#全景分割 from PIL import Image import io import matplotlib.pyplot as plt import torch import torchvision.transforms as T import numpy import gradio as gr import itertools import seaborn as sns from panopticapi.utils import rgb2id from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) # These are the COCO classes CLASSES = [ 'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # Detectron2 uses a different numbering scheme, we build a conversion table coco2d2 = {} count = 0 for i, c in enumerate(CLASSES): if c != "N/A": coco2d2[i] = count count+=1 # Draw the bounding boxes on image. def fig2img(fig): buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img # Draw the bounding boxes. def visualize_prediction(result): palette = itertools.cycle(sns.color_palette()) # The segmentation is stored in a special-format png panoptic_seg = Image.open(io.BytesIO(result['png_string'])) panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8).copy() # We retrieve the ids corresponding to each mask panoptic_seg_id = rgb2id(panoptic_seg) # Finally we color each mask individually panoptic_seg[:, :, :] = 0 for id in range(panoptic_seg_id.max() + 1): panoptic_seg[panoptic_seg_id == id] = numpy.asarray(next(palette)) * 255 plt.figure(figsize=(15,15)) plt.imshow(panoptic_seg) plt.axis('off') return fig2img(plt.gcf()) model, postprocessor = torch.hub.load('facebookresearch/detr', 'detr_resnet101_panoptic', pretrained=True, return_postprocessor=True, num_classes=250) transform = T.Compose([ T.Resize(800), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) model.eval(); def detect_objects(image_input): model.eval(); # if image comes from upload if image_input: image = image_input # mean-std normalize the input image (batch-size: 1) img = transform(image).unsqueeze(0) out = model(img) # the post-processor expects as input the target size of the predictions (which we set here to the image size) result = postprocessor(out, torch.as_tensor(img.shape[-2:]).unsqueeze(0))[0] #Visualize prediction viz_img = visualize_prediction(result) return viz_img with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo: gr.Markdown("""
全景分割
""") with gr.Row(): with gr.Column(): image = gr.Image(label="图片", type="pil") with gr.Row(): button = gr.Button("提交", variant="primary") box2 = gr.Image(label="图片") button.click(fn=detect_objects, inputs=[image], outputs=box2) examples = gr.Examples(examples=[['1.jpg'], ['2.jpg']], inputs=[image], label="例子") if __name__ == '__main__': demo.queue().launch(server_name = "0.0.0.0")