Compare commits

...

10 Commits

Author SHA1 Message Date
Aditya Singhal a7a26fd500 Update README.md 2022-07-01 19:12:50 +00:00
Aditya Singhal 50297ec2e3 Update README.md 2022-07-01 18:59:53 +00:00
Aditya Singhal 042095eb40 Update README.md 2022-07-01 18:41:56 +00:00
Aditya Singhal 2a0a3a4dcb Update README.md 2022-07-01 18:32:49 +00:00
Patrick von Platen 648c7e2a38 upload flax model 2021-05-20 22:28:27 +00:00
Patrick von Platen 7ae3e67855 allow flax 2021-05-20 22:28:09 +00:00
Aditya Singhal 3b0c4440f5 Update README.md 2021-04-29 18:28:22 +00:00
Aditya Singhal 97efe419dd Update README.md 2021-04-29 18:27:32 +00:00
Aditya Singhal ff1d6d246b Update README.md 2021-04-29 18:27:14 +00:00
Aditya Singhal ef187dcb52 Create README.md 2021-04-26 05:01:14 +00:00
3 changed files with 66 additions and 0 deletions

1
.gitattributes vendored
View File

@ -14,3 +14,4 @@
*.pb filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text

62
README.md Normal file
View File

@ -0,0 +1,62 @@
---
datasets:
- SQuAD
language:
- English
thumbnail:
tags:
- roberta
- roberta-base
- question-answering
- qa
license: cc-by-4.0
---
# roberta-base + SQuAD QA
Objective:
This is Roberta Base trained to do the SQuAD Task. This makes a QA model capable of answering questions.
```
model_name = "thatdramebaazguy/roberta-base-squad"
pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering")
```
## Overview
**Language model:** roberta-base
**Language:** English
**Downstream-task:** QA
**Training data:** SQuADv1
**Eval data:** SQuAD
**Infrastructure**: 2x Tesla v100
**Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/train_movieR_just_squadv1.sh)
## Hyperparameters
```
Num examples = 88567
Num Epochs = 10
Instantaneous batch size per device = 32
Total train batch size (w. parallel, distributed & accumulation) = 64
```
## Performance
### Eval on SQuADv1
- epoch = 10.0
- eval_samples = 10790
- exact_match = 83.6045
- f1 = 91.1709
### Eval on MoviesQA
- eval_samples = 5032
- exact_match = 51.6494
- f1 = 68.2615
Github Repo:
- [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/)
---

BIN
flax_model.msgpack (Stored with Git LFS) Normal file

Binary file not shown.