Compare commits
10 Commits
5115c12804
...
ec86afeba6
Author | SHA1 | Date |
---|---|---|
|
ec86afeba6 | |
|
5cd8f69946 | |
|
a7b8f37e72 | |
|
f084b5ac89 | |
|
797fb91281 | |
|
3c366b609b | |
|
90fc4894d9 | |
|
c78b34e29b | |
|
c31a7ac717 | |
|
add4426ecf |
|
@ -0,0 +1,75 @@
|
|||
---
|
||||
license: other
|
||||
tags:
|
||||
- vision
|
||||
- image-segmentation
|
||||
datasets:
|
||||
- cityscapes
|
||||
widget:
|
||||
- src: https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png
|
||||
example_title: Road
|
||||
---
|
||||
|
||||
# SegFormer (b1-sized) model fine-tuned on CityScapes
|
||||
|
||||
SegFormer model fine-tuned on CityScapes at resolution 1024x1024. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
|
||||
|
||||
Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
|
||||
|
||||
## Model description
|
||||
|
||||
SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
|
||||
|
||||
## Intended uses & limitations
|
||||
|
||||
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.
|
||||
|
||||
### How to use
|
||||
|
||||
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
||||
|
||||
```python
|
||||
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
||||
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
||||
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
inputs = feature_extractor(images=image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
|
||||
```
|
||||
|
||||
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
|
||||
|
||||
### License
|
||||
|
||||
The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE).
|
||||
|
||||
### BibTeX entry and citation info
|
||||
|
||||
```bibtex
|
||||
@article{DBLP:journals/corr/abs-2105-15203,
|
||||
author = {Enze Xie and
|
||||
Wenhai Wang and
|
||||
Zhiding Yu and
|
||||
Anima Anandkumar and
|
||||
Jose M. Alvarez and
|
||||
Ping Luo},
|
||||
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
||||
Transformers},
|
||||
journal = {CoRR},
|
||||
volume = {abs/2105.15203},
|
||||
year = {2021},
|
||||
url = {https://arxiv.org/abs/2105.15203},
|
||||
eprinttype = {arXiv},
|
||||
eprint = {2105.15203},
|
||||
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
|
||||
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
|
||||
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||||
}
|
||||
```
|
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"architectures": [
|
||||
"SegformerForImageSegmentation"
|
||||
"SegformerForSemanticSegmentation"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.0,
|
||||
"classifier_dropout_prob": 0.1,
|
||||
|
|
|
@ -1,12 +1,5 @@
|
|||
{
|
||||
"align": false,
|
||||
"crop_size": [
|
||||
512,
|
||||
512
|
||||
],
|
||||
"do_normalize": true,
|
||||
"do_pad": true,
|
||||
"do_random_crop": false,
|
||||
"do_resize": true,
|
||||
"feature_extractor_type": "SegformerFeatureExtractor",
|
||||
"image_mean": [
|
||||
|
@ -14,19 +7,12 @@
|
|||
0.456,
|
||||
0.406
|
||||
],
|
||||
"image_scale": [
|
||||
512,
|
||||
512
|
||||
],
|
||||
"image_std": [
|
||||
0.229,
|
||||
0.224,
|
||||
0.225
|
||||
],
|
||||
"keep_ratio": false,
|
||||
"padding_value": 0,
|
||||
"reduce_zero_label": false,
|
||||
"reduce_labels": false,
|
||||
"resample": 2,
|
||||
"segmentation_padding_value": -100,
|
||||
"size_divisor": 32
|
||||
"size": 1024
|
||||
}
|
||||
|
|
Binary file not shown.
Loading…
Reference in New Issue