Compare commits

...

10 Commits

Author SHA1 Message Date
Mishig Davaadorj d7e0efe9c2 Upload README.md 2021-11-04 16:03:26 +00:00
Anton Lozhkov a7a70260b4 Update README.md 2021-09-06 12:52:45 +00:00
Anton Lozhkov 8333ea6bff Update README.md 2021-09-06 12:50:24 +00:00
anton-l 10e57bf5c9 Update info 2021-09-02 23:56:48 +03:00
Anton Lozhkov 8cf46f207c Update README.md 2021-09-01 10:39:06 +00:00
Anton Lozhkov abfb9d49f5 Update README.md 2021-09-01 10:38:15 +00:00
anton-l af304f64a2 Fix preprocessor config 2021-08-24 00:09:00 +03:00
anton-l 292282867d Tokenizer-less model 2021-08-17 16:11:39 +03:00
anton-l 20f885c5be Upload model 2021-08-16 15:18:55 +03:00
Anton Lozhkov e2e5748c38 Create README.md 2021-08-13 15:34:41 +00:00
4 changed files with 213 additions and 0 deletions

100
README.md Normal file
View File

@ -0,0 +1,100 @@
---
language: en
datasets:
- superb
tags:
- speech
- audio
- hubert
- audio-classification
license: apache-2.0
widget:
- example_title: Speech Commands "down"
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_down.wav
- example_title: Speech Commands "go"
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_go.wav
---
# Hubert-Base for Keyword Spotting
## Model description
This is a ported version of [S3PRL's Hubert for the SUPERB Keyword Spotting task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands).
The base model is [hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
inference time are all crucial. SUPERB uses the widely used
[Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task.
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
false positive.
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ks-keyword-spotting).
## Usage examples
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
classifier = pipeline("audio-classification", model="superb/hubert-base-superb-ks")
labels = classifier(dataset[0]["file"], top_k=5)
```
Or use the model directly:
```python
import torch
from datasets import load_dataset
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
from torchaudio.sox_effects import apply_effects_file
effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]]
def map_to_array(example):
speech, _ = apply_effects_file(example["file"], effects)
example["speech"] = speech.squeeze(0).numpy()
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
dataset = dataset.map(map_to_array)
model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ks")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.9630` | `0.9672` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
```

101
config.json Normal file
View File

@ -0,0 +1,101 @@
{
"_name_or_path": "facebook/hubert-base-ls960",
"activation_dropout": 0.1,
"apply_spec_augment": true,
"architectures": [
"HubertForSequenceClassification"
],
"attention_dropout": 0.1,
"bos_token_id": 1,
"classifier_proj_size": 256,
"conv_bias": false,
"conv_dim": [
512,
512,
512,
512,
512,
512,
512
],
"conv_kernel": [
10,
3,
3,
3,
3,
2,
2
],
"conv_stride": [
5,
2,
2,
2,
2,
2,
2
],
"ctc_loss_reduction": "sum",
"ctc_zero_infinity": false,
"do_stable_layer_norm": false,
"eos_token_id": 2,
"feat_extract_activation": "gelu",
"feat_extract_dropout": 0.0,
"feat_extract_norm": "group",
"feat_proj_dropout": 0.1,
"final_dropout": 0.1,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout": 0.1,
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "yes",
"1": "no",
"2": "up",
"3": "down",
"4": "left",
"5": "right",
"6": "on",
"7": "off",
"8": "stop",
"9": "go",
"10": "_unknown_",
"11": "_silence_"
},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"_silence_": 11,
"_unknown_": 10,
"down": 3,
"go": 9,
"left": 4,
"no": 1,
"off": 7,
"on": 6,
"right": 5,
"stop": 8,
"up": 2,
"yes": 0
},
"layer_norm_eps": 1e-05,
"layerdrop": 0.1,
"mask_feature_length": 10,
"mask_feature_prob": 0.0,
"mask_time_length": 10,
"mask_time_prob": 0.05,
"model_type": "hubert",
"num_attention_heads": 12,
"num_conv_pos_embedding_groups": 16,
"num_conv_pos_embeddings": 128,
"num_feat_extract_layers": 7,
"num_hidden_layers": 12,
"pad_token_id": 0,
"problem_type": "single_label_classification",
"torch_dtype": "float32",
"transformers_version": "4.10.0.dev0",
"use_weighted_layer_sum": true,
"vocab_size": 32
}

9
preprocessor_config.json Normal file
View File

@ -0,0 +1,9 @@
{
"do_normalize": false,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0,
"return_attention_mask": true,
"sampling_rate": 16000
}

BIN
pytorch_model.bin (Stored with Git LFS) Normal file

Binary file not shown.