add
Build-Deploy-Actions Details

This commit is contained in:
songw 2023-04-21 15:35:49 +08:00
parent cea412b3f2
commit 535fc25d23
7 changed files with 168 additions and 0 deletions

View File

@ -0,0 +1,47 @@
name: Build
run-name: ${{ github.actor }} is upgrade release 🚀
on: [push]
env:
REPOSITORY: ${{ github.repository }}
COMMIT_ID: ${{ github.sha }}
jobs:
Build-Deploy-Actions:
runs-on: ubuntu-latest
steps:
- run: echo "🎉 The job was automatically triggered by a ${{ github.event_name }} event."
- run: echo "🐧 This job is now running on a ${{ runner.os }} server hosted by Gitea!"
- run: echo "🔎 The name of your branch is ${{ github.ref }} and your repository is ${{ github.repository }}."
- name: Check out repository code
uses: actions/checkout@v3
-
name: Setup Git LFS
run: |
git lfs install
git lfs fetch
git lfs checkout
- name: List files in the repository
run: |
ls ${{ github.workspace }}
-
name: Docker Image Info
id: image-info
run: |
echo "::set-output name=image_name::$(echo $REPOSITORY | tr '[:upper:]' '[:lower:]')"
echo "::set-output name=image_tag::${COMMIT_ID:0:10}"
-
name: Login to Docker Hub
uses: docker/login-action@v2
with:
registry: artifacts.iflytek.com
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Build and push
run: |
docker version
docker buildx build -t artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }} . --file ${{ github.workspace }}/Dockerfile --load
docker push artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }}
docker rmi artifacts.iflytek.com/docker-private/atp/${{ steps.image-info.outputs.image_name }}:${{ steps.image-info.outputs.image_tag }}
- run: echo "🍏 This job's status is ${{ job.status }}."

BIN
1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 122 KiB

BIN
2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 138 KiB

BIN
3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

13
Dockerfile Normal file
View File

@ -0,0 +1,13 @@
FROM python:3.7.4-slim
WORKDIR /app
COPY requirements.txt /app
RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/
RUN pip3 install --trusted-host pypi.python.org -r requirements.txt
COPY . /app
CMD ["python", "app.py"]

99
app.py Normal file
View File

@ -0,0 +1,99 @@
#目标检测
import io
import gradio as gr
import matplotlib.pyplot as plt
import torch
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection
from gradio.themes.utils import sizes
theme = gr.themes.Default(radius_size=sizes.radius_none).set(
block_label_text_color = '#4D63FF',
block_title_text_color = '#4D63FF',
button_primary_text_color = '#4D63FF',
button_primary_background_fill='#FFFFFF',
button_primary_border_color='#4D63FF',
button_primary_background_fill_hover='#EDEFFF',
)
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs[0]
def detect_objects(image_input):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
# if image comes from upload
if image_input:
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, 0.7, model.config.id2label)
return viz_img
# visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
# Draw the bounding boxes on image.
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
# Draw the bounding boxes.
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo:
gr.Markdown("""
<div align='center' ><font size='60'>目标检测</font></div>
""")
with gr.Row():
with gr.Column():
image = gr.Image(label="图片", type="pil")
with gr.Row():
button = gr.Button("提交", variant="primary")
box2 = gr.Image(label="图片", shape = (650, 650))
button.click(fn=detect_objects, inputs=[image], outputs=box2)
examples = gr.Examples(examples=[['1.jpg'], ['2.jpg'], ['3.jpg']], inputs=[image], label="例子")
if __name__ == '__main__':
demo.queue().launch(server_name="0.0.0.0")

9
requirements.txt Normal file
View File

@ -0,0 +1,9 @@
gradio
huggingface_hub
torch
transformers
timm
matplotlib
pillow
requests