Compare commits

...

10 Commits

Author SHA1 Message Date
Qian Liu 8338affcb0 Update README.md 2023-03-14 11:51:54 +00:00
Joao Gante a755f6ff34 Adding generation config file(s) 2023-01-24 17:02:46 +00:00
Qian Liu ec1a11f879 Update README.md
Update the old URL link with the latest one.
2022-10-06 02:45:08 +00:00
Niels Rogge 0cd74d3e2a Update README.md 2022-07-14 10:12:06 +00:00
Qian Liu f5d2d80895 Update config.json 2022-05-17 08:26:08 +00:00
Niels Rogge 59fa639a30 Update README.md 2022-05-05 07:01:43 +00:00
Qian Liu 03c7da25f9 Update README.md 2022-03-10 08:26:35 +00:00
Qian Liu 08b43d3f06 Update README.md 2022-03-10 05:45:49 +00:00
Qian Liu 881e372614 Upload vocab.json 2022-03-10 05:40:57 +00:00
Qian Liu bcdb8e3138 Upload tokenizer_config.json 2022-03-10 05:40:50 +00:00
5 changed files with 128 additions and 40 deletions

View File

@ -1,3 +1,78 @@
---
license: mit
---
---
language: en
tags:
- tapex
- table-question-answering
datasets:
- wikitablequestions
license: mit
---
# TAPEX (large-sized model)
TAPEX was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found [here](https://github.com/microsoft/Table-Pretraining).
## Model description
TAPEX (**Ta**ble **P**re-training via **Ex**ecution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with *table reasoning* skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries.
TAPEX is based on the BART architecture, the transformer encoder-decoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder.
This model is the `tapex-base` model fine-tuned on the [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) dataset.
## Intended Uses
You can use the model for table question answering on *complex* questions. Some **solveable** questions are shown below (corresponding tables now shown):
| Question | Answer |
|:---: |:---:|
| according to the table, what is the last title that spicy horse produced? | Akaneiro: Demon Hunters |
| what is the difference in runners-up from coleraine academical institution and royal school dungannon? | 20 |
| what were the first and last movies greenstreet acted in? | The Maltese Falcon, Malaya |
| in which olympic games did arasay thondike not finish in the top 20? | 2012 |
| which broadcaster hosted 3 titles but they had only 1 episode? | Channel 4 |
### How to Use
Here is how to use this model in transformers:
```python
from transformers import TapexTokenizer, BartForConditionalGeneration
import pandas as pd
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
data = {
"year": [1896, 1900, 1904, 2004, 2008, 2012],
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
}
table = pd.DataFrame.from_dict(data)
# tapex accepts uncased input since it is pre-trained on the uncased corpus
query = "In which year did beijing host the Olympic Games?"
encoding = tokenizer(table=table, query=query, return_tensors="pt")
outputs = model.generate(**encoding)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# [' 2008.0']
```
### How to Eval
Please find the eval script [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/tapex).
### BibTeX entry and citation info
```bibtex
@inproceedings{
liu2022tapex,
title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor},
author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=O50443AsCP}
}
```

View File

@ -1,37 +1,37 @@
{
"_name_or_path": "tapex-large-finetuned-wtq",
"activation_dropout": 0.0,
"activation_function": "gelu",
"architectures": [
"BartForConditionalGeneration"
],
"attention_dropout": 0.1,
"bos_token_id": 0,
"classifier_dropout": 0.0,
"d_model": 1024,
"decoder_attention_heads": 16,
"decoder_ffn_dim": 4096,
"decoder_layerdrop": 0.0,
"decoder_layers": 12,
"decoder_start_token_id": 2,
"dropout": 0.1,
"encoder_attention_heads": 16,
"encoder_ffn_dim": 4096,
"encoder_layerdrop": 0.0,
"encoder_layers": 12,
"eos_token_id": 2,
"forced_bos_token_id": 0,
"forced_eos_token_id": 2,
"init_std": 0.02,
"is_encoder_decoder": true,
"max_length": 1024,
"max_position_embeddings": 1024,
"model_type": "bart",
"num_hidden_layers": 12,
"pad_token_id": 1,
"scale_embedding": false,
"torch_dtype": "float32",
"transformers_version": "4.17.0.dev0",
"use_cache": true,
"vocab_size": 50265
}
{
"_name_or_path": "microsoft/tapex-large-finetuned-wtq",
"activation_dropout": 0.0,
"activation_function": "gelu",
"architectures": [
"BartForConditionalGeneration"
],
"attention_dropout": 0.1,
"bos_token_id": 0,
"classifier_dropout": 0.0,
"d_model": 1024,
"decoder_attention_heads": 16,
"decoder_ffn_dim": 4096,
"decoder_layerdrop": 0.0,
"decoder_layers": 12,
"decoder_start_token_id": 2,
"dropout": 0.1,
"encoder_attention_heads": 16,
"encoder_ffn_dim": 4096,
"encoder_layerdrop": 0.0,
"encoder_layers": 12,
"eos_token_id": 2,
"forced_bos_token_id": 0,
"forced_eos_token_id": 2,
"init_std": 0.02,
"is_encoder_decoder": true,
"max_length": 1024,
"max_position_embeddings": 1024,
"model_type": "bart",
"num_hidden_layers": 12,
"pad_token_id": 1,
"scale_embedding": false,
"torch_dtype": "float32",
"transformers_version": "4.17.0.dev0",
"use_cache": true,
"vocab_size": 50265
}

11
generation_config.json Normal file
View File

@ -0,0 +1,11 @@
{
"_from_model_config": true,
"bos_token_id": 0,
"decoder_start_token_id": 2,
"eos_token_id": 2,
"forced_bos_token_id": 0,
"forced_eos_token_id": 2,
"max_length": 1024,
"pad_token_id": 1,
"transformers_version": "4.27.0.dev0"
}

1
tokenizer_config.json Normal file
View File

@ -0,0 +1 @@
{"do_lower_case": true, "errors": "replace", "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": true, "max_cell_length": 15, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "microsoft/tapex-large-finetuned-wtq", "use_fast": true, "tokenizer_class": "TapexTokenizer"}

1
vocab.json Normal file

File diff suppressed because one or more lines are too long