Update README.md
This commit is contained in:
parent
01c2deec18
commit
59577b379b
22
README.md
22
README.md
|
@ -7,8 +7,24 @@ tags:
|
|||
- sentence-similarity
|
||||
- transformers
|
||||
---
|
||||
# shibing624/text2vec
|
||||
This is a CoSENT(Cosine Sentence) model: It maps sentences to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
||||
# shibing624/text2vec-base-chinese
|
||||
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese.
|
||||
|
||||
It maps sentences to a 768 dimensional dense vector space and can be used for tasks
|
||||
like sentence embeddings, text matching or semantic search.
|
||||
|
||||
|
||||
## Evaluation
|
||||
For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
||||
|
||||
- chinese text matching task:
|
||||
|
||||
| Arch | Backbone | Model Name | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS |
|
||||
| :-- | :--- | :---- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
||||
| Word2Vec | word2vec | w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 10283 |
|
||||
| SBERT | xlm-roberta-base | paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 2371 |
|
||||
| CoSENT | hfl/chinese-macbert-base | text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | **48.25** | 2572 |
|
||||
|
||||
|
||||
## Usage (text2vec)
|
||||
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
||||
|
@ -86,8 +102,6 @@ print("Sentence embeddings:")
|
|||
print(sentence_embeddings)
|
||||
```
|
||||
|
||||
## Evaluation Results
|
||||
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
||||
|
||||
## Full Model Architecture
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue