Update README.md
This commit is contained in:
parent
59e85aae8d
commit
01c2deec18
42
README.md
42
README.md
|
@ -9,22 +9,36 @@ tags:
|
|||
---
|
||||
# shibing624/text2vec
|
||||
This is a CoSENT(Cosine Sentence) model: It maps sentences to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
||||
|
||||
## Usage (text2vec)
|
||||
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
||||
|
||||
```
|
||||
pip install -U text2vec
|
||||
```
|
||||
|
||||
Then you can use the model like this:
|
||||
|
||||
```python
|
||||
from text2vec import SBert
|
||||
from text2vec import SentenceModel
|
||||
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
||||
|
||||
model = SBert('shibing624/text2vec-base-chinese')
|
||||
model = SentenceModel('shibing624/text2vec-base-chinese')
|
||||
embeddings = model.encode(sentences)
|
||||
print(embeddings)
|
||||
```
|
||||
|
||||
## Usage (HuggingFace Transformers)
|
||||
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
||||
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this:
|
||||
|
||||
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
||||
|
||||
Install transformers:
|
||||
```
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
Then load model and predict:
|
||||
```python
|
||||
from transformers import BertTokenizer, BertModel
|
||||
import torch
|
||||
|
@ -50,6 +64,28 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|||
print("Sentence embeddings:")
|
||||
print(sentence_embeddings)
|
||||
```
|
||||
|
||||
## Usage (sentence-transformers)
|
||||
[sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences.
|
||||
|
||||
Install sentence-transformers:
|
||||
```
|
||||
pip install -U sentence-transformers
|
||||
```
|
||||
|
||||
Then load model and predict:
|
||||
|
||||
```python
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
m = SentenceTransformer("shibing624/text2vec-base-chinese")
|
||||
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
||||
|
||||
sentence_embeddings = m.encode(sentences)
|
||||
print("Sentence embeddings:")
|
||||
print(sentence_embeddings)
|
||||
```
|
||||
|
||||
## Evaluation Results
|
||||
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
||||
|
||||
|
|
Loading…
Reference in New Issue