update model card
This commit is contained in:
parent
1f39a7116d
commit
57658944a9
197
README.md
197
README.md
|
@ -0,0 +1,197 @@
|
|||
---
|
||||
language: de
|
||||
datasets:
|
||||
- common_voice
|
||||
metrics:
|
||||
- wer
|
||||
tags:
|
||||
- audio
|
||||
- automatic-speech-recognition
|
||||
- speech
|
||||
- xlsr-fine-tuning-week
|
||||
license: apache-2.0
|
||||
model-index:
|
||||
- name: {XLSR Wav2Vec2 Large 53 CV-de}
|
||||
results:
|
||||
- task:
|
||||
name: Speech Recognition
|
||||
type: automatic-speech-recognition
|
||||
dataset:
|
||||
name: Common Voice de
|
||||
type: common_voice
|
||||
args: de
|
||||
metrics:
|
||||
- name: Test WER
|
||||
type: wer
|
||||
value: 12.62
|
||||
---
|
||||
|
||||
# Wav2Vec2-Large-XLSR-53-german #TODO: replace language with your {language}, *e.g.* French
|
||||
|
||||
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
|
||||
When using this model, make sure that your speech input is sampled at 16kHz.
|
||||
|
||||
## Usage
|
||||
|
||||
The model can be used directly (without a language model) as follows:
|
||||
|
||||
```python
|
||||
import torch
|
||||
import torchaudio
|
||||
from datasets import load_dataset
|
||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||
|
||||
test_dataset = load_dataset("common_voice", "de", split="test[:8]") # use a batch of 8 for demo purposes
|
||||
|
||||
processor = Wav2Vec2Processor.from_pretrained("maxidl/wav2vec2-large-xlsr-german")
|
||||
model = Wav2Vec2ForCTC.from_pretrained("maxidl/wav2vec2-large-xlsr-german")
|
||||
|
||||
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
||||
|
||||
"""
|
||||
Preprocessing the dataset by:
|
||||
- loading audio files
|
||||
- resampling to 16kHz
|
||||
- converting to array
|
||||
- prepare input tensor using the processor
|
||||
"""
|
||||
def speech_file_to_array_fn(batch):
|
||||
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
||||
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
||||
return batch
|
||||
|
||||
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
||||
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
||||
|
||||
# run forward
|
||||
with torch.no_grad():
|
||||
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
||||
|
||||
predicted_ids = torch.argmax(logits, dim=-1)
|
||||
|
||||
print("Prediction:", processor.batch_decode(predicted_ids))
|
||||
print("Reference:", test_dataset["sentence"])
|
||||
"""
|
||||
Example Result:
|
||||
|
||||
Prediction: [
|
||||
'zieh durch bittet draußen die schuhe aus',
|
||||
'es kommt zugvorgebauten fo',
|
||||
'ihre vorterstrecken erschienen it modemagazinen wie der voge karpes basar mariclair',
|
||||
'fürliepert eine auch für manachen ungewöhnlich lange drittelliste',
|
||||
'er wurde zu ehren des reichskanzlers otto von bismarck errichtet',
|
||||
'was solls ich bin bereit',
|
||||
'das internet besteht aus vielen computern die miteinander verbunden sind',
|
||||
'der uranus ist der siebinteplanet in unserem sonnensystem s'
|
||||
]
|
||||
|
||||
Reference: [
|
||||
'Zieht euch bitte draußen die Schuhe aus.',
|
||||
'Es kommt zum Showdown in Gstaad.',
|
||||
'Ihre Fotostrecken erschienen in Modemagazinen wie der Vogue, Harper’s Bazaar und Marie Claire.',
|
||||
'Felipe hat eine auch für Monarchen ungewöhnlich lange Titelliste.',
|
||||
'Er wurde zu Ehren des Reichskanzlers Otto von Bismarck errichtet.',
|
||||
'Was solls, ich bin bereit.',
|
||||
'Das Internet besteht aus vielen Computern, die miteinander verbunden sind.',
|
||||
'Der Uranus ist der siebente Planet in unserem Sonnensystem.'
|
||||
]
|
||||
"""
|
||||
```
|
||||
|
||||
|
||||
## Evaluation
|
||||
|
||||
The model can be evaluated as follows on the German test data of Common Voice:
|
||||
|
||||
|
||||
```python
|
||||
import re
|
||||
import torch
|
||||
import torchaudio
|
||||
from datasets import load_dataset, load_metric
|
||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||
|
||||
"""
|
||||
Evaluation on the full test set:
|
||||
- takes ~20mins (RTX 3090).
|
||||
- requires ~170GB RAM to compute the WER. A potential solution to this is computing it in chunks.
|
||||
See https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586/5 on how to implement this.
|
||||
"""
|
||||
test_dataset = load_dataset("common_voice", "de", split="test") # use "test[:1%]" for 1% sample
|
||||
wer = load_metric("wer")
|
||||
|
||||
processor = Wav2Vec2Processor.from_pretrained("maxidl/wav2vec2-large-xlsr-german")
|
||||
model = Wav2Vec2ForCTC.from_pretrained("maxidl/wav2vec2-large-xlsr-german")
|
||||
model.to("cuda")
|
||||
|
||||
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
||||
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# We need to read the aduio files as arrays
|
||||
def speech_file_to_array_fn(batch):
|
||||
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
||||
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
||||
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
||||
return batch
|
||||
|
||||
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# We need to read the audio files as arrays
|
||||
def evaluate(batch):
|
||||
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
||||
|
||||
pred_ids = torch.argmax(logits, dim=-1)
|
||||
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
||||
return batch
|
||||
|
||||
result = test_dataset.map(evaluate, batched=True, batch_size=8) # batch_size=8 -> requires ~14.5GB GPU memory
|
||||
|
||||
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
||||
# WER: 12.615308
|
||||
```
|
||||
|
||||
**Test Result**: 12.62 %
|
||||
|
||||
|
||||
## Training
|
||||
|
||||
The Common Voice German `train` and `validation` were used for training.
|
||||
The script used for training can be found [here](https://github.com/maxidl/wav2vec2).
|
||||
The model was trained for 50k steps, taking around 30 hours on a single A100.
|
||||
|
||||
The arguments used for training this model are:
|
||||
```
|
||||
python run_finetuning.py \
|
||||
--model_name_or_path="facebook/wav2vec2-large-xlsr-53" \
|
||||
--dataset_config_name="de" \
|
||||
--output_dir=./wav2vec2-large-xlsr-german \
|
||||
--preprocessing_num_workers="16" \
|
||||
--overwrite_output_dir \
|
||||
--num_train_epochs="20" \
|
||||
--per_device_train_batch_size="64" \
|
||||
--per_device_eval_batch_size="32" \
|
||||
--learning_rate="1e-4" \
|
||||
--warmup_steps="500" \
|
||||
--evaluation_strategy="steps" \
|
||||
--save_steps="5000" \
|
||||
--eval_steps="5000" \
|
||||
--logging_steps="1000" \
|
||||
--save_total_limit="3" \
|
||||
--freeze_feature_extractor \
|
||||
--activation_dropout="0.055" \
|
||||
--attention_dropout="0.094" \
|
||||
--feat_proj_dropout="0.04" \
|
||||
--layerdrop="0.04" \
|
||||
--mask_time_prob="0.08" \
|
||||
--gradient_checkpointing="1" \
|
||||
--fp16 \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataloader_num_workers="16" \
|
||||
--group_by_length
|
||||
```
|
Loading…
Reference in New Issue