import torch from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration import gradio as gr from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda") def image2text(image): inp = Image.fromarray(image.astype('uint8'), 'RGB') text = "a photography of" inputs = processor(inp, text, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) return processor.decode(out[0], skip_special_tokens=True) with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo: gr.Markdown("""
照片描述
""") with gr.Row(): with gr.Column(): box1 = gr.Image(label="图片") with gr.Row(): button = gr.Button("提交", variant="primary") box2 = gr.Textbox(label="文本") button.click(fn=image2text, inputs=box1, outputs=box2) examples = gr.Examples(examples=[['soccer.jpg']], inputs=[box1], label="例子") if __name__ == "__main__": demo.queue(concurrency_count=3).launch(server_name = "0.0.0.0", server_port = 7018)