165 lines
6.1 KiB
Python
165 lines
6.1 KiB
Python
#!/usr/bin/env python3
|
|
from datasets import load_dataset, load_metric, Audio, Dataset
|
|
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, AutoConfig, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
|
import re
|
|
import torch
|
|
import argparse
|
|
from typing import Dict
|
|
|
|
def log_results(result: Dataset, args: Dict[str, str]):
|
|
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
|
|
|
log_outputs = args.log_outputs
|
|
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
|
|
|
# load metric
|
|
wer = load_metric("wer")
|
|
cer = load_metric("cer")
|
|
|
|
# compute metrics
|
|
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
|
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
|
|
|
# print & log results
|
|
result_str = (
|
|
f"WER: {wer_result}\n"
|
|
f"CER: {cer_result}"
|
|
)
|
|
print(result_str)
|
|
|
|
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
|
f.write(result_str)
|
|
|
|
# log all results in text file. Possibly interesting for analysis
|
|
if log_outputs is not None:
|
|
pred_file = f"log_{dataset_id}_predictions.txt"
|
|
target_file = f"log_{dataset_id}_targets.txt"
|
|
|
|
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
|
|
|
# mapping function to write output
|
|
def write_to_file(batch, i):
|
|
p.write(f"{i}" + "\n")
|
|
p.write(batch["prediction"] + "\n")
|
|
t.write(f"{i}" + "\n")
|
|
t.write(batch["target"] + "\n")
|
|
|
|
result.map(write_to_file, with_indices=True)
|
|
|
|
|
|
def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str:
|
|
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
|
|
|
text = text.lower() if to_lower else text.upper()
|
|
|
|
text = re.sub(invalid_chars_regex, " ", text)
|
|
|
|
text = re.sub("\s+", " ", text).strip()
|
|
|
|
return text
|
|
|
|
|
|
def main(args):
|
|
# load dataset
|
|
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
|
|
|
# for testing: only process the first two examples as a test
|
|
# dataset = dataset.select(range(10))
|
|
|
|
# load processor
|
|
if args.greedy:
|
|
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
|
|
decoder = None
|
|
else:
|
|
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
|
|
decoder = processor.decoder
|
|
|
|
feature_extractor = processor.feature_extractor
|
|
tokenizer = processor.tokenizer
|
|
|
|
# resample audio
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
|
|
|
|
# load eval pipeline
|
|
if args.device is None:
|
|
args.device = 0 if torch.cuda.is_available() else -1
|
|
|
|
config = AutoConfig.from_pretrained(args.model_id)
|
|
model = AutoModelForCTC.from_pretrained(args.model_id)
|
|
|
|
#asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
|
asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer,
|
|
feature_extractor=feature_extractor, decoder=decoder, device=args.device)
|
|
|
|
# build normalizer config
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
|
tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))]
|
|
special_tokens = [
|
|
tokenizer.pad_token, tokenizer.word_delimiter_token,
|
|
tokenizer.unk_token, tokenizer.bos_token,
|
|
tokenizer.eos_token,
|
|
]
|
|
non_special_tokens = [x for x in tokens if x not in special_tokens]
|
|
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]"
|
|
normalize_to_lower = False
|
|
for token in non_special_tokens:
|
|
if token.isalpha() and token.islower():
|
|
normalize_to_lower = True
|
|
break
|
|
|
|
# map function to decode audio
|
|
def map_to_pred(batch, args=args, asr=asr, invalid_chars_regex=invalid_chars_regex, normalize_to_lower=normalize_to_lower):
|
|
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
|
|
|
batch["prediction"] = prediction["text"]
|
|
batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex, normalize_to_lower)
|
|
return batch
|
|
|
|
# run inference on all examples
|
|
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
|
|
|
# filtering out empty targets
|
|
result = result.filter(lambda example: example["target"] != "")
|
|
|
|
# compute and log_results
|
|
# do not change function below
|
|
log_results(result, args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
|
)
|
|
parser.add_argument(
|
|
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
|
)
|
|
parser.add_argument(
|
|
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
|
)
|
|
parser.add_argument(
|
|
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
|
)
|
|
parser.add_argument(
|
|
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
|
)
|
|
parser.add_argument(
|
|
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
|
)
|
|
parser.add_argument(
|
|
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
|
)
|
|
parser.add_argument(
|
|
"--greedy", action='store_true', help="If defined, the LM will be ignored during inference."
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=int,
|
|
default=None,
|
|
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|