diff --git a/README.md b/README.md new file mode 100644 index 0000000..56019a3 --- /dev/null +++ b/README.md @@ -0,0 +1,239 @@ +--- +language: en +datasets: +- common_voice +metrics: +- wer +- cer +tags: +- audio +- automatic-speech-recognition +- speech +- xlsr-fine-tuning-week +license: apache-2.0 +model-index: +- name: XLSR Wav2Vec2 English by Jonatas Grosman + results: + - task: + name: Speech Recognition + type: automatic-speech-recognition + dataset: + name: Common Voice en + type: common_voice + args: en + metrics: + - name: Test WER + type: wer + value: 39.59 + - name: Test CER + type: cer + value: 18.18 +--- + +# Wav2Vec2-Large-XLSR-53-English + +Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice). +When using this model, make sure that your speech input is sampled at 16kHz. + +The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint + +## Usage + +The model can be used directly (without a language model) as follows: + +```python +import torch +import librosa +from datasets import load_dataset +from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor + +LANG_ID = "en" +MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" +SAMPLES = 10 + +test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") + +processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) +model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) + +# Preprocessing the datasets. +# We need to read the audio files as arrays +def speech_file_to_array_fn(batch): + speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) + batch["speech"] = speech_array + batch["sentence"] = batch["sentence"].upper() + return batch + +test_dataset = test_dataset.map(speech_file_to_array_fn) +inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) + +with torch.no_grad(): + logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits + +predicted_ids = torch.argmax(logits, dim=-1) +predicted_sentences = processor.batch_decode(predicted_ids) + +for i, predicted_sentence in enumerate(predicted_sentences): + print("-" * 100) + print("Reference:", test_dataset[i]["sentence"]) + print("Prediction:", predicted_sentence) +``` + +| Reference | Prediction | +| ------------- | ------------- | +| "SHE'LL BE ALL RIGHT." | SHE'LD BE ALL RIGHT | +| SIX | SIX | +| "ALL'S WELL THAT ENDS WELL." | ALL IS WELL THAT ENDS WELL | +| DO YOU MEAN IT? | DO YOU MEAN IT | +| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION | +| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOWIS MOCILE ARE GOING TO HANDLE AMBIGUITIES LIKE KU AND KU | +| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RISSHON WAS INCAN IN THE BAK TE | +| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | +| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUISE IS SAUCED FOR THE GONDER | +| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | + +## Evaluation + +The model can be evaluated as follows on the English test data of Common Voice. + +```python +import torch +import re +import librosa +from datasets import load_dataset, load_metric +from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor + +LANG_ID = "en" +MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" +DEVICE = "cuda" + +CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", + "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", + "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", + "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", + "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] + +test_dataset = load_dataset("common_voice", LANG_ID, split="test") + +# uncomment the following lines to eval using other datasets +# test_dataset = load_dataset("librispeech_asr", "clean", split="test") +# test_dataset = load_dataset("librispeech_asr", "other", split="test") +# test_dataset = load_dataset("timit_asr", split="test") + +wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py +cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py + +chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" + +processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) +model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) +model.to(DEVICE) + +# Preprocessing the datasets. +# We need to read the audio files as arrays +def speech_file_to_array_fn(batch): + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + speech_array, sampling_rate = librosa.load(batch["file"] if "file" in batch else batch["path"], sr=16_000) + batch["speech"] = speech_array + batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["text"] if "text" in batch else batch["sentence"]).upper() + return batch + +test_dataset = test_dataset.map(speech_file_to_array_fn) + +# Preprocessing the datasets. +# We need to read the audio files as arrays +def evaluate(batch): + inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) + + with torch.no_grad(): + logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits + + pred_ids = torch.argmax(logits, dim=-1) + batch["pred_strings"] = processor.batch_decode(pred_ids) + return batch + +result = test_dataset.map(evaluate, batched=True, batch_size=8) + +predictions = [x.upper() for x in result["pred_strings"]] +references = [x.upper() for x in result["sentence"]] + +print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") +print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") +``` + +**Test Result**: + +In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-20). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. + +--- + +**Common Voice** + +| Model | WER | CER | +| ------------- | ------------- | ------------- | +| jonatasgrosman/wav2vec2-large-xlsr-53-english | **19.18%** | **8.25%** | +| jonatasgrosman/wav2vec2-large-english | 21.16% | 9.53% | +| facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% | +| facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% | +| facebook/wav2vec2-large-960h | 32.79% | 16.03% | +| boris/xlsr-en-punctuation | 34.81% | 15.51% | +| facebook/wav2vec2-base-960h | 39.86% | 19.89% | +| facebook/wav2vec2-base-100h | 51.06% | 25.06% | +| elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% | +| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% | +| elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% | + +--- + +**LibriSpeech (clean)** + +| Model | WER | CER | +| ------------- | ------------- | ------------- | +| facebook/wav2vec2-large-960h-lv60-self | **1.86%** | **0.54%** | +| facebook/wav2vec2-large-960h-lv60 | 2.15% | 0.61% | +| facebook/wav2vec2-large-960h | 2.82% | 0.84% | +| facebook/wav2vec2-base-960h | 3.44% | 1.06% | +| facebook/wav2vec2-base-100h | 6.26% | 2.00% | +| jonatasgrosman/wav2vec2-large-xlsr-53-english | 6.97% | 2.02% | +| jonatasgrosman/wav2vec2-large-english | 8.00% | 2.55% | +| elgeish/wav2vec2-large-lv60-timit-asr | 15.53% | 4.93% | +| boris/xlsr-en-punctuation | 19.28% | 6.45% | +| elgeish/wav2vec2-base-timit-asr | 29.19% | 8.38% | +| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 31.82% | 12.41% | + +--- + +**LibriSpeech (other)** + +| Model | WER | CER | +| ------------- | ------------- | ------------- | +| facebook/wav2vec2-large-960h-lv60-self | **3.89%** | **1.40%** | +| facebook/wav2vec2-large-960h-lv60 | 4.45% | 1.56% | +| facebook/wav2vec2-large-960h | 6.49% | 2.52% | +| facebook/wav2vec2-base-960h | 8.90% | 3.55% | +| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.75% | 4.23% | +| jonatasgrosman/wav2vec2-large-english | 13.62% | 5.24% | +| facebook/wav2vec2-base-100h | 13.97% | 5.51% | +| boris/xlsr-en-punctuation | 26.40% | 10.11% | +| elgeish/wav2vec2-large-lv60-timit-asr | 28.39% | 12.08% | +| elgeish/wav2vec2-base-timit-asr | 42.04% | 15.57% | +| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 45.19% | 20.32% | + +--- + +**TIMIT** + +| Model | WER | CER | +| ------------- | ------------- | ------------- | +| facebook/wav2vec2-large-960h-lv60-self | **5.17%** | **1.33%** | +| facebook/wav2vec2-large-960h-lv60 | 6.24% | 1.54% | +| facebook/wav2vec2-large-960h | 9.63% | 2.19% | +| facebook/wav2vec2-base-960h | 11.48% | 2.76% | +| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.93% | 3.50% | +| elgeish/wav2vec2-large-lv60-timit-asr | 13.83% | 4.36% | +| jonatasgrosman/wav2vec2-large-english | 13.91% | 4.01% | +| facebook/wav2vec2-base-100h | 16.75% | 4.79% | +| elgeish/wav2vec2-base-timit-asr | 25.40% | 8.16% | +| boris/xlsr-en-punctuation | 25.93% | 9.99% | +| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 51.08% | 19.84% | diff --git a/config.json b/config.json new file mode 100644 index 0000000..b580e68 --- /dev/null +++ b/config.json @@ -0,0 +1,76 @@ +{ + "_name_or_path": "facebook/wav2vec2-large-xlsr-53", + "activation_dropout": 0.05, + "apply_spec_augment": true, + "architectures": [ + "Wav2Vec2ForCTC" + ], + "attention_dropout": 0.1, + "bos_token_id": 1, + "conv_bias": true, + "conv_dim": [ + 512, + 512, + 512, + 512, + 512, + 512, + 512 + ], + "conv_kernel": [ + 10, + 3, + 3, + 3, + 3, + 2, + 2 + ], + "conv_stride": [ + 5, + 2, + 2, + 2, + 2, + 2, + 2 + ], + "ctc_loss_reduction": "mean", + "ctc_zero_infinity": true, + "do_stable_layer_norm": true, + "eos_token_id": 2, + "feat_extract_activation": "gelu", + "feat_extract_dropout": 0.0, + "feat_extract_norm": "layer", + "feat_proj_dropout": 0.05, + "final_dropout": 0.0, + "gradient_checkpointing": true, + "hidden_act": "gelu", + "hidden_dropout": 0.05, + "hidden_size": 1024, + "initializer_range": 0.02, + "intermediate_size": 4096, + "layer_norm_eps": 1e-05, + "layerdrop": 0.05, + "mask_channel_length": 10, + "mask_channel_min_space": 1, + "mask_channel_other": 0.0, + "mask_channel_prob": 0.0, + "mask_channel_selection": "static", + "mask_feature_length": 10, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_space": 1, + "mask_time_other": 0.0, + "mask_time_prob": 0.05, + "mask_time_selection": "static", + "model_type": "wav2vec2", + "num_attention_heads": 16, + "num_conv_pos_embedding_groups": 16, + "num_conv_pos_embeddings": 128, + "num_feat_extract_layers": 7, + "num_hidden_layers": 24, + "pad_token_id": 0, + "transformers_version": "4.5.0.dev0", + "vocab_size": 33 +} diff --git a/preprocessor_config.json b/preprocessor_config.json new file mode 100644 index 0000000..0886a48 --- /dev/null +++ b/preprocessor_config.json @@ -0,0 +1,8 @@ +{ + "do_normalize": true, + "feature_size": 1, + "padding_side": "right", + "padding_value": 0.0, + "return_attention_mask": true, + "sampling_rate": 16000 +} diff --git a/pytorch_model.bin b/pytorch_model.bin new file mode 100644 index 0000000..5586db5 --- /dev/null +++ b/pytorch_model.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3ba6ad16f6ecfcadd07ca5bc3353c3168665bee9fbfb160fbc864a6a9f87ca58 +size 1262069143 diff --git a/special_tokens_map.json b/special_tokens_map.json new file mode 100644 index 0000000..25bc396 --- /dev/null +++ b/special_tokens_map.json @@ -0,0 +1 @@ +{"bos_token": "", "eos_token": "", "unk_token": "", "pad_token": ""} \ No newline at end of file diff --git a/vocab.json b/vocab.json new file mode 100644 index 0000000..fadfdb2 --- /dev/null +++ b/vocab.json @@ -0,0 +1 @@ +{"": 0, "": 1, "": 2, "": 3, "|": 4, "'": 5, "-": 6, "A": 7, "B": 8, "C": 9, "D": 10, "E": 11, "F": 12, "G": 13, "H": 14, "I": 15, "J": 16, "K": 17, "L": 18, "M": 19, "N": 20, "O": 21, "P": 22, "Q": 23, "R": 24, "S": 25, "T": 26, "U": 27, "V": 28, "W": 29, "X": 30, "Y": 31, "Z": 32} \ No newline at end of file