#目标检测
import io
import gradio as gr
import matplotlib.pyplot as plt
import torch
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection


def make_prediction(img, feature_extractor, model):
    inputs = feature_extractor(img, return_tensors="pt")
    outputs = model(**inputs)
    img_size = torch.tensor([tuple(reversed(img.size))])
    processed_outputs = feature_extractor.post_process(outputs, img_size)
    return processed_outputs[0]

def detect_objects(image_input):
    #Extract model and feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/detr-resnet-50")
    model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
    
    # if image comes from upload
    if image_input:
        image = image_input
    
    #Make prediction
    processed_outputs = make_prediction(image, feature_extractor, model)
    
    #Visualize prediction
    viz_img = visualize_prediction(image, processed_outputs, 0.7, model.config.id2label)
    
    return viz_img   

# visualization
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933]
]

# Draw the bounding boxes on image.
def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    img = Image.open(buf)
    return img

# Draw the bounding boxes.
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
        ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())
        

demo = gr.Interface(detect_objects,
                    inputs = gr.Image(type = 'pil'),
                    outputs = gr.Image(shape = (650,650)),
                    title = "目标检测",
                    allow_flagging="never",
                    examples = ['1.jpg', '2.jpg', '3.jpg'])

if __name__ == '__main__':
    demo.queue().launch(server_name="0.0.0.0", server_port=7002, max_threads=40)