import torch from PIL import Image from transformers import BlipProcessor, BlipForQuestionAnswering import gradio as gr from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) processor = BlipProcessor.from_pretrained("ybelkada/blip-vqa-capfilt-large") model = BlipForQuestionAnswering.from_pretrained("ybelkada/blip-vqa-capfilt-large", torch_dtype=torch.float16).to("cuda") def vqa(image, question): inp = Image.fromarray(image.astype('uint8'), 'RGB') inputs = processor(inp, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) return processor.decode(out[0], skip_special_tokens=True) with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo: gr.Markdown("""
图片问答
""") with gr.Row(): with gr.Column(): image = gr.Image(label="图片") question = gr.Textbox(label="问题") with gr.Row(): button = gr.Button("提交", variant="primary") box2 = gr.Textbox(label="文本") button.click(fn=vqa, inputs=[image, question], outputs=box2) examples = gr.Examples(examples=[['demo.jpg', 'how many dogs are in the picture?']], inputs=[image, question], label="例子") if __name__ == "__main__": demo.queue(concurrency_count=3).launch(server_name = "0.0.0.0", server_port = 7025)