#图像分类
import gradio as gr
from transformers import ViTFeatureExtractor, ViTForImageClassification

feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')

def image_classification(image):
    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    return model.config.id2label[predicted_class_idx]

demo = gr.Interface(fn=image_classification, 
                    inputs=gr.Image(), 
                    outputs=gr.Label(num_top_classes=1),
                    title = "图像分类",
                    allow_flagging="never",
                    examples = ['cat.jpeg', 'dog.jpeg', 'zebra.jpeg'])


if __name__ == "__main__":
    demo.queue(concurrency_count=3).launch(server_name = "0.0.0.0", server_port = 7000, max_threads=40)