import gradio as gr from transformers import pipeline, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) modelName="distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(modelName) model = AutoModelForSequenceClassification.from_pretrained(modelName) sentimentPipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) def sentiment_analysis(text): results = sentimentPipeline(text) return f"Sentiment: {results[0].get('label')}, Score: {results[0].get('score'):.2f}" with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo: gr.Markdown("""