Add new SentenceTransformer model.
This commit is contained in:
parent
016e588f4f
commit
7ee129e36e
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"word_embedding_dimension": 384,
|
||||
"pooling_mode_cls_token": false,
|
||||
"pooling_mode_mean_tokens": true,
|
||||
"pooling_mode_max_tokens": false,
|
||||
"pooling_mode_mean_sqrt_len_tokens": false
|
||||
}
|
|
@ -0,0 +1,106 @@
|
|||
---
|
||||
pipeline_tag: sentence-similarity
|
||||
tags:
|
||||
- sentence-transformers
|
||||
- feature-extraction
|
||||
- sentence-similarity
|
||||
- transformers
|
||||
---
|
||||
|
||||
# sentence-transformers/paraphrase-MiniLM-L6-v2
|
||||
|
||||
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
||||
|
||||
|
||||
|
||||
## Usage (Sentence-Transformers)
|
||||
|
||||
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
||||
|
||||
```
|
||||
pip install -U sentence-transformers
|
||||
```
|
||||
|
||||
Then you can use the model like this:
|
||||
|
||||
```python
|
||||
from sentence_transformers import SentenceTransformer
|
||||
sentences = ["This is an example sentence", "Each sentence is converted"]
|
||||
|
||||
model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
||||
embeddings = model.encode(sentences)
|
||||
print(embeddings)
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Usage (HuggingFace Transformers)
|
||||
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import torch
|
||||
|
||||
|
||||
#Mean Pooling - Take attention mask into account for correct averaging
|
||||
def mean_pooling(model_output, attention_mask):
|
||||
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
||||
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
||||
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
||||
|
||||
|
||||
# Sentences we want sentence embeddings for
|
||||
sentences = ['This is an example sentence', 'Each sentence is converted']
|
||||
|
||||
# Load model from HuggingFace Hub
|
||||
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
||||
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
||||
|
||||
# Tokenize sentences
|
||||
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
||||
|
||||
# Compute token embeddings
|
||||
with torch.no_grad():
|
||||
model_output = model(**encoded_input)
|
||||
|
||||
# Perform pooling. In this case, max pooling.
|
||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
||||
|
||||
print("Sentence embeddings:")
|
||||
print(sentence_embeddings)
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Evaluation Results
|
||||
|
||||
|
||||
|
||||
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L6-v2)
|
||||
|
||||
|
||||
|
||||
## Full Model Architecture
|
||||
```
|
||||
SentenceTransformer(
|
||||
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
||||
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
||||
)
|
||||
```
|
||||
|
||||
## Citing & Authors
|
||||
|
||||
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
||||
|
||||
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
||||
```bibtex
|
||||
@inproceedings{reimers-2019-sentence-bert,
|
||||
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
||||
author = "Reimers, Nils and Gurevych, Iryna",
|
||||
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
||||
month = "11",
|
||||
year = "2019",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "http://arxiv.org/abs/1908.10084",
|
||||
}
|
||||
```
|
|
@ -1,5 +1,5 @@
|
|||
{
|
||||
"_name_or_path": "nreimers/MiniLM-L6-H384-uncased",
|
||||
"_name_or_path": "old_models/paraphrase-MiniLM-L6-v2/0_Transformer",
|
||||
"architectures": [
|
||||
"BertModel"
|
||||
],
|
||||
|
@ -17,7 +17,7 @@
|
|||
"num_hidden_layers": 6,
|
||||
"pad_token_id": 0,
|
||||
"position_embedding_type": "absolute",
|
||||
"transformers_version": "4.4.2",
|
||||
"transformers_version": "4.7.0",
|
||||
"type_vocab_size": 2,
|
||||
"use_cache": true,
|
||||
"vocab_size": 30522
|
||||
|
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"__version__": {
|
||||
"sentence_transformers": "2.0.0",
|
||||
"transformers": "4.7.0",
|
||||
"pytorch": "1.9.0+cu102"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
[
|
||||
{
|
||||
"idx": 0,
|
||||
"name": "0",
|
||||
"path": "",
|
||||
"type": "sentence_transformers.models.Transformer"
|
||||
},
|
||||
{
|
||||
"idx": 1,
|
||||
"name": "1",
|
||||
"path": "1_Pooling",
|
||||
"type": "sentence_transformers.models.Pooling"
|
||||
}
|
||||
]
|
BIN
pytorch_model.bin (Stored with Git LFS)
BIN
pytorch_model.bin (Stored with Git LFS)
Binary file not shown.
|
@ -1,4 +1,4 @@
|
|||
{
|
||||
"max_seq_length": 100,
|
||||
"max_seq_length": 128,
|
||||
"do_lower_case": false
|
||||
}
|
File diff suppressed because one or more lines are too long
|
@ -1 +1 @@
|
|||
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": "/home/ukp-reimers/.cache/huggingface/transformers/1e5909e4dfaa904617797ed35a6105a23daa56cbefca48fef329f772584699fb.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "nreimers/MiniLM-L6-H384-uncased", "do_basic_tokenize": true, "never_split": null}
|
||||
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": "/home/ukp-reimers/.cache/huggingface/transformers/1e5909e4dfaa904617797ed35a6105a23daa56cbefca48fef329f772584699fb.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "old_models/paraphrase-MiniLM-L6-v2/0_Transformer", "do_basic_tokenize": true, "never_split": null}
|
Loading…
Reference in New Issue