Compare commits
10 Commits
f82095612c
...
d7e0efe9c2
Author | SHA1 | Date |
---|---|---|
|
d7e0efe9c2 | |
|
a7a70260b4 | |
|
8333ea6bff | |
|
10e57bf5c9 | |
|
8cf46f207c | |
|
abfb9d49f5 | |
|
af304f64a2 | |
|
292282867d | |
|
20f885c5be | |
|
e2e5748c38 |
|
@ -0,0 +1,100 @@
|
||||||
|
---
|
||||||
|
language: en
|
||||||
|
datasets:
|
||||||
|
- superb
|
||||||
|
tags:
|
||||||
|
- speech
|
||||||
|
- audio
|
||||||
|
- hubert
|
||||||
|
- audio-classification
|
||||||
|
license: apache-2.0
|
||||||
|
widget:
|
||||||
|
- example_title: Speech Commands "down"
|
||||||
|
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_down.wav
|
||||||
|
- example_title: Speech Commands "go"
|
||||||
|
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_go.wav
|
||||||
|
---
|
||||||
|
|
||||||
|
# Hubert-Base for Keyword Spotting
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
This is a ported version of [S3PRL's Hubert for the SUPERB Keyword Spotting task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands).
|
||||||
|
|
||||||
|
The base model is [hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960), which is pretrained on 16kHz
|
||||||
|
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
|
||||||
|
|
||||||
|
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
|
||||||
|
|
||||||
|
## Task and dataset description
|
||||||
|
|
||||||
|
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
|
||||||
|
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
|
||||||
|
inference time are all crucial. SUPERB uses the widely used
|
||||||
|
[Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task.
|
||||||
|
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
|
||||||
|
false positive.
|
||||||
|
|
||||||
|
For the original model's training and evaluation instructions refer to the
|
||||||
|
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ks-keyword-spotting).
|
||||||
|
|
||||||
|
|
||||||
|
## Usage examples
|
||||||
|
|
||||||
|
You can use the model via the Audio Classification pipeline:
|
||||||
|
```python
|
||||||
|
from datasets import load_dataset
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
|
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
|
||||||
|
|
||||||
|
classifier = pipeline("audio-classification", model="superb/hubert-base-superb-ks")
|
||||||
|
labels = classifier(dataset[0]["file"], top_k=5)
|
||||||
|
```
|
||||||
|
|
||||||
|
Or use the model directly:
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
from datasets import load_dataset
|
||||||
|
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
|
||||||
|
from torchaudio.sox_effects import apply_effects_file
|
||||||
|
|
||||||
|
effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]]
|
||||||
|
def map_to_array(example):
|
||||||
|
speech, _ = apply_effects_file(example["file"], effects)
|
||||||
|
example["speech"] = speech.squeeze(0).numpy()
|
||||||
|
return example
|
||||||
|
|
||||||
|
# load a demo dataset and read audio files
|
||||||
|
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
|
||||||
|
dataset = dataset.map(map_to_array)
|
||||||
|
|
||||||
|
model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ks")
|
||||||
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks")
|
||||||
|
|
||||||
|
# compute attention masks and normalize the waveform if needed
|
||||||
|
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
|
||||||
|
|
||||||
|
logits = model(**inputs).logits
|
||||||
|
predicted_ids = torch.argmax(logits, dim=-1)
|
||||||
|
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
|
||||||
|
```
|
||||||
|
|
||||||
|
## Eval results
|
||||||
|
|
||||||
|
The evaluation metric is accuracy.
|
||||||
|
|
||||||
|
| | **s3prl** | **transformers** |
|
||||||
|
|--------|-----------|------------------|
|
||||||
|
|**test**| `0.9630` | `0.9672` |
|
||||||
|
|
||||||
|
### BibTeX entry and citation info
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@article{yang2021superb,
|
||||||
|
title={SUPERB: Speech processing Universal PERformance Benchmark},
|
||||||
|
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
|
||||||
|
journal={arXiv preprint arXiv:2105.01051},
|
||||||
|
year={2021}
|
||||||
|
}
|
||||||
|
```
|
|
@ -0,0 +1,101 @@
|
||||||
|
{
|
||||||
|
"_name_or_path": "facebook/hubert-base-ls960",
|
||||||
|
"activation_dropout": 0.1,
|
||||||
|
"apply_spec_augment": true,
|
||||||
|
"architectures": [
|
||||||
|
"HubertForSequenceClassification"
|
||||||
|
],
|
||||||
|
"attention_dropout": 0.1,
|
||||||
|
"bos_token_id": 1,
|
||||||
|
"classifier_proj_size": 256,
|
||||||
|
"conv_bias": false,
|
||||||
|
"conv_dim": [
|
||||||
|
512,
|
||||||
|
512,
|
||||||
|
512,
|
||||||
|
512,
|
||||||
|
512,
|
||||||
|
512,
|
||||||
|
512
|
||||||
|
],
|
||||||
|
"conv_kernel": [
|
||||||
|
10,
|
||||||
|
3,
|
||||||
|
3,
|
||||||
|
3,
|
||||||
|
3,
|
||||||
|
2,
|
||||||
|
2
|
||||||
|
],
|
||||||
|
"conv_stride": [
|
||||||
|
5,
|
||||||
|
2,
|
||||||
|
2,
|
||||||
|
2,
|
||||||
|
2,
|
||||||
|
2,
|
||||||
|
2
|
||||||
|
],
|
||||||
|
"ctc_loss_reduction": "sum",
|
||||||
|
"ctc_zero_infinity": false,
|
||||||
|
"do_stable_layer_norm": false,
|
||||||
|
"eos_token_id": 2,
|
||||||
|
"feat_extract_activation": "gelu",
|
||||||
|
"feat_extract_dropout": 0.0,
|
||||||
|
"feat_extract_norm": "group",
|
||||||
|
"feat_proj_dropout": 0.1,
|
||||||
|
"final_dropout": 0.1,
|
||||||
|
"gradient_checkpointing": false,
|
||||||
|
"hidden_act": "gelu",
|
||||||
|
"hidden_dropout": 0.1,
|
||||||
|
"hidden_dropout_prob": 0.1,
|
||||||
|
"hidden_size": 768,
|
||||||
|
"id2label": {
|
||||||
|
"0": "yes",
|
||||||
|
"1": "no",
|
||||||
|
"2": "up",
|
||||||
|
"3": "down",
|
||||||
|
"4": "left",
|
||||||
|
"5": "right",
|
||||||
|
"6": "on",
|
||||||
|
"7": "off",
|
||||||
|
"8": "stop",
|
||||||
|
"9": "go",
|
||||||
|
"10": "_unknown_",
|
||||||
|
"11": "_silence_"
|
||||||
|
},
|
||||||
|
"initializer_range": 0.02,
|
||||||
|
"intermediate_size": 3072,
|
||||||
|
"label2id": {
|
||||||
|
"_silence_": 11,
|
||||||
|
"_unknown_": 10,
|
||||||
|
"down": 3,
|
||||||
|
"go": 9,
|
||||||
|
"left": 4,
|
||||||
|
"no": 1,
|
||||||
|
"off": 7,
|
||||||
|
"on": 6,
|
||||||
|
"right": 5,
|
||||||
|
"stop": 8,
|
||||||
|
"up": 2,
|
||||||
|
"yes": 0
|
||||||
|
},
|
||||||
|
"layer_norm_eps": 1e-05,
|
||||||
|
"layerdrop": 0.1,
|
||||||
|
"mask_feature_length": 10,
|
||||||
|
"mask_feature_prob": 0.0,
|
||||||
|
"mask_time_length": 10,
|
||||||
|
"mask_time_prob": 0.05,
|
||||||
|
"model_type": "hubert",
|
||||||
|
"num_attention_heads": 12,
|
||||||
|
"num_conv_pos_embedding_groups": 16,
|
||||||
|
"num_conv_pos_embeddings": 128,
|
||||||
|
"num_feat_extract_layers": 7,
|
||||||
|
"num_hidden_layers": 12,
|
||||||
|
"pad_token_id": 0,
|
||||||
|
"problem_type": "single_label_classification",
|
||||||
|
"torch_dtype": "float32",
|
||||||
|
"transformers_version": "4.10.0.dev0",
|
||||||
|
"use_weighted_layer_sum": true,
|
||||||
|
"vocab_size": 32
|
||||||
|
}
|
|
@ -0,0 +1,9 @@
|
||||||
|
{
|
||||||
|
"do_normalize": false,
|
||||||
|
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
||||||
|
"feature_size": 1,
|
||||||
|
"padding_side": "right",
|
||||||
|
"padding_value": 0,
|
||||||
|
"return_attention_mask": true,
|
||||||
|
"sampling_rate": 16000
|
||||||
|
}
|
Binary file not shown.
Loading…
Reference in New Issue