Compare commits
10 Commits
bc821eb9ad
...
8338affcb0
Author | SHA1 | Date |
---|---|---|
|
8338affcb0 | |
|
a755f6ff34 | |
|
ec1a11f879 | |
|
0cd74d3e2a | |
|
f5d2d80895 | |
|
59fa639a30 | |
|
03c7da25f9 | |
|
08b43d3f06 | |
|
881e372614 | |
|
bcdb8e3138 |
81
README.md
81
README.md
|
@ -1,3 +1,78 @@
|
|||
---
|
||||
license: mit
|
||||
---
|
||||
---
|
||||
language: en
|
||||
tags:
|
||||
- tapex
|
||||
- table-question-answering
|
||||
datasets:
|
||||
- wikitablequestions
|
||||
license: mit
|
||||
---
|
||||
|
||||
# TAPEX (large-sized model)
|
||||
|
||||
TAPEX was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found [here](https://github.com/microsoft/Table-Pretraining).
|
||||
|
||||
## Model description
|
||||
|
||||
TAPEX (**Ta**ble **P**re-training via **Ex**ecution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with *table reasoning* skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries.
|
||||
|
||||
TAPEX is based on the BART architecture, the transformer encoder-decoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder.
|
||||
|
||||
This model is the `tapex-base` model fine-tuned on the [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) dataset.
|
||||
|
||||
## Intended Uses
|
||||
|
||||
You can use the model for table question answering on *complex* questions. Some **solveable** questions are shown below (corresponding tables now shown):
|
||||
|
||||
| Question | Answer |
|
||||
|:---: |:---:|
|
||||
| according to the table, what is the last title that spicy horse produced? | Akaneiro: Demon Hunters |
|
||||
| what is the difference in runners-up from coleraine academical institution and royal school dungannon? | 20 |
|
||||
| what were the first and last movies greenstreet acted in? | The Maltese Falcon, Malaya |
|
||||
| in which olympic games did arasay thondike not finish in the top 20? | 2012 |
|
||||
| which broadcaster hosted 3 titles but they had only 1 episode? | Channel 4 |
|
||||
|
||||
|
||||
### How to Use
|
||||
|
||||
Here is how to use this model in transformers:
|
||||
|
||||
```python
|
||||
from transformers import TapexTokenizer, BartForConditionalGeneration
|
||||
import pandas as pd
|
||||
|
||||
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
||||
model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
||||
|
||||
data = {
|
||||
"year": [1896, 1900, 1904, 2004, 2008, 2012],
|
||||
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
|
||||
}
|
||||
table = pd.DataFrame.from_dict(data)
|
||||
|
||||
# tapex accepts uncased input since it is pre-trained on the uncased corpus
|
||||
query = "In which year did beijing host the Olympic Games?"
|
||||
encoding = tokenizer(table=table, query=query, return_tensors="pt")
|
||||
|
||||
outputs = model.generate(**encoding)
|
||||
|
||||
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
||||
# [' 2008.0']
|
||||
```
|
||||
|
||||
### How to Eval
|
||||
|
||||
Please find the eval script [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/tapex).
|
||||
|
||||
### BibTeX entry and citation info
|
||||
|
||||
```bibtex
|
||||
@inproceedings{
|
||||
liu2022tapex,
|
||||
title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor},
|
||||
author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou},
|
||||
booktitle={International Conference on Learning Representations},
|
||||
year={2022},
|
||||
url={https://openreview.net/forum?id=O50443AsCP}
|
||||
}
|
||||
```
|
74
config.json
74
config.json
|
@ -1,37 +1,37 @@
|
|||
{
|
||||
"_name_or_path": "tapex-large-finetuned-wtq",
|
||||
"activation_dropout": 0.0,
|
||||
"activation_function": "gelu",
|
||||
"architectures": [
|
||||
"BartForConditionalGeneration"
|
||||
],
|
||||
"attention_dropout": 0.1,
|
||||
"bos_token_id": 0,
|
||||
"classifier_dropout": 0.0,
|
||||
"d_model": 1024,
|
||||
"decoder_attention_heads": 16,
|
||||
"decoder_ffn_dim": 4096,
|
||||
"decoder_layerdrop": 0.0,
|
||||
"decoder_layers": 12,
|
||||
"decoder_start_token_id": 2,
|
||||
"dropout": 0.1,
|
||||
"encoder_attention_heads": 16,
|
||||
"encoder_ffn_dim": 4096,
|
||||
"encoder_layerdrop": 0.0,
|
||||
"encoder_layers": 12,
|
||||
"eos_token_id": 2,
|
||||
"forced_bos_token_id": 0,
|
||||
"forced_eos_token_id": 2,
|
||||
"init_std": 0.02,
|
||||
"is_encoder_decoder": true,
|
||||
"max_length": 1024,
|
||||
"max_position_embeddings": 1024,
|
||||
"model_type": "bart",
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"scale_embedding": false,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.17.0.dev0",
|
||||
"use_cache": true,
|
||||
"vocab_size": 50265
|
||||
}
|
||||
{
|
||||
"_name_or_path": "microsoft/tapex-large-finetuned-wtq",
|
||||
"activation_dropout": 0.0,
|
||||
"activation_function": "gelu",
|
||||
"architectures": [
|
||||
"BartForConditionalGeneration"
|
||||
],
|
||||
"attention_dropout": 0.1,
|
||||
"bos_token_id": 0,
|
||||
"classifier_dropout": 0.0,
|
||||
"d_model": 1024,
|
||||
"decoder_attention_heads": 16,
|
||||
"decoder_ffn_dim": 4096,
|
||||
"decoder_layerdrop": 0.0,
|
||||
"decoder_layers": 12,
|
||||
"decoder_start_token_id": 2,
|
||||
"dropout": 0.1,
|
||||
"encoder_attention_heads": 16,
|
||||
"encoder_ffn_dim": 4096,
|
||||
"encoder_layerdrop": 0.0,
|
||||
"encoder_layers": 12,
|
||||
"eos_token_id": 2,
|
||||
"forced_bos_token_id": 0,
|
||||
"forced_eos_token_id": 2,
|
||||
"init_std": 0.02,
|
||||
"is_encoder_decoder": true,
|
||||
"max_length": 1024,
|
||||
"max_position_embeddings": 1024,
|
||||
"model_type": "bart",
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"scale_embedding": false,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.17.0.dev0",
|
||||
"use_cache": true,
|
||||
"vocab_size": 50265
|
||||
}
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
{
|
||||
"_from_model_config": true,
|
||||
"bos_token_id": 0,
|
||||
"decoder_start_token_id": 2,
|
||||
"eos_token_id": 2,
|
||||
"forced_bos_token_id": 0,
|
||||
"forced_eos_token_id": 2,
|
||||
"max_length": 1024,
|
||||
"pad_token_id": 1,
|
||||
"transformers_version": "4.27.0.dev0"
|
||||
}
|
|
@ -0,0 +1 @@
|
|||
{"do_lower_case": true, "errors": "replace", "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": true, "max_cell_length": 15, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "microsoft/tapex-large-finetuned-wtq", "use_fast": true, "tokenizer_class": "TapexTokenizer"}
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue