from transformers import AutoProcessor, AutoModelForCausalLM from huggingface_hub import hf_hub_download from PIL import Image import gradio as gr import torch from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) processor = AutoProcessor.from_pretrained("microsoft/git-large-vqav2") model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-vqav2") def vqa(image, question): inp = Image.fromarray(image.astype('uint8'), 'RGB') pixel_values = processor(images=inp, return_tensors="pt").pixel_values input_ids = processor(text=question, add_special_tokens=False).input_ids input_ids = [processor.tokenizer.cls_token_id] + input_ids input_ids = torch.tensor(input_ids).unsqueeze(0) generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) return processor.batch_decode(generated_ids, skip_special_tokens=True) with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo: gr.Markdown("""