|
||
---|---|---|
checkpoint-500 | ||
.gitattributes | ||
README.md | ||
all_results.json | ||
config.json | ||
eval_results.json | ||
merges.txt | ||
pytorch_model.bin | ||
special_tokens_map.json | ||
test_generations.txt | ||
test_results.json | ||
tokenizer_config.json | ||
train_results.json | ||
trainer_state.json | ||
training_args.bin | ||
vocab.json |
README.md
language: en tags:
- sagemaker
- bart
- summarization license: apache-2.0 datasets:
- samsum model-index:
- name: bart-large-cnn-samsum
results:
- task:
name: Abstractive Text Summarization
type: abstractive-text-summarization
dataset:
name: SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization
type: samsum
metrics:
- name: Validation ROGUE-1 type: rogue-1 value: 42.621
- name: Validation ROGUE-2 type: rogue-2 value: 21.9825
- name: Validation ROGUE-L type: rogue-l value: 33.034
- name: Test ROGUE-1 type: rogue-1 value: 41.3174
- name: Test ROGUE-2 type: rogue-2 value: 20.8716
- name: Test ROGUE-L type: rogue-l value: 32.1337 widget:
- task:
name: Abstractive Text Summarization
type: abstractive-text-summarization
dataset:
name: SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization
type: samsum
metrics:
- text: | Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
bart-large-cnn-samsum
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
For more information look at:
- 🤗 Transformers Documentation: Amazon SageMaker
- Example Notebooks
- Amazon SageMaker documentation for Hugging Face
- Python SDK SageMaker documentation for Hugging Face
- Deep Learning Container
Hyperparameters
{
"dataset_name": "samsum",
"do_eval": true,
"do_predict": true,
"do_train": true,
"fp16": true,
"learning_rate": 5e-05,
"model_name_or_path": "facebook/bart-large-cnn",
"num_train_epochs": 3,
"output_dir": "/opt/ml/model",
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"predict_with_generate": true,
"seed": 7
}
Usage
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")
conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
'''
nlp(conversation)
Results
key | value |
---|---|
eval_rouge1 | 42.621 |
eval_rouge2 | 21.9825 |
eval_rougeL | 33.034 |
eval_rougeLsum | 39.6783 |
test_rouge1 | 41.3174 |
test_rouge2 | 20.8716 |
test_rougeL | 32.1337 |
test_rougeLsum | 38.4149 |