Compare commits
No commits in common. "d7e0efe9c25fe2e695402102e2fd7c77b00206f5" and "f82095612cbe367c71a6426ef7d8012fd90313ca" have entirely different histories.
d7e0efe9c2
...
f82095612c
100
README.md
100
README.md
|
@ -1,100 +0,0 @@
|
||||||
---
|
|
||||||
language: en
|
|
||||||
datasets:
|
|
||||||
- superb
|
|
||||||
tags:
|
|
||||||
- speech
|
|
||||||
- audio
|
|
||||||
- hubert
|
|
||||||
- audio-classification
|
|
||||||
license: apache-2.0
|
|
||||||
widget:
|
|
||||||
- example_title: Speech Commands "down"
|
|
||||||
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_down.wav
|
|
||||||
- example_title: Speech Commands "go"
|
|
||||||
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_go.wav
|
|
||||||
---
|
|
||||||
|
|
||||||
# Hubert-Base for Keyword Spotting
|
|
||||||
|
|
||||||
## Model description
|
|
||||||
|
|
||||||
This is a ported version of [S3PRL's Hubert for the SUPERB Keyword Spotting task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands).
|
|
||||||
|
|
||||||
The base model is [hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960), which is pretrained on 16kHz
|
|
||||||
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
|
|
||||||
|
|
||||||
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
|
|
||||||
|
|
||||||
## Task and dataset description
|
|
||||||
|
|
||||||
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
|
|
||||||
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
|
|
||||||
inference time are all crucial. SUPERB uses the widely used
|
|
||||||
[Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task.
|
|
||||||
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
|
|
||||||
false positive.
|
|
||||||
|
|
||||||
For the original model's training and evaluation instructions refer to the
|
|
||||||
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ks-keyword-spotting).
|
|
||||||
|
|
||||||
|
|
||||||
## Usage examples
|
|
||||||
|
|
||||||
You can use the model via the Audio Classification pipeline:
|
|
||||||
```python
|
|
||||||
from datasets import load_dataset
|
|
||||||
from transformers import pipeline
|
|
||||||
|
|
||||||
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
|
|
||||||
|
|
||||||
classifier = pipeline("audio-classification", model="superb/hubert-base-superb-ks")
|
|
||||||
labels = classifier(dataset[0]["file"], top_k=5)
|
|
||||||
```
|
|
||||||
|
|
||||||
Or use the model directly:
|
|
||||||
```python
|
|
||||||
import torch
|
|
||||||
from datasets import load_dataset
|
|
||||||
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
|
|
||||||
from torchaudio.sox_effects import apply_effects_file
|
|
||||||
|
|
||||||
effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]]
|
|
||||||
def map_to_array(example):
|
|
||||||
speech, _ = apply_effects_file(example["file"], effects)
|
|
||||||
example["speech"] = speech.squeeze(0).numpy()
|
|
||||||
return example
|
|
||||||
|
|
||||||
# load a demo dataset and read audio files
|
|
||||||
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
|
|
||||||
dataset = dataset.map(map_to_array)
|
|
||||||
|
|
||||||
model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ks")
|
|
||||||
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks")
|
|
||||||
|
|
||||||
# compute attention masks and normalize the waveform if needed
|
|
||||||
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
|
|
||||||
|
|
||||||
logits = model(**inputs).logits
|
|
||||||
predicted_ids = torch.argmax(logits, dim=-1)
|
|
||||||
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
|
|
||||||
```
|
|
||||||
|
|
||||||
## Eval results
|
|
||||||
|
|
||||||
The evaluation metric is accuracy.
|
|
||||||
|
|
||||||
| | **s3prl** | **transformers** |
|
|
||||||
|--------|-----------|------------------|
|
|
||||||
|**test**| `0.9630` | `0.9672` |
|
|
||||||
|
|
||||||
### BibTeX entry and citation info
|
|
||||||
|
|
||||||
```bibtex
|
|
||||||
@article{yang2021superb,
|
|
||||||
title={SUPERB: Speech processing Universal PERformance Benchmark},
|
|
||||||
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
|
|
||||||
journal={arXiv preprint arXiv:2105.01051},
|
|
||||||
year={2021}
|
|
||||||
}
|
|
||||||
```
|
|
101
config.json
101
config.json
|
@ -1,101 +0,0 @@
|
||||||
{
|
|
||||||
"_name_or_path": "facebook/hubert-base-ls960",
|
|
||||||
"activation_dropout": 0.1,
|
|
||||||
"apply_spec_augment": true,
|
|
||||||
"architectures": [
|
|
||||||
"HubertForSequenceClassification"
|
|
||||||
],
|
|
||||||
"attention_dropout": 0.1,
|
|
||||||
"bos_token_id": 1,
|
|
||||||
"classifier_proj_size": 256,
|
|
||||||
"conv_bias": false,
|
|
||||||
"conv_dim": [
|
|
||||||
512,
|
|
||||||
512,
|
|
||||||
512,
|
|
||||||
512,
|
|
||||||
512,
|
|
||||||
512,
|
|
||||||
512
|
|
||||||
],
|
|
||||||
"conv_kernel": [
|
|
||||||
10,
|
|
||||||
3,
|
|
||||||
3,
|
|
||||||
3,
|
|
||||||
3,
|
|
||||||
2,
|
|
||||||
2
|
|
||||||
],
|
|
||||||
"conv_stride": [
|
|
||||||
5,
|
|
||||||
2,
|
|
||||||
2,
|
|
||||||
2,
|
|
||||||
2,
|
|
||||||
2,
|
|
||||||
2
|
|
||||||
],
|
|
||||||
"ctc_loss_reduction": "sum",
|
|
||||||
"ctc_zero_infinity": false,
|
|
||||||
"do_stable_layer_norm": false,
|
|
||||||
"eos_token_id": 2,
|
|
||||||
"feat_extract_activation": "gelu",
|
|
||||||
"feat_extract_dropout": 0.0,
|
|
||||||
"feat_extract_norm": "group",
|
|
||||||
"feat_proj_dropout": 0.1,
|
|
||||||
"final_dropout": 0.1,
|
|
||||||
"gradient_checkpointing": false,
|
|
||||||
"hidden_act": "gelu",
|
|
||||||
"hidden_dropout": 0.1,
|
|
||||||
"hidden_dropout_prob": 0.1,
|
|
||||||
"hidden_size": 768,
|
|
||||||
"id2label": {
|
|
||||||
"0": "yes",
|
|
||||||
"1": "no",
|
|
||||||
"2": "up",
|
|
||||||
"3": "down",
|
|
||||||
"4": "left",
|
|
||||||
"5": "right",
|
|
||||||
"6": "on",
|
|
||||||
"7": "off",
|
|
||||||
"8": "stop",
|
|
||||||
"9": "go",
|
|
||||||
"10": "_unknown_",
|
|
||||||
"11": "_silence_"
|
|
||||||
},
|
|
||||||
"initializer_range": 0.02,
|
|
||||||
"intermediate_size": 3072,
|
|
||||||
"label2id": {
|
|
||||||
"_silence_": 11,
|
|
||||||
"_unknown_": 10,
|
|
||||||
"down": 3,
|
|
||||||
"go": 9,
|
|
||||||
"left": 4,
|
|
||||||
"no": 1,
|
|
||||||
"off": 7,
|
|
||||||
"on": 6,
|
|
||||||
"right": 5,
|
|
||||||
"stop": 8,
|
|
||||||
"up": 2,
|
|
||||||
"yes": 0
|
|
||||||
},
|
|
||||||
"layer_norm_eps": 1e-05,
|
|
||||||
"layerdrop": 0.1,
|
|
||||||
"mask_feature_length": 10,
|
|
||||||
"mask_feature_prob": 0.0,
|
|
||||||
"mask_time_length": 10,
|
|
||||||
"mask_time_prob": 0.05,
|
|
||||||
"model_type": "hubert",
|
|
||||||
"num_attention_heads": 12,
|
|
||||||
"num_conv_pos_embedding_groups": 16,
|
|
||||||
"num_conv_pos_embeddings": 128,
|
|
||||||
"num_feat_extract_layers": 7,
|
|
||||||
"num_hidden_layers": 12,
|
|
||||||
"pad_token_id": 0,
|
|
||||||
"problem_type": "single_label_classification",
|
|
||||||
"torch_dtype": "float32",
|
|
||||||
"transformers_version": "4.10.0.dev0",
|
|
||||||
"use_weighted_layer_sum": true,
|
|
||||||
"vocab_size": 32
|
|
||||||
}
|
|
|
@ -1,9 +0,0 @@
|
||||||
{
|
|
||||||
"do_normalize": false,
|
|
||||||
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
|
||||||
"feature_size": 1,
|
|
||||||
"padding_side": "right",
|
|
||||||
"padding_value": 0,
|
|
||||||
"return_attention_mask": true,
|
|
||||||
"sampling_rate": 16000
|
|
||||||
}
|
|
BIN
pytorch_model.bin (Stored with Git LFS)
BIN
pytorch_model.bin (Stored with Git LFS)
Binary file not shown.
Loading…
Reference in New Issue