Compare commits
10 Commits
299aa6645f
...
cfa538a0fd
Author | SHA1 | Date |
---|---|---|
|
cfa538a0fd | |
|
996dacf8ea | |
|
9487bd4f5e | |
|
3a1c032540 | |
|
f507f5c180 | |
|
5814354242 | |
|
b91e7a74c6 | |
|
25850c5418 | |
|
75d12f3527 | |
|
6554ccb910 |
|
@ -14,3 +14,4 @@
|
|||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
|
|
109
README.md
109
README.md
|
@ -4,11 +4,116 @@ pipeline_tag: zero-shot-classification
|
|||
tags:
|
||||
- distilbert
|
||||
datasets:
|
||||
- mulit_nli
|
||||
- multi_nli
|
||||
metrics:
|
||||
- accuracy
|
||||
---
|
||||
|
||||
# DistilBERT base model (uncased)
|
||||
|
||||
This model is the Multi-Genre Natural Language Inference (MNLI) fine-turned version of the [uncased DistilBERT model](https://huggingface.co/distilbert-base-uncased).
|
||||
|
||||
## Table of Contents
|
||||
- [Model Details](#model-details)
|
||||
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
|
||||
- [Uses](#uses)
|
||||
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
|
||||
- [Training](#training)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Environmental Impact](#environmental-impact)
|
||||
|
||||
|
||||
|
||||
## Model Details
|
||||
**Model Description:** This is the [uncased DistilBERT model](https://huggingface.co/distilbert-base-uncased) fine-tuned on [Multi-Genre Natural Language Inference](https://huggingface.co/datasets/multi_nli) (MNLI) dataset for the zero-shot classification task.
|
||||
- **Developed by:** The [Typeform](https://www.typeform.com/) team.
|
||||
- **Model Type:** Zero-Shot Classification
|
||||
- **Language(s):** English
|
||||
- **License:** Unknown
|
||||
- **Parent Model:** See the [distilbert base uncased model](https://huggingface.co/distilbert-base-uncased) for more information about the Distilled-BERT base model.
|
||||
|
||||
|
||||
## How to Get Started with the Model
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("typeform/distilbert-base-uncased-mnli")
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained("typeform/distilbert-base-uncased-mnli")
|
||||
|
||||
```
|
||||
|
||||
## Uses
|
||||
This model can be used for text classification tasks.
|
||||
|
||||
|
||||
## Risks, Limitations and Biases
|
||||
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
|
||||
|
||||
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
||||
|
||||
|
||||
## Training
|
||||
|
||||
#### Training Data
|
||||
|
||||
|
||||
This model of DistilBERT-uncased is pretrained on the Multi-Genre Natural Language Inference [(MultiNLI)](https://huggingface.co/datasets/multi_nli) corpus. It is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information. The corpus covers a range of genres of spoken and written text, and supports a distinctive cross-genre generalization evaluation.
|
||||
|
||||
This model is also **not** case-sensitive, i.e., it does not make a difference between "english" and "English".
|
||||
|
||||
|
||||
#### Training Procedure
|
||||
|
||||
Training is done on a [p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) AWS EC2 with the following hyperparameters:
|
||||
|
||||
```
|
||||
$ run_glue.py \
|
||||
--model_name_or_path distilbert-base-uncased \
|
||||
--task_name mnli \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--max_seq_length 128 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--learning_rate 2e-5 \
|
||||
--num_train_epochs 5 \
|
||||
--output_dir /tmp/distilbert-base-uncased_mnli/
|
||||
```
|
||||
|
||||
## Evaluation
|
||||
|
||||
|
||||
#### Evaluation Results
|
||||
When fine-tuned on downstream tasks, this model achieves the following results:
|
||||
- **Epoch = ** 5.0
|
||||
- **Evaluation Accuracy =** 0.8206875508543532
|
||||
- **Evaluation Loss =** 0.8706700205802917
|
||||
- ** Evaluation Runtime = ** 17.8278
|
||||
- ** Evaluation Samples per second = ** 551.498
|
||||
|
||||
MNLI and MNLI-mm results:
|
||||
|
||||
| Task | MNLI | MNLI-mm |
|
||||
|:----:|:----:|:----:|
|
||||
| | 82.0 | 82.0 |
|
||||
|
||||
|
||||
|
||||
## Environmental Impact
|
||||
|
||||
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). We present the hardware type based on the [associated paper](https://arxiv.org/pdf/2105.09680.pdf).
|
||||
|
||||
|
||||
**Hardware Type:** 1 NVIDIA Tesla V100 GPUs
|
||||
|
||||
**Hours used:** Unknown
|
||||
|
||||
**Cloud Provider:** AWS EC2 P3
|
||||
|
||||
|
||||
**Compute Region:** Unknown
|
||||
|
||||
|
||||
|
||||
**Carbon Emitted:** (Power consumption x Time x Carbon produced based on location of power grid): Unknown
|
||||
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
{
|
||||
"_name_or_path": "/tmp/mnli_distil_output/checkpoint-6000",
|
||||
"activation": "gelu",
|
||||
"architectures": [
|
||||
"DistilBertForSequenceClassification"
|
||||
],
|
||||
"attention_dropout": 0.1,
|
||||
"dim": 768,
|
||||
"dropout": 0.1,
|
||||
"finetuning_task": "mnli",
|
||||
"hidden_dim": 3072,
|
||||
"id2label": {
|
||||
"0": "ENTAILMENT",
|
||||
"1": "NEUTRAL",
|
||||
"2": "CONTRADICTION"
|
||||
},
|
||||
"initializer_range": 0.02,
|
||||
"label2id": {
|
||||
"ENTAILMENT": 0,
|
||||
"NEUTRAL": 1,
|
||||
"CONTRADICTION": 2
|
||||
},
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "distilbert",
|
||||
"n_heads": 12,
|
||||
"n_layers": 6,
|
||||
"pad_token_id": 0,
|
||||
"qa_dropout": 0.1,
|
||||
"seq_classif_dropout": 0.2,
|
||||
"sinusoidal_pos_embds": false,
|
||||
"tie_weights_": true,
|
||||
"transformers_version": "4.3.2",
|
||||
"vocab_size": 30522,
|
||||
"xla_device": true
|
||||
}
|
|
@ -0,0 +1,5 @@
|
|||
epoch = 5.0
|
||||
eval_accuracy = 0.8206875508543532
|
||||
eval_loss = 0.8706700205802917
|
||||
eval_runtime = 17.8278
|
||||
eval_samples_per_second = 551.498
|
|
@ -0,0 +1,5 @@
|
|||
epoch = 5.0
|
||||
eval_accuracy = 0.8221090168110036
|
||||
eval_loss = 0.8824708461761475
|
||||
eval_runtime = 18.1167
|
||||
eval_samples_per_second = 541.765
|
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1 @@
|
|||
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
Binary file not shown.
|
@ -0,0 +1 @@
|
|||
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-uncased"}
|
|
@ -0,0 +1,3 @@
|
|||
epoch = 5.0
|
||||
train_runtime = 14248.9446
|
||||
train_samples_per_second = 8.613
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Loading…
Reference in New Issue