add
Build-Deploy-Actions
Details
Build-Deploy-Actions
Details
This commit is contained in:
parent
5dc4bca349
commit
1858d53837
|
@ -0,0 +1,47 @@
|
|||
name: Build
|
||||
run-name: ${{ github.actor }} is upgrade release 🚀
|
||||
on: [push]
|
||||
env:
|
||||
REPOSITORY: ${{ github.repository }}
|
||||
COMMIT_ID: ${{ github.sha }}
|
||||
jobs:
|
||||
Build-Deploy-Actions:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- run: echo "🎉 The job was automatically triggered by a ${{ github.event_name }} event."
|
||||
- run: echo "🐧 This job is now running on a ${{ runner.os }} server hosted by Gitea!"
|
||||
- run: echo "🔎 The name of your branch is ${{ github.ref }} and your repository is ${{ github.repository }}."
|
||||
- name: Check out repository code
|
||||
uses: actions/checkout@v3
|
||||
-
|
||||
name: Setup Git LFS
|
||||
run: |
|
||||
git lfs install
|
||||
git lfs fetch
|
||||
git lfs checkout
|
||||
- name: List files in the repository
|
||||
run: |
|
||||
ls ${{ github.workspace }}
|
||||
-
|
||||
name: Docker Image Info
|
||||
id: image-info
|
||||
run: |
|
||||
echo "::set-output name=image_name::$(echo $REPOSITORY | tr '[:upper:]' '[:lower:]')"
|
||||
echo "::set-output name=image_tag::${COMMIT_ID:0:10}"
|
||||
-
|
||||
name: Login to Docker Hub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
registry: artifacts.iflytek.com
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
-
|
||||
name: Build and push
|
||||
run: |
|
||||
docker version
|
||||
docker buildx build -t artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }} . --file ${{ github.workspace }}/Dockerfile --load
|
||||
docker push artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }}
|
||||
docker rmi artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }}
|
||||
- run: echo "🍏 This job's status is ${{ job.status }}."
|
|
@ -0,0 +1,69 @@
|
|||
MODEL:
|
||||
MASK_ON: True
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
||||
PIXEL_STD: [58.395, 57.120, 57.375]
|
||||
BACKBONE:
|
||||
NAME: "build_vit_fpn_backbone"
|
||||
VIT:
|
||||
OUT_FEATURES: ["layer3", "layer5", "layer7", "layer11"]
|
||||
DROP_PATH: 0.1
|
||||
IMG_SIZE: [224,224]
|
||||
POS_TYPE: "abs"
|
||||
FPN:
|
||||
IN_FEATURES: ["layer3", "layer5", "layer7", "layer11"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
||||
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
||||
RPN:
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
||||
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
||||
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
||||
# Detectron1 uses 2000 proposals per-batch,
|
||||
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
||||
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
||||
POST_NMS_TOPK_TRAIN: 1000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "StandardROIHeads"
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
||||
NUM_CLASSES: 5
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
ROI_MASK_HEAD:
|
||||
NAME: "MaskRCNNConvUpsampleHead"
|
||||
NUM_CONV: 4
|
||||
POOLER_RESOLUTION: 14
|
||||
DATASETS:
|
||||
TRAIN: ("publaynet_train",)
|
||||
TEST: ("publaynet_val",)
|
||||
SOLVER:
|
||||
LR_SCHEDULER_NAME: "WarmupCosineLR"
|
||||
AMP:
|
||||
ENABLED: True
|
||||
OPTIMIZER: "ADAMW"
|
||||
BACKBONE_MULTIPLIER: 1.0
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
CLIP_TYPE: "full_model"
|
||||
CLIP_VALUE: 1.0
|
||||
NORM_TYPE: 2.0
|
||||
WARMUP_FACTOR: 0.01
|
||||
BASE_LR: 0.0004
|
||||
WEIGHT_DECAY: 0.05
|
||||
IMS_PER_BATCH: 32
|
||||
INPUT:
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TYPE: "absolute_range"
|
||||
SIZE: (384, 600)
|
||||
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
|
||||
FORMAT: "RGB"
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
||||
VERSION: 2
|
||||
AUG:
|
||||
DETR: True
|
||||
SEED: 42
|
|
@ -0,0 +1,27 @@
|
|||
# FROM python:3.9
|
||||
# COPY . /app
|
||||
# WORKDIR /app
|
||||
# RUN pip install --trusted-host pypi.python.org -r requirements.txt
|
||||
# CMD python app.py
|
||||
|
||||
# Use an official Python runtime as a parent image
|
||||
FROM python:3.7.4-slim
|
||||
RUN sed -i 's#http://deb.debian.org#https://mirrors.ustc.edu.cn#g' /etc/apt/sources.list && sed -i 's|security.debian.org/debian-security|mirrors.ustc.edu.cn/debian-security|g' /etc/apt/sources.list
|
||||
|
||||
WORKDIR /app
|
||||
COPY requirements.txt /app
|
||||
RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/
|
||||
|
||||
RUN apt update && apt install -y libgl1-mesa-glx libglib2.0-0 build-essential
|
||||
RUN pip3 install --trusted-host pypi.python.org -r requirements.txt
|
||||
RUN python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html
|
||||
# Set the working directory to /app
|
||||
|
||||
|
||||
# Copy the current directory contents into the container at /app
|
||||
COPY . /app
|
||||
|
||||
|
||||
# Run main.py when the container launches
|
||||
CMD ["python", "app.py"]
|
|
@ -0,0 +1,80 @@
|
|||
import os
|
||||
|
||||
import sys
|
||||
sys.path.append("unilm")
|
||||
|
||||
import cv2
|
||||
|
||||
from unilm.dit.object_detection.ditod import add_vit_config
|
||||
|
||||
import torch
|
||||
|
||||
from detectron2.config import CfgNode as CN
|
||||
from detectron2.config import get_cfg
|
||||
from detectron2.utils.visualizer import ColorMode, Visualizer
|
||||
from detectron2.data import MetadataCatalog
|
||||
from detectron2.engine import DefaultPredictor
|
||||
|
||||
import gradio as gr
|
||||
from gradio.themes.utils import sizes
|
||||
|
||||
|
||||
theme = gr.themes.Default(radius_size=sizes.radius_none).set(
|
||||
block_label_text_color = '#4D63FF',
|
||||
block_title_text_color = '#4D63FF',
|
||||
button_primary_text_color = '#4D63FF',
|
||||
button_primary_background_fill='#FFFFFF',
|
||||
button_primary_border_color='#4D63FF',
|
||||
button_primary_background_fill_hover='#EDEFFF',
|
||||
)
|
||||
|
||||
|
||||
# Step 1: instantiate config
|
||||
cfg = get_cfg()
|
||||
add_vit_config(cfg)
|
||||
cfg.merge_from_file("cascade_dit_base.yml")
|
||||
|
||||
# Step 2: add model weights URL to config
|
||||
cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth"
|
||||
|
||||
# Step 3: set device
|
||||
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# Step 4: define model
|
||||
predictor = DefaultPredictor(cfg)
|
||||
|
||||
|
||||
def analyze_image(img):
|
||||
md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
|
||||
if cfg.DATASETS.TEST[0]=='icdar2019_test':
|
||||
md.set(thing_classes=["table"])
|
||||
else:
|
||||
md.set(thing_classes=["text","title","list","table","figure"])
|
||||
|
||||
output = predictor(img)["instances"]
|
||||
v = Visualizer(img[:, :, ::-1],
|
||||
md,
|
||||
scale=1.0,
|
||||
instance_mode=ColorMode.SEGMENTATION)
|
||||
result = v.draw_instance_predictions(output.to("cpu"))
|
||||
result_image = result.get_image()[:, :, ::-1]
|
||||
|
||||
return result_image
|
||||
|
||||
|
||||
with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo:
|
||||
gr.Markdown("""
|
||||
<div align='center' ><font size='60'>版面分析</font></div>
|
||||
""")
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
image = gr.Image(label="图片", type="numpy")
|
||||
with gr.Row():
|
||||
button = gr.Button("提交", variant="primary")
|
||||
box2 = gr.Image(label="图片", type="numpy")
|
||||
|
||||
button.click(fn=analyze_image, inputs=[image], outputs=box2)
|
||||
examples = gr.Examples(examples=[['publaynet_example.jpeg']], inputs=[image], label="例子")
|
||||
|
||||
|
||||
demo.launch(server_name = "0.0.0.0")
|
|
@ -0,0 +1,20 @@
|
|||
_BASE_: "Base-RCNN-FPN.yml"
|
||||
MODEL:
|
||||
PIXEL_MEAN: [ 127.5, 127.5, 127.5 ]
|
||||
PIXEL_STD: [ 127.5, 127.5, 127.5 ]
|
||||
WEIGHTS: "https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth"
|
||||
VIT:
|
||||
NAME: "dit_base_patch16"
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
WARMUP_ITERS: 1000
|
||||
IMS_PER_BATCH: 16
|
||||
MAX_ITER: 60000
|
||||
CHECKPOINT_PERIOD: 2000
|
||||
TEST:
|
||||
EVAL_PERIOD: 2000
|
Binary file not shown.
After Width: | Height: | Size: 319 KiB |
|
@ -0,0 +1,3 @@
|
|||
gradio
|
||||
opencv-python
|
||||
shapely
|
|
@ -0,0 +1 @@
|
|||
Subproject commit b5b99a36ab8ea83ef64d1efaa307133184243c57
|
Loading…
Reference in New Issue