Compare commits
No commits in common. "13ee917482d459b4d82986e324d2adf8ce6692df" and "55d7fff1d332a7b4cb618fd4f013229b41b6e0bf" have entirely different histories.
13ee917482
...
55d7fff1d3
124
README.md
124
README.md
|
|
@ -1,124 +0,0 @@
|
||||||
---
|
|
||||||
pipeline_tag: sentence-similarity
|
|
||||||
license: apache-2.0
|
|
||||||
tags:
|
|
||||||
- text2vec
|
|
||||||
- feature-extraction
|
|
||||||
- sentence-similarity
|
|
||||||
- transformers
|
|
||||||
---
|
|
||||||
# shibing624/text2vec-base-chinese
|
|
||||||
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese.
|
|
||||||
|
|
||||||
It maps sentences to a 768 dimensional dense vector space and can be used for tasks
|
|
||||||
like sentence embeddings, text matching or semantic search.
|
|
||||||
|
|
||||||
|
|
||||||
## Evaluation
|
|
||||||
For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
|
||||||
|
|
||||||
- chinese text matching task:
|
|
||||||
|
|
||||||
| Model Name | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS |
|
|
||||||
| :---- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
|
||||||
| w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 10283 |
|
|
||||||
| paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 2371 |
|
|
||||||
| text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | **48.25** | 2572 |
|
|
||||||
|
|
||||||
|
|
||||||
## Usage (text2vec)
|
|
||||||
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
|
||||||
|
|
||||||
```
|
|
||||||
pip install -U text2vec
|
|
||||||
```
|
|
||||||
|
|
||||||
Then you can use the model like this:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from text2vec import SentenceModel
|
|
||||||
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
|
||||||
|
|
||||||
model = SentenceModel('shibing624/text2vec-base-chinese')
|
|
||||||
embeddings = model.encode(sentences)
|
|
||||||
print(embeddings)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Usage (HuggingFace Transformers)
|
|
||||||
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this:
|
|
||||||
|
|
||||||
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
|
||||||
|
|
||||||
Install transformers:
|
|
||||||
```
|
|
||||||
pip install transformers
|
|
||||||
```
|
|
||||||
|
|
||||||
Then load model and predict:
|
|
||||||
```python
|
|
||||||
from transformers import BertTokenizer, BertModel
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# Mean Pooling - Take attention mask into account for correct averaging
|
|
||||||
def mean_pooling(model_output, attention_mask):
|
|
||||||
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
|
||||||
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
||||||
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
||||||
|
|
||||||
# Load model from HuggingFace Hub
|
|
||||||
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese')
|
|
||||||
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese')
|
|
||||||
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
|
||||||
# Tokenize sentences
|
|
||||||
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
||||||
|
|
||||||
# Compute token embeddings
|
|
||||||
with torch.no_grad():
|
|
||||||
model_output = model(**encoded_input)
|
|
||||||
# Perform pooling. In this case, max pooling.
|
|
||||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
|
||||||
print("Sentence embeddings:")
|
|
||||||
print(sentence_embeddings)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Usage (sentence-transformers)
|
|
||||||
[sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences.
|
|
||||||
|
|
||||||
Install sentence-transformers:
|
|
||||||
```
|
|
||||||
pip install -U sentence-transformers
|
|
||||||
```
|
|
||||||
|
|
||||||
Then load model and predict:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from sentence_transformers import SentenceTransformer
|
|
||||||
|
|
||||||
m = SentenceTransformer("shibing624/text2vec-base-chinese")
|
|
||||||
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
|
||||||
|
|
||||||
sentence_embeddings = m.encode(sentences)
|
|
||||||
print("Sentence embeddings:")
|
|
||||||
print(sentence_embeddings)
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Full Model Architecture
|
|
||||||
```
|
|
||||||
CoSENT(
|
|
||||||
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
|
||||||
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True})
|
|
||||||
)
|
|
||||||
```
|
|
||||||
## Citing & Authors
|
|
||||||
This model was trained by [text2vec](https://github.com/shibing624/text2vec).
|
|
||||||
|
|
||||||
If you find this model helpful, feel free to cite:
|
|
||||||
```bibtex
|
|
||||||
@software{text2vec,
|
|
||||||
author = {Xu Ming},
|
|
||||||
title = {text2vec: A Tool for Text to Vector},
|
|
||||||
year = {2022},
|
|
||||||
url = {https://github.com/shibing624/text2vec},
|
|
||||||
}
|
|
||||||
```
|
|
||||||
BIN
pytorch_model.bin (Stored with Git LFS)
BIN
pytorch_model.bin (Stored with Git LFS)
Binary file not shown.
|
|
@ -1 +0,0 @@
|
||||||
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
|
||||||
Loading…
Reference in New Issue