2021-08-13 15:34:41 +00:00
---
language: en
datasets:
- superb
tags:
- speech
2021-09-01 10:39:06 +00:00
- audio
2021-08-13 15:34:41 +00:00
- hubert
2021-09-01 10:39:06 +00:00
- audio-classification
2021-08-13 15:34:41 +00:00
license: apache-2.0
2021-09-06 12:50:24 +00:00
widget:
2021-11-04 16:03:26 +00:00
- example_title: Speech Commands "down"
2021-09-06 12:50:24 +00:00
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_down.wav
2021-11-04 16:03:26 +00:00
- example_title: Speech Commands "go"
2021-09-06 12:50:24 +00:00
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_go.wav
2021-08-13 15:34:41 +00:00
---
# Hubert-Base for Keyword Spotting
2021-09-02 20:56:48 +00:00
## Model description
2021-09-01 10:38:15 +00:00
2021-09-02 20:56:48 +00:00
This is a ported version of [S3PRL's Hubert for the SUPERB Keyword Spotting task ](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands ).
2021-08-13 15:34:41 +00:00
2021-09-02 20:56:48 +00:00
The base model is [hubert-base-ls960 ](https://huggingface.co/facebook/hubert-base-ls960 ), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
2021-08-13 15:34:41 +00:00
2021-09-02 20:56:48 +00:00
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark ](https://arxiv.org/abs/2105.01051 )
2021-08-13 15:34:41 +00:00
2021-09-02 20:56:48 +00:00
## Task and dataset description
2021-08-13 15:34:41 +00:00
2021-09-02 20:56:48 +00:00
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
inference time are all crucial. SUPERB uses the widely used
[Speech Commands dataset v1.0 ](https://www.tensorflow.org/datasets/catalog/speech_commands ) for the task.
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
false positive.
2021-08-13 15:34:41 +00:00
2021-09-02 20:56:48 +00:00
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README ](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ks-keyword-spotting ).
2021-08-13 15:34:41 +00:00
2021-09-01 10:38:15 +00:00
2021-09-02 20:56:48 +00:00
## Usage examples
2021-09-01 10:38:15 +00:00
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
2021-09-02 20:56:48 +00:00
from transformers import pipeline
2021-09-01 10:38:15 +00:00
2021-09-02 20:56:48 +00:00
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
2021-09-01 10:38:15 +00:00
2021-09-02 20:56:48 +00:00
classifier = pipeline("audio-classification", model="superb/hubert-base-superb-ks")
labels = classifier(dataset[0]["file"], top_k=5)
2021-09-01 10:38:15 +00:00
```
Or use the model directly:
```python
import torch
from datasets import load_dataset
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
2021-09-02 20:56:48 +00:00
from torchaudio.sox_effects import apply_effects_file
effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]]
def map_to_array(example):
speech, _ = apply_effects_file(example["file"], effects)
example["speech"] = speech.squeeze(0).numpy()
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
dataset = dataset.map(map_to_array)
2021-09-01 10:38:15 +00:00
model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ks")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks")
# compute attention masks and normalize the waveform if needed
2021-09-02 20:56:48 +00:00
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
2021-09-01 10:38:15 +00:00
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
2021-09-02 20:56:48 +00:00
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.9630` | `0.9672` |
### BibTeX entry and citation info
```bibtex
@article {yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
2021-09-01 10:38:15 +00:00
```