2021-04-29 18:27:14 +00:00
|
|
|
---
|
|
|
|
datasets:
|
2022-07-01 18:32:49 +00:00
|
|
|
- SQuAD
|
2021-04-29 18:27:14 +00:00
|
|
|
|
|
|
|
language:
|
|
|
|
- English
|
|
|
|
|
|
|
|
thumbnail:
|
|
|
|
|
|
|
|
tags:
|
|
|
|
- roberta
|
|
|
|
- roberta-base
|
2022-07-01 18:32:49 +00:00
|
|
|
- question-answering
|
|
|
|
- qa
|
|
|
|
|
|
|
|
license: cc-by-4.0
|
2021-04-29 18:28:22 +00:00
|
|
|
|
|
|
|
---
|
2022-07-01 18:32:49 +00:00
|
|
|
# roberta-base + SQuAD QA
|
|
|
|
|
|
|
|
Objective:
|
|
|
|
This is Roberta Base trained to do the SQuAD Task. This makes a QA model capable of answering questions.
|
|
|
|
|
|
|
|
```
|
|
|
|
model_name = "thatdramebaazguy/roberta-base-squad"
|
|
|
|
pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering")
|
|
|
|
```
|
|
|
|
|
|
|
|
## Overview
|
|
|
|
**Language model:** roberta-base
|
|
|
|
**Language:** English
|
|
|
|
**Downstream-task:** QA
|
|
|
|
**Training data:** SQuADv1
|
2022-07-01 18:41:56 +00:00
|
|
|
**Eval data:** SQuAD
|
2022-07-01 18:32:49 +00:00
|
|
|
**Infrastructure**: 2x Tesla v100
|
|
|
|
**Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/train_movieR_just_squadv1.sh)
|
|
|
|
|
|
|
|
## Hyperparameters
|
|
|
|
```
|
|
|
|
Num examples = 88567
|
|
|
|
Num Epochs = 10
|
|
|
|
Instantaneous batch size per device = 32
|
|
|
|
Total train batch size (w. parallel, distributed & accumulation) = 64
|
2021-04-29 18:28:22 +00:00
|
|
|
|
2022-07-01 18:32:49 +00:00
|
|
|
```
|
|
|
|
## Performance
|
|
|
|
|
2022-07-01 18:41:56 +00:00
|
|
|
### Eval on SQuADv1
|
2022-07-01 18:32:49 +00:00
|
|
|
- epoch = 10.0
|
|
|
|
- eval_samples = 10790
|
|
|
|
- exact_match = 83.6045
|
|
|
|
- f1 = 91.1709
|
|
|
|
|
2022-07-01 18:59:53 +00:00
|
|
|
### Eval on MoviesQA
|
|
|
|
- eval_samples = 5032
|
|
|
|
- exact_match = 55.80286
|
|
|
|
- f1 = 70.31451
|
|
|
|
|
2022-07-01 18:32:49 +00:00
|
|
|
Github Repo:
|
|
|
|
- [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/)
|
|
|
|
|
|
|
|
---
|