkpoints/imagebind_huge.pth ..."
|
||||
)
|
||||
os.makedirs(".checkpoints", exist_ok=True)
|
||||
torch.hub.download_url_to_file(
|
||||
"https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth",
|
||||
".checkpoints/imagebind_huge.pth",
|
||||
progress=True,
|
||||
)
|
||||
|
||||
model.load_state_dict(torch.load(".checkpoints/imagebind_huge.pth"))
|
||||
|
||||
return model
|
|
@ -0,0 +1,687 @@
|
|||
#!/usr/bin/env python3
|
||||
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import gzip
|
||||
import html
|
||||
import io
|
||||
import math
|
||||
from functools import lru_cache
|
||||
from typing import Callable, List, Optional
|
||||
|
||||
import ftfy
|
||||
|
||||
import numpy as np
|
||||
import regex as re
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from iopath.common.file_io import g_pathmgr
|
||||
from timm.models.layers import trunc_normal_
|
||||
|
||||
from models.helpers import cast_if_src_dtype, VerboseNNModule
|
||||
|
||||
|
||||
def get_sinusoid_encoding_table(n_position, d_hid):
|
||||
"""Sinusoid position encoding table"""
|
||||
|
||||
# TODO: make it with torch instead of numpy
|
||||
def get_position_angle_vec(position):
|
||||
return [
|
||||
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
|
||||
for hid_j in range(d_hid)
|
||||
]
|
||||
|
||||
sinusoid_table = np.array(
|
||||
[get_position_angle_vec(pos_i) for pos_i in range(n_position)]
|
||||
)
|
||||
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
||||
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
||||
|
||||
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
||||
|
||||
|
||||
def interpolate_pos_encoding_2d(target_spatial_size, pos_embed):
|
||||
N = pos_embed.shape[1]
|
||||
if N == target_spatial_size:
|
||||
return pos_embed
|
||||
dim = pos_embed.shape[-1]
|
||||
# nn.functional.interpolate doesn't work with bfloat16 so we cast to float32
|
||||
pos_embed, updated = cast_if_src_dtype(pos_embed, torch.bfloat16, torch.float32)
|
||||
pos_embed = nn.functional.interpolate(
|
||||
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(
|
||||
0, 3, 1, 2
|
||||
),
|
||||
scale_factor=math.sqrt(target_spatial_size / N),
|
||||
mode="bicubic",
|
||||
)
|
||||
if updated:
|
||||
pos_embed, _ = cast_if_src_dtype(pos_embed, torch.float32, torch.bfloat16)
|
||||
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def interpolate_pos_encoding(
|
||||
npatch_per_img,
|
||||
pos_embed,
|
||||
patches_layout,
|
||||
input_shape=None,
|
||||
first_patch_idx=1,
|
||||
):
|
||||
assert first_patch_idx == 0 or first_patch_idx == 1, "there is 1 CLS token or none"
|
||||
N = pos_embed.shape[1] - first_patch_idx # since it's 1 if cls_token exists
|
||||
if npatch_per_img == N:
|
||||
return pos_embed
|
||||
|
||||
assert (
|
||||
patches_layout[-1] == patches_layout[-2]
|
||||
), "Interpolation of pos embed not supported for non-square layouts"
|
||||
|
||||
class_emb = pos_embed[:, :first_patch_idx]
|
||||
pos_embed = pos_embed[:, first_patch_idx:]
|
||||
|
||||
if input_shape is None or patches_layout[0] == 1:
|
||||
# simple 2D pos embedding, no temporal component
|
||||
pos_embed = interpolate_pos_encoding_2d(npatch_per_img, pos_embed)
|
||||
elif patches_layout[0] > 1:
|
||||
# pos embed has a temporal component
|
||||
assert len(input_shape) == 4, "temporal interpolation not supported"
|
||||
# we only support 2D interpolation in this case
|
||||
num_frames = patches_layout[0]
|
||||
num_spatial_tokens = patches_layout[1] * patches_layout[2]
|
||||
pos_embed = pos_embed.view(1, num_frames, num_spatial_tokens, -1)
|
||||
# interpolate embedding for zeroth frame
|
||||
pos_embed = interpolate_pos_encoding_2d(
|
||||
npatch_per_img, pos_embed[0, 0, ...].unsqueeze(0)
|
||||
)
|
||||
else:
|
||||
raise ValueError("This type of interpolation isn't implemented")
|
||||
|
||||
return torch.cat((class_emb, pos_embed), dim=1)
|
||||
|
||||
|
||||
def _get_pos_embedding(
|
||||
npatch_per_img,
|
||||
pos_embed,
|
||||
patches_layout,
|
||||
input_shape,
|
||||
first_patch_idx=1,
|
||||
):
|
||||
pos_embed = interpolate_pos_encoding(
|
||||
npatch_per_img,
|
||||
pos_embed,
|
||||
patches_layout,
|
||||
input_shape=input_shape,
|
||||
first_patch_idx=first_patch_idx,
|
||||
)
|
||||
return pos_embed
|
||||
|
||||
|
||||
class PatchEmbedGeneric(nn.Module):
|
||||
"""
|
||||
PatchEmbed from Hydra
|
||||
"""
|
||||
|
||||
def __init__(self, proj_stem, norm_layer: Optional[nn.Module] = None):
|
||||
super().__init__()
|
||||
|
||||
if len(proj_stem) > 1:
|
||||
self.proj = nn.Sequential(*proj_stem)
|
||||
else:
|
||||
# Special case to be able to load pre-trained models that were
|
||||
# trained with a standard stem
|
||||
self.proj = proj_stem[0]
|
||||
self.norm_layer = norm_layer
|
||||
|
||||
def get_patch_layout(self, img_size):
|
||||
with torch.no_grad():
|
||||
dummy_img = torch.zeros(
|
||||
[
|
||||
1,
|
||||
]
|
||||
+ img_size
|
||||
)
|
||||
dummy_out = self.proj(dummy_img)
|
||||
embed_dim = dummy_out.shape[1]
|
||||
patches_layout = tuple(dummy_out.shape[2:])
|
||||
num_patches = np.prod(patches_layout)
|
||||
return patches_layout, num_patches, embed_dim
|
||||
|
||||
def forward(self, x):
|
||||
x = self.proj(x)
|
||||
# B C (T) H W -> B (T)HW C
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
if self.norm_layer is not None:
|
||||
x = self.norm_layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class SpatioTemporalPosEmbeddingHelper(VerboseNNModule):
|
||||
def __init__(
|
||||
self,
|
||||
patches_layout: List,
|
||||
num_patches: int,
|
||||
num_cls_tokens: int,
|
||||
embed_dim: int,
|
||||
learnable: bool,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.num_cls_tokens = num_cls_tokens
|
||||
self.patches_layout = patches_layout
|
||||
self.num_patches = num_patches
|
||||
self.num_tokens = num_cls_tokens + num_patches
|
||||
self.learnable = learnable
|
||||
if self.learnable:
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim))
|
||||
trunc_normal_(self.pos_embed, std=0.02)
|
||||
else:
|
||||
self.register_buffer(
|
||||
"pos_embed", get_sinusoid_encoding_table(self.num_tokens, embed_dim)
|
||||
)
|
||||
|
||||
def get_pos_embedding(self, vision_input, all_vision_tokens):
|
||||
input_shape = vision_input.shape
|
||||
pos_embed = _get_pos_embedding(
|
||||
all_vision_tokens.size(1) - self.num_cls_tokens,
|
||||
pos_embed=self.pos_embed,
|
||||
patches_layout=self.patches_layout,
|
||||
input_shape=input_shape,
|
||||
first_patch_idx=self.num_cls_tokens,
|
||||
)
|
||||
return pos_embed
|
||||
|
||||
|
||||
class RGBDTPreprocessor(VerboseNNModule):
|
||||
def __init__(
|
||||
self,
|
||||
rgbt_stem: PatchEmbedGeneric,
|
||||
depth_stem: PatchEmbedGeneric,
|
||||
img_size: List = (3, 224, 224),
|
||||
num_cls_tokens: int = 1,
|
||||
pos_embed_fn: Callable = None,
|
||||
use_type_embed: bool = False,
|
||||
init_param_style: str = "openclip",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
stem = rgbt_stem if rgbt_stem is not None else depth_stem
|
||||
(
|
||||
self.patches_layout,
|
||||
self.num_patches,
|
||||
self.embed_dim,
|
||||
) = stem.get_patch_layout(img_size)
|
||||
self.rgbt_stem = rgbt_stem
|
||||
self.depth_stem = depth_stem
|
||||
self.use_pos_embed = pos_embed_fn is not None
|
||||
self.use_type_embed = use_type_embed
|
||||
self.num_cls_tokens = num_cls_tokens
|
||||
|
||||
if self.use_pos_embed:
|
||||
self.pos_embedding_helper = pos_embed_fn(
|
||||
patches_layout=self.patches_layout,
|
||||
num_cls_tokens=num_cls_tokens,
|
||||
num_patches=self.num_patches,
|
||||
embed_dim=self.embed_dim,
|
||||
)
|
||||
if self.num_cls_tokens > 0:
|
||||
self.cls_token = nn.Parameter(
|
||||
torch.zeros(1, self.num_cls_tokens, self.embed_dim)
|
||||
)
|
||||
if self.use_type_embed:
|
||||
self.type_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
|
||||
|
||||
self.init_parameters(init_param_style)
|
||||
|
||||
@torch.no_grad()
|
||||
def init_parameters(self, init_param_style):
|
||||
if init_param_style == "openclip":
|
||||
# OpenCLIP style initialization
|
||||
scale = self.embed_dim**-0.5
|
||||
if self.use_pos_embed:
|
||||
nn.init.normal_(self.pos_embedding_helper.pos_embed)
|
||||
self.pos_embedding_helper.pos_embed *= scale
|
||||
|
||||
if self.num_cls_tokens > 0:
|
||||
nn.init.normal_(self.cls_token)
|
||||
self.cls_token *= scale
|
||||
elif init_param_style == "vit":
|
||||
self.cls_token.data.fill_(0)
|
||||
else:
|
||||
raise ValueError(f"Unknown init {init_param_style}")
|
||||
|
||||
if self.use_type_embed:
|
||||
nn.init.normal_(self.type_embed)
|
||||
|
||||
def tokenize_input_and_cls_pos(self, input, stem, mask):
|
||||
# tokens is of shape B x L x D
|
||||
tokens = stem(input)
|
||||
assert tokens.ndim == 3
|
||||
assert tokens.shape[2] == self.embed_dim
|
||||
B = tokens.shape[0]
|
||||
if self.num_cls_tokens > 0:
|
||||
class_tokens = self.cls_token.expand(
|
||||
B, -1, -1
|
||||
) # stole class_tokens impl from Phil Wang, thanks
|
||||
tokens = torch.cat((class_tokens, tokens), dim=1)
|
||||
if self.use_pos_embed:
|
||||
pos_embed = self.pos_embedding_helper.get_pos_embedding(input, tokens)
|
||||
tokens = tokens + pos_embed
|
||||
if self.use_type_embed:
|
||||
tokens = tokens + self.type_embed.expand(B, -1, -1)
|
||||
return tokens
|
||||
|
||||
def forward(self, vision=None, depth=None, patch_mask=None):
|
||||
if patch_mask is not None:
|
||||
raise NotImplementedError()
|
||||
|
||||
if vision is not None:
|
||||
vision_tokens = self.tokenize_input_and_cls_pos(
|
||||
vision, self.rgbt_stem, patch_mask
|
||||
)
|
||||
|
||||
if depth is not None:
|
||||
depth_tokens = self.tokenize_input_and_cls_pos(
|
||||
depth, self.depth_stem, patch_mask
|
||||
)
|
||||
|
||||
# aggregate tokens
|
||||
if vision is not None and depth is not None:
|
||||
final_tokens = vision_tokens + depth_tokens
|
||||
else:
|
||||
final_tokens = vision_tokens if vision is not None else depth_tokens
|
||||
return_dict = {
|
||||
"trunk": {
|
||||
"tokens": final_tokens,
|
||||
},
|
||||
"head": {},
|
||||
}
|
||||
return return_dict
|
||||
|
||||
|
||||
class AudioPreprocessor(RGBDTPreprocessor):
|
||||
def __init__(self, audio_stem: PatchEmbedGeneric, **kwargs) -> None:
|
||||
super().__init__(rgbt_stem=audio_stem, depth_stem=None, **kwargs)
|
||||
|
||||
def forward(self, audio=None):
|
||||
return super().forward(vision=audio)
|
||||
|
||||
|
||||
class ThermalPreprocessor(RGBDTPreprocessor):
|
||||
def __init__(self, thermal_stem: PatchEmbedGeneric, **kwargs) -> None:
|
||||
super().__init__(rgbt_stem=thermal_stem, depth_stem=None, **kwargs)
|
||||
|
||||
def forward(self, thermal=None):
|
||||
return super().forward(vision=thermal)
|
||||
|
||||
|
||||
def build_causal_attention_mask(context_length):
|
||||
# lazily create causal attention mask, with full attention between the vision tokens
|
||||
# pytorch uses additive attention mask; fill with -inf
|
||||
mask = torch.empty(context_length, context_length, requires_grad=False)
|
||||
mask.fill_(float("-inf"))
|
||||
mask.triu_(1) # zero out the lower diagonal
|
||||
return mask
|
||||
|
||||
|
||||
class TextPreprocessor(VerboseNNModule):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
context_length: int,
|
||||
embed_dim: int,
|
||||
causal_masking: bool,
|
||||
supply_seq_len_to_head: bool = True,
|
||||
num_cls_tokens: int = 0,
|
||||
init_param_style: str = "openclip",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.vocab_size = vocab_size
|
||||
self.context_length = context_length
|
||||
self.token_embedding = nn.Embedding(vocab_size, embed_dim)
|
||||
self.pos_embed = nn.Parameter(
|
||||
torch.empty(1, self.context_length + num_cls_tokens, embed_dim)
|
||||
)
|
||||
self.causal_masking = causal_masking
|
||||
if self.causal_masking:
|
||||
mask = build_causal_attention_mask(self.context_length)
|
||||
# register the mask as a buffer so it can be moved to the right device
|
||||
self.register_buffer("mask", mask)
|
||||
|
||||
self.supply_seq_len_to_head = supply_seq_len_to_head
|
||||
self.num_cls_tokens = num_cls_tokens
|
||||
self.embed_dim = embed_dim
|
||||
if num_cls_tokens > 0:
|
||||
assert self.causal_masking is False, "Masking + CLS token isn't implemented"
|
||||
self.cls_token = nn.Parameter(
|
||||
torch.zeros(1, self.num_cls_tokens, embed_dim)
|
||||
)
|
||||
|
||||
self.init_parameters(init_param_style)
|
||||
|
||||
@torch.no_grad()
|
||||
def init_parameters(self, init_param_style="openclip"):
|
||||
# OpenCLIP style initialization
|
||||
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
||||
nn.init.normal_(self.pos_embed, std=0.01)
|
||||
|
||||
if init_param_style == "openclip":
|
||||
# OpenCLIP style initialization
|
||||
scale = self.embed_dim**-0.5
|
||||
if self.num_cls_tokens > 0:
|
||||
nn.init.normal_(self.cls_token)
|
||||
self.cls_token *= scale
|
||||
elif init_param_style == "vit":
|
||||
self.cls_token.data.fill_(0)
|
||||
else:
|
||||
raise ValueError(f"Unknown init {init_param_style}")
|
||||
|
||||
def forward(self, text):
|
||||
# text tokens are of shape B x L x D
|
||||
text_tokens = self.token_embedding(text)
|
||||
# concat CLS tokens if any
|
||||
if self.num_cls_tokens > 0:
|
||||
B = text_tokens.shape[0]
|
||||
class_tokens = self.cls_token.expand(
|
||||
B, -1, -1
|
||||
) # stole class_tokens impl from Phil Wang, thanks
|
||||
text_tokens = torch.cat((class_tokens, text_tokens), dim=1)
|
||||
text_tokens = text_tokens + self.pos_embed
|
||||
return_dict = {
|
||||
"trunk": {
|
||||
"tokens": text_tokens,
|
||||
},
|
||||
"head": {},
|
||||
}
|
||||
# Compute sequence length after adding CLS tokens
|
||||
if self.supply_seq_len_to_head:
|
||||
text_lengths = text.argmax(dim=-1)
|
||||
return_dict["head"] = {
|
||||
"seq_len": text_lengths,
|
||||
}
|
||||
if self.causal_masking:
|
||||
return_dict["trunk"].update({"attn_mask": self.mask})
|
||||
return return_dict
|
||||
|
||||
|
||||
class Im2Video(nn.Module):
|
||||
"""Convert an image into a trivial video."""
|
||||
|
||||
def __init__(self, time_dim=2):
|
||||
super().__init__()
|
||||
self.time_dim = time_dim
|
||||
|
||||
def forward(self, x):
|
||||
if x.ndim == 4:
|
||||
# B, C, H, W -> B, C, T, H, W
|
||||
return x.unsqueeze(self.time_dim)
|
||||
elif x.ndim == 5:
|
||||
return x
|
||||
else:
|
||||
raise ValueError(f"Dimension incorrect {x.shape}")
|
||||
|
||||
|
||||
class PadIm2Video(Im2Video):
|
||||
def __init__(self, ntimes, pad_type, time_dim=2):
|
||||
super().__init__(time_dim=time_dim)
|
||||
assert ntimes > 0
|
||||
assert pad_type in ["zero", "repeat"]
|
||||
self.ntimes = ntimes
|
||||
self.pad_type = pad_type
|
||||
|
||||
def forward(self, x):
|
||||
x = super().forward(x)
|
||||
if x.shape[self.time_dim] == 1:
|
||||
if self.pad_type == "repeat":
|
||||
new_shape = [1] * len(x.shape)
|
||||
new_shape[self.time_dim] = self.ntimes
|
||||
x = x.repeat(new_shape)
|
||||
elif self.pad_type == "zero":
|
||||
padarg = [0, 0] * len(x.shape)
|
||||
padarg[2 * self.time_dim + 1] = self.ntimes - x.shape[self.time_dim]
|
||||
x = nn.functional.pad(x, padarg)
|
||||
return x
|
||||
|
||||
|
||||
# Modified from github.com/openai/CLIP
|
||||
@lru_cache()
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = (
|
||||
list(range(ord("!"), ord("~") + 1))
|
||||
+ list(range(ord("¡"), ord("¬") + 1))
|
||||
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||
)
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
def get_pairs(word):
|
||||
"""Return set of symbol pairs in a word.
|
||||
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||||
"""
|
||||
pairs = set()
|
||||
prev_char = word[0]
|
||||
for char in word[1:]:
|
||||
pairs.add((prev_char, char))
|
||||
prev_char = char
|
||||
return pairs
|
||||
|
||||
|
||||
def basic_clean(text):
|
||||
text = ftfy.fix_text(text)
|
||||
text = html.unescape(html.unescape(text))
|
||||
return text.strip()
|
||||
|
||||
|
||||
def whitespace_clean(text):
|
||||
text = re.sub(r"\s+", " ", text)
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
|
||||
class SimpleTokenizer(object):
|
||||
def __init__(self, bpe_path: str, context_length=77):
|
||||
self.byte_encoder = bytes_to_unicode()
|
||||
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
||||
|
||||
with g_pathmgr.open(bpe_path, "rb") as fh:
|
||||
bpe_bytes = io.BytesIO(fh.read())
|
||||
merges = gzip.open(bpe_bytes).read().decode("utf-8").split("\n")
|
||||
merges = merges[1 : 49152 - 256 - 2 + 1]
|
||||
merges = [tuple(merge.split()) for merge in merges]
|
||||
vocab = list(bytes_to_unicode().values())
|
||||
vocab = vocab + [v + "</w>" for v in vocab]
|
||||
for merge in merges:
|
||||
vocab.append("".join(merge))
|
||||
vocab.extend(["<|startoftext|>", "<|endoftext|>"])
|
||||
self.encoder = dict(zip(vocab, range(len(vocab))))
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||||
self.cache = {
|
||||
"<|startoftext|>": "<|startoftext|>",
|
||||
"<|endoftext|>": "<|endoftext|>",
|
||||
}
|
||||
self.pat = re.compile(
|
||||
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
||||
re.IGNORECASE,
|
||||
)
|
||||
self.context_length = context_length
|
||||
|
||||
def bpe(self, token):
|
||||
if token in self.cache:
|
||||
return self.cache[token]
|
||||
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
||||
pairs = get_pairs(word)
|
||||
|
||||
if not pairs:
|
||||
return token + "</w>"
|
||||
|
||||
while True:
|
||||
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
first, second = bigram
|
||||
new_word = []
|
||||
i = 0
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
i += 2
|
||||
else:
|
||||
new_word.append(word[i])
|
||||
i += 1
|
||||
new_word = tuple(new_word)
|
||||
word = new_word
|
||||
if len(word) == 1:
|
||||
break
|
||||
else:
|
||||
pairs = get_pairs(word)
|
||||
word = " ".join(word)
|
||||
self.cache[token] = word
|
||||
return word
|
||||
|
||||
def encode(self, text):
|
||||
bpe_tokens = []
|
||||
text = whitespace_clean(basic_clean(text)).lower()
|
||||
for token in re.findall(self.pat, text):
|
||||
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
|
||||
bpe_tokens.extend(
|
||||
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
|
||||
)
|
||||
return bpe_tokens
|
||||
|
||||
def decode(self, tokens):
|
||||
text = "".join([self.decoder[token] for token in tokens])
|
||||
text = (
|
||||
bytearray([self.byte_decoder[c] for c in text])
|
||||
.decode("utf-8", errors="replace")
|
||||
.replace("</w>", " ")
|
||||
)
|
||||
return text
|
||||
|
||||
def __call__(self, texts, context_length=None):
|
||||
if not context_length:
|
||||
context_length = self.context_length
|
||||
|
||||
if isinstance(texts, str):
|
||||
texts = [texts]
|
||||
|
||||
sot_token = self.encoder["<|startoftext|>"]
|
||||
eot_token = self.encoder["<|endoftext|>"]
|
||||
all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts]
|
||||
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
||||
|
||||
for i, tokens in enumerate(all_tokens):
|
||||
tokens = tokens[:context_length]
|
||||
result[i, : len(tokens)] = torch.tensor(tokens)
|
||||
|
||||
if len(result) == 1:
|
||||
return result[0]
|
||||
return result
|
||||
|
||||
|
||||
class IMUPreprocessor(VerboseNNModule):
|
||||
def __init__(
|
||||
self,
|
||||
kernel_size: int,
|
||||
imu_stem: PatchEmbedGeneric,
|
||||
embed_dim: int,
|
||||
img_size: List = (6, 2000),
|
||||
num_cls_tokens: int = 1,
|
||||
pos_embed_fn: Callable = None,
|
||||
init_param_style: str = "openclip",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
stem = imu_stem
|
||||
self.imu_stem = imu_stem
|
||||
self.embed_dim = embed_dim
|
||||
self.use_pos_embed = pos_embed_fn is not None
|
||||
self.num_cls_tokens = num_cls_tokens
|
||||
self.kernel_size = kernel_size
|
||||
self.pos_embed = nn.Parameter(
|
||||
torch.empty(1, (img_size[1] // kernel_size) + num_cls_tokens, embed_dim)
|
||||
)
|
||||
|
||||
if self.num_cls_tokens > 0:
|
||||
self.cls_token = nn.Parameter(
|
||||
torch.zeros(1, self.num_cls_tokens, self.embed_dim)
|
||||
)
|
||||
|
||||
self.init_parameters(init_param_style)
|
||||
|
||||
@torch.no_grad()
|
||||
def init_parameters(self, init_param_style):
|
||||
nn.init.normal_(self.pos_embed, std=0.01)
|
||||
|
||||
if init_param_style == "openclip":
|
||||
# OpenCLIP style initialization
|
||||
scale = self.embed_dim**-0.5
|
||||
|
||||
if self.num_cls_tokens > 0:
|
||||
nn.init.normal_(self.cls_token)
|
||||
self.cls_token *= scale
|
||||
elif init_param_style == "vit":
|
||||
self.cls_token.data.fill_(0)
|
||||
else:
|
||||
raise ValueError(f"Unknown init {init_param_style}")
|
||||
|
||||
def tokenize_input_and_cls_pos(self, input, stem):
|
||||
# tokens is of shape B x L x D
|
||||
tokens = stem.norm_layer(stem.proj(input))
|
||||
assert tokens.ndim == 3
|
||||
assert tokens.shape[2] == self.embed_dim
|
||||
B = tokens.shape[0]
|
||||
if self.num_cls_tokens > 0:
|
||||
class_tokens = self.cls_token.expand(
|
||||
B, -1, -1
|
||||
) # stole class_tokens impl from Phil Wang, thanks
|
||||
tokens = torch.cat((class_tokens, tokens), dim=1)
|
||||
if self.use_pos_embed:
|
||||
tokens = tokens + self.pos_embed
|
||||
return tokens
|
||||
|
||||
def forward(self, imu):
|
||||
# Patchify
|
||||
imu = imu.unfold(
|
||||
-1,
|
||||
self.kernel_size,
|
||||
self.kernel_size,
|
||||
).permute(0, 2, 1, 3)
|
||||
imu = imu.reshape(imu.size(0), imu.size(1), -1)
|
||||
|
||||
imu_tokens = self.tokenize_input_and_cls_pos(
|
||||
imu,
|
||||
self.imu_stem,
|
||||
)
|
||||
|
||||
return_dict = {
|
||||
"trunk": {
|
||||
"tokens": imu_tokens,
|
||||
},
|
||||
"head": {},
|
||||
}
|
||||
return return_dict
|
|
@ -0,0 +1,284 @@
|
|||
#!/usr/bin/env python3
|
||||
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# Code modified from
|
||||
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py ;
|
||||
# https://github.com/facebookresearch/deit/blob/main/models.py
|
||||
# and https://github.com/facebookresearch/vissl/blob/main/vissl/models/trunks/vision_transformer.py
|
||||
|
||||
|
||||
import copy
|
||||
import fnmatch
|
||||
import logging
|
||||
from functools import partial
|
||||
from typing import Callable, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
|
||||
from timm.models.layers import DropPath, trunc_normal_
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
attn_drop=0.0,
|
||||
proj_drop=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version,
|
||||
# can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x):
|
||||
B, N, C = x.shape
|
||||
qkv = (
|
||||
self.qkv(x)
|
||||
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
||||
.permute(2, 0, 3, 1, 4)
|
||||
)
|
||||
q, k, v = (
|
||||
qkv[0],
|
||||
qkv[1],
|
||||
qkv[2],
|
||||
) # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Mlp(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
drop=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class MultiheadAttention(nn.MultiheadAttention):
|
||||
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
|
||||
return super().forward(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
|
||||
|
||||
|
||||
class ViTAttention(Attention):
|
||||
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
|
||||
assert attn_mask is None
|
||||
return super().forward(x)
|
||||
|
||||
|
||||
class BlockWithMasking(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
attn_target: Callable,
|
||||
mlp_ratio: int = 4,
|
||||
act_layer: Callable = nn.GELU,
|
||||
norm_layer: Callable = nn.LayerNorm,
|
||||
ffn_dropout_rate: float = 0.0,
|
||||
drop_path: float = 0.0,
|
||||
layer_scale_type: str = None,
|
||||
layer_scale_init_value: float = 1e-4,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
assert not isinstance(
|
||||
attn_target, nn.Module
|
||||
), "attn_target should be a Callable. Otherwise attn_target is shared across blocks!"
|
||||
self.attn = attn_target()
|
||||
if drop_path > 0.0:
|
||||
self.drop_path = DropPath(drop_path)
|
||||
else:
|
||||
self.drop_path = nn.Identity()
|
||||
self.norm_1 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(mlp_ratio * dim)
|
||||
self.mlp = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=ffn_dropout_rate,
|
||||
)
|
||||
self.norm_2 = norm_layer(dim)
|
||||
self.layer_scale_type = layer_scale_type
|
||||
if self.layer_scale_type is not None:
|
||||
assert self.layer_scale_type in [
|
||||
"per_channel",
|
||||
"scalar",
|
||||
], f"Found Layer scale type {self.layer_scale_type}"
|
||||
if self.layer_scale_type == "per_channel":
|
||||
# one gamma value per channel
|
||||
gamma_shape = [1, 1, dim]
|
||||
elif self.layer_scale_type == "scalar":
|
||||
# single gamma value for all channels
|
||||
gamma_shape = [1, 1, 1]
|
||||
# two gammas: for each part of the fwd in the encoder
|
||||
self.layer_scale_gamma1 = nn.Parameter(
|
||||
torch.ones(size=gamma_shape) * layer_scale_init_value,
|
||||
requires_grad=True,
|
||||
)
|
||||
self.layer_scale_gamma2 = nn.Parameter(
|
||||
torch.ones(size=gamma_shape) * layer_scale_init_value,
|
||||
requires_grad=True,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
|
||||
if self.layer_scale_type is None:
|
||||
x = x + self.drop_path(self.attn(self.norm_1(x), attn_mask))
|
||||
x = x + self.drop_path(self.mlp(self.norm_2(x)))
|
||||
else:
|
||||
x = (
|
||||
x
|
||||
+ self.drop_path(self.attn(self.norm_1(x), attn_mask))
|
||||
* self.layer_scale_gamma1
|
||||
)
|
||||
x = x + self.drop_path(self.mlp(self.norm_2(x))) * self.layer_scale_gamma2
|
||||
return x
|
||||
|
||||
|
||||
_LAYER_NORM = partial(nn.LayerNorm, eps=1e-6)
|
||||
|
||||
|
||||
class SimpleTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
attn_target: Callable,
|
||||
embed_dim: int,
|
||||
num_blocks: int,
|
||||
block: Callable = BlockWithMasking,
|
||||
pre_transformer_layer: Callable = None,
|
||||
post_transformer_layer: Callable = None,
|
||||
drop_path_rate: float = 0.0,
|
||||
drop_path_type: str = "progressive",
|
||||
norm_layer: Callable = _LAYER_NORM,
|
||||
mlp_ratio: int = 4,
|
||||
ffn_dropout_rate: float = 0.0,
|
||||
layer_scale_type: str = None, # from cait; possible values are None, "per_channel", "scalar"
|
||||
layer_scale_init_value: float = 1e-4, # from cait; float
|
||||
weight_init_style: str = "jax", # possible values jax or pytorch
|
||||
):
|
||||
"""
|
||||
Simple Transformer with the following features
|
||||
1. Supports masked attention
|
||||
2. Supports DropPath
|
||||
3. Supports LayerScale
|
||||
4. Supports Dropout in Attention and FFN
|
||||
5. Makes few assumptions about the input except that it is a Tensor
|
||||
"""
|
||||
super().__init__()
|
||||
self.pre_transformer_layer = pre_transformer_layer
|
||||
if drop_path_type == "progressive":
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_blocks)]
|
||||
elif drop_path_type == "uniform":
|
||||
dpr = [drop_path_rate for i in range(num_blocks)]
|
||||
else:
|
||||
raise ValueError(f"Unknown drop_path_type: {drop_path_type}")
|
||||
|
||||
self.blocks = nn.Sequential(
|
||||
*[
|
||||
block(
|
||||
dim=embed_dim,
|
||||
attn_target=attn_target,
|
||||
mlp_ratio=mlp_ratio,
|
||||
ffn_dropout_rate=ffn_dropout_rate,
|
||||
drop_path=dpr[i],
|
||||
norm_layer=norm_layer,
|
||||
layer_scale_type=layer_scale_type,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
)
|
||||
for i in range(num_blocks)
|
||||
]
|
||||
)
|
||||
self.post_transformer_layer = post_transformer_layer
|
||||
self.weight_init_style = weight_init_style
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
if self.weight_init_style == "jax":
|
||||
# Based on MAE and official Jax ViT implementation
|
||||
torch.nn.init.xavier_uniform_(m.weight)
|
||||
elif self.weight_init_style == "pytorch":
|
||||
# PyTorch ViT uses trunc_normal_
|
||||
trunc_normal_(m.weight, std=0.02)
|
||||
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, (nn.LayerNorm)):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tokens: torch.Tensor,
|
||||
attn_mask: torch.Tensor = None,
|
||||
use_checkpoint: bool = False,
|
||||
checkpoint_every_n: int = 1,
|
||||
checkpoint_blk_ids: List[int] = None,
|
||||
):
|
||||
"""
|
||||
Inputs
|
||||
- tokens: data of shape N x L x D (or L x N x D depending on the attention implementation)
|
||||
- attn: mask of shape L x L
|
||||
|
||||
Output
|
||||
- x: data of shape N x L x D (or L x N x D depending on the attention implementation)
|
||||
"""
|
||||
if self.pre_transformer_layer:
|
||||
tokens = self.pre_transformer_layer(tokens)
|
||||
if use_checkpoint and checkpoint_blk_ids is None:
|
||||
checkpoint_blk_ids = [
|
||||
blk_id
|
||||
for blk_id in range(len(self.blocks))
|
||||
if blk_id % checkpoint_every_n == 0
|
||||
]
|
||||
if checkpoint_blk_ids:
|
||||
checkpoint_blk_ids = set(checkpoint_blk_ids)
|
||||
for blk_id, blk in enumerate(self.blocks):
|
||||
if use_checkpoint and blk_id in checkpoint_blk_ids:
|
||||
tokens = checkpoint.checkpoint(
|
||||
blk, tokens, attn_mask, use_reentrant=False
|
||||
)
|
||||
else:
|
||||
tokens = blk(tokens, attn_mask=attn_mask)
|
||||
if self.post_transformer_layer:
|
||||
tokens = self.post_transformer_layer(tokens)
|
||||
return tokens
|
|
@ -0,0 +1,11 @@
|
|||
torch==1.13
|
||||
torchvision==0.14.0
|
||||
torchaudio==0.13.0
|
||||
timm==0.6.7
|
||||
ftfy
|
||||
regex
|
||||
einops
|
||||
fvcore
|
||||
decord==0.6.0
|
||||
gradio
|
||||
pytorchvideo
|
Loading…
Reference in New Issue