diff --git a/detr-resnet-50/1.jpg b/detr-resnet-50/1.jpg new file mode 100644 index 0000000..06e31fc Binary files /dev/null and b/detr-resnet-50/1.jpg differ diff --git a/detr-resnet-50/2.jpg b/detr-resnet-50/2.jpg new file mode 100644 index 0000000..f92b336 Binary files /dev/null and b/detr-resnet-50/2.jpg differ diff --git a/detr-resnet-50/3.jpg b/detr-resnet-50/3.jpg new file mode 100644 index 0000000..a3058b9 Binary files /dev/null and b/detr-resnet-50/3.jpg differ diff --git a/detr-resnet-50/Dockerfile b/detr-resnet-50/Dockerfile new file mode 100644 index 0000000..e0064da --- /dev/null +++ b/detr-resnet-50/Dockerfile @@ -0,0 +1,13 @@ +FROM python:3.7.4-slim + +WORKDIR /app + +COPY requirements.txt /app + +RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/ + +RUN pip3 install --trusted-host pypi.python.org -r requirements.txt + +COPY . /app + +CMD ["python", "detr_object_detection.py"] diff --git a/detr-resnet-50/detr_object_detection.py b/detr-resnet-50/detr_object_detection.py new file mode 100644 index 0000000..aaa5142 --- /dev/null +++ b/detr-resnet-50/detr_object_detection.py @@ -0,0 +1,80 @@ +#目标检测 +import io +import gradio as gr +import matplotlib.pyplot as plt +import torch +from PIL import Image +from transformers import AutoFeatureExtractor, DetrForObjectDetection + + +def make_prediction(img, feature_extractor, model): + inputs = feature_extractor(img, return_tensors="pt") + outputs = model(**inputs) + img_size = torch.tensor([tuple(reversed(img.size))]) + processed_outputs = feature_extractor.post_process(outputs, img_size) + return processed_outputs[0] + +def detect_objects(image_input): + #Extract model and feature extractor + feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/detr-resnet-50") + model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") + + # if image comes from upload + if image_input: + image = image_input + + #Make prediction + processed_outputs = make_prediction(image, feature_extractor, model) + + #Visualize prediction + viz_img = visualize_prediction(image, processed_outputs, 0.7, model.config.id2label) + + return viz_img + +# visualization +COLORS = [ + [0.000, 0.447, 0.741], + [0.850, 0.325, 0.098], + [0.929, 0.694, 0.125], + [0.494, 0.184, 0.556], + [0.466, 0.674, 0.188], + [0.301, 0.745, 0.933] +] + +# Draw the bounding boxes on image. +def fig2img(fig): + buf = io.BytesIO() + fig.savefig(buf) + buf.seek(0) + img = Image.open(buf) + return img + +# Draw the bounding boxes. +def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None): + keep = output_dict["scores"] > threshold + boxes = output_dict["boxes"][keep].tolist() + scores = output_dict["scores"][keep].tolist() + labels = output_dict["labels"][keep].tolist() + if id2label is not None: + labels = [id2label[x] for x in labels] + + plt.figure(figsize=(16, 10)) + plt.imshow(pil_img) + ax = plt.gca() + colors = COLORS * 100 + for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors): + ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3)) + ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5)) + plt.axis("off") + return fig2img(plt.gcf()) + + +demo = gr.Interface(detect_objects, + inputs = gr.Image(type = 'pil'), + outputs = gr.Image(shape = (650,650)), + title = "目标检测", + allow_flagging="never", + examples = ['1.jpg', '2.jpg', '3.jpg']) + +if __name__ == '__main__': + demo.queue().launch(server_name="0.0.0.0", server_port=7002, max_threads=40) diff --git a/detr-resnet-50/requirements.txt b/detr-resnet-50/requirements.txt new file mode 100644 index 0000000..633ef8b --- /dev/null +++ b/detr-resnet-50/requirements.txt @@ -0,0 +1,9 @@ +gradio +huggingface_hub +torch +transformers +timm +matplotlib +pillow +requests +