bertweet-base-sentiment-ana.../app.py

44 lines
1.6 KiB
Python

import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification
from gradio.themes.utils import sizes
theme = gr.themes.Default(radius_size=sizes.radius_none).set(
block_label_text_color = '#4D63FF',
block_title_text_color = '#4D63FF',
button_primary_text_color = '#4D63FF',
button_primary_background_fill='#FFFFFF',
button_primary_border_color='#4D63FF',
button_primary_background_fill_hover='#EDEFFF',
)
modelName="finiteautomata/bertweet-base-sentiment-analysis"
sentimentPipeline = pipeline("sentiment-analysis", model=modelName)
def sentiment_analysis(text):
results = sentimentPipeline(text)
return f"Sentiment: {results[0].get('label')}, Score: {results[0].get('score'):.2f}"
with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo:
gr.Markdown("""
<div align='center' ><font size='60'>文本情感分析</font></div>
""")
with gr.Row():
with gr.Column():
box1 = gr.Textbox(label="文本")
with gr.Row():
button = gr.Button("提交", variant="primary")
clear = gr.Button("清除", variant="primary")
box2 = gr.Textbox(label="文本")
button.click(fn=sentiment_analysis, inputs=box1, outputs=box2)
clear.click(lambda x: gr.update(value=''), [], [box1])
examples = gr.Examples(examples=[['I am happy.'], ['I am sad].'], ['This is a cat.']], inputs=[box1], label="例子")
if __name__ == "__main__":
demo.queue(concurrency_count=3)
demo.launch(server_name = "0.0.0.0", server_port = 7028)