diff --git a/README.md b/README.md new file mode 100644 index 0000000..953f582 --- /dev/null +++ b/README.md @@ -0,0 +1,93 @@ +--- +language: en +datasets: +- superb +tags: +- speech +- audio +- wav2vec2 +- audio-classification +license: apache-2.0 +--- + +# Wav2Vec2-Base for Emotion Recognition + +## Model description + +This is a ported version of +[S3PRL's Wav2Vec2 for the SUPERB Emotion Recognition task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/emotion). + +The base model is [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base), which is pretrained on 16kHz +sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. + +For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) + +## Task and dataset description + +Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset +[IEMOCAP](https://sail.usc.edu/iemocap/) is adopted, and we follow the conventional evaluation protocol: +we drop the unbalanced emotion classes to leave the final four classes with a similar amount of data points and +cross-validate on five folds of the standard splits. + +For the original model's training and evaluation instructions refer to the +[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#er-emotion-recognition). + + +## Usage examples + +You can use the model via the Audio Classification pipeline: +```python +from datasets import load_dataset +from transformers import pipeline + +dataset = load_dataset("anton-l/superb_demo", "er", split="session1") + +classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-er") +labels = classifier(dataset[0]["file"], top_k=5) +``` + +Or use the model directly: +```python +import torch +import librosa +from datasets import load_dataset +from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor + +def map_to_array(example): + speech, _ = librosa.load(example["file"], sr=16000, mono=True) + example["speech"] = speech + return example + +# load a demo dataset and read audio files +dataset = load_dataset("anton-l/superb_demo", "er", split="session1") +dataset = dataset.map(map_to_array) + +model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er") +feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er") + +# compute attention masks and normalize the waveform if needed +inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") + +logits = model(**inputs).logits +predicted_ids = torch.argmax(logits, dim=-1) +labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()] +``` + +## Eval results + +The evaluation metric is accuracy. + +| | **s3prl** | **transformers** | +|--------|-----------|------------------| +|**session1**| `0.6343` | `0.6258` | + +### BibTeX entry and citation info + +```bibtex +@article{yang2021superb, + title={SUPERB: Speech processing Universal PERformance Benchmark}, + author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, + journal={arXiv preprint arXiv:2105.01051}, + year={2021} +} +``` \ No newline at end of file