Compare commits
No commits in common. "9d5c5fadcc072b693fb5a5e29416bbf3f503c26c" and "e9ce49e76b22ffdcd40b5308331795bb348b26cc" have entirely different histories.
9d5c5fadcc
...
e9ce49e76b
|
@ -6,4 +6,3 @@
|
||||||
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
||||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
||||||
|
|
54
README.md
54
README.md
|
@ -1,54 +0,0 @@
|
||||||
---
|
|
||||||
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
|
|
||||||
tags:
|
|
||||||
- conversational
|
|
||||||
license: mit
|
|
||||||
---
|
|
||||||
|
|
||||||
## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)
|
|
||||||
|
|
||||||
DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations.
|
|
||||||
The [human evaluation results](https://github.com/dreasysnail/Dialogpt_dev#human-evaluation) indicate that the response generated from DialoGPT is comparable to human response quality under a single-turn conversation Turing test.
|
|
||||||
The model is trained on 147M multi-turn dialogue from Reddit discussion thread.
|
|
||||||
|
|
||||||
* Multi-turn generation examples from an interactive environment:
|
|
||||||
|
|
||||||
|Role | Response |
|
|
||||||
|---------|--------|
|
|
||||||
|User | Does money buy happiness? |
|
|
||||||
| Bot | Depends how much money you spend on it .|
|
|
||||||
|User | What is the best way to buy happiness ? |
|
|
||||||
| Bot | You just have to be a millionaire by your early 20s, then you can be happy . |
|
|
||||||
|User |This is so difficult ! |
|
|
||||||
| Bot | You have no idea how hard it is to be a millionaire and happy . There is a reason the rich have a lot of money |
|
|
||||||
|
|
||||||
Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
|
|
||||||
|
|
||||||
ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536)
|
|
||||||
|
|
||||||
### How to use
|
|
||||||
|
|
||||||
Now we are ready to try out how the model works as a chatting partner!
|
|
||||||
|
|
||||||
```python
|
|
||||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
||||||
import torch
|
|
||||||
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
|
||||||
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
|
||||||
|
|
||||||
# Let's chat for 5 lines
|
|
||||||
for step in range(5):
|
|
||||||
# encode the new user input, add the eos_token and return a tensor in Pytorch
|
|
||||||
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
|
|
||||||
|
|
||||||
# append the new user input tokens to the chat history
|
|
||||||
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
|
|
||||||
|
|
||||||
# generated a response while limiting the total chat history to 1000 tokens,
|
|
||||||
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
|
||||||
|
|
||||||
# pretty print last ouput tokens from bot
|
|
||||||
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
|
|
||||||
```
|
|
47
config.json
47
config.json
|
@ -1,30 +1,19 @@
|
||||||
{
|
{
|
||||||
"activation_function": "gelu_new",
|
"architectures": [
|
||||||
"architectures": [
|
"GPT2LMHeadModel"
|
||||||
"GPT2LMHeadModel"
|
],
|
||||||
],
|
"bos_token_id": 50256,
|
||||||
"attn_pdrop": 0.1,
|
"eos_token_ids": [
|
||||||
"bos_token_id": 50256,
|
50256
|
||||||
"embd_pdrop": 0.1,
|
],
|
||||||
"eos_token_id": 50256,
|
"initializer_range": 0.02,
|
||||||
"initializer_range": 0.02,
|
"layer_norm_epsilon": 1e-05,
|
||||||
"layer_norm_epsilon": 1e-05,
|
"model_type": "gpt2",
|
||||||
"model_type": "gpt2",
|
"n_ctx": 1024,
|
||||||
"n_ctx": 1024,
|
"n_embd": 1024,
|
||||||
"n_embd": 1024,
|
"n_head": 16,
|
||||||
"n_head": 16,
|
"n_layer": 24,
|
||||||
"n_layer": 24,
|
"n_positions": 1024,
|
||||||
"n_positions": 1024,
|
"pad_token_id": 50256,
|
||||||
"resid_pdrop": 0.1,
|
"vocab_size": 50257
|
||||||
"summary_activation": null,
|
}
|
||||||
"summary_first_dropout": 0.1,
|
|
||||||
"summary_proj_to_labels": true,
|
|
||||||
"summary_type": "cls_index",
|
|
||||||
"summary_use_proj": true,
|
|
||||||
"task_specific_params": {
|
|
||||||
"conversational": {
|
|
||||||
"max_length": 1000
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"vocab_size": 50257
|
|
||||||
}
|
|
||||||
|
|
BIN
flax_model.msgpack (Stored with Git LFS)
BIN
flax_model.msgpack (Stored with Git LFS)
Binary file not shown.
|
@ -1,6 +0,0 @@
|
||||||
{
|
|
||||||
"_from_model_config": true,
|
|
||||||
"bos_token_id": 50256,
|
|
||||||
"eos_token_id": 50256,
|
|
||||||
"transformers_version": "4.27.0.dev0"
|
|
||||||
}
|
|
|
@ -1,7 +0,0 @@
|
||||||
{
|
|
||||||
"_from_model_config": true,
|
|
||||||
"bos_token_id": 50256,
|
|
||||||
"eos_token_id": 50256,
|
|
||||||
"max_length": 1000,
|
|
||||||
"transformers_version": "4.27.0.dev0"
|
|
||||||
}
|
|
BIN
rust_model.ot (Stored with Git LFS)
BIN
rust_model.ot (Stored with Git LFS)
Binary file not shown.
BIN
tf_model.h5 (Stored with Git LFS)
BIN
tf_model.h5 (Stored with Git LFS)
Binary file not shown.
|
@ -1 +0,0 @@
|
||||||
{"model_max_length": 1024}
|
|
Loading…
Reference in New Issue