add beit-base-finetuned-ade-640-640
This commit is contained in:
parent
d67ec55dc2
commit
5f2f1881aa
Binary file not shown.
After Width: | Height: | Size: 270 KiB |
Binary file not shown.
After Width: | Height: | Size: 429 KiB |
|
@ -0,0 +1,13 @@
|
|||
FROM python:3.7.4-slim
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY requirements.txt /app
|
||||
|
||||
RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/
|
||||
|
||||
RUN pip3 install --trusted-host pypi.python.org -r requirements.txt
|
||||
|
||||
COPY . /app
|
||||
|
||||
CMD ["python", "beit.py"]
|
|
@ -0,0 +1,119 @@
|
|||
#语义分割
|
||||
from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import io
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def ade_palette():
|
||||
"""ADE20K palette that maps each class to RGB values."""
|
||||
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
||||
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
||||
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
||||
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
||||
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
||||
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
||||
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
||||
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
||||
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
||||
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
||||
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
||||
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
||||
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
||||
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
||||
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
||||
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
||||
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
||||
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
||||
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
||||
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
||||
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
||||
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
||||
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
||||
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
||||
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
||||
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
||||
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
||||
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
||||
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
||||
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
||||
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
||||
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
||||
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
||||
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
||||
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
||||
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
||||
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
||||
[102, 255, 0], [92, 0, 255]]
|
||||
|
||||
|
||||
# Draw the bounding boxes on image.
|
||||
def fig2img(fig):
|
||||
buf = io.BytesIO()
|
||||
fig.savefig(buf)
|
||||
buf.seek(0)
|
||||
img = Image.open(buf)
|
||||
return img
|
||||
|
||||
|
||||
# Draw the bounding boxes.
|
||||
def visualize_prediction(outputs, image):
|
||||
# First, rescale logits to original image size
|
||||
logits = nn.functional.interpolate(outputs.logits,
|
||||
size=image.size[::-1], # (height, width)
|
||||
mode='bilinear',
|
||||
align_corners=False)
|
||||
|
||||
# Second, apply argmax on the class dimension
|
||||
seg = logits.argmax(dim=1)[0].cpu()
|
||||
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
||||
palette = np.array(ade_palette())
|
||||
for label, color in enumerate(palette):
|
||||
color_seg[seg == label, :] = color
|
||||
# Convert to BGR
|
||||
color_seg = color_seg[..., ::-1]
|
||||
|
||||
# Show image + mask
|
||||
img = np.array(image) * 0.5 + color_seg * 0.5
|
||||
img = img.astype(np.uint8)
|
||||
|
||||
plt.figure(figsize=(15, 10))
|
||||
plt.axis('off')
|
||||
plt.imshow(img)
|
||||
return fig2img(plt.gcf())
|
||||
|
||||
|
||||
def detect_objects(image_input):
|
||||
model_name = "microsoft/beit-base-finetuned-ade-640-640"
|
||||
feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False)
|
||||
model = BeitForSemanticSegmentation.from_pretrained(model_name)
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
|
||||
# if image comes from upload
|
||||
if image_input:
|
||||
image = image_input
|
||||
|
||||
pixel_values = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
|
||||
outputs = model(pixel_values)
|
||||
|
||||
#Visualize prediction
|
||||
viz_img = visualize_prediction(outputs, image)
|
||||
return viz_img
|
||||
|
||||
|
||||
demo = gr.Interface(fn = detect_objects,
|
||||
inputs = gr.Image(type = 'pil'),
|
||||
outputs = gr.Image(shape = (650,650)),
|
||||
title = "语义分割",
|
||||
allow_flagging="never",
|
||||
examples = ['1.png', '2.png'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
demo.queue().launch(server_name = "0.0.0.0", server_port = 7001, max_threads=40)
|
|
@ -0,0 +1,8 @@
|
|||
gradio
|
||||
torch
|
||||
transformers
|
||||
datasets
|
||||
matplotlib
|
||||
huggingface_hub
|
||||
pillow
|
||||
numpy
|
Loading…
Reference in New Issue