Compare commits
10 Commits
e9ce49e76b
...
9d5c5fadcc
Author | SHA1 | Date |
---|---|---|
|
9d5c5fadcc | |
|
8bada3b953 | |
|
bb398736a4 | |
|
e84a3e0adc | |
|
adda56196f | |
|
7cb5298862 | |
|
8e2e228516 | |
|
a901f37c2a | |
|
b86761883d | |
|
451955c798 |
|
@ -6,3 +6,4 @@
|
|||
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
|
|
|
@ -0,0 +1,54 @@
|
|||
---
|
||||
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
|
||||
tags:
|
||||
- conversational
|
||||
license: mit
|
||||
---
|
||||
|
||||
## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)
|
||||
|
||||
DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations.
|
||||
The [human evaluation results](https://github.com/dreasysnail/Dialogpt_dev#human-evaluation) indicate that the response generated from DialoGPT is comparable to human response quality under a single-turn conversation Turing test.
|
||||
The model is trained on 147M multi-turn dialogue from Reddit discussion thread.
|
||||
|
||||
* Multi-turn generation examples from an interactive environment:
|
||||
|
||||
|Role | Response |
|
||||
|---------|--------|
|
||||
|User | Does money buy happiness? |
|
||||
| Bot | Depends how much money you spend on it .|
|
||||
|User | What is the best way to buy happiness ? |
|
||||
| Bot | You just have to be a millionaire by your early 20s, then you can be happy . |
|
||||
|User |This is so difficult ! |
|
||||
| Bot | You have no idea how hard it is to be a millionaire and happy . There is a reason the rich have a lot of money |
|
||||
|
||||
Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
|
||||
|
||||
ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536)
|
||||
|
||||
### How to use
|
||||
|
||||
Now we are ready to try out how the model works as a chatting partner!
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
import torch
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
||||
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
||||
|
||||
# Let's chat for 5 lines
|
||||
for step in range(5):
|
||||
# encode the new user input, add the eos_token and return a tensor in Pytorch
|
||||
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
|
||||
|
||||
# append the new user input tokens to the chat history
|
||||
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
|
||||
|
||||
# generated a response while limiting the total chat history to 1000 tokens,
|
||||
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
||||
|
||||
# pretty print last ouput tokens from bot
|
||||
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
|
||||
```
|
19
config.json
19
config.json
|
@ -1,11 +1,12 @@
|
|||
{
|
||||
"activation_function": "gelu_new",
|
||||
"architectures": [
|
||||
"GPT2LMHeadModel"
|
||||
],
|
||||
"attn_pdrop": 0.1,
|
||||
"bos_token_id": 50256,
|
||||
"eos_token_ids": [
|
||||
50256
|
||||
],
|
||||
"embd_pdrop": 0.1,
|
||||
"eos_token_id": 50256,
|
||||
"initializer_range": 0.02,
|
||||
"layer_norm_epsilon": 1e-05,
|
||||
"model_type": "gpt2",
|
||||
|
@ -14,6 +15,16 @@
|
|||
"n_head": 16,
|
||||
"n_layer": 24,
|
||||
"n_positions": 1024,
|
||||
"pad_token_id": 50256,
|
||||
"resid_pdrop": 0.1,
|
||||
"summary_activation": null,
|
||||
"summary_first_dropout": 0.1,
|
||||
"summary_proj_to_labels": true,
|
||||
"summary_type": "cls_index",
|
||||
"summary_use_proj": true,
|
||||
"task_specific_params": {
|
||||
"conversational": {
|
||||
"max_length": 1000
|
||||
}
|
||||
},
|
||||
"vocab_size": 50257
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"_from_model_config": true,
|
||||
"bos_token_id": 50256,
|
||||
"eos_token_id": 50256,
|
||||
"transformers_version": "4.27.0.dev0"
|
||||
}
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"_from_model_config": true,
|
||||
"bos_token_id": 50256,
|
||||
"eos_token_id": 50256,
|
||||
"max_length": 1000,
|
||||
"transformers_version": "4.27.0.dev0"
|
||||
}
|
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1 @@
|
|||
{"model_max_length": 1024}
|
Loading…
Reference in New Issue