add
This commit is contained in:
parent
75c65825b6
commit
1a89f1c782
|
@ -0,0 +1,34 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
|
||||||
|
sentimentPipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
||||||
|
|
||||||
|
def sentiment_analysis(text, labels):
|
||||||
|
candidate_labels = labels.split(',')
|
||||||
|
results = sentimentPipeline(text, candidate_labels)
|
||||||
|
|
||||||
|
total_results = ""
|
||||||
|
index = 0
|
||||||
|
|
||||||
|
for candidate_label in candidate_labels:
|
||||||
|
total_results += f"Sentiment: {results.get('labels')[index]}, Score: {results.get('scores')[index]}"
|
||||||
|
total_results += '\r\n'
|
||||||
|
index += 1
|
||||||
|
|
||||||
|
return total_results
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs=[
|
||||||
|
gr.components.Textbox(label="Text"),
|
||||||
|
gr.components.Textbox(label="Label")
|
||||||
|
],
|
||||||
|
outputs='text',
|
||||||
|
examples=[['I have a problem with my iphone that needs to be resolved asap!!', 'urgent, not urgent, phone, tablet, computer'], ['Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.', 'mobile, website, billing, account access']],
|
||||||
|
title = "文本情感分析"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
|
@ -0,0 +1,27 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
|
||||||
|
unmasker = pipeline('fill-mask', model='bert-base-uncased')
|
||||||
|
|
||||||
|
def sentiment_analysis(text):
|
||||||
|
results = unmasker(text)
|
||||||
|
total_results = ""
|
||||||
|
|
||||||
|
for result in results:
|
||||||
|
total_results += f"Token: {result.get('token_str')}, Score: {result.get('score')}"
|
||||||
|
total_results += '\r\n'
|
||||||
|
|
||||||
|
return total_results
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs='text',
|
||||||
|
outputs='text',
|
||||||
|
examples=[['Paris is the [MASK] of France.'], ['The goal of life is [MASK].']],
|
||||||
|
title = "文本情感分析"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
|
@ -0,0 +1,21 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification
|
||||||
|
|
||||||
|
modelName="finiteautomata/bertweet-base-sentiment-analysis"
|
||||||
|
sentimentPipeline = pipeline("sentiment-analysis", model=modelName)
|
||||||
|
|
||||||
|
def sentiment_analysis(text):
|
||||||
|
results = sentimentPipeline(text)
|
||||||
|
|
||||||
|
return f"Sentiment: {results[0].get('label')}, Score: {results[0].get('score'):.2f}"
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs='text',
|
||||||
|
outputs='text',
|
||||||
|
title = "文本情感分析"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
|
@ -0,0 +1,34 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
|
||||||
|
sentimentPipeline = pipeline("zero-shot-classification", model="Narsil/deberta-large-mnli-zero-cls")
|
||||||
|
|
||||||
|
def sentiment_analysis(text, labels):
|
||||||
|
candidate_labels = labels.split(',')
|
||||||
|
results = sentimentPipeline(text, candidate_labels)
|
||||||
|
|
||||||
|
total_results = ""
|
||||||
|
index = 0
|
||||||
|
|
||||||
|
for candidate_label in candidate_labels:
|
||||||
|
total_results += f"Sentiment: {results.get('labels')[index]}, Score: {results.get('scores')[index]}"
|
||||||
|
total_results += '\r\n'
|
||||||
|
index += 1
|
||||||
|
|
||||||
|
return total_results
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs=[
|
||||||
|
gr.components.Textbox(label="Text"),
|
||||||
|
gr.components.Textbox(label="Label")
|
||||||
|
],
|
||||||
|
outputs='text',
|
||||||
|
examples=[['I have a problem with my iphone that needs to be resolved asap!!', 'urgent, not urgent, phone, tablet, computer'], ['Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.', 'mobile, website, billing, account access']],
|
||||||
|
title = "文本情感分析"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
|
@ -0,0 +1,34 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
|
||||||
|
sentimentPipeline = pipeline("zero-shot-classification", model="valhalla/distilbart-mnli-12-1")
|
||||||
|
|
||||||
|
def sentiment_analysis(text, labels):
|
||||||
|
candidate_labels = labels.split(',')
|
||||||
|
results = sentimentPipeline(text, candidate_labels)
|
||||||
|
|
||||||
|
total_results = ""
|
||||||
|
index = 0
|
||||||
|
|
||||||
|
for candidate_label in candidate_labels:
|
||||||
|
total_results += f"Sentiment: {results.get('labels')[index]}, Score: {results.get('scores')[index]}"
|
||||||
|
total_results += '\r\n'
|
||||||
|
index += 1
|
||||||
|
|
||||||
|
return total_results
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs=[
|
||||||
|
gr.components.Textbox(label="Text"),
|
||||||
|
gr.components.Textbox(label="Label")
|
||||||
|
],
|
||||||
|
outputs='text',
|
||||||
|
examples=[['I have a problem with my iphone that needs to be resolved asap!!', 'urgent, not urgent, phone, tablet, computer'], ['Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.', 'mobile, website, billing, account access']],
|
||||||
|
title = "文本情感分析"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
|
@ -0,0 +1,34 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
|
||||||
|
sentimentPipeline = pipeline("zero-shot-classification", model="valhalla/distilbart-mnli-12-3")
|
||||||
|
|
||||||
|
def sentiment_analysis(text, labels):
|
||||||
|
candidate_labels = labels.split(',')
|
||||||
|
results = sentimentPipeline(text, candidate_labels)
|
||||||
|
|
||||||
|
total_results = ""
|
||||||
|
index = 0
|
||||||
|
|
||||||
|
for candidate_label in candidate_labels:
|
||||||
|
total_results += f"Sentiment: {results.get('labels')[index]}, Score: {results.get('scores')[index]}"
|
||||||
|
total_results += '\r\n'
|
||||||
|
index += 1
|
||||||
|
|
||||||
|
return total_results
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs=[
|
||||||
|
gr.components.Textbox(label="Text"),
|
||||||
|
gr.components.Textbox(label="Label")
|
||||||
|
],
|
||||||
|
outputs='text',
|
||||||
|
examples=[['I have a problem with my iphone that needs to be resolved asap!!', 'urgent, not urgent, phone, tablet, computer'], ['Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.', 'mobile, website, billing, account access']],
|
||||||
|
title = "文本情感分析"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
|
@ -0,0 +1,34 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
|
||||||
|
sentimentPipeline = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli")
|
||||||
|
|
||||||
|
def sentiment_analysis(text, labels):
|
||||||
|
candidate_labels = labels.split(',')
|
||||||
|
results = sentimentPipeline(text, candidate_labels)
|
||||||
|
|
||||||
|
total_results = ""
|
||||||
|
index = 0
|
||||||
|
|
||||||
|
for candidate_label in candidate_labels:
|
||||||
|
total_results += f"Sentiment: {results.get('labels')[index]}, Score: {results.get('scores')[index]}"
|
||||||
|
total_results += '\r\n'
|
||||||
|
index += 1
|
||||||
|
|
||||||
|
return total_results
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs=[
|
||||||
|
gr.components.Textbox(label="Text"),
|
||||||
|
gr.components.Textbox(label="Label")
|
||||||
|
],
|
||||||
|
outputs='text',
|
||||||
|
examples=[['I have a problem with my iphone that needs to be resolved asap!!', 'urgent, not urgent, phone, tablet, computer'], ['Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.', 'mobile, website, billing, account access']],
|
||||||
|
title = "文本情感分析"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
|
@ -0,0 +1,34 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
|
||||||
|
sentimentPipeline = pipeline("zero-shot-classification", model="cross-encoder/nli-distilroberta-base")
|
||||||
|
|
||||||
|
def sentiment_analysis(text, labels):
|
||||||
|
candidate_labels = labels.split(',')
|
||||||
|
results = sentimentPipeline(text, candidate_labels)
|
||||||
|
|
||||||
|
total_results = ""
|
||||||
|
index = 0
|
||||||
|
|
||||||
|
for candidate_label in candidate_labels:
|
||||||
|
total_results += f"Sentiment: {results.get('labels')[index]}, Score: {results.get('scores')[index]}"
|
||||||
|
total_results += '\r\n'
|
||||||
|
index += 1
|
||||||
|
|
||||||
|
return total_results
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs=[
|
||||||
|
gr.components.Textbox(label="Text"),
|
||||||
|
gr.components.Textbox(label="Label")
|
||||||
|
],
|
||||||
|
outputs='text',
|
||||||
|
examples=[['Apple just announced the newest iPhone X', 'technology, sports, politics'], ['Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.', 'mobile, website, billing, account access']],
|
||||||
|
title = "文本情感分析"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
|
@ -0,0 +1,33 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
|
||||||
|
sentimentPipeline = pipeline('zero-shot-classification', model='roberta-large-mnli')
|
||||||
|
|
||||||
|
def sentiment_analysis(text, labels):
|
||||||
|
candidate_labels = labels.split(',')
|
||||||
|
results = sentimentPipeline(text, candidate_labels)
|
||||||
|
total_results = ""
|
||||||
|
index = 0
|
||||||
|
|
||||||
|
for candidate_label in candidate_labels:
|
||||||
|
total_results += f"Sentiment: {results.get('labels')[index]}, Score: {results.get('scores')[index]}"
|
||||||
|
total_results += '\r\n'
|
||||||
|
index += 1
|
||||||
|
|
||||||
|
return total_results
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs=[
|
||||||
|
gr.components.Textbox(label="Text"),
|
||||||
|
gr.components.Textbox(label="Label")
|
||||||
|
],
|
||||||
|
outputs='text',
|
||||||
|
examples=[['I am happy', 'negative, netural, positive'], ['I am sad', 'negative, netural, positive']],
|
||||||
|
title = "文本情感分析"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
|
@ -0,0 +1,21 @@
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import pipeline, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification
|
||||||
|
|
||||||
|
modelName="papluca/xlm-roberta-base-language-detection"
|
||||||
|
sentimentPipeline = pipeline("sentiment-analysis", modelName)
|
||||||
|
|
||||||
|
def sentiment_analysis(text):
|
||||||
|
results = sentimentPipeline(text)
|
||||||
|
return results
|
||||||
|
#return f"Sentiment: {results[0].get('label')}, Score: {results[0].get('score'):.2f}"
|
||||||
|
|
||||||
|
demo = gr.Interface(fn=sentiment_analysis,
|
||||||
|
inputs='text',
|
||||||
|
outputs='text',
|
||||||
|
title = "语种分类"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.queue(concurrency_count=3)
|
||||||
|
demo.launch(server_name = "0.0.0.0", server_port = 7028)
|
Loading…
Reference in New Issue