Update README.md
This commit is contained in:
parent
803eaf825d
commit
e9d4fec9af
53
README.md
53
README.md
|
@ -1,3 +1,56 @@
|
|||
---
|
||||
license: gpl-3.0
|
||||
tags:
|
||||
- DocVQA
|
||||
- Document Question Answering
|
||||
- Document Visual Question Answering
|
||||
datasets:
|
||||
- MP-DocVQA
|
||||
language:
|
||||
- en
|
||||
---
|
||||
|
||||
# LayoutLMv3 base fine-tuned on MP-DocVQA
|
||||
|
||||
This is pretrained LayoutLMv3 from [Microsoft hub](https://huggingface.co/microsoft/layoutlmv3-base) and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.
|
||||
|
||||
|
||||
This model was used as a baseline in [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf).
|
||||
- Results on the MP-DocVQA dataset are reported in Table 2.
|
||||
- Training hyperparameters can be found in Table 8 of Appendix D.
|
||||
|
||||
|
||||
## How to use
|
||||
|
||||
Here is how to use this model to get the features of a given text in PyTorch:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering
|
||||
|
||||
processor = LayoutLMv3Processor.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa", apply_ocr=False)
|
||||
model = LayoutLMv3ForQuestionAnswering.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa")
|
||||
|
||||
image = Image.open("example.jpg").convert("RGB")
|
||||
question = "Is this a question?"
|
||||
context = ["Example"]
|
||||
boxes = [0, 0, 1000, 1000] # This is an example bounding box covering the whole image.
|
||||
document_encoding = processor(image, question, context, boxes=boxes, return_tensors="pt")
|
||||
outputs = model(**document_encoding)
|
||||
|
||||
# Get the answer
|
||||
start_idx = torch.argmax(outputs.start_logits, axis=1)
|
||||
end_idx = torch.argmax(outputs.end_logits, axis=1)
|
||||
answers = self.processor.tokenizer.decode(input_tokens[start_idx: end_idx+1]).strip()
|
||||
```
|
||||
|
||||
## BibTeX entry
|
||||
|
||||
```tex
|
||||
@article{tito2022hierarchical,
|
||||
title={Hierarchical multimodal transformers for Multi-Page DocVQA},
|
||||
author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
|
||||
journal={arXiv preprint arXiv:2212.05935},
|
||||
year={2022}
|
||||
}
|
||||
```
|
Loading…
Reference in New Issue