Update README.md
This commit is contained in:
parent
d925dfa1bc
commit
d340591382
11
README.md
11
README.md
|
@ -44,6 +44,17 @@ end_idx = torch.argmax(outputs.end_logits, axis=1)
|
|||
answers = self.processor.tokenizer.decode(input_tokens[start_idx: end_idx+1]).strip()
|
||||
```
|
||||
|
||||
## Metrics
|
||||
**Average Normalized Levenshtein Similarity (ANLS)**
|
||||
|
||||
The standard metric for text-based VQA tasks (ST-VQA and DocVQA). It evaluates the method's reasoning capabilities while smoothly penalizes OCR recognition errors.
|
||||
Check [Scene Text Visual Question Answering](https://arxiv.org/abs/1905.13648) for detailed information.
|
||||
|
||||
**Answer Page Prediction Accuracy (APPA)**
|
||||
|
||||
In the MP-DocVQA task, the models can provide the index of the page where the information required to answer the question is located. For this subtask accuracy is used to evaluate the predictions: i.e. if the predicted page is correct or not.
|
||||
Check [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/abs/2212.05935) for detailed information.
|
||||
|
||||
## Model results
|
||||
|
||||
Extended experimentation can be found in Table 2 of [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf).
|
||||
|
|
Loading…
Reference in New Issue